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Abstract— Networks-on-Chip (NoCs) have emerged as a new 

design paradigm to implement MPSoCs that competes with the 

standard bus approach. They offer more scalability, flexibility, 

and bandwidth. Nevertheless, FPGA manufacturers still use the 

bus paradigm in their development frameworks. In this paper, 

we study the complexity and performances of a FPGA 

implementation for a crossbar NoC. We propose a generic 

architecture and characterize its complexity, maximum 

frequency of operation, and global throughput for NoCs 

supporting 2 to 8 nodes. Results show that FPGA-based designs 

would benefit from such architecture when high throughput 

must be reached. Finally, we present a fully functional 3x3 NoC 

interconnecting a PowerPC and 2 Xtensa processors 

implemented in a VirtexII Pro FPGA. 

Keywords—Network-on-Chip, NoC, FPGA, Crossbar  

I. INTRODUCTION 

The complexity in circuit design grows rapidly, still 
validating Moore’s Law. Therefore, the ability of 
implementing complex architecture in a single chip always 
presents new challenges. One of the issues met by designers 
when implementing large SoCs is the communication between 
their (numerous) components. Buses are an increasingly 
inefficient way to communicate, since only one source can 
drive the bus at a time, thus limiting bandwidth.  

NoCs are increasing in popularity because of their 
benefits: larger bandwidth, thanks to high performance 
switching networks, and lower power dissipation through 
shorter wire segments. Communications in large SoCs are so 
important that many researchers have adopted the NoC 
approach. They are drawing inspiration from computer 
networks, thus most SoC are usually an adaptation of previous 
work on networks for parallel and distributed systems [1][2].  

Many topologies and architectures have been investigated. 
The challenge consists in offering the best connectivity and 
throughput with the simplest and cheapest architecture or 
methodology. This is very well illustrated in [3], where 
researchers propose a two-level FIFO approach in order to 
simplify the design of the arbitration algorithm and improve 
the bandwidth. Unfortunately, this method tends to be 
expensive in terms of hardware.  

FPGA manufacturers such as Xilinx and Altera offer 
embedded tools to help their customer design complex Multi-
Processor Systems-on-Chip (MPSoCs). Nevertheless, their 
environments only offer the bus paradigm or point-to-point 
connections. More complex MPSoCs may require higher 
bandwidths than a bus can offer, or may need to be more area 
efficient than point-to-point connections.  

 Strangely, if several NoC generators are reported in the 
literature, very few FPGA implementations and performance 
evaluations are available. In [4], researchers have described a 
NoC generator, which is used to create a synthesizable NoC 
description. NoCGEN uses a set of modularized router 
components that can be used to form different routers with a 
varying number of ports, routing algorithms, data widths, and 
buffer depths. A way to design MPSoCs in FPGAs in a short 
time is proposed in [5]. The authors use a set of predefined 
components and a high-level language to build the MPSoC in 
their tool environment: ESPAM. 

In this paper, we propose a generic crossbar based NoC 
with two parameters: the number of nodes and the data width.  
The architecture relies on CASM  [6], an intermediate level 
HDL which enables a very simple implementation of the 
Round-Robin algorithm to prioritize some transfers and avoid 
deadlocks (compared to CASM, VHDL is considered to be a 
low level HDL). Synchronization is implicit in the language.  
We study the area, frequency, and throughput achievable for 
NoC implementations ranging from 2x2 to 8x8 nodes on 
Altera and Xilinx circuits. 

The rest of the paper is organized as follows. Section 2 
presents the architecture of the generic crossbar NoC. Section 
3 details its implementation. Section 4 reports the 
implementation results. Section 5 discusses the design of a 
fully functional implementation of an MPSoC with a 3x3 
crossbar based NoC. The last section concludes this work. 

II.  ARCHITECTURE 

With the crossbar topology, each source can send data to 
each target in a straight way. This topology is illustrated in 
Figure 1 in the case where there are 4 sources and 4 targets. In 
this paper, we only consider NxN topologies, since most of 
the time, a processor requires read and write accesses to the 
NoC. Nevertheless, the approach is easily extensible to NxM 



 
270 

or even partial crossbars, when it is not mandatory that each 
device on the network be connected to all the other devices.  

NoC

Source 0

Source 1

Source 2

Source 3

Target 0

Target 1

Target 2

Target 3

Senders Receivers

 

Fig 1: Example of a 4x4 crossbar NoC 

The architecture is based on two main building blocks. 
Blocks on the left hand side are called senders, and blocks on 
the right hand side are called receivers. The sender has the 
role of getting a token from its (left) input port and sending it 
to the right receiver according to its address. Inversely, the 
receiver must check all its input ports to detect if one sender 
attempts to send data to this port. When this is the case, a 
transfer occurs from the sender to the receiver. 

A common problem arises when several senders are ready 
to send their data to the same receiver. The round robin 
approach offers an elegant solution to fix this issue [7]. The 
receiver assigns a priority token to one sender. As soon as a 
transfer occurs, the token goes to the next sender in a circular 
way. If the sender that has the priority token is not ready, its 
nearest neighbor (in the round) that is ready to send data will 
complete its transaction. In this way, a transfer can occur at 
each clock cycle for each receiver that has at least one sender 
that is ready.  

Other researchers have concentrated their efforts on 
designing a Round-Robin arbiter generator tool [8] to 
accelerate the implementation of efficient Round-Robin 
arbiters. Our work takes advantage of the high level features 
of our CASM HDL to implement the Round-Robin algorithm 
with a state machine, as described in the next section. 

III. IMPLEMENTATION 

Our NoC is generated from an API (Application 
Programming Interface) written in Java. The API takes two 
parameters (network size N and data width w) and generates a 
network of dedicated senders and receivers written in CASM. 

CASM (Channel-based Algorithmic State Machine) is an 
intermediate level HDL developed in our research group [6]. 

This language enables an easy description of Algorithmic 
State Machines (ASM) that process and exchange data tokens 
over channels in a self synchronized way. Moreover, 
compared to Verilog or VHDL, the language has higher-level 
constructs enabling “state calls” and even recursion. The 
language is aimed at describing circuits at an algorithmic 
level and let the CASM compiler manage all the hardware, 
logical and electrical details.  

For brevity, implementation details will be illustrated on a 
very basic example depicted in Figure 2: a 32-bit, 2x2 
crossbar NoC. 

in0

in1

res0

res1

in0

in1

res0

res1

W00

W11

W01

W10

 

Fig. 2: 32-bit 2x2 module 

In this context, there are two senders, two receivers and 4 
virtual communication channels. Our Java API generates the 
following code for one sender:  

unsigned input in0{protocol="FS"}[33]; 

unsigned post W00{protocol="FS"}[32]; 

unsigned post W01{protocol="FS"}[32]; 

 

ASM  {  

unsigned register xa[33]; 

unsigned register xb[33]; 

 

s1: xa:=in0; goto s2; 

 

s2: if (xa.[32..32] == "0"b) 

W00:=(unsigned)xa.[31 .. 0]; 

xb:=in0; goto s3; 

else  

W01:=(unsigned)xa.[31 .. 0]; 

xb:=in0; goto s3; 

end; 

 

s3: if (xb.[32..32] == "0"b)   

W00:=(unsigned)xb.[31 .. 0]; 

xa:=in0; goto s2; 

else  

W01:=(unsigned)xb.[31 .. 0]; 

xa:=in0; goto s2; 

end; 

} 

The input in0 is 33-bit wide (1 bit for the address and 32 
bits for the data). “FS” stands for “Fully Synchronized”, 
which means that the compiler will generate all the 
synchronization logic required to manage the data as tokens. 
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The ASM has 3 states (s1, s2 and s3). Two 33-bit registers 
(xa and xb) are defined to temporarily store the data coming 
from the input port in0. In each state, the transfer symbol “:=” 
guaranties that one and only one transfer will occur.  

In state s1, the state machine waits until a first data token 
is available at input port in0. As soon as this occurs, the data 
is written in register xa and the control is passed to state s2.  

In state s2, depending of the address bit, two transfers 
must occur before leaving the state: sending the data stored in 
xa and acquiring a new data in xb. These transfers may occur 
in any order and possibly in a single clock cycle. The control 
is then passed to state s3. State s3 plays a role similar to s2 
except that xa and xb are swapped. 

The code generated by our API for one receiver is the 
following: 

unsigned output res0{protocol="fs"}[32]; 

 

ASM  { 

s0: if (W00.dout.sync.rts)   

res0 = W00; goto s1; 

 elsif (W10.dout.sync.rts) 

  res0 = W10; goto s1; 

else goto s0; 

end; 

 

s1: if (W10.dout.sync.rts)   

res0 = W10;  

goto s0; 

 elsif (W00.dout.sync.rts) 

res0 = W00;  

goto s0; 

 else goto s1; 

end; 

} 

Basically, each state maps a different position of the 
priority token. State s1 prioritize the channel W00 (coming 
from input in0) while state s2 prioritize the channel W10 
(coming from input in1). As soon as a transfer occurs, the 
control is passed to the next state. 

Since all the transfers occur in the “Full Synchronized” 
mode, each channel is composed of three signals: 

� Channel_data (driven by the source) 

� Channel_rts (activated by the source when ready) 

� Channel_rtr (activated by the target when ready) 

A transfer occurs when both Channel_rts and Channel_rtr 
are activated at the same clock rising edge, which enables a 
transfer at each clock cycle when sender and receivers are 
continuously ready. Such protocol is very close to a FIFO 
protocol and can interface with it almost directly.  

In conclusion, our implementation only requires two 
registers for each sender, one multiplexer for each receiver 
and a few logic gates to implement the control ASMs. An 

important feature to notice is that the whole description is 
generated by our Java API from only two parameters and 
automatically translated into VHDL by our CASM compiler. 

IV. RESULTS 

A set of NoCs ranging from 2x2 to 8x8 ports with the 
proposed architecture has been implemented. A VHDL 
simulation allowed verifying that all packets were correctly 
sent to their target. The test-bench sends 5000 random vectors 
(address + data) at each input and check that they reach their 
destination. This test also gives statistical values for global 
throughputs which are reported in Table 1. Note that the test-
bench attempts inserting one vector at each cycle and that 
vector remains at the input if the insertion is not successful. 

Table 1: Throughput and latency 

NxN 
Data 
sent Cycles 

Latency 
(cycle) 

Global 
throughput 

(word/cycle) 

2x2 10000 6713 1,34 1,49 

3x3 15000 7337 1,47 2,04 

4x4 20000 7663 1,53 2,61 

5x5 25000 7853 1,57 3,18 

6x6 30000 7969 1,59 3,76 

7x7 35000 8046 1,61 4,35 

8x8 40000 8149 1,63 4,91 
 

Results demonstrate that the throughput of this NoC is 
much higher than that of a bus, where the maximum 
throughput is 1 data/cycle. All the modules have been 
synthesized by the Synplify Pro 8.9 tool to fit in Virtex-5 and 
Stratix-3 FPGAs. We measured the performances in terms of 
area and frequency. The results are reported in Tables 2 and 3 
for NoC with 32-bit data paths.  

The resulting frequencies of operation are all above 100 
MHz and up to 350 MHz, which is quite good for a non 
pipelined architecture. The area is very small too since the 
8x8 NoC would only consume 1.5% of the combinational 
resources available in the xc5vlx330ff1760-1. 

Table 2: Area and frequency (xc5vlx330ff1760-1, Xilinx) 
 

NxN 

Estimated 
freq. (MHz) LUTs Registers 

2x2 243,4 228 146 

3x3 187,3 553 292 

4x4 139,5 1604 336 

5x5 131,2 2278 557 

6x6 126 3467 734 
7x7 118,2 3676 843 
8x8 111,1 4956 986 
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Table 3: Area and frequency (ep3sl150f1152c2, Altera) 
 

NxN 

Estimated 
frequency ALUTs Registers 

2 377,9 215 148 

3 284,3 442 255 

4 244 764 363 

5 197 1593 535 

6 199 2072 670 

7 160,4 2860 808 

8 170,6 3554 952 
 

V. APPLICATION  

We have developed a SoC architecture consisting of two 
Xtensa processors, one PowerPC processor, and a 3x3 NoC 
module. The system is aimed at prototyping video algorithms, 
but this is still a work-in-progress. The PowerPC will manage 
the I/O streaming while the Xtensa processors and their 
dedicated instructions (TIE) will perform video processing. 
Figure 3 describes this architecture. 

 

Xtensa
Processor    

FIFO

PLB bus adapter

PLB

Serial
COM1

Xtensa
Processor    

FIFO

PLB bus adapter

PLB

Serial
COM2

PowerPC 
processor

FIFO

PLB to OPB

OPB

Proposed 3x3 NoC
CASM-based

JTAG

TIE TIE

 

Fig 3 : SoC system 

The whole system has been implemented in a FPGA 
XC2VP100. Many tests have been conducted with parallel 
data transfers between all the processors. The architecture is 
fully functional but no video algorithm has been tested at this 
time. It is of interest that we lost many weeks in attempting to 
integrate the Xtensa processor in the standard environment 
(PLB and OPB bus) because of tools and IP issues. However, 
once we were able to add a standard FIFO to each processor, 

it took just half a week to complete the network thanks to our 
generic NoC. 

VI. CONCLUSION  

In this paper, we described a generic NoC template and 
discussed its implementation on FPGA technology. Compared 
to the standard bus paradigm or point-to-point connections, 
this approach proved to be an easy and efficient way to 
rapidly interconnect modules in a System-on-(Programmable) 
Chip. A 32-bit 8x8 NoC only requires 1.5% of the available 
resources of a Virtex xc5vlx330ff1760-1 FPGA while a point-
to-point or FIFO-based approach would be very costly to 
implement since 64 FIFOs should be instantiated in addition 
to data routing and synchronization logic. As chips size still 
continue to increase exponentially, we think that such 
approach will be more and more useful for future designs and 
we suggest that FPGA manufacturers should integrate such 
technology in their standard development flow. 
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