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Abstract. Robustly reusable Fuzzy Extractor (rrFE) considers reusabil-
ity and robustness simultaneously. We present two approaches to the
generic construction of rrFE. Both of approaches make use of a secure
sketch and universal hash functions. The first approach also employs
a special pseudo-random function (PRF), namely unique-input key-shift
(ui-ks) secure PRF, and the second uses a key-shift secure auxiliary-input
authenticated encryption (AIAE). The ui-ks security of PRF (resp. key-
shift security of AIAE), together with the homomorphic properties of
secure sketch and universal hash function, guarantees the reusability and
robustness of rrFE. Meanwhile, we show two instantiations of the two
approaches respectively. The first instantiation results in the first rrFE
from the LWE assumption, while the second instantiation results in the
first rrFE from the DDH assumption over non-pairing groups.
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1 Introduction

In cryptographic applications, the underlying secret keys are required to be uni-
formly sampled and reproducible. Uniformity of the secret keys is necessary
for the security of cryptographic algorithms, and reproducibility is responsible
for the correctness of the algorithms. In reality, there exist many noisy random
sources of high entropy, which are neither uniformly distributed nor reproducible.
For instance, biometrics [19, 20] (like fingerprint, iris, voice, etc), physical un-
clonable functions [22, 23] in electronic devices, and quantum bits generated
from quantum devices [4, 5]. In fact, the readings of the same source are rarely
identical and noises are inevitably introduced in each reading. An interesting
topic is research on converting such random sources into uniform and repro-
ducible strings so that they can serve as secret keys for cryptographic systems.
The topic was highlighted by Dodis et al. [11] who proposed the concept of Fuzzy
Extractor.

? This is the full version of a paper that appeared in PKC 2019.



Fuzzy extractor (FE) is able to turn a noisy variable of high entropy into a
stable, uniformly distributed string. More precisely, it consists of two efficient
algorithms (Gen,Rep). The generation algorithm Gen on input a reading w from
a noisy source W outputs a public helper string P together with an extracted
string R. The security of FE requires that R is (pseudo-)random if W has enough
entropy. The reproduction algorithm Rep on input w′ which is close to w will
reproduce R with the help of the public helper string P.

Reusable Fuzzy Extractor. It should be noted that fuzzy extractor only al-
lows one extraction from a noisy source. This feature limits the usability of fuzzy
extractor. In fact, a user may like to use his/her fingerprint to generate several
keys for different cryptographic applications. To this end, reusable fuzzy extrac-
tor was proposed by Boyen [6]. Generally, reusable fuzzy extractor guarantees
the security of multiple keys extracted from a single noisy source. More precisely,
R1,R2, · · · ,RQ are all pseudorandom even conditioned on (P1,P2, · · · ,PQ) where
(Pj ,Rj)← Gen(wj), j ∈ {1, · · · , Q} and wj is the j-th reading of a noisy source.

In [6], Boyen proposed a reusable FE scheme based on the random oracle.
In the security model, it assumes the exclusive OR of two readings of the same
source reveals no information of the noisy source W . Wen et al. [26] constructed
a reusable FE from the Decisional Diffie-Hellman (DDH) assumption, and the
security model assumes that the difference of two readings of the same source
does not reveal too much information of the random source.

Canetti et al. [8] constructed a reusable FE from a powerful tool named
“digital locker”. In the security model, no assumption is made on how multiple
readings are correlated. However, existing instantiations of digital locker rely
their security either on random oracles or non-standard assumptions. Their work
was upgraded by Alamélou et.al. [1] to tolerate linear fraction of errors, but still
rely on “digital locker”.

Apon et al. [2] proposed a reusable FE from the learning with errors (LWE)
assumption, but it can only tolerate logarithmic fraction of errors. Later, Wen et
al. [24] constructed a new reusable FE from LWE assumption tolerating linear
fraction of errors. In both works, it assumes that the differences between two
readings of the same source are controlled by a probabilistic polynomial-time
(PPT) adversary.

Robust Fuzzy Extractor. Fuzzy extractor does not consider active adver-
saries. If the public helper string P is modified by an active adversary, the
correctness of fuzzy extractor might not be guaranteed. Boyen et al. [7] first
highlighted this issue and introduced the concept of robust fuzzy extractor. Ro-
bustness of fuzzy extractor concerns the integrity of P, and requires that the
reproduction algorithm of FE will output ⊥ with overwhelming probability if P
is modified.

Boyen et al. [7] proposed a generic way of transforming a fuzzy extractor to a
robust one based on random oracles. Dodis et al. [10] showed that robustness of
information-theoretic fuzzy extractor is not achievable in the plain model if the
entropy rate of the source is less than 1/2 and they constructed a fuzzy extractor
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with post-application robustness which applies to sources of entropy rate larger
than 2/3. Later, Kanukurthi et al. [16] introduced an improved robust FE, which
relaxes entropy rates of sources to be larger than 1/2. With the help of common
reference string (CRS), Cramer et al. [9] proposed a robust FE and breaks the
1/2 entropy rate barrier in the CRS model.

Robustly Reusable Fuzzy Extractor. Most recently, Wen et al. [25] pro-
posed the concept of robustly reusable Fuzzy Extractor (rrFE), which considers
robustness and reusability simultaneously in the CRS model.

According to [25], the reusability of rrFE asks the pseudorandomness of Rj
even conditioned on (R1, · · · ,Rj−1,Rj+1, · · · ,RQ,P1, · · · ,PQ) where (Pj ,Rj)←
Gen(wj = w+ δj), j ∈ [Q] ([Q] := {1, · · · , Q}) and δj is controlled by the adver-
sary. In formula, (R1, · · · ,Rj , · · · ,RQ,P1, · · · ,PQ) ≈c (R1, · · · ,Uj , · · · ,RQ,P1, · · · ,PQ),

where Uj denotes a uniform distribution. In fact, a stronger version requires
(R1, · · · ,RQ,P1, · · · ,PQ) ≈c (U1, · · · ,UQ,P1, · · · ,PQ). The robustness of rrFE re-
quires that for any PPT adversary, its forged public helper string and read-
ing shift (P∗, δ∗) cannot pass the reproduction algorithm of rrFE except with
negligible probability, even if the adversary sees (Pj ,Rj)j∈[Q]. Here (Pj ,Rj) ←
Gen(wj = w + δj). Moreover, {δj}j∈[Q], (P

∗, δ∗) /∈ {(Pj ,Rj)}j∈[Q] are adaptively
chosen by the adversary.

In [25], the first robustly reusable fuzzy extractor was constructed based on
the DDH and DLIN assumptions in the CRS model. We stress that the DLIN
assumption is over pairing-friendly groups, since a core building block of their
construction, namely homomorphic lossy algebraic filter (LAF) [15], has only one
instantiation, which is over (symmetric) pairing-friendly groups. Though the con-
struction is elegant, the instantiation of LAF introduces big public helper string,
and complicated computations over symmetric pairing groups in rrFE.

Question. Is there any other approaches to rrFE? Is it possible to obtain a more
efficient rrFE? Is it possible to construct a rrFE from the LWE assumption?

1.1 Our Contribution

We answer the above questions in the affirmative.

– We provide two generic constructions of rrFE. Namely,

SS +HI + ui-ks-PRF⇒ rrFE,

SS +HI + AIAE⇒ rrFE,

where SS is a homomorphic Secure Sketch with linearity property, HI is a
family of homomorphic universal hash functions, ui-ks-PRF is a pseudoran-
dom function with unique-input key-shift security, and AIAE is an auxiliary-
input authenticated encryption with key-shift security.

– Our construction is simple and can be instantiated with standard assump-
tions. Both SS and HI have information-theoretic instantiations, and ui-ks-
PRF and AIAE have available instantiations from standard assumptions.
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Fig. 1. The generation algorithm of the robustly reusable Fuzzy Extractor in [25].

• When instantiating ui-ks-PRF with the PRF constructed in [18], we ob-
tain the first post-quantum rrFE from the LWE assumption.

• When instantiating AIAE with the AIAE scheme from [14], we obtain the
first efficient rrFE from the DDH assumption over pairing-free groups.

1.2 Our Approaches

We provide two new approaches to rrFE. Following the security model in [25],
the adversary controls the differences between any two different readings of the
source W .

First, we recall the generation algorithm of rrFE in [25] in Fig. 1. The source
reading w is served as inputs for three building blocks, i.e., universal hash func-
tion Hi, secure sketch scheme SS = (SS.Gen,SS.Rec) and lossy algebraic filter
LAF. With Hi, a string k is extracted from source w and used as a key in the
symmetric KEM SKEM = (SKEM.Enc,SKEM.Dec), which in turn encapsulates
the final extracted string R; with SS.Gen, a secure sketch s is generated from
w to help eliminate noises in the reproduction algorithm of rrFE; with LAF, w
is used as an authentication key to authenticate the ciphertext c generated by
SKEM.Gen, the secure sketch s and a random tag t′. The output σ of LAF can
be regarded as an authenticator. The final public helper string is P = (c, s, t′, σ).

Differences between ours and [25]. Different from the rrFE in [25], we ex-
plore a different structure with different primitives. As for primitive, we use pseu-
dorandom function (PRF) or auxiliary-input authentication encryption (AIAE),
instead of LAF+SKEM. As for structure, rrFE in [25] uses LAF for authenti-
cation of (c, s, t′) and SKEM for pseudo-randomness of R, while ours employs
only a single primitive ui-ks-PRF(or AIAE) to achieve both authentication and
pseudo-randomness. Moreover, we do not use w directly as authentication key.
Instead, we input w to Hi to obtain a key k for ui-ks-PRF/AIAE. We expect ui-
ks-PRF/AIAE to provide both pseudorandomness of R and authentication of the
public helper string P. In fact, the security of the PRF ui-ks-PRF/AIAE helps us
to obtain reusability and robustness of rrFE. See Fig. 2 and Fig. 3.

The First Approach. In the first approach, we resort to a special PRF, namely
ui-ks-PRF. Taking the output k from Hi as its key, and the output s from SS and
a random t as its input, ui-ks-PRF outputs a string which is further divided into
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R and v. Here R is the final extracted string, while v behaves as an authenticator.
The public helper string is P = (s, t, v).

The reusability and robustness of rrFE can be reduced to the Unique-Input
Key-Shift (ui-ks) security of ui-ks-PRF, with the help of the homomorphic prop-
erties of Hi and SS (and also the linearity property of SS). Informally, the security
of the PRF ui-ks-PRF requires

(xj ,PRF(k +∆j , xj))j∈[Q] ≈c (xj ,Uj)j∈[Q]

for all PPT adversaries, where k, Uj are uniformly distributed, PRF is the
evaluation algorithm of ui-ks-PRF, inputs {xj}j∈[Q] are distinct, and {xj}j∈[Q]

{∆j}j∈[Q] are adaptively chosen by the adversary.
Now we outline the high-level idea of proving the reusability and robustness

of our first rrFE in Fig. 2.

(i) Due to the homomorphic properties of SS and Hi, it holds that Hi(wj) =
Hi(w+δj) = Hi(w)+Hi(δj) and SS.Gen(wj) = SS.Gen(w+δj) = SS.Gen(w)+
SS.Gen(δj). Then the view of the adversary can be considered as the ran-
domized function of k(:= Hi(w)), s(:= SS.Gen(w)). The output s from SS
only leaks limited amount of information of W . By the leftover hash lemma,
the output k from universal hash function Hi is uniform and independent of
s.

(ii) The key of ui-ks PRF is given by kj = Hi(wj) = Hi(w + δj) = k + Hi(δj),
which can be regarded as a key shifted ∆j := Hi(δj) from k. The inputs
of ui-ks PRF are (sj , tj)j∈[Q], which are distinct with each other due to the
randomness of tj . Given that k is uniform and independent of s, key shift
∆j is determined by δj , and all input (sj , tj) are distinct, it is ready for us
to implement the security reduction of rrFE to ui-ks security of ui-ks PRF.
The security reduction is non-trivial (see Sect. 4 for details).

(iii) The ui-ks security of ui-ks PRF implies the pseudo-randomness of (Rj , vj)
and (R∗, v∗) for A, which immediately implies reusability of rrFE. The ro-
bustness of rrFE follows as well, since the adversary cannot guess the correct
authenticator v∗ with non-negligible probability. The security reduction is
non-trivial (see Sect. 4 for details).

The Second Approach. In the second approach, we use a special authenticated
encryption scheme, namely auxiliary-input authenticated encryption (AIAE).
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Taking k := Hi(w) as its key and s := SS.Gen(w) as its auxiliary input, AIAE
encrypts a random string R and outputs a ciphertext ct. Then R serves as the
final extracted string, while P = (s, ct) as the public helper string.

As a symmetric encryption, the Key-Shift security AIAE asks both IND-RKA
and (weak) INT-RKA security. The IND-RKA security requires

(mj,0,mj,1, ctj,0 ← AIAE.Enc(k +∆j ,mj,0, auxj))j∈[Q]

≈c (mj,0,mj,1, ctj,1 ← AIAE.Enc(k +∆j ,mj,1, auxj))j∈[Q] ,

where (mj,0,mj,1), ∆j are adaptively chosen by PPT adversaries. It implies that

(Rj , ctj)j∈[Q] ≈c
(
Rj , ct

′
j

)
j∈[Q]

,

where Rj ,R
′
j are uniformly chosen and ctj ← AIAE.Enc(k +∆j ,Rj , auxj), ct

′
j ←

AIAE.Enc(k + ∆j ,R
′
j , auxj). The weak INT-RKA security requires that given

ctj ← AIAE.Enc(k + ∆j ,mj , auxj) with (∆j ,mj , auxj) chosen by the adversary,
it is hard for the PPT adversary to forge a new tuple (aux∗, ct∗, ∆∗) such that
AIAE.Dec(k + ∆∗, ct∗, aux∗) 6= ⊥. Here a special rule is imposed: ∆∗ = ∆j if
aux∗ = auxj .

The reusability and robustness of rrFE can be reduced to the Key-Shift
security of AIAE, thanks to the homomorphic properties of Hi and SS and the
linearity property of SS.

(i)’ With the same reason as in (i), Hi(w) outputs a uniform key k, which is
independent of s.

(ii)’ The key of AIAE is kj = Hi(wj) = Hi(w + δj) = k + Hi(δj), which can
be regarded as a key shifted ∆j := Hi(δj) from k. The message of AIAE
is a random string R, the auxiliary input is sj := s + SS.Gen(δj) and the
corresponding ciphertext is ctj := AIAE.Enc(k + ∆j ,R, sj). Given that k
is uniform and independent of s, key shift ∆j is determined by δj , it is
ready for us to implement the reusability security reduction of rrFE to IND-
RKA security of AIAE. The IND-RKA security of AIAE guarantees that
(Rj , ctj)j∈[Q] ≈c

(
Rj , ct

′
j

)
j∈[Q]

, where Rj ,R
′
j are uniformly chosen and ctj ←

AIAE.Enc(k +∆j ,Rj , auxj), ct
′
j ← AIAE.Enc(k +∆j ,R

′
j , auxj). This suggests

that the extracted string Rj ’s are pseudo-random, hence reusability of rrFE
follows. The security reduction is non-trivial (see Sect. 5 for details).

(iii)’ As for robustness, let (P∗ = (s∗, ct∗), δ∗) be the forged pair by a PPT ad-
versary. If aux∗ = s∗ = sj = auxj , then the correctness of SS means w∗ = wj ,
hence the keys k∗ = Hi(w

∗) = Hi(w + δ∗) = Hi(wj) = Hi(w + δj) = kj ,
i.e., ∆∗ = ∆j . As a result, the special rule is satisfied. The secure sketch
scheme SS is required to be linear so that there exists an efficient func-
tion g to compute δ̃∗ = g(s = SS.Gen(w), s∗, δ∗) such that ∆∗ := Hi(δ̃

∗).
Now that k is uniform and independent of s, key shift ∆j , ∆

∗ are deter-
mined by δj , δ

∗, s, s∗, and the special rule is satisfied. It is ready for us to
implement the robustness security reduction of rrFE to INT-RKA security
of AIAE. According to the weak INT-RKA security of AIAE, the probability
that AIAE.Dec(k+∆∗, ct∗, aux∗ = s∗) 6= ⊥ is negligible. Hence robustness of
rrFE follows. The security reduction is non-trivial (see Sect.5 for details.).
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Table 1. Comparison with known FE schemes. “Robustness?” asks whether the
scheme achieves robustness. “Reusability?” asks whether the scheme achieves reusabil-
ity. “Standard Assumption ?” asks whether the scheme is based on standard assump-
tions. “Linear Errors?” asks whether the scheme tolerates linear fraction of errors. “Free
of Pairing?” asks whether the scheme is free of pairing. “–” represents the scheme is
an information theoretical one.

FE Schemes Robustness? Reusability? Standard Assumption? Linear Errors? Free of Pairing?

DRS04[11] 7 7 – 4 4

FMR13[12] 7 7 4 7 4

BDKOS05[7] 4 7 7 4 4

DKRS06[10], KR08[16], CDFPW08[9] 4 7 – 4 4

CFPRS16[8] 7 4 7 7 4

Boyen04[6] ABCCFGS18[1] 7 4 7 4 4

ACEK17[2] 7 4 4 7 4

WL18[24],WLH18[26] 7 4 4 4 4

Wen-Liu18[25] 4 4 4 4 7

Ours rrFE from ui-ks PRF 4 4 4 7 4

Ours rrFE from AIAE 4 4 4 4 4

1.3 Comparison

The instantiation of our first approach results in a rrFE based on the LWE
assumption, and the instantiation of our second approach results in a rrFE based
on the DDH assumption over non-pairing groups. In Table 1, we compare our
instantiations with the related works.

The rrFE from the LWE assumption supports sub-linear fraction of errors,
due to the parameter choice of ui-ks PRF, but it serves as the first post-quantum
rrFE.

The rrFE from the DDH assumption supports linear fraction of errors, just
like the Wen-Liu18 rrFE in [25]. The advantages of this rrFE over [25] are as
follows.

– Our rrFE is free of pairing, since the underlying building block AIAE is built
over non-pairing groups. However, Wen-Liu18 rrFE heavily relies on pairings
since its building block LAF is built over symmetric pairing groups 3.

– The crs and the public helper string P of our rrFE are much shorter than
that of Wen-Liu18 rrFE [25]. Recall that in the Wen-Liu18 rrFE [25], the
reading w is directly input to the building block LAF as an authentication
key. This makes the length of the public key (a part of crs), the length of
the tag (a part of P) and the evaluation complexity of LAF closely related
to the length of w (|w|). Our rrFE avoids this problem since our approach
has a different frame structure.

– Our rrFE is more efficient than Wen-Liu18 [25]. Due to the complicated
pairing operations and the number of pairings depending on |w|, Wen-Liu18

3 As noted by Galbraith [13], the symmetric pairings (i.e., Type 1 pairings) are now
essentially dead and it would be better in future to design protocols that do not
require Type 1 pairings.
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rrFE suffers from high computational complexities in the generation and
reproduction algorithms. In contrast, our rrFE is much efficient since the
underlying building block AIAE is built over a simple group.

Precise comparison between our DDH-based rrFE and the Wen-Liu18 rrFE is
shown in Table 2.

Table 2. Efficiency comparison of our instantiation of rrFE from AIAE and the
Wen-Liu18 rrFE in [25]. “Exp/Gen” and “Pairing/Gen” represent the numbers of ex-
ponentiations and pairings over groups per generation respectively. “Exp/Rep” and
“Pairing/Rep” represent the numbers of exponentiations and pairings over groups per
reproduction respectively. The Wen-Liu18 rrFE [25] relies on the DDH assumption over
a group G and the DLIN assumption over a group Ĝ of order p′ which admits symmetric
pairing e : Ĝ× Ĝ→ GT . Define des(Ĝ,GT , e) the description of the symmetric pairing
group. Hpk describes the chameleon hash. |Rch| is the bit-length of the randomness
used in chameleon hash function. Meanwhile, Hi, Hi2 describe universal hash functions,
and Hi1 a collision-resistant hash function. Define |des(Ĝ,GT , e)|, |Hpk|, |Hi|, |Hi1 | and
|Hi2 | the bit-lengths of the descriptions respectively. Define n := |w|/ log p′ (it is nec-
essary that n ≥ 2), where |w| is the bit-length of the source reading w. Define |aG| as
the bit-length of a elements in group G. |s| is the bit-length of secure sketch. N̄ is a
prime of 4λ+ 1, and QRN̄ is a subgroup of quadratic residues of Z∗N̄.

rrFE Schemes Bit-length of crs Bit-length of P Exp/Gen Exp/Rep Pairing/Gen Pairing/Rep Assumptions

Wen-Liu18 [25]
|des(Ĝ,GT , e)|+ |(λ+ n)Ĝ|
+|G|+ |Hpk|+ |Hi| = O(λ2)

|s|+ λ+ |Rch|
+|(1 + n + n2)Ĝ|

n2 (over Ĝ)
+2 (over G)

n2 (over Ĝ)
+1 (over G)

4n2 4n2 DDH (over G)+DLIN

(over sym. pairing Ĝ)

Our rrFE
from AIAE

20λ+ 3 + |Hi|+ |Hi1 |
+|Hi2 | = O(λ)

|s|+ 10λ+ 2
4

(over QRN̄)
2

(over QRN̄)
0 0 DDH (over QRN̄)

2 Preliminaries

For an integer, denote {1, 2, · · · , n} by [n]. For a set X , let x ← $ X denote
randomly choosing an element x from set X . For a random variable X, let
x← X denote sampling x according toX. For two random variablesX and Y , let
H∞(X) denote the min-entropy of X, the conditional min-entropy is defined by
H∞(X|Y ) = − log(Ey←Y

[
2−H∞(X|Y=y)

]
), and the statistical distance between

X and Y is defined by SD(X,Y ) = 1
2

∑
x∈X |Pr[X = x] − Pr[Y = x]|. Let

X
c
≈ε Y denote that for any PPT adversary, its advantage to distinguish X

and Y is no more than ε, and X ≈c Y denote that distributions X and Y are
computationally indistinguishable.

A family of functions F : K × X → Y takes a key k ∈ K and input x ∈ X ,
and returns an output F (k, x) ∈ Y. Let FF(K,X ,Y) be the set of all families of
functions F : K×X → Y. For sets X ,Y, let Fun(X ,Y) be the set of all functions
mapping X to Y.

For a real number x, let dxc denote rounding x to the closest integer, and bxc
denote rounding x to the largest integer which does not exceed it. For a string x,
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let |x| denote the bit length of x. For integers q, p, y where q ≥ p ≥ 2, we define
the function bycp : Zq → Zp as bycp = i, where i · bq/pc is the largest multiple
of bq/pc that does not larger than y. For a vector y ∈ Zmq , we define bycp as the
vector in Zmp obtained by rounding each coordinate of the vector individually.

For a primitive XX and a security notion YY, by ExpYY
A,XX(λ)⇒ 1, we mean

that the security experiment outputs 1 after interacting with an adversary A.
By AdvYY

A,XX(λ), we denote the advantage of a PPT adversary A and define

AdvYY
XX(λ) := maxPPTA AdvYY

A,XX(λ).

2.1 Universal Hash Functions

Definition 1 (Universal Hash Functions). A family of hash functions HI =
{Hi : X → Y}i∈I is universal, if for all distinct x, x′ ∈ X , it holds that

Pr[Hi : Hi(x) = Hi(x
′)] ≤ 1/|Y|,

where i is uniformly chosen from I.

Lemma 1 (Generalized Leftover Hash Lemma). Let HI = {Hi : X → Y}
be a family of universal hash functions. Then for any two random variables X,Z,

SD((HI(X), I, Z), (U, I, Z)) ≤ 1

2

√
|Y| · 2−H̃∞(X|Z)

holds, where I and U are uniform distributions over I and Y, respectively.

Definition 2 (Homomorphic Universal Hash Functions ). Let HI = {Hi :
X → Y}i∈I be a family of universal hash functions. HI is homomorphic if for
all i ∈ I,

Hi(x+ x′) = Hi(x) + Hi(x
′).

In Appendix B, we present a concrete construction of homomorphic universal
hash functions.

2.2 Secure Sketch

Definition 3 (Secure Sketch). An (M,m, m̃, t)-secure sketch (SS) consists
of a pair of PPT algorithms (SS.Gen,SS.Rec) with the following specifications:

– SS.Gen(w) on input w ∈M outputs a sketch s ∈ S.
– SS.Rec(w′, s) on input w′ ∈M and a sketch s outputs w̃.

It also satisfies the following properties:

Correctness. If dis(w,w′) ≤ t, then w = SS.Rec(w′,SS.Gen(w)).

Privacy. For any distribution W overM, if H∞(W ) ≥ m, then H̃∞(W |SS.Gen(W )) ≥
m̃.
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Definition 4 (Secure Sketch Linearity Property). [9] Let SS = (SS.Gen,SS.Rec)
be an (M,m, m̃, t)-secure sketch. For any w ∈ M, s̃ ∈ S and δ such that

dis(δ) ≤ t, let s := SS.Gen(w), w̃ := SS.Rec(w + δ, s̃) and δ̃ := w̃ − w, then
SS is linear if there exists a deterministic and efficiently computable function g
such that δ̃ = g(δ, s, s̃).

Definition 5 (Homomorphic Secure Sketch). Let SS = (SS.Gen,SS.Rec)
be an (M,m, m̃, t)-secure sketch. SS is homomorphic if

SS.Gen(w + w′) = SS.Gen(w) + SS.Gen(w′).

In this paper, we will employ a homomorphic secure sketch with linearity
property. An instantiation of such SS is the syndrome-based secure sketch [9],
which is recalled in Appendix A.

2.3 Pseudorandom Functions

Informally, a pseudorandom function (PRF) is an efficiently computable function
F : K × X → Y such that no PPT adversary can distinguish the function from
a truly random function given only black-box access. We review the definition
of pseudorandom functions (PRF) [18] which considers the PRF with public
parameters pp.

Definition 6 (PRF). An efficiently computable function Fpp : K × X → Y is

a secure PRF if for any PPT adversary A, Advprf
A,Fpp

(λ) := |Pr[Expprf
A,Fpp

(λ) ⇒
1]−1/2| is negligible in λ, where the game Expprf

A,Fpp
(λ) is defined in Fig. 4. Here

pp ← PRF.Setup(1λ), K is the key space, X is the domain, and Y is the range
of the function.

Procedure Initialize:

pp← PRF.Setup(1λ), b←$ {0, 1}.
If b = 0, f(·)←$ Fun(X ,Y).
Else, k←$ K, set f(·) := Fpp(k, ·).
Return pp.

Procedure Que(x):

Return f(x).

Procedure Finalize(b∗)

If b∗ = b, Return 1.
Else, Return 0.

Fig. 4. The experiment for defining the game Expprf
A,Fpp

(λ) for PRF, where Fun(X ,Y)
is the set of all functions mapping X to Y.

Definition 7 (Φ-RKA-PRF). PRF Fpp : K×X → Y is Φ-RKA-secure w.r.t.
a class of related-key deriving functions Φ = {φ : K → K}, if for any PPT

adversary A, Advrka-prf
A,Fpp

(λ) = |Pr[Exprka-prf
A,Fpp

(λ) ⇒ 1] − 1/2| is negligible in λ,

where the game Exprka-prf
A,Fpp

(λ) is defined in Fig. 5.
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Procedure Initialize:

pp← PRF.Setup(1λ), b←$ {0, 1}.
k←$ K.
If b = 0, f(·, ·)←$ FF(K,X ,Y)
Else, set f(·, ·) := Fpp(·, ·),
Return pp.

Procedure RKQue(φ ∈ Φ, x):

Return f(φ(k), x).

Procedure Finalize(b∗)

If b∗ = b, Return 1.
Else, Return 0.

Fig. 5. The experiment for defining the Φ-RKA game Exprka-prf
A,Fpp

for PRF, where

FF(K,X ,Y) is the set of all functions f : K × X → Y.

Remark 1. We will make use the fact that Advrka-prf
A,Fpp

(λ) = |Pr[Exprka-prf
A,Fpp

(λ)⇒ 1]−
1/2| = 1

2 |Pr [A ⇒ 1 | f(·, ·) = Fpp(k, ·)] − Pr [A ⇒ 1 | f(·, ·) is random] |, where
A ⇒ 1 means that the adversary A returns 1 to Finalize.

Definition 8 (Unique-Input RKA Security). An adversary is a unique-
input adversary if the input queries (φ1, x1), · · · , (φQ, xQ) are such that xi 6= xj
in the game Exprka-prf

A,F (λ). A PRF Fpp is unique-input Φ-RKA-secure if it is
Φ-RKA-secure against unique-input adversaries.

Define the shift function family Φ∆ := {φa : K → K | φa(k) = k+a}a∈K. The
unique-input Φ∆-RKA-security of PRF is also named unique-input key-shift (ui-
ks) security. In this paper, ui-ks security of PRF is sufficient for our construction
in Section 4.

2.4 Auxiliary-Input Authenticated Encryption

We recall the definition of auxiliary-input authenticated encryption scheme [14].

Definition 9 (AIAE). An auxiliary-input authenticated encryption scheme con-
sists of three PPT algorithms:

– AIAE.Setup(1λ) on input the security parameter λ outputs the system param-
eter pp, which is an implicit input to AIAE.Enc and AIAE.Dec. The system
parameter pp implicitly defines the key space K, the message space MAIAE

and the auxiliary input space AUX .
– AIAE.Enc(k,m, aux) on input a key k ∈ K, a message m ∈ MAIAE and an

auxiliary input aux ∈ AUX outputs a ciphertext ct.
– AIAE.Dec(k, ct, aux) on input a key k, a ciphertext ct and an auxiliary input

aux outputs a message m or a rejection symbol ⊥.

Correctness. For all pp ← AIAE.Setup(1λ), all k ∈ K, all m ∈ MAIAE and all
ct← AIAE.Enc(k,m, aux), it holds that m = AIAE.Dec(k, ct, aux).

Definition 10 (IND-Φ-RKA and Weak INT-Φ-RKA Securities for AIAE).
For a class of related-key deriving functions Φ = {φ : K → K}, an AIAE
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scheme is IND-Φ-RKA and weak INT-Φ-RKA secure, if for any PPT adver-
sary A, both Advind-rka

A,AIAE(λ) = |Pr[Expind-rka
A,AIAE(λ) ⇒ 1] − 1/2| and Advint-rka

A,AIAE(λ) =

Pr[Expint-rka
A,AIAE(λ)⇒ 1] are negligible, where games Expind-rka

A,AIAE(λ) and Expint-rka
A,AIAE(λ)

are depicted in Fig. 6.

If AIAE is IND-Φ∆-RKA and Weak INT-Φ∆-RKA secure, then it is also called
a Key-Shift secure AIAE.

Procedure Initialize:

pp← AIAE.Setup(1λ), k←$ K.
b←$ {0, 1}.
Return pp.

Procedure LR(m0,m1, aux, φ ∈ Φ):

If |m0| 6= |m1|, Return ⊥.
ct← AIAE.Enc(φ(k),mb, aux).
Return ct.

Procedure Finalize(b∗)

If b = b∗, Return 1.
Else, Return 0.

Procedure Initialize:

pp← AIAE.Setup(1λ), k←$ K.
Qenc = Qaux = ∅.
Return pp.

Procedure Enc(m, aux, φ ∈ Φ):

ct← AIAE.Enc(φ(k),m, aux).
Qenc := Qenc ∪ {(aux, φ, ct)}.
Qaux := Qaux ∪ {(aux, φ)}.
Return ct.

Procedure Finalize(aux∗, φ∗ ∈ Φ, ct∗)
If (aux∗, φ∗ ∈ Φ, ct∗) ∈ Qenc, Return 0.
If there exsits (aux, φ) ∈ Qaux, such that
aux∗ = aux but φ∗ 6= φ, Return 0.
Return (AIAE.Dec(φ∗(k), ct∗, aux∗) 6= ⊥).

Fig. 6. Left: The experiment for defining the IND-Φ-RKA game Expint-rka
A,AIAE for AIAE.

Right: The experiment for defining the weak INT-Φ-RKA game Expind-rka
A,AIAE for AIAE.

3 Robustly Reusable Fuzzy Extractor

Definition 11 (Fuzzy Extractor). An (M,m,R, t, ε)-fuzzy extractor (FE)
consists of three PPT algorithms FE = (Init,Gen,Rep) with the following proper-
ties:

– Init(1λ) on input the security parameter λ, outputs the common reference
string crs.

– Gen(crs,w) on input the common reference string crs and an element w ∈M,
outputs a public helper string P and an extracted string R ∈ R.

– Rep(crs,w′,P) on input the common reference string crs, an element w′ ∈M
and the public helper string P, outputs an extracted string R or ⊥.

– Correctness. If dis(w,w′) ≤ t, then for all crs ← Init(1λ) and (P,R) ←
Gen(crs,w), we have R = Rep(crs,w′,P).

– Security. For any distribution W over M such that H∞(W ) ≥ m, R is
pseudorandom even conditioned on P and crs, where (P,R) ← Gen(crs,W )
and crs← Init(1λ).

12



Definition 12 (Robustly Reusable Fuzzy Extractor). A FE = (Init,Gen,Rep)
is called an (M,m,R, t, ε1, ε2)-robustly reusable Fuzzy Extractor (rrFE), if for
any PPT adversary A and any distribution W over M such that H∞(W ) ≥ m,
it holds that Advreu

A,FE(λ) = |Pr[Expreu
A,FE(λ) ⇒ 1] − 1/2| ≤ ε1 and Advrob

A,FE(λ) =

Pr[Exprob
A,FE(λ) ⇒ 1] ≤ ε2, where games Expreu

A,FE(λ) and Exprob
A,FE(λ) are specified

in Fig. 7.

Procedure Initialize:
crs← Init(1λ).
b←$ {0, 1}.
w←W .
Return crs.

Procedure Challenge(δ):
If dis(δ) > t, Return ⊥.
(P,R)← Gen(crs,w + δ).
If b = 1, Return (P,R).
Else, U←$ R, Return (P,U).

Procedure Finalize(b∗):
If b = b∗, Return 1.
Else, Return 0.

Procedure Initialize:
crs← Init(1λ).
w←W .
Q = ∅.
Return crs.

Procedure Generation(δ):
If dis(δ) > t, Return ⊥.
(P,R)← Gen(crs,w + δ).
Q = Q∪ {P}.
Return (P,R).

Procedure Finalize(P∗, δ∗):
If dis(δ∗) > t, Return 0.
If P∗ ∈ Q, Return 0.
Return (Rep(crs,w + δ∗,P∗) 6= ⊥).

Fig. 7. Left: The experiment for defining the reusability game Expreu
A,FE(λ) for a FE.

Right: The experiment for defining the robustness game Exprob
A,FE(λ) for a FE.

Remark 2. The definition of reusability is not identical to but implies the reusabil-
ity defined in [25]. In [25], a fuzzy extractor is reusable if for all PPT adversary it
is hard to distinguish (U1,R2, · · · ,RQ,P1, · · · ,PQ) from (R1,R2, · · · ,RQ,P1, · · · ,PQ),
where U1 ←$ R, (Pi,Ri)← Gen(crs,w+ δi) and δi is chosen by the adversary. In
our definition, a fuzzy extractor is reusable if for all PPT adversary, it is hard to
distinguish the tuple (U1,U2, · · · ,UQ,P1, · · · ,PQ) from (R1,R2, · · · ,RQ,P1, · · · ,PQ).

In fact, we can show if (U1,U2, · · · ,UQ,P1, · · · ,PQ)
c
≈ε (R1,R2, · · · ,RQ,P1, · · · ,PQ),

then (U1,U2, · · · ,UQ,P1, · · · ,PQ)
c
≈ε (U1,R2, · · · ,RQ,P1, · · · ,PQ), by a hybrid

argument we get that (R1,R2, · · · ,RQ,P1, · · · ,PQ)
c
≈2ε (U1,R2, · · · ,RQ,P1, · · · ,PQ).

This means that if a fuzzy extractor is ε-reusable in our definition, then it is 2ε-
reusable in [25].

4 Construction of rrFE from Unique-Input RKA-PRF

We introduce a generic construction of robustly reusable fuzzy extractor (rrFE)
from a unique-input key-shift (Φ∆-RKA) secure PRF, a Secure Sketch and a
family of universal hash functions, as shown in Fig. 8.
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crs← Init(1λ):

i←$ I (i.e., Hi ←$ HI).

pp← PRF.Setup(1λ).

crs = (Hi, pp).

Return crs.

(P,R)← Gen(crs,w):

s← SS.Gen(w).

k← Hi(w).

t←$ T .
(r, v)← Fpp(k, (s, t)).

P := (s, t, v), R := r.

R← Rep(crs,P,w′):

Parse P = (s, t, v).

w̃← SS.Rec(w′, s).

k̃← Hi(w̃).

(̃r, ṽ)← Fpp(k̃, (s, t)).

If ṽ = v, Return R := r̃.

Else, Return ⊥.

Fig. 8. Construction of rrFEPRF from unique-input key-shift secure PRF.

Theorem 1. The fuzzy extractor rrFEPRF in Fig. 8 is an (M,m,R, t, ε1, ε2)-
robustly reusable fuzzy extractor with ε1 = 2Advrka

PRF(λ) + 2−ω(log λ) and ε2 =
2Advrka

PRF(λ) + 2−ω(log λ), if the underlying building blocks satisfies the following
properties.

– SS = (SS.Gen,SS.Rec) is a homomorphic (M,m, m̃, 2t)-secure sketch with
linearity property.

– HI = {Hi :M→K}i∈I is a family of homomorphic universal hash functions
such that m̃− log |K| ≥ ω(log λ).

– Fpp(K,X ,Y) is a unique-input key-shift secure PRF such that X = U × T ,
S ⊆ U , Y = R× V, log |T | ≥ ω(log λ) and log |V| ≥ ω(log λ).

The correctness of rrFEPRF follows from the correctness of the underlying SS,
since w can be correctly recovered from the public helper string P if dis(w,w′) ≤ t.
The reusability and robustness are shown in Lemma 2 and Lemma 3 respectively.

Lemma 2. The construction of rrFE in Fig. 8 is ε1-reusable with

ε1 = 2Advrka-prf
PRF (λ) + 2−ω(log λ).

Proof. We will prove the reusability of rrFE via a series of games, as shown
in Fig. 9. Game Gj denotes a variant of reusability game played between a
PPT adversary A and a challenger who provides Procedures Initialize and
Challenge for A. Denote by Pr[Gj ] the probability that A wins, i.e., Finalize
returns 1, in game Gj . Obviously, A wins iff b = b∗.

Game G0. G0 is just the reusability game. More precisely, in Procedures Ini-
tialize, the challenger chooses b ← $ {0, 1}, samples w ← W , and generates
crs = (Hi, pp). Upon receiving the j-th Challenge query δj from A, the chal-
lenger answers A’s Challenge query as follows:

1. If dis(δj) > t, then return ⊥.

2. Compute sketch sj = SS.Gen(w + δj) and hash value kj = Hi(w + δj).

3. Choose tj ←$ T , compute (rj , vj)← Fpp(kj , (sj , tj)) and set Pj := (sj , tj , vj),
Rj := rj .

4. If b = 1, return (Pj ,Rj), else choose Uj ←$ R and return (Pj ,Uj).

14



Procedure Initialize: // Games G0, G1, G2, G3

i←$ I (i.e., Hi ←$ HI).

pp← PRF.Setup(1λ).

crs = (Hi, pp).

b←$ {0, 1}.
w←W .

k←$ K.

Return crs.

Procedure Finalize(b∗): // Games G0-G3

If b = b∗, Return 1.

Else, Return 0.

Procedure Challenge(δj):

// Games G0, G1, G2, G3

If dis(δj) > t, Return ⊥.

sj ← SS.Gen(w + δj).

sj = SS.Gen(w) + SS.Gen(δj).

kj ← Hi(w + δj).

kj = Hi(w) + Hi(δj).

kj = k + Hi(δj).

tj ←$ T .
(rj , vj)← Fpp(kj , (sj , tj)).

(rj , vj)←$ R× V.

Pj := (sj , tj , vj), Rj := rj .

If b = 1, Return (Pj ,Rj).

Else, Uj ←$ R, Return (Pj ,Uj).

Fig. 9. Game G0-G3 for the security proof of Lemma 2.

Clearly,
Advreu

A,FE(λ) = |Pr[G0]− 1/2|. (1)

Game G1: G1 is identical to G0, except for some conceptual changes of the gen-
erations of secure sketch sj and hash value kj . More precisely, step 2 is changed
to step 2′.

2′. Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = Hi(w) + Hi(δj).

By the homomorphic properties of secure sketch and hash function, we have that

Pr[G0] = Pr[G1]. (2)

Game G2. G2 is the same as G1, except for two changes.
The first change is to add k←$ K in Initialize of G2. The second change is

the generation of kj in Challenge. In G2, instead of computing kj := Hi(w) +
Hi(δj), the challenger computes kj = k+Hi(δj). More precisely, step 2′ is changed
to step 2′′.

2′′ Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = k + Hi(δj).

Claim 1 |Pr[G1]− Pr[G2]| ≤ 2−ω(log λ).

Proof. Recall that H∞(W ) ≥ m. Then by the privacy of secure sketch, it follows
that H∞(W |SS.Gen(W )) ≥ m̃. According to the Leftover Hash Lemma (see
Lemma 1), we have

SD((Hi(w), i, s = SS.Gen(w), (U, i, s = SS.Gen(w))) ≤ 1

2

√
|K| · 2−m̃, (3)

where U ←$ K. This implies that for all powerful (not necessarily PPT) algo-
rithm B, it is impossible for B to tell (Hi(w), i, s = SS.Gen(w)) from (U, i, s =
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SS.Gen(w))) with probability more than 1
2

√
|K| · 2−m̃. In formula,

|Pr[B(U, i, s = SS.Gen(w))⇒ 1]−Pr[B(Hi(w), i, s = SS.Gen(w))⇒ 1]| ≤ 1

2

√
|K| · 2−m̃.

(4)
Now we show that

|Pr[G1]− Pr[G2]| ≤ 1

2

√
|K| · 2−m̃ ≤ 2−ω(log λ). (5)

We prove (5) by constructing a powerful algorithm B who aims to distinguish
(Hi(w), i, s = SS.Gen(w)) from (U, i, s = SS.Gen(w)). Given (X, i, s = SS.Gen(w)),
where X is either Hi(w) or a uniform U , B simulates G1/G2 for A as follows.

– To simulate Procedure Initialize, B randomly chooses a bit b ← $ {0, 1},
then determines crs = (Hi, pp) for A by determining Hi with i and invoking
pp← PRF.Setup(1λ).

– To answer A’s query δj , B simulates Procedure Challenge(δj) as follows.
• If dis(δj) > t, return ⊥.
• sj = s + SS.Gen(δj).
• kj = X + Hi(δj).
• tj ←$ T .
• (rj , vj)← Fpp(kj , (sj , tj)).
• Pj := (sj , tj , vj), Rj := rj .
• If b = 1, return (Pj ,Rj). Else, Uj ←$ R, return (Pj ,Uj).

– Finally A outputs a guessing bit b∗. If b = b∗ (i.e., A wins), then B outputs
1, otherwise B outputs 0.

If X = Hi(w), B perfectly simulates G1 for A; if X = U , B perfectly simulates
G2 for A. Consequently,

|Pr[B(Hi(w), i, s = SS.Gen(w))⇒ 1]− Pr[B((U, i, s = SS.Gen(w))⇒ 1]|
= |Pr[G1]− Pr[G2]|. (6)

Obviously, Eq. (5) follows from Eq. (4), Eq. (6) and the fact of m̃ − log |K| ≥
ω(log λ). The claim follows. ut

Game G3. G3 is the same as G2, except that (rj , vj) is randomly chosen in G3.
More precisely, step 3 is replaced with 3′ in Procedure Challenge(δj) of G3.

3′ tj ←$ T , (rj , vj)←$ R× V and set Pj := (sj , tj , vj), Rj := rj .

Claim 2 |Pr[G2]− Pr[G3]| ≤ 2Advrka-prf
PRF (λ) + 2−ω(log λ).

Proof. Suppose that A makes Q challenge queries. Let Bad denote the event
that there exist i, j ∈ [Q] such that ti = tj . Note that tj is randomly chosen
from T , so Pr [Bad] = Q(Q− 1)/(2|T |). Let Bad denote the event that Bad does
not happen. Then

Pr[G2] = Pr[G2 ∧ Bad] + Pr[G2 ∧ Bad],
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Pr[G3] = Pr[G3 ∧ Bad] + Pr[G3 ∧ Bad],

|Pr[G3]− Pr[G2]| ≤ |Pr[G3 ∧ Bad]− Pr[G3 ∧ Bad]|+ |Pr[G2 ∧ Bad]− Pr[G3 ∧ Bad]|
≤ Pr[Bad] + |Pr[G2 ∧ Bad]− Pr[G3 ∧ Bad]|

=
Q(Q− 1)

2|T |
+ |Pr[G2 ∧ Bad]− Pr[G3 ∧ Bad]|. (7)

Next we show that

|Pr[G2 ∧ Bad]− Pr[G3 ∧ Bad]| ≤ 2Advrka-prf
PRF (λ). (8)

by constructing a PPT algorithm A′ against the unique-input key-shift security
of PRF Fpp. Recall that in the unique-input key-shift security game Exprka-prf

A,Fpp
,

A′ obtains the public parameter pp which is generated via pp← PRF.Setup(1λ)
by Procedure Initialize. Meanwhile, A′ is able to query (φ∆, x) and Procedure
RKQue will reply A′ with the function value of f(k+∆,x). The aim of A′ is to
tell whether f(k, ·) is Fpp(k, ·) or a random function. Now A′ simulates G2/G3

for A as follows.

– To simulate Procedure Initialize of G2/G3, A′ samples w ← W , chooses
b←$ {0, 1} and an index i←$ I (hence Hi), then sends crs = (Hi, pp) to A.

– A′ initializes a set Qt = ∅. To answer A’s query δj , A′ simulates Procedure
Challenge(δj) as follows.
• If dis(δj) > t, return ⊥.
• Compute sj := SS.Gen(w) + SS.Gen(δj) and sample tj ←$ T . If tj ∈ Qt,

i.e., Bad happens, then A′ aborts the game. Otherwise, Qt := Qt ∪ {tj}.
• A′ queries (φHi(δj), (sj , tj)) to its Procedure RKQue, then RKQue re-

turns (rj , vj) to A′.
• A′ defines Pj := (sj , tj , vj) and Rj := rj .
• If b = 1, return (Pj ,Rj). Else, Uj ←$ R, return (Pj ,Uj).

– Finally A outputs a guessing bit b∗ for Finalize. If b = b∗ (i.e., A wins),
then A′ outputs 1, otherwise A′ outputs 0.

If Bad does not happen, then A′ is a unique-input adversary. There are two
cases.

• If f(k, ·) = Fpp(k, ·), then RKQue computes (rj , vj) via (rj , vj) ← Fpp(k +
Hi(δj), (sj , tj)). In this case, A′ can perfectly simulate G2 ∧ Bad for A.
• If f(k, ·) is a random function and RKQue takes the value of the random

function f(k+Hi(δj), (sj , tj)) as (rj , vj). In this case, A′ can perfectly simu-
lates G3 ∧ Bad for A.

Now we consider the advantage of A′

Advrka-prf
A′,PRF(λ) = |Pr[Exprka-prf

A′,Fpp
(λ)⇒ 1]− 1

2
|

=
1

2
|Pr [A′ ⇒ 1 | f(·, ·) = Fpp(k, ·)]− Pr [A′ ⇒ 1 | f(·, ·) is random] |

=
1

2
|Pr

[
A wins ∧ Bad | f(·, ·) = Fpp(k, ·)

]
− Pr

[
A wins ∧ Bad | f(·, ·) is random

]
|

=
1

2
|Pr

[
G2 ∧ Bad

]
− Pr

[
G3 ∧ Bad

]
|. (9)
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The claim follows from Eq. (7), Eq. (8) and the fact that log(|T |) ≥ ω(log λ). ut

Observe that in G3, (Pj ,Rj) is generated in the same way, no matter whether
b = 0 or b = 1. Therefore,

Pr[G3] = 1/2. (10)

Taking Eq. (1), Eq. (2), Claim 1, Claim 2 and Eq. (10) together, Lemma 2
follows.

Procedure Initialize:

// Games G0, G1, G2, G3

i←$ I (i.e., Hi ←$ HI).

pp← PRF.Setup(1λ).

crs = (Hi, pp).

w←W .

Q := ∅.
k←$ K.

Return crs.

Procedure Generation(δj):

// Games G0, G1, G2, G3

If dis(δj) > t, return ⊥.

sj ← SS.Gen(w + δj).

sj = SS.Gen(w) + SS.Gen(δj).

kj ← Hi(w + δj).

kj = Hi(w) + Hi(δj).

kj = k + Hi(δj).

tj ←$ T .
(rj , vj)← Fpp(kj , (sj , tj)).

(rj , vj)←$ R× V.

Pj := (sj , tj , vj), Rj := rj .

Q := Q∪ {Pj}.
Return (Pj ,Rj).

Procedure Finalize(P∗, δ∗):

// Games G0, G1, G2, G3

If dis(δ∗) > t, Return 0.

If P∗ ∈ Q, Return 0.

Parse P∗ = (s∗, t∗, v∗).

w̃← SS.Rec(w + δ∗, s∗).

δ̃∗ = g(SS.Gen(w), s∗, δ∗).

k̃← Hi(w̃).

k̃ = Hi(w) + Hi(δ̃
∗).

k̃ = k + Hi(δ̃
∗).

(̃r, ṽ)← Fpp(k̃, (s∗, t∗)).

(̃r, ṽ)←$ R× V.

If ṽ = v∗, Return 1.

Else, Return 0.

Fig. 10. Game G0-G3 for the security proof of Lemma 3.

Lemma 3. The construction in Fig. 8 is ε2-robust, with

ε2 = 2Advrka-prf
PRF (λ) + 2−ω(log λ). (11)

Proof. We prove the robustness of fuzzy extractor by a sequence of games as
shown in Fig. 10. Denote by Pr[Gj ] the probability that A wins in Gj .
Game G0: G0 is the robustness game played between the challenger and a PPT
adversary A. More precisely, the challenger generates crs = (Hi, ppAIAE), samples
w ← W , sets Q = ∅, and returns crs to A. Upon receiving the j-th generation
query δj from A, the challenger answers A’s Generation query δj as follows:

1. If dis(δj) > t, then return ⊥.
2. Compute the sketch sj = SS.Gen(w+δj) and the hash value kj = Hi(w+δj).
3. Sample tj ← $ T , compute (rj , vj) ← Fpp(kj , (sj , tj)), set Pj := (sj , tj , vj),

Rj := rj , Q := Q∪ {Pj}, and return (Pj ,Rj) to A.

In finalize, upon receiving (P∗, δ∗) from A, if dis(δ∗) ≥ t or P∗ ∈ Q, the chal-
lenger returns 0. Else, it parses P∗ = (s∗, t∗, v∗), then computes w̃ = SS.Rec(w+
δ∗, s∗), k̃ = Hi(w̃) and (̃r, ṽ) ← Fpp(k̃, (s∗, t∗)). If ṽ = v∗, it returns 1, else, it
returns 0.
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We have that
Advrob

A,FE(λ) = Pr[G0]. (12)

Game G1: G1 is the same as G0, except for the following changes.

– When answering a generation query δj from A, step 2 in Generation(δj)
is changed into step 2′:
2′. Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = Hi(w) + Hi(δj).

– In finalize, the generation of k̃ is changed. Instead of computing k̃ :=
Hi(w̃) with w̃ := SS.Rec(w + δ∗, s∗), now k̃ := Hi(w) + Hi(δ̃

∗) with δ̃∗ =
g(SS.Gen(w), s∗, δ∗), where g is defined in Definition 4.

By the linearity property of the secure sketch and the homomorphic properties
of secure sketch and hash function, the changes are just conceptual. Hence

Pr[G0] = Pr[G1]. (13)

Game G2: G2 is the same as G1, except for the generation of kj and k̃. Instead
of computing kj := Hi(w) +Hi(δj), now the challenger computes kj := k+Hi(δj)

in Generation(δj) of G2. Instead of computing k̃ = Hi(w) + Hi(δ̃
∗) , now the

challenger computes k̃ = k+Hi(δ̃
∗) in Finalize(P∗, δ∗) of G2. Here k is randomly

chosen (once and for all in Initialize). More precisely,

– In Initialize, add k←$ K.
– When answering the generation queries from A, step 2′ in Generation(δj)

is changed into step 2′′.
2′′. Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = k + Hi(δj).

– In Finalize(P∗, δ∗), the challenger computes k̃ = k + Hi(δ̃
∗) instead of k̃ =

Hi(w) + Hi(δ̃
∗).

Claim 3 |Pr[G1]− Pr[G2]| ≤ 2−ω(log λ).

Proof. The proof is similar to that of Claim 1 in the reusability proof, we have
that

SD((Hi(w), i, s = SS.Gen(w), (U, i, s = SS.Gen(w))) ≤ 1

2

√
|K| · 2−m̃, (14)

where U←$ K. In other words, for all powerful (not necessarily PPT) algorithm
B, it holds that

|Pr[B(U, i, s = SS.Gen(w))⇒ 1]−Pr[B((Hi(w), i, s = SS.Gen(w))⇒ 1]| ≤ 1

2

√
|K| · 2−m̃.

(15)

We construct a powerful algorithm B who aims to distinguish (Hi(w), i, s =
SS.Gen(w)) from (U, i, s = SS.Gen(w)). Suppose that the challenge of B is (X, i, s =
SS.Gen(w), where X is either Hi(w) or a uniform U . Then B simulates G1/G2

for A as follows.
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– To simulate Procedure Initialize, B randomly chooses a bit b ← $ {0, 1},
then determines crs = (Hi, pp) for A by determining Hi with i and invoking
pp← PRF.Setup(1λ).

– To answer A’s query δj , B simulates Procedure Challenge(δj) as follows.

• If dis(δj) > t, return ⊥.

• sj = s + SS.Gen(δj).

• kj = X + Hi(δj).

• tj ←$ T .
• (rj , vj)← Fpp(kj , (sj , tj)).

• Pj := (sj , tj , vj), Rj := rj .

• Return (Pj ,Rj).

– Finally A sends (P∗, δ∗) to Finalize. If dis(δ∗) > t or P∗ ∈ Q, B returns
0 to its own challenger. Else, B parses P∗ = (s∗, t∗, v∗), and computes k̃ =

X +Hi(δ̃
∗) and (̃r, ṽ)← Fpp(k̃, (s∗, t∗)). If ṽ = v∗, B outputs 1. Otherwise, B

outputs 0.

If X = Hi(w), B perfectly simulates G1 for A; if X = U , B perfectly simulates
G2 for A. Consequently,

|Pr[B(Hi(w), i, s = SS.Gen(w))⇒ 1]− Pr[B((U, i, s = SS.Gen(w))⇒ 1]|
= |Pr[G1]− Pr[G2]|. (16)

Therefore, Claim 3 follows from Eq. (15), Eq. (16) and the fact of m̃− log |K| ≥
ω(log λ). ut

Game G3: G3 is the same as G2, except that (rj , vj) in Challenge(δj) and
(̃r, ṽ) in Finalize are randomly chosen in G3. More precisely,

– In Challenge(δj), step 3 is replaced with 3′.

3′. tj ← $ T and (rj , vj) ← $ R × V, set Pj := (sj , tj , vj), Rj := rj , Q :=
Q∪ {Pj}, and return (Pj ,Rj) to A.

– In Finalize, upon receiving a (P∗, δ∗) from A, if dis(δ∗) ≥ t or P∗ ∈ Q, the
challenger returns 0. Else, it parses P∗ = (s∗, t∗, v∗), and samples (̃r, ṽ) ←
$ R× V. If ṽ = v∗, it returns 1, else, it returns 0.

Observe that in G3, ṽ is randomly chosen from V, the probability of ṽ = v∗

is bounded by 1/|V|. Note that log |V| ≥ ω(log λ), so we have that

Pr[G3] ≤ 2−ω(log λ). (17)

Claim 4 |Pr[G2]− Pr[G3]| ≤ 2Advrka-prf
PRF (λ) + 2−ω(log λ).

Proof. The proof is similar to that of Claim 2.

Let Q denote the number of generation queries by A. Let Bad denote the
event that there exist i, j ∈ [Q] such that ti = tj . Let Bad′ denote the event that
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∃j ∈ [Q] such that (s∗, t∗) = (sj , tj). Similar to Eq. (7), we have

|Pr[G2]− Pr[G3]|
≤ |Pr[G2 ∧ (Bad ∨ Bad′)]− Pr[G3 ∧ (Bad ∨ Bad′)]|

+|Pr[G2 ∧ Bad ∧ Bad
′
]− Pr[G3 ∧ Bad ∧ Bad

′
]|

= |Pr[G2 ∧ Bad]− Pr[G3 ∧ Bad]|
+|Pr[G2 ∧ Bad ∧ Bad

′
]− Pr[G3 ∧ Bad ∧ Bad

′
]| (18)

≤ Q(Q− 1)

2|T |
+ |Pr[G2 ∧ Bad ∧ Bad′]− Pr[G3 ∧ Bad′ ∧ Bad]|. (19)

Eq.(18) is due to

Pr[G2 ∧ Bad′] = Pr[G3 ∧ Bad′] = 0, (20)

and Eq. (19) is due to |Pr[G2 ∧ Bad]− Pr[G3 ∧ Bad]| ≤ Pr[Bad] = Q(Q−1)
2|T | .

Eq.(20) means that it is impossible forA to win if Bad′ happens, say (s∗, t∗) =
(sj , tj). The reason is as follows. Recall that (s∗, t∗) is from P∗ = (s∗, t∗, v∗)
and (sj , tj) is from Pj = (sj , tj , vj). Note that dis(δ∗) ≤ t, dis(δj) ≤ t and
s∗ = sj = SS.Gen(w + δj), so we have that w + δj = SS.Rec(w + δ∗, s∗) by the
correctness of (M,m, m̃, 2t)-secure sketch. Meanwhile, by the linearity property

we have SS.Rec(w + δ∗, s∗) = w + δ̃∗, where δ̃∗ = g(δ∗,SS.Gen(w), s∗). As a

result, δj = δ̃∗ and kj = φHi(δj)(k) = k + Hi(δj) = k + Hi(δ̃
∗) = φHi(δ̃∗)

(k) = k̃.

Now that (k̃, (s∗, t∗) = (kj , sj , tj), hence Fpp(k̃, (s∗, t∗)) = Fpp(kj , (sj , tj)), i.e.,
(̃r, ṽ) = (rj , vj). If v∗ = vj , then P∗ = Pj ; otherwise ṽ 6= v∗. Either case results
in the failure of A in G2/G3.

Next we will prove

|Pr[G2 ∧ Bad ∧ Bad′]− Pr[G3 ∧ Bad ∧ Bad′]| ≤ 2Advrka-prf
PRF (λ) (21)

by constructing a PPT algorithm A′ against the unique-input key-shift security
of PRF Fpp, just like the proof of Eq. (8).

Recall that in the unique-input key-shift security game Exprka-prf
A,Fpp

(λ), A′ ob-

tains the public parameter pp from its own Initialize. Meanwhile, A′ is able
to query (φ∆, x) to RKQue and obtain the value of f(k + ∆,x). The aim of
A′ is to tell whether f(k, ·) is Fpp(k, ·) or a random function. Now A′ simulates
G2/G3 for A as follows.

– To simulate Initialize of G2/G3, A′ samples w ← W , chooses b←$ {0, 1}
and an index i←$ I, then sends crs = (Hi, pp) forA. AndA′ setsQ = Qt = ∅.

– To answer A’s query δj , A′ simulates Procedure Challenge(δj) as follows.
• If dis(δj) > t, return ⊥.
• sj := SS.Gen(w) +SS.Gen(δj) and tj ←$ T . If tj ∈ Qt, i.e., Bad happens,

then A′ aborts the game. Otherwise, Qt := Qt ∪ {tj}.
• A′ queries (φHi(δj), (sj , tj)) to its Procedure RKQue, then RKQue re-

turns (rj , vj) to A′.
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• A′ defines Pj := (sj , tj , vj), Rj := rj and Q := Q∪ {Pj}.
• Return (Pj ,Rj).

– Finally, A sends (P∗, δ∗) to Finalize.
• If dis(δ∗) ≥ t or P∗ ∈ Q, A′ returns 0 to its own challenger.
• If ∃j ∈ [Q] such that (s∗, t∗) = (sj , tj), A′ returns 0 to its own challenger.

• A′ parses P∗ = (s∗, t∗, v∗) and computes δ̃∗ = g(SS.Gen(w), s∗, δ∗).
Then A′ queries ((φHi(δ̃∗)

, s∗, t∗) to RKQue and receives ỹ = f(k +

Hi(δ̃
∗), (s∗, t∗)) from RKQue. A′ parses ỹ = (̃r, ṽ). If ṽ = v∗, A′ returns

1, else A′ returns 0 to its own challenger.

Suppose that neither Bad nor Bad′ happens. Then

• A′ perfectly simulates G2 ∧ Bad ∧ Bad′ for A if f(k, ·) = Fpp(k, ·);
• A′ perfectly simulates G3 ∧Bad∧Bad′ for A if f(k, ·) is a random function.

Then the advantage of A′ is given by

Advrka-prf
A′,PRF(λ) = |Pr[Exprka-prf

A′,Fpp
(λ)⇒ 1]− 1

2
|

=
1

2
|Pr

[
A′ ⇒ 1 | f(·, ·) = Fpp(k, ·)

]
− Pr

[
A′ ⇒ 1 | f(·, ·) is random

]
|

=
1

2

∣∣∣Pr
[
A wins ∧ Bad ∧ Bad

′ | f(·, ·) = Fpp(k, ·)
]

(22)

−Pr
[
A wins ∧ Bad ∧ Bad

′ | f(·, ·) is random
]∣∣∣

=
1

2
|Pr

[
G2 ∧ Bad ∧ Bad

′
]
− Pr

[
G3 ∧ Bad ∧ Bad

′
]
|. (23)

This completes the proof of Eq. (21).
The claim follows from Eq. (19) Eq. (21) and the fact that log(|T |) ≥ ω(log λ). ut

Taking Eq. (12) Eq. (13), Claim 3, Claim 4 and Eq. (17) together, Lemma 3
follows.

5 Construction of rrFE from AIAE

In this section we propose a generic construction of robustly reusable fuzzy
extractor rrFE = (Init,Gen,Rep) from a key-shift secure AIAE, a secure sketch
and a family of universal hash functions as shown in Fig. 11.

crs← Init(1λ):

i←$ I (i.e., Hi ←$ HI).

ppAIAE ← AIAE.Setup(1λ).

crs = (Hi, ppAIAE).

Return crs.

(P,R)← Gen(crs,w):

s← SS.Gen(w).

k← Hi(w).

m←$ MAIAE.

ct← AIAE.Enc(k,m, s).

P := (s, ct),R := m.

R← Rep(crs,P,w′):

Parse P = (s, ct).

w̃← SS.Rec(w′, s).

k̃← Hi(w̃).

m̃/⊥ ← AIAE.Dec(k̃, ct, s).

Return m̃/⊥.

Fig. 11. Construction of rrFEAIAE from key-shift secure AIAE.
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Theorem 2. The fuzzy extractor rrFEAIAE in Fig. 11 is an (M,m,MAIAE, t, ε1, ε2)-
robustly reusable fuzzy extractor where ε1 = Advind-rka

AIAE (λ) + 2−ω(log λ) and ε2 =
Advint-rka

AIAE (λ) + 2−ω(log λ), if the building blocks satisfy the following properties.

– SS = (SS.Gen,SS.Rec) is a homomorphic (M,m, m̃, 2t)-secure sketch with
linearity property.

– HI = {Hi :M→K}i∈I is a family of homomorphic universal hash functions
such that m̃− log |K| ≥ ω(log λ).

– AIAE is key-shift secure ( IND-Φ∆-RKA and weak INT-Φ∆-RKA secure)
with key space K, message space MAIAE and auxiliary input space {0, 1}∗.

The correctness follows from the correctness of the underlying SS and AIAE.
More precisely, if dis(w,w′) ≤ t, then by the correctness of secure sketch, w can
be correctly recovered, so is the secret key k(= Hi(w)). Then by the correctness
of AIAE, the message m, i.e., R can be precisely reproduced. The reusability and
robustness of rrFEAIAE are shown in Lemma 4 and Lemma 5 respectively.

Procedure Initialize: // Games G0, G1, G2

i←$ I (i.e., Hi ←$ HI).

ppAIAE ← AIAE.Setup(1λ).

crs = (Hi, ppAIAE).

b←$ {0, 1}.
w←W .

k←$ K.

Return crs.

Procedure Finalize(b∗): // Games G0-G2

If b = b∗, Return 1.

Else, Return 0.

Procedure Challenge(δj):

// Games G0, G1, G2

If dis(δj) > t, Return ⊥.

sj ← SS.Gen(w + δj).

sj = SS.Gen(w) + SS.Gen(δj).

kj ← Hi(w + δj).

kj = Hi(w) + Hi(δj).

kj = k + Hi(δj).

mj ←$ MAIAE.

ctj ← AIAE.Enc(kj ,mj , sj).

Pj := (sj , ctj),R := mj .

If b = 1, Return (Pj ,Rj).

Else, Uj ←$ MAIAE, Return (Pj ,Uj).

Fig. 12. Game G0, G1 and G2 for the security proof of Lemma 4.

Lemma 4. The fuzzy extractor rrFEAIAE in Fig. 11 is ε1-reusable with ε1 =
Advind-rka

AIAE (λ) + 2−ω(log λ).

Proof. We will prove the reusability of our construction via a series of games as
shown in Fig. 12. By Pr[Gj ] we denote the probability that A wins in game Gj .

Game G0: G0 is the reusability game played between the challenger and a PPT
adversary A. More precisely, in Procedures Initialize, the challenger chooses
b←$ {0, 1}, samples w←W , generates crs = (Hi, ppAIAE), and returns crs to A.
Upon receiving the j-th Challenge query δj from A, the challenger answers
A’s query as follows:

1. If dis(δj) > t, then return ⊥.
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2. Compute the sketch sj = SS.Gen(w+δj) and the hash value kj = Hi(w+δj).
3. Randomly choose a message mj ←$MAIAE, compute ctj ← AIAE.Enc(kj ,mj , sj),

set Pj = (sj , ctj) and Rj = mj .
4. If b = 1, return (Pj ,Rj), else randomly choose Uj ← $MAIAE and return

(Pj ,Uj).

We have that
Advreu

A,FE(λ) = |Pr[G0]− 1/2|. (24)

Game G1: Game G1 is identical to G0, except the conceptual changes of the
generations of the secure sketch and the hash value. More precisely, step 2 is
changed to step 2′ in Challenge(δj).

2′. compute the sketch sj = SS.Gen(w) + SS.Gen(δj) and the hash value kj =
Hi(w) + Hi(δj).

By the homomorphic properties of secure sketch and hash function, we have

Pr[G0] = Pr[G1]. (25)

Game G2: Game G2 is identical to G1, except that instead of computing
kj = Hi(w) + Hi(δj), the challenger randomly chooses an element k from K
in Initialize and computes kj := k + Hi(δj) in Challenge(δj) of G2. More
precisely,

– In Initialize, add k←$ K.
– When answering the generation queries from A, step 2′ in Challenge(δj)

is changed into step 2′′.
2′′. Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = k + Hi(δj).

Claim 5 |Pr[G1]− Pr[G2]| ≤ 2−ω(log λ).

Proof. This proof is essentially the same as the proof of Claim 1. We omit it
here (See Appendix E.1 for details). ut

Claim 6 |Pr[G2]− 1/2| ≤ Advind-rka
AIAE (λ).

Proof. We will reduce the IND-Φ∆-RKA security of AIAE to the altered reusabil-
ity game as described in Game G2. To this end, we assume a PPT adversary A
winning G2 and show how to construct a PPT IND-Φ∆-RKA adversary B. On in-
put ppAIAE, B samples w←W and i←$ I (i.e., Hi ←$ HI), sets crs = (Hi, ppAIAE)
and returns crs to A. Upon receiving the i-th challenge query δj from A, adver-
sary B simulates Challenge(δj) for A as follows:

1. If dis(δj) > t, then return ⊥.
2. Compute the sketch sj = SS.Gen(w) + SS.Gen(δj) and the hash value ∆j =

Hi(δj).
3. Randomly choose two messages (mj0,mj1)←$MAIAE, and send (mj0,mj1, auxj =

sj , φ∆j ) to its own challenger.
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4. Upon receiving ctj from its own challenger, set Pj = (sj , ctj), and return
(Pj ,mj1).

Finally, A outputs a guessing bit b∗, then B forwards b∗ to its own challenger.
It is straightforward to see that B simulates game G2 perfectly. More precisely,

– If ctj = AIAE.Enc(φ∆j ,mj0, aux), then B perfectly simulates for the case
b = 0 in G2.

– If ctj = AIAE.Enc(φ∆j ,mj1, aux), then B perfectly simulates for the case
b = 1 in G2.

Clearly, B wins if and only if A wins. This yields |Pr[G2]−1/2| = Advind-rka
B,AIAE(λ) ≤

Advind-rka
AIAE (λ). ut

Taking Eq. (24), Eq. (25), Claim 5 and Claim 6 together, we have Advreu
FE (λ) ≤

Advind-rka
AIAE (λ) + 2−ω(log λ), and Lemma 4 follows.

Procedure Initialize:

// Games G0, G1, G2

i←$ I (i.e., Hi ←$ HI).

ppAIAE ← AIAE.Setup(1λ).

crs = (Hi, ppAIAE).

w←W .

Q := ∅.
k←$ K.

Return crs.

Procedure Generation(δj):

// Games G0, G1, G2

If dis(δj) > t, Return ⊥.

sj ← SS.Gen(w + δj).

sj = SS.Gen(w) + SS.Gen(δj).

kj ← Hi(w + δj).

kj = Hi(w) + Hi(δj).

kj = k + Hi(δj).

mj ←$ MAIAE.

ctj ← AIAE.Enc(kj ,mj , sj).

Pj := (sj , ctj),R := mj .

Q = Q∪ {Pj}.
Return (Pj ,Rj).

Procedure Finalize(P∗, δ∗):

// Games G0, G1, G2

If dis(δ∗) > t, Return 0.

If P∗ ∈ Q, Return 0.

Parse P∗ = (s∗, ct∗).

w̃← SS.Rec(w + δ∗, s∗).

δ̃∗ = g(SS.Gen(w), s∗, δ∗).

k̃← Hi(w̃).

k̃ = Hi(w) + Hi(δ̃
∗).

k̃ = k + Hi(δ̃
∗).

Return (AIAE.Dec(k̃, ct∗, s∗) 6= ⊥).

Fig. 13. Game G0-G2 for the security proof of Lemma 5.

Lemma 5. The fuzzy extractor rrFEAIAE in Fig. 11 is ε2-robust with ε2 = Advind-rka
AIAE (λ)+

2−ω(log λ).

Proof. We prove the robustness of reusable fuzzy extractor by a sequence of
games as shown in Fig. 13. By Pr[Gj ] we denote the probability that A wins in
game Gj .

Game G0: G0 is the original robustness game. More precisely, let crs = (Hi, ppAIAE),
Q = ∅ and w←W . Upon receiving the j-th Generation query δj from A, the
challenger answers A’s query as follows:

1. If dis(δj) > t, then return ⊥.
2. Compute the sketch sj = SS.Gen(w+δj) and the hash value kj = Hi(w+δj).
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3. Randomly choose a message mj ←$MAIAE, compute ctj ← AIAE.Enc(kj ,mj , sj),
set Pj = (sj , ctj), Rj = mj and Q = Q∪ {Pj}, and return (Pj ,Rj) to A.

In finalize, upon receiving a (P∗, δ∗) from A, if dis(δ∗) ≥ t or P∗ ∈ Q, the
challenger returns 0. Else, it parses P∗ = (s∗, ct∗), then computes w̃ = SS.Rec(w+
δ∗, s∗) and k̃ = Hi(w̃). If AIAE.Dec(k̃, ct∗, s∗) = ⊥, then return 0, otherwise return
1. We have that

Advrob
A,FE(λ) = Pr[G0]. (26)

Game G1: G1 is the same as G0, except for the following changes.

– When answering a generation query δj from A, step 2 in Generation(δj)
is changed into step 2′:
2′. Compute sj = SS.Gen(w) + SS.Gen(δj) and kj = Hi(w) + Hi(δj).

– In finalize, the generation of k̃ is changed. Instead of computing k̃ :=
Hi(w̃) with w̃ := SS.Rec(w + δ∗, s∗), now k̃ := Hi(w) + Hi(δ̃

∗) with δ̃∗ =
g(SS.Gen(w), s∗, δ∗), where g is defined in Definition 4.

By the linearity property of the secure sketch and the homomorphic properties
of secure sketch and hash function, the changes are just conceptual. Hence

Pr[G0] = Pr[G1]. (27)

Game G2: Game G2 is identical to G1, except that the challenger replaces
Hi(w) by a randomly choosen k from K. More precisely,

– In Initialize, challenger will additionally sample k←$ K.
– When the challenger answers the generation queries, step 2′ is changed into

step 2′′:
2′′. compute the sketch sj = SS.Gen(w) + SS.Gen(δj) and the hash value

kj = k + Hi(δj).

– In finalize, the challenger computes k̃ = k + Hi(δ̃
∗) instead of k̃ = Hi(w) +

Hi(δ̃
∗).

Claim 7 |Pr[G1]− Pr[G2]| ≤ 2−ω(log λ).

Proof. This proof is similar to that of Claim 3. We omit it here (See Appendix
E.2 for details).

Claim 8 Pr[G2] ≤ Advint-rka
AIAE (λ).

Proof. We will reduce the INT-Φ∆-RKA security of AIAE to the altered robust-
ness game as described in Game G2. To this end, we assume a PPT adversary
A winning G2 and show how to construct a PPT weak INT-Φ∆-RKA adversary
B. On input ppAIAE, adversary B samples w ← W and i ←$ I (i.e., Hi ←$ HI),
sets Q = ∅ and crs = (Hi, ppAIAE), and returns crs to A. Upon receiving the j-th
Generation query δj from A, adversary B answers A’s query as follows:
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1. If dis(δj) > t, then return ⊥.
2. Compute the sketch sj = SS.Gen(w) + SS.Gen(δj) and the hash value ∆j =

Hi(δj).
3. Randomly choose a messages mj ←$MAIAE, and send (mj , auxj = sj , φ∆j )

to its own challenger.
4. Upon receiving ctj from its own challenger, set Pj = (sj , ctj), Q = Q∪{Pj}

and return (Pj ,mj).

Finally A will output (P∗, δ∗) for Finalize. If dis(δ∗) ≥ t or P∗ ∈ Q, B
aborts. Else, B parses P∗ = (s∗, ct∗), then computes δ̃∗ = g(SS.Gen(w), s∗, δ∗)

and ∆∗ = Hi(δ̃
∗). Finally, B takes (aux∗ = s∗, φ∆∗ , ct

∗) as its own forgery and
sends the forgery to its own challenger.

Note that B simulates game G2 perfectly. As long as the forgery satisfies the
additional special rule required for the weak INT-Φ∆-RKA security, B wins if
and only if A wins.

We show that the forgery always satisfies the special rule, i.e., if aux∗ = s∗ =
sj = auxj for some j ∈ [Q], then φ∆j = φ∆∗ .

Note that dis(δ∗) ≤ t, dis(δj) ≤ t and s∗ = sj = SS.Gen(w + δj), so we have
that w+δj = SS.Rec(w+δ∗, s∗) by the correctness of (M,m, m̃, 2t)-secure sketch.

Meanwhile, by the linearity property we have SS.Rec(w+ δ∗, s∗) = w+ δ̃∗, where

δ̃∗ = g(δ∗,SS.Gen(w), s∗). As a result, δj = δ̃∗ and ∆j = Hi(δj) = Hi(δ̃
∗) = ∆∗.

Hence the key deriving function φ∆j = φ∆∗ , and the special rule is satisfied.

As a result Pr[G2] = Advint-rka
B,AIAE(λ) ≤ Advint-rka

AIAE (λ). The claim follows. ut

Taking Eq. (26), Eq. (27), Claim 7 and Claim 8 together, we have Advreu
A,FE(λ) ≤

Advint-rka
AIAE (λ) + 2−ω(log λ). Lemma 5 follows. ut

6 Instantiations

6.1 Instantiation of rrFEprf

We recall the unique-input Φln-aff-RKA-secure PRF for an affine class Φln-aff in
[18]. For m, p, q ∈ N such that p|q, the public parameters ppPRF is a pair of
matrices of the form A0,A1 ∈ Zm×m

q , where each row of A0 and A1 is sampled
uniformly from {0, 1}m. The secret key K is a matrix in Zm×m

q . Pseudo-random

function FLWE : Zm×m
q × {0, 1}l → Zm×m

p is defined as

FLWE(K, x) :=

⌊
K ·

l∏
i=1

Axi

⌋
p

. (28)

Its security is based on the LWE assumption (see Appendix D.2 for the defini-
tion).

Theorem 3 ([18]). Let q = O(
√
λ/α), m = dλ log qe, l = λε/ log λ, 0 < ε < 1,

p = 2λ
ε−ω(log λ), α = 2−λ

ε

, c,B > 0 such that the quantity (2m)lcBp/q is negligi-
ble in the security parameter λ. Under the (Zq, λ, Ψα)-LWE assumption, the PRF
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defined in Eq. (28) is Φln-aff-RKA-secure against unique-input adversaries for the
class Φln-aff := {φC,B : φC,B(K) = CK + B | C ∈ [−c, c]m×m,B ∈ Zm×m

q }.

Obviously, Φln-aff covers the key shift function set Φ∆ := {φ∆ : φ∆(K) = K+∆ |
∆ ∈ Zm×m

q }. Hence, FLWE is a unique-input key-shift secure PRF.
Let A0,A1 ← Sample(Zm×m

q ) denote sampling two matrices A0,A1 ∈ Zm×m
q ,

where each row of A0 and A1 is sampled uniformly from {0, 1}m. By instantiating
the PRF Fpp in Fig. 8 with FLWE, the SS with the syndrome-based secure sketch
scheme in Appendix A and HI = {Hi : M → Zm×m

q }i∈I with the universal

hash function in Appendix B, and by setting T = {0, 1}ω(log λ), l = ω(log λ),

|s| = |t| = l
2 , R = Zm×(m−1)

p , V = Zm
p , we get a concrete construction of rrFEprf

from the (Zq, λ, Ψα)-LWE assumption.

crs← Init(1λ):

i←$ I (i.e., Hi ←$ HI).

A0,A1 ← Sample(Zm×m
q ).

crs = (Hi,A0,A1).

Return crs.

(P,R)← Gen(crs,w):

s← SS.Gen(w).

K← Hi(w).

t←$ T , x = (s, t).

FLWE(k, x) :=
⌊
K ·

∏l
i=1 Axi

⌋
p

= (r, v).

P := (s, t, v), R := r.

R← Rep(crs,P,w′):

Parse P = (s, t, v).

w̃← SS.Rec(w′, s).

K̃← Hi(w̃), x = (s, t).

FLWE(K̃, x) = (̃r, ṽ).

If ṽ = v, Return R := r̃.

Else, Return ⊥.

Fig. 14. Instantiation of rrFEprf from FLWE: rrFEprf lwe
.

Corollary 1. Scheme rrFEprf lwe
in Fig. 14 is a robustly reusable fuzzy extractor

based on the LWE assumption.

The computational complexities of Gen and Rep of rrFEprf are dominated
by the computation of the underlying PRF. According to [3], the best known
running time of FLWE is O(mλ5) per output bit. There are totally m2 log p output
bits, so the complexity is O(λ11).

The length of P is given by |P | = l + m log p, while the length of R is
|R| = m(m− 1) log p.

Note that |s| = ω(log λ), and this limits the error tolerance of SS. As a result,
rrFEprf lwe

can only support sub-linear fraction of errors.

6.2 Instantiation of rrFEAIAE

We recall the construction of AIAE from one-time (OT) secure AE and the
DDH assumption in [14]. Let (N̄ ,N, p, q) ← GenN(1λ) be a group generation
algorithm, where p, q are 2λ-bit safe primes such that N̄ = 2pq + 1 is also a
prime and N = pq. Let HI1 = {Hi1 : {0, 1}∗ → ZN}i1∈I1 and HI2 = {Hi2 :
QRN̄ → KAE}i2∈I2 be two families of hash functions, where QRN̄ is the sub-
group of quadratic residues of Z∗

N̄
. Let AE = (AE.Enc,AE.Dec) be a OT-secure

authenticated encryption scheme with key space KAE and message spaceM. The
scheme AIAE = (AIAE.Setup,AIAE.Enc,AIAE.Dec) in [14] is described as follows.
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ppAIAE ← AIAE.Setup(1λ):

(N̄ ,N, p, q)← GenN(1λ).
g1, g2 ← QRN̄ .
Hi1 ←$ HI1 ,Hi2 ←$ HI2 .
ppAIAE := (N̄ ,N, p, q, g1, g2,Hi1 ,Hi2).
Return ppAIAE.

(c1, c2, χ)← AIAE.Enc(k,m, aux):

Parse k = (k1, k2, k3, k4) ∈ (ZN )4.
α←$ ZN \ {0}.
(c1, c2) := (gα1 , g

α
2 ) ∈ QR2

N̄ .
β := Hi1(c1, c2, aux) ∈ ZN .

κ := Hi2(ck1+k3β
1 · ck2+k4β

2 ) ∈ KAE.
χ← AE.Enc(κ,m).
Return (c1, c2, χ).

m/⊥AIAE.Dec(k, (c1, c2, χ), aux):

Parse k = (k1, k2, k3, k4) ∈ (ZN )4.
If (c1, c2) /∈ QR2

N̄ ∨ (c1, c2) = (1, 1),
Return ⊥.
β := Hi1(c1, c2, aux) ∈ ZN .

κ := Hi2(ck1+k3β
1 · ck2+k4β

2 ) ∈ KAE.
m/⊥ ← AE.Dec(κ, χ).
Return m/⊥.

Fig. 15. Construction of DDH-based AIAEddh from OT-secure AE.

Theorem 4. [14] If the underlying AE is OT-secure, the DDH assumption holds
w.r.t. GenN over QRN̄ , HI1 is collision resistant and HI2 is universal, then
AIAEddh in Fig. 15 is IND-Φraff-RKA and weak INT-Φraff-RKA secure, where
Φraff := {φa,b : (k1, k2, k3, k4) ∈ Z4

N 7→ (ak1 + b1, ak2 + b2, ak3 + b3, ak4 + b4) ∈
Z4
N | a ∈ Z∗N , b = (b1, b2, b3, b4) ∈ Z4

N}.

Clearly, the key deriving function set Φraff contains the key-shift function set
Φ∆ := {φ∆ : (k1, k2, k3, k4) ∈ Z4

N 7→ (k1 +b1, k2 +b2, k3 +b3, k4 +b4) ∈ Z4
N | ∆ =

(b1, b2, b3, b4) ∈ Z4
N}. So the AIAEddh in Fig. 15 is Key-Shift secure. In AIAEddh,

the building block AE can be instantiated with OT-secure AE in Appendix C
just like [17], where κ = (κ1, κ2, κ3) ∈ {0, 1}3λ,MAE = {0, 1}λ and χ ∈ {0, 1}2λ.

By instantiating the AIAE in Fig. 11 with AIAEddh, the SS with the syndrome-
based secure sketch scheme in Appendix A and HI = {Hi :M→ Z4

N}i∈I with
the universal hash function in Appendix B, we get a concrete construction of
rrFEAIAE from the DDH assumption (see Fig. 16).

Corollary 2. Scheme rrFEAIAEddh
in Fig. 16 is a robustly reusable fuzzy extractor

based on the DDH assumption.

The computational complexities of Gen and Rep are dominated by the en-
cryption and decryption algorithms of the underlying AIAEddh. Consequently,
the complexity of Gen is dominated by four modular exponentiations while that
of Rep by two modular exponentiations over QRN̄ .

crs← Init(1λ):

i←$ I (i.e., Hi ←$ HI).

(N̄ ,N, p, q)← Gen(1λ).
g1, g2 ← QRN̄ .
Hi1 ←$ HI1 ,Hi2 ←$ HI2 .
ppAIAE := (N̄ ,N, p, q, g1, g2,Hi1 ,Hi2).
crs = (Hi, ppAIAE).
Return crs.

(P,R)← Gen(crs,w):

s← SS.Gen(w).
k← Hi(w).
m←$ MAIAE.
Parse k = (k1, k2, k3, k4) ∈ (ZN )4.
α←$ ZN \ {0}.
(c1, c2) := (gw1 , g

w
2 ) ∈ QR2

N̄ .
t := Hi1(c1, c2, s) ∈ ZN .

κ := Hi2(ck1+k3t
1 · ck2+k4t

2 ) ∈ KAE.
χ← AE.Enc(κ,m).
P := (s, c1, c2, χ),R := m.

R← Rep(crs,P,w′):

Parse P = (s, c1, c2, χ).
w̃← SS.Rec(w′, s).

k̃← Hi(w̃).

Parse k̃ = (k̃1, k̃2, k̃3, k̃4) ∈ (ZN )4.
If (c1, c2) /∈ QR2

N̄ ∨ (c1, c2) = (1, 1),
Return ⊥.
β := Hi1(c1, c2, s) ∈ ZN .

κ := Hi2(ck̃1+k̃3β
1 · ck̃2+k̃4β

2 ) ∈ KAE.
m̃/⊥ ← AE.Dec(κ, χ).
Return m̃/⊥.

Fig. 16. Instantiation of rrFEAIAE from AIAEddh: rrFEAIAEddh .
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Observe that the ciphertext ct of AIAEddh in Fig. 15 is of size (4λ+1)+(4λ+
1)+2λ = 10λ+2. So the public string P of rrFEAIAEddh

in Fig. 16 has |s|+10λ+2
bits, where |s| depend on the maximal number of errors t. Note that AIAEddh is
very efficient, so this instantiation rrFEAIAEddh

in Fig. 16 is very efficient as well.
Since the syndrome-based secure sketch in Appendix A can correct linear

fraction of errors and there is no further limits on the length of s, the resulting
rrFEAIAEddh

in Fig. 16 can support linear fraction of errors.
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Supplementary Materials

A Homomorphic Secure Sketch with Linear Property

Recall that an efficiently decodable [n, k, 2t + 1]F-linear error correcting code
C can correct up to t errors and it is a linear subspace of Fn of dimension k.
The parity-check matrix of C is an (n − k) × n matirx H whose rows generate
the orthogonal space C⊥. For any v ∈ Fn, the syndrome of v is defined by
syn(v) := Hv. Note that v ∈ C ⇐⇒ syn(v) = 0. For any c ∈ C, syn(c + e) =
syn(c) + syn(e) = syn(e).

A linear error-correcting code implies a syndrome-based secure sketch as
shown below.

– SS.Gen(w) := syn(w) = s.
– SS.Rec(w′, s) := w′ − Decode(syn(w′)− s).

Lemma 6 ([11]). Given an [n, k, 2t+ 1]F linear error-correcting code over field
F, one can construct a (m,m− n+ k, t)-secure sketch for Fn. The secure sketch
is deterministic and its output consists of n− k elements of F.

Homomorphic Property. The syndrome-based secure sketch is homomorphic
[25], since SS.Gen(w+δ) = syn(w+δ) = H(w+δ) = Hw+Hδ = syn(w)+syn(δ) =
SS.Gen(w) + SS.Gen(δ).
Linearity Property. The syndrome-based secure sketch has linearity property
[9], since

δ̃ = w̃ − w = SS.Rec(w′, s̃)− w

= w′ − Decode(syn(w′)− s̃)− w

= δ − Decode(syn(w + δ)− s̃)

= δ − Decode(s + syn(δ)− s̃).

Define g(δ, s, s̃) := δ − Decode(s + syn(δ) − s̃). Clearly, g(·, ·, ·) is an efficient
deterministic function.

B Homomorphic Universal Hash Functions

Let q be a prime. For w ∈ Zlq,A ∈ Zn×lq , define

HA(w) := Aw,

then H = {HA : Zlq → Znq | A ∈ Zn×lq } is a family of universal hash functions.
Note that the above hash function is homomorphic, since

HA(w + w′) = A(w + w′) = Aw + Aw′ = HA(w) + HA(w′).

One can readily interpret a vector in Znq as a matrix in Z
√
n×
√
n

q , if
√
n is an

integer.
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Let N̄ = 2N + 1 be a prime. Define f : Zn
N̄
→ ZnN with f

(
(x1, . . . , xn)>

)
:=

(x1 mod N, . . . , xn mod N)>. One can easily get a family of hash functions
H′ = {f ◦ HA : Zl

N̄
→ ZnN | A ∈ Zn×l

N̄
}, where f (HA(w)) := f(Aw). It is easy

to check that H′ is almost universal.

C One-Time Secure Authenticated Encryption

Definition 13 (Authenticated Encryption). An authenticated encryption
scheme AE is associated with a message space MAE and a key space KAE, and
consists of a pair of algorithms:

– AE.Enc(k,m) on input a key k ∈ KAE, a message m ∈MAE outputs a cipher-
text ct.

– AE.Dec(k, ct) on input a key k and a ciphertext ct outputs a message m or a
rejection symbol ⊥.

Correctness. For all k ∈ KAE, all m ∈MAE and all ct← AE.Enc(k,m), it holds
that m = AE.Dec(k, ct).

Definition 14 (IND-OT and INT-OT Securities for AE). An AE scheme
is one-time secure if it is IND-OT and INT-OT secure. More precisely, for
any PPT adversary A, both Advind-ot

A,AE(λ) = |Pr[Expind-ot
A,AE(λ) ⇒ 1] − 1/2| and

Advint-ot
A,AE(λ) = Pr[Expint-ot

A,AE(λ) ⇒ 1] are negligible, where games Expind-ot
A,AE(λ) and

Expint-ot
A,AE(λ) are depicted in Fig. 17.

Procedure Initialize:

k←$ KAE.

b←$ {0, 1}.
Return ε.

Procedure LR(m0,m1): // one query

If |m0| 6= |m1|, Return ⊥.

ct← AE.Enc(k,mb).

Return ct.

Procedure Finalize(b∗)

If b = b∗, Return 1.

Else, Return 0.

Procedure Initialize:

k←$ KAE.

Return ε.

Procedure Enc(m): // one query

ct← AE.Enc(k,m).

Return ct.

Procedure Finalize(ct∗)

ct∗ = ct, Return 0.

Return (AE.Dec(k, ct∗) 6= ⊥).

Fig. 17. Security games for AE. Left: Expind-ot
A,AE(λ); Right: Expint-ot

A,AE(λ).

Now we present the one-time secure AE in [17].
Suppose that the key space is given by KAE := {0, 1}3λ, the message space

given by MAE = {0, 1}λ. A key k = (k0, k1, k2) is randomly sampled from
{0, 1}3λ.
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– AE.Enc(k = (k0, k1, k2),m) : e = k0+m, a = k1 ·e+k2, ct := (e, a). Return ct.

– AE.Dec(k = (k0, k1, k2), ct = (e, a)) : If a 6= k1 · e+ k2, return ⊥, else return
m := e− k1.

The multiplication and addition are carried over F2λ .

D Assumptions

D.1 Decisional Diffie-Hellman (DDH) Assumption

Let (N̄ ,N, p, q) ← GenN(1λ) be a group generation algorithm, where p, q are
2λ-bit safe primes such that N̄ = 2pq + 1 is also a prime and N = pq.

Definition 15 (DDH Assumption). The Decisional Diffie-Hellman (DDH)
assumption holds over group QRN̄ for GenN if for any PPT adversary A, the
following advantage is negligible in λ:

Advddh
A (λ) := |Pr[A(N̄ ,N, p, q, g1, g2, g

x
1 , g

x
2 )⇒ 1]−Pr[A(N̄ ,N, p, q, g1, g2, g

x
1 , g

y
2 )⇒ 1]|

where (N̄ ,N, p, q)← GenN(1λ), g1, g2 ←$ QRN̄ , x, y ←$ ZN \ {0}.

D.2 Learning with Errors (LWE) Assumption

The learning with errors (LWE) problem was introduced by Regev [21].

Definition 16 (LWE Assumption). Let integers n = n(λ), m = m(λ) and
q = q(λ) ≥ 2. Let χ(λ) be a distribution over Zq. The (Zq, n, χ)-LWE problem
is to distinguish the following two distributions,

(A,As + e) and (A,u),

where A ← $ Zm×nq , s ← $ Znq , e ← χm and u ← $ Zmq . The (Zq, n, χ)-LWE
assumption holds, if (A,As + e) ≈c (A,u) for all PPT adversaries.

For an α ∈ (0, 1) and a prime q, the distribution Ψα over Zq is defined by
dqY c( mod q) where Y is a normal random variable with mean 0 and standard
deviation α/2π. Let abs(x) denote the absolute value of x. Let B be an error
bound such that Pr[abs(x) ≤ B | x← Ψα] with overwhelming probability. Regev
[21] showed that for noise distribution Ψα, if q is sufficiently large, the (Zq, n, Ψα)-
LWE problem is as hard as the worst-case SIVP and GapSVP under a quantum
reduction.

E Omitted Proofs

E.1 Proof of Claim 5

Proof. Similar to the proof of Claim 1, the Leftover Hash Lemma implies that

SD((Hi(w), i, s = SS.Gen(w), (U, i, s = SS.Gen(w))) ≤ 1

2

√
|K| · 2−m̃, (29)
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where U←$ K. In other words, for all powerful (not necessarily PPT) algorithm
B, it holds that

|Pr[B(U, i, s = SS.Gen(w))⇒ 1]−Pr[B((Hi(w), i, s = SS.Gen(w))⇒ 1]| ≤ 1

2

√
|K| · 2−m̃.

(30)

We prove the claim by constructing a powerful algorithm B who aims to dis-
tinguish (Hi(w), i, s = SS.Gen(w)) from (U, i, s = SS.Gen(w)). Given (X, i, s =
SS.Gen(w)), where X is either Hi(w) or a uniform U, B simulates G1/G2 for A
as follows.

– To simulate Procedure Initialize, B randomly chooses a bit b ← $ {0, 1},
then determines crs = (Hi, ppAIAE) for A by determining Hi with i and invok-
ing ppAIAE ← AIAE.Setup(1λ).

– To answer A’s query δj , B simulates Procedure Challenge(δj) as follows.
• If dis(δj) > t, return ⊥.
• sj = s + SS.Gen(δj).
• kj = X + Hi(δj).
• mj ←$MAIAE.
• ctj ← AIAE.Enc(kj ,mj , sj).
• Pj := (sj , ctj),R := mj .
• If b = 1, return (Pj ,Rj). Else, Uj ←$MAIAE, return (Pj ,Uj).

– Finally A outputs a guessing bit of b∗. If b = b∗ (i.e., A wins), then B outputs
1, otherwise B outputs 0.

If X = Hi(w), B perfectly simulates G1 for A; if X = U, B perfectly simulates
G2 for A. Consequently,

|Pr[B(Hi(w), i, s = SS.Gen(w))⇒ 1]− Pr[B((U, i, s = SS.Gen(w))⇒ 1]|
= |Pr[G1]− Pr[G2]|. (31)

Obviously, the claim follows from Eq. (30), Eq. (31) and the fact of m̃− log |K| ≥
ω(log λ). ut

E.2 Proof of Claim 7

Proof. Similar to that of Claim 3, the Leftover Hash Lemma implies that

SD((Hi(w), i, s = SS.Gen(w), (U, i, s = SS.Gen(w))) ≤ 1

2

√
|K| · 2−m̃, (32)

where U←$ K. In other words, for all powerful (not necessarily PPT) algorithm
B, it holds that

|Pr[B(U, i, s = SS.Gen(w))⇒ 1]−Pr[B((Hi(w), i, s = SS.Gen(w))⇒ 1]| ≤ 1

2

√
|K| · 2−m̃.

(33)

We construct a powerful algorithm B who aims to distinguish (Hi(w), i, s =
SS.Gen(w)) from (U, i, s = SS.Gen(w)). Suppose that the challenge of B is (X, i, s =
SS.Gen(w), where X is either Hi(w) or a uniform U. Then B simulates G1/G2

for A as follows.
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– To simulate Procedure Initialize, B randomly chooses a bit b ← $ {0, 1},
then determines crs = (Hi, ppAIAE) for A by determining Hi with i and invok-
ing ppAIAE ← AIAE.Setup(1λ).

– To answer A’s query δj , B simulates Procedure Challenge(δj) as follows.
• If dis(δj) > t, return ⊥.
• sj = s + SS.Gen(δj).
• kj = X + Hi(δj).
• mj ←$MAIAE.
• ctj ← AIAE.Enc(kj ,mj , sj).
• Pj := (sj , ctj),R := mj .
• Return (Pj ,Rj).

– Finally A sends (P∗ = (s∗, ct∗), δ∗) to Finalize. If dis(δ∗) > t or P∗ ∈ Q, B
returns 0 to its own challenger. Else, B parses P∗ = (s∗, ct∗), and computes

δ̃∗ = g(SS.Gen(w), s∗, δ∗) and k̃ = X + Hi(δ̃
∗). If AIAE.Dec(k̃, ct∗, s∗) 6= ⊥, B

returns 1, else returns 0.

If X = Hi(w), B perfectly simulates G1 for A; if X = U, B perfectly simulates
G2 for A. Consequently,

|Pr[B(Hi(w), i, s = SS.Gen(w))⇒ 1]− Pr[B((U, i, s = SS.Gen(w))⇒ 1]|
= |Pr[G1]− Pr[G2]|. (34)

Therefore, Claim 7 follows from Eq. (33), Eq. (34) and the fact of m̃−log |K| ≥
ω(log λ). ut
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