

269

978-1-4244-2332-3/08/$25.00 © 2008 IEEE

Generic Crossbar Network on Chip for FPGA
MPSoCs

David Bafumba-Lokilo, Yvon Savaria, Jean-Pierre David

Département de Génie Électrique, École Polytechnique de Montréal,
Montréal, CANADA

Abstract— Networks-on-Chip (NoCs) have emerged as a new

design paradigm to implement MPSoCs that competes with the

standard bus approach. They offer more scalability, flexibility,

and bandwidth. Nevertheless, FPGA manufacturers still use the

bus paradigm in their development frameworks. In this paper,

we study the complexity and performances of a FPGA

implementation for a crossbar NoC. We propose a generic

architecture and characterize its complexity, maximum

frequency of operation, and global throughput for NoCs

supporting 2 to 8 nodes. Results show that FPGA-based designs

would benefit from such architecture when high throughput

must be reached. Finally, we present a fully functional 3x3 NoC

interconnecting a PowerPC and 2 Xtensa processors

implemented in a VirtexII Pro FPGA.

Keywords—Network-on-Chip, NoC, FPGA, Crossbar

I. INTRODUCTION

The complexity in circuit design grows rapidly, still
validating Moore’s Law. Therefore, the ability of
implementing complex architecture in a single chip always
presents new challenges. One of the issues met by designers
when implementing large SoCs is the communication between
their (numerous) components. Buses are an increasingly
inefficient way to communicate, since only one source can
drive the bus at a time, thus limiting bandwidth.

NoCs are increasing in popularity because of their
benefits: larger bandwidth, thanks to high performance
switching networks, and lower power dissipation through
shorter wire segments. Communications in large SoCs are so
important that many researchers have adopted the NoC
approach. They are drawing inspiration from computer
networks, thus most SoC are usually an adaptation of previous
work on networks for parallel and distributed systems [1][2].

Many topologies and architectures have been investigated.
The challenge consists in offering the best connectivity and
throughput with the simplest and cheapest architecture or
methodology. This is very well illustrated in [3], where
researchers propose a two-level FIFO approach in order to
simplify the design of the arbitration algorithm and improve
the bandwidth. Unfortunately, this method tends to be
expensive in terms of hardware.

FPGA manufacturers such as Xilinx and Altera offer
embedded tools to help their customer design complex Multi-
Processor Systems-on-Chip (MPSoCs). Nevertheless, their
environments only offer the bus paradigm or point-to-point
connections. More complex MPSoCs may require higher
bandwidths than a bus can offer, or may need to be more area
efficient than point-to-point connections.

 Strangely, if several NoC generators are reported in the
literature, very few FPGA implementations and performance
evaluations are available. In [4], researchers have described a
NoC generator, which is used to create a synthesizable NoC
description. NoCGEN uses a set of modularized router
components that can be used to form different routers with a
varying number of ports, routing algorithms, data widths, and
buffer depths. A way to design MPSoCs in FPGAs in a short
time is proposed in [5]. The authors use a set of predefined
components and a high-level language to build the MPSoC in
their tool environment: ESPAM.

In this paper, we propose a generic crossbar based NoC
with two parameters: the number of nodes and the data width.
The architecture relies on CASM [6], an intermediate level
HDL which enables a very simple implementation of the
Round-Robin algorithm to prioritize some transfers and avoid
deadlocks (compared to CASM, VHDL is considered to be a
low level HDL). Synchronization is implicit in the language.
We study the area, frequency, and throughput achievable for
NoC implementations ranging from 2x2 to 8x8 nodes on
Altera and Xilinx circuits.

The rest of the paper is organized as follows. Section 2
presents the architecture of the generic crossbar NoC. Section
3 details its implementation. Section 4 reports the
implementation results. Section 5 discusses the design of a
fully functional implementation of an MPSoC with a 3x3
crossbar based NoC. The last section concludes this work.

II. ARCHITECTURE

With the crossbar topology, each source can send data to
each target in a straight way. This topology is illustrated in
Figure 1 in the case where there are 4 sources and 4 targets. In
this paper, we only consider NxN topologies, since most of
the time, a processor requires read and write accesses to the
NoC. Nevertheless, the approach is easily extensible to NxM

270

or even partial crossbars, when it is not mandatory that each
device on the network be connected to all the other devices.

NoC

Source 0

Source 1

Source 2

Source 3

Target 0

Target 1

Target 2

Target 3

Senders Receivers

Fig 1: Example of a 4x4 crossbar NoC

The architecture is based on two main building blocks.
Blocks on the left hand side are called senders, and blocks on
the right hand side are called receivers. The sender has the
role of getting a token from its (left) input port and sending it
to the right receiver according to its address. Inversely, the
receiver must check all its input ports to detect if one sender
attempts to send data to this port. When this is the case, a
transfer occurs from the sender to the receiver.

A common problem arises when several senders are ready
to send their data to the same receiver. The round robin
approach offers an elegant solution to fix this issue [7]. The
receiver assigns a priority token to one sender. As soon as a
transfer occurs, the token goes to the next sender in a circular
way. If the sender that has the priority token is not ready, its
nearest neighbor (in the round) that is ready to send data will
complete its transaction. In this way, a transfer can occur at
each clock cycle for each receiver that has at least one sender
that is ready.

Other researchers have concentrated their efforts on
designing a Round-Robin arbiter generator tool [8] to
accelerate the implementation of efficient Round-Robin
arbiters. Our work takes advantage of the high level features
of our CASM HDL to implement the Round-Robin algorithm
with a state machine, as described in the next section.

III. IMPLEMENTATION

Our NoC is generated from an API (Application
Programming Interface) written in Java. The API takes two
parameters (network size N and data width w) and generates a
network of dedicated senders and receivers written in CASM.

CASM (Channel-based Algorithmic State Machine) is an
intermediate level HDL developed in our research group [6].

This language enables an easy description of Algorithmic
State Machines (ASM) that process and exchange data tokens
over channels in a self synchronized way. Moreover,
compared to Verilog or VHDL, the language has higher-level
constructs enabling “state calls” and even recursion. The
language is aimed at describing circuits at an algorithmic
level and let the CASM compiler manage all the hardware,
logical and electrical details.

For brevity, implementation details will be illustrated on a
very basic example depicted in Figure 2: a 32-bit, 2x2
crossbar NoC.

in0

in1

res0

res1

in0

in1

res0

res1

W00

W11

W01

W10

Fig. 2: 32-bit 2x2 module

In this context, there are two senders, two receivers and 4
virtual communication channels. Our Java API generates the
following code for one sender:

unsigned input in0{protocol="FS"}[33];

unsigned post W00{protocol="FS"}[32];

unsigned post W01{protocol="FS"}[32];

ASM {

unsigned register xa[33];

unsigned register xb[33];

s1: xa:=in0; goto s2;

s2: if (xa.[32..32] == "0"b)

W00:=(unsigned)xa.[31 .. 0];

xb:=in0; goto s3;

else

W01:=(unsigned)xa.[31 .. 0];

xb:=in0; goto s3;

end;

s3: if (xb.[32..32] == "0"b)

W00:=(unsigned)xb.[31 .. 0];

xa:=in0; goto s2;

else

W01:=(unsigned)xb.[31 .. 0];

xa:=in0; goto s2;

end;

}

The input in0 is 33-bit wide (1 bit for the address and 32
bits for the data). “FS” stands for “Fully Synchronized”,
which means that the compiler will generate all the
synchronization logic required to manage the data as tokens.

271

The ASM has 3 states (s1, s2 and s3). Two 33-bit registers
(xa and xb) are defined to temporarily store the data coming
from the input port in0. In each state, the transfer symbol “:=”
guaranties that one and only one transfer will occur.

In state s1, the state machine waits until a first data token
is available at input port in0. As soon as this occurs, the data
is written in register xa and the control is passed to state s2.

In state s2, depending of the address bit, two transfers
must occur before leaving the state: sending the data stored in
xa and acquiring a new data in xb. These transfers may occur
in any order and possibly in a single clock cycle. The control
is then passed to state s3. State s3 plays a role similar to s2
except that xa and xb are swapped.

The code generated by our API for one receiver is the
following:

unsigned output res0{protocol="fs"}[32];

ASM {

s0: if (W00.dout.sync.rts)

res0 = W00; goto s1;

 elsif (W10.dout.sync.rts)

 res0 = W10; goto s1;

else goto s0;

end;

s1: if (W10.dout.sync.rts)

res0 = W10;

goto s0;

 elsif (W00.dout.sync.rts)

res0 = W00;

goto s0;

 else goto s1;

end;

}

Basically, each state maps a different position of the
priority token. State s1 prioritize the channel W00 (coming
from input in0) while state s2 prioritize the channel W10
(coming from input in1). As soon as a transfer occurs, the
control is passed to the next state.

Since all the transfers occur in the “Full Synchronized”
mode, each channel is composed of three signals:

� Channel_data (driven by the source)

� Channel_rts (activated by the source when ready)

� Channel_rtr (activated by the target when ready)

A transfer occurs when both Channel_rts and Channel_rtr
are activated at the same clock rising edge, which enables a
transfer at each clock cycle when sender and receivers are
continuously ready. Such protocol is very close to a FIFO
protocol and can interface with it almost directly.

In conclusion, our implementation only requires two
registers for each sender, one multiplexer for each receiver
and a few logic gates to implement the control ASMs. An

important feature to notice is that the whole description is
generated by our Java API from only two parameters and
automatically translated into VHDL by our CASM compiler.

IV. RESULTS

A set of NoCs ranging from 2x2 to 8x8 ports with the
proposed architecture has been implemented. A VHDL
simulation allowed verifying that all packets were correctly
sent to their target. The test-bench sends 5000 random vectors
(address + data) at each input and check that they reach their
destination. This test also gives statistical values for global
throughputs which are reported in Table 1. Note that the test-
bench attempts inserting one vector at each cycle and that
vector remains at the input if the insertion is not successful.

Table 1: Throughput and latency

NxN
Data
sent Cycles

Latency
(cycle)

Global
throughput

(word/cycle)

2x2 10000 6713 1,34 1,49

3x3 15000 7337 1,47 2,04

4x4 20000 7663 1,53 2,61

5x5 25000 7853 1,57 3,18

6x6 30000 7969 1,59 3,76

7x7 35000 8046 1,61 4,35

8x8 40000 8149 1,63 4,91

Results demonstrate that the throughput of this NoC is
much higher than that of a bus, where the maximum
throughput is 1 data/cycle. All the modules have been
synthesized by the Synplify Pro 8.9 tool to fit in Virtex-5 and
Stratix-3 FPGAs. We measured the performances in terms of
area and frequency. The results are reported in Tables 2 and 3
for NoC with 32-bit data paths.

The resulting frequencies of operation are all above 100
MHz and up to 350 MHz, which is quite good for a non
pipelined architecture. The area is very small too since the
8x8 NoC would only consume 1.5% of the combinational
resources available in the xc5vlx330ff1760-1.

Table 2: Area and frequency (xc5vlx330ff1760-1, Xilinx)

NxN

Estimated
freq. (MHz) LUTs Registers

2x2 243,4 228 146

3x3 187,3 553 292

4x4 139,5 1604 336

5x5 131,2 2278 557

6x6 126 3467 734
7x7 118,2 3676 843
8x8 111,1 4956 986

272

Table 3: Area and frequency (ep3sl150f1152c2, Altera)

NxN

Estimated
frequency ALUTs Registers

2 377,9 215 148

3 284,3 442 255

4 244 764 363

5 197 1593 535

6 199 2072 670

7 160,4 2860 808

8 170,6 3554 952

V. APPLICATION

We have developed a SoC architecture consisting of two
Xtensa processors, one PowerPC processor, and a 3x3 NoC
module. The system is aimed at prototyping video algorithms,
but this is still a work-in-progress. The PowerPC will manage
the I/O streaming while the Xtensa processors and their
dedicated instructions (TIE) will perform video processing.
Figure 3 describes this architecture.

Xtensa
Processor

FIFO

PLB bus adapter

PLB

Serial
COM1

Xtensa
Processor

FIFO

PLB bus adapter

PLB

Serial
COM2

PowerPC
processor

FIFO

PLB to OPB

OPB

Proposed 3x3 NoC
CASM-based

JTAG

TIE TIE

Fig 3 : SoC system

The whole system has been implemented in a FPGA
XC2VP100. Many tests have been conducted with parallel
data transfers between all the processors. The architecture is
fully functional but no video algorithm has been tested at this
time. It is of interest that we lost many weeks in attempting to
integrate the Xtensa processor in the standard environment
(PLB and OPB bus) because of tools and IP issues. However,
once we were able to add a standard FIFO to each processor,

it took just half a week to complete the network thanks to our
generic NoC.

VI. CONCLUSION

In this paper, we described a generic NoC template and
discussed its implementation on FPGA technology. Compared
to the standard bus paradigm or point-to-point connections,
this approach proved to be an easy and efficient way to
rapidly interconnect modules in a System-on-(Programmable)
Chip. A 32-bit 8x8 NoC only requires 1.5% of the available
resources of a Virtex xc5vlx330ff1760-1 FPGA while a point-
to-point or FIFO-based approach would be very costly to
implement since 64 FIFOs should be instantiated in addition
to data routing and synchronization logic. As chips size still
continue to increase exponentially, we think that such
approach will be more and more useful for future designs and
we suggest that FPGA manufacturers should integrate such
technology in their standard development flow.

REFERENCES
[1] L. Benini and G. De Micheli, "Networks on chip: a new

SoC paradigm", IEEE Computer, vol. 35, no. 1, Jan.
2002.

[2] K. Shashi, J. Axel, M. Mikael, O. Johny, S. Juha-Pekka,
F. Martti, T. Karia and H. Ahmed, “A network on chip
architecture and design methodology”, IEEE Computer
Society, Washington, DC, USA, 2002, pp.117.

[3] H.Po-Tsang, H. Wei, “2-Level FIFO Architecture
Design for Switch Fabrics in Network-on-Chip”, Circuits
and Systems, 2006, ISCAS 2006. Proceedings. 2006
IEEE International Symposium on.

[4] J. Chan, S. Parameswaran, “ NoCGEN: A Template
Based Reuse Methodology for NoC Architecture”, VLSI
Design, 2004. Proceedings. 17th International
Conference on, 2004 Page(s): 717 – 720.

[5] H. Nikolov, T. Stefanov, E. Deprettere, “Efficient
Automated Synthesis, Programing, and Implementation
of Multi-Processor Platforms on FPGA Chips”, Field
Programmable Logic and Applications, 2006. FPL '06.
International Conference on, pp.1-4.

[6] J.P. David, E. Bergeron, “An Intermediate Level HDL
for System Level Design”, Forum on specification and
Design Languages (FLD), Lille, France, September 2004.

 [7] X. Gao, Z. Zhang and X. Long “Round Robin Arbiters
for Virtual Channel Router”, Computational Engineering
in Systems Applications, IMACS Multiconference on, 4-
6 Oct. 2006, pp. 1610-1614.

[8] E. Shin, V. Mooney, G. Riley, “Round-robin Arbiter
Design and Generation”, Georgia Institute of
Technology, 2002.

