
A Generic Dynamic Provable Data Possession Framework

Mohammad Etemad Alptekin Küpçü

{metemad, akupcu}@ku.edu.tr

Koç University, İstanbul, Turkey

Abstract

Ateniese et al. introduced the Provable Data Possession (PDP) model in 2007. Following that,
Erway et al. adapted the model for dynamically updatable data, and called it the Dynamic Provable
Data Possession (DPDP) model. The idea is that a client outsources her files to a server, and later
on challenges the server to obtain a proof that her data is kept intact. During recent years, many
schemes have been proposed for this purpose, all following a similar framework.

We analyze in detail the exact requirements of dynamic data outsourcing schemes regarding secu-
rity and efficiency, and propose a general framework for constructing such schemes that encompasses
existing DPDP-like schemes as different instantiations. We show that a dynamic data outsourcing
scheme can be constructed given black-box access to an implicitly-ordered authenticated data struc-
ture (that we define). Moreover, for blockless verification efficiency, a homomorphic verifiable tag
scheme is also needed. We investigate the requirements and conditions these building blocks should
satisfy, using which one can easily check applicability of a given building block for dynamic data
outsourcing. Finally, we provide a comparison among different building blocks.

1 Introduction

Data outsourcing is a useful application that is getting more acceptance as the communication and
networking technology advances. It brings many advantages such as huge amount of cheap storage,
world-wide access to data, and reduced management overhead, while imposing security objections such
as integrity and confidentiality. Lack of integrity protection and confidentiality are the most notable
barriers toward full integration of data outsourcing at the cloud, since the data owner loses the direct
control over her data.

PDP. Ateniese et al. [3] proposed the first static data outsourcing scheme called provable data
possession (PDP) that provides probabilistic integrity guarantees. During the pre-computation phase,
the client divides a file into a number of equal-size blocks, computes a cryptographic tag for each block,
and sends the file together with the vector of tags to an untrusted server. Later, she repeatedly audits
the outsourced data to check if the server stores her data intact. A successful audit ensures the client
that her data is stored correctly at the server, with high probability. Similar schemes were proposed
using different techniques [14] or supplying extra properties [15, 28, 44].

Generalization. Ateniese et al. [5] proposed a general framework for building public-key homomor-
phic linear authenticators (HLA) from any identification protocol with homomorphic properties. They
used these HLAs to propose a general framework for constructing a publicly-verifiable proof of storage
(PoS) scheme. The resultant PoS scheme supports only the static data with communication complexity
independent of the data size, and unlimited number of audits. Note that the Ateniese et al. [3] PDP
scheme is an instantiation of the Ateniese et al. [5] generalization.

Dynamic PDP. The main problem with the general framework of Ateniese et al. [5] is that it does
not support dynamic operations on the outsourced data. Starting with Erway et al. DPDP scheme [18],
many dynamic data outsourcing schemes have been proposed [45, 47, 20]. Almost all these schemes use a
similar architecture: homomorphic verifiable tags combined with authenticated data structures (ADSs).
The differences lie in the ADSs they use, or the cryptographic tags they benefit from. We study the
requirements of DPDP-like schemes and give a general framework for constructing such schemes. Our
framework enables plug-and-play use of the primitives.

1

(a) A file and its PDP tags. (b) A new block is inserted at the ith position.

Figure 1: Inserting a new block at the ith position in a PDP. (Indices and tags are not updated yet in (b).)

1.1 Brief Context

Provable Data Possession is a memory-checking scheme that provides probabilistic guarantees of
possession of the outsourced file using a challenge-response mechanism. The client divides a file f into
n blocks, f = (f1||f2||...||fn), computes a tag ti for each block fi, as shown in Figure 1a, and finally
transfers the file and the tags to the server, deleting her local copy.

A PDP tag for the ith block, fi, is computed as ti = (h(Wi).g
fi)d mod N , where N = pq is an RSA

modulus with p = 2p′+1 and q = 2q′+1 as two safe primes, g is a generator of quadratic residues QRN ,
Wi = v||i where v is a unique file identifier, pk = (N, g) is the public key and sk = (e, d, v) such that
(e, d) ≡ 1 mod p′q′ is the secret key [3]. Wi ties each tag to the current PDP instantiation (identified
by v) and the block’s position i. If a new block is inserted at (or deleted from) position i, each block
j > i needs to be updated with its new index as j + 1 (j − 1 for deletion) and their tags need to be
re-computed accordingly. This is illustrated in Figure 1b, where a new block is inserted at position i (of
Figure 1a) and the block indices and tags are not updated yet. The tags ti, ..., tn must be re-computed,
costing O(n) public-key operations at the worst case.

To make sure the server keeps storing the file intact, the client regularly sends a challenge to the
server. The challenge contains a subset of block indices selected randomly, and an associated random
number per challenged block. Upon receipt, the server constructs a proof using the challenged blocks and
their tags, and sends it back to the client for verification. Since the PDP tags are homomorphic (discussed
later), instead of sending all challenged blocks and their tags, the server combines the challenged blocks
into a single block and the tags into a single tag, reducing the proof size, while the client is still able
to verify them as a whole. Essentially, this relies on polynomially-many challenges creating a system of
linear equations that enables extracting the individual tags and blocks [3].

Authenticated Data Structures (ADS) contain the security information generated by a trusted
client on a dataset and used by untrusted responders to provide cryptographic proofs showing the answers
to the client’s queries are valid [40, 41, 33, 26]. The ADS is constructed using, and depends on, all client
data. On each update to the client data, the corresponding part(s) of the ADS should also be updated
accordingly. Most ADSs support both membership and non-membership queries, and the proofs can be
verified using only a small digest information.

There are different types of ADSs: accumulators [8], authenticated skip lists [25], authenticated hash
tables [32], Merkle hash trees [30], 2-3 trees [31], and hierarchical combinations [21, 22]. The accumulator
computes an accumulated value over all data items, and a witness for each item as the membership proof.
Search operations are performed in constant time, but an update requires the accumulated value and
all witnesses be recomputed that is a linear operation. In authenticated skip lists, Merkle hash trees,
and 2-3 trees, both search and update are logarithmic (in the number of data items) operations. The
authenticated hash table makes one operation constant-time while keeping the other one sublinear. The
costs of a hierarchical ADS depends on the costs of the ADSs it is built on. We refer the reader to the
related papers for details, but in Section 3 we discuss some of these ADSs and their security definitions.

1.2 Observations

We investigated the data outsourcing schemes, their security, advantages, and weaknesses. The results
are given below as a set of observations to be used as a guideline for constructing a DPDP-like scheme
either form scratch or using the existing building blocks.

• Observation 1. If a client (data owner) outsources only her data to an untrusted cloud server,
the server can manipulate the data, while the client has no way of detecting such a misbehaviour.
Therefore, before outsourcing her data, the client should accompany it with cryptographic tech-
niques enabling later verifications. The client can divide the data into (equal-size) blocks, compute
a tag for each one, and store them at the server, as most of the existing schemes [3, 15, 10]. Then,
she can perform spot-checking that ensures the data integrity with high probability.

2

• Observation 2. There are two problems with this solution when it comes to dynamically updating
the data blocks. The first problem is the possibility of replay attacks: The server can ignore an
update and use the old authentic data and tags to pass the client verification successfully. Since
the old tags were created correctly, they still pass the verification. The second problem is that the
tags are bound to the exact locations of the respective blocks to prevent re-ordering. An update
in an intermediate location of the outsourced data shifts all remaining blocks, requiring all the
corresponding tags be re-computed.

• Observation 3. For the first problem, an ADS is employed to store the tags. The ADS protects
the integrity of tags, which in turn, protect the integrity of data blocks. The most important thing
here is that with each update, the client must also update some local information, such that the
old tag is no longer valid. Remember that an ADS has a small digest. By storing it locally and
updating it with every update, the client keeps a small local state about the latest version of data,
and hence can ensure the proofs match this last version.

• Observation 4. For the second problem, one still needs to tie the tags/blocks to their locations,
but needs to do it implicitly rather than explicitly. An implicitly-ordered ADS (such as rank-based
authenticated skip list [18]) solves this problem. Since the tags are not explicitly bound to the
exact locations of the corresponding blocks, the (blocks and the) tags can be updated efficiently.
The locations can be also computed using the (rank) information in the ADS.

Since storing information about all file blocks or all updates at the client side is not efficient, any
solution in the dynamic setting should have sublinear (preferably constant) metadata. The client stores
digest of the ADS locally, and outsources the ADS along with the file.

However, if the server sends all challenged file blocks with their membership proofs in the ADS to
the client, this is not communication-efficient. Using a homomorphic verifiable tag scheme, the client
computes a tag for each block, and stores these tags (not the blocks themselves) in the ADS. To answer
an audit query, the server computes an aggregation of the challenged blocks (that is about a block in
length), the membership proofs of their respective tags (that are small in length compared to the blocks),
and sends them to the client for verification.

A tag scheme used for dynamic data outsourcing should provide the following properties:

• Homomorphicity. Two tags Tmi
and Tmj

of two blocks mi and mj can be combined into a value
Tmi
⊕Tmj

as the tag of mi⊙mj , where ⊕ and ⊙ denote known operations. This enables the server
send an aggregation of file blocks and an aggregation of their tags instead of sending them all to
the client, for communication efficiency.

• Unforgeability. It should be computationally infeasible for the server to compute a tag for a
block of his choice or find another block with the same tag.

The ADS, in addition to being secure, should satisfy the following conditions:

• Efficiency. The ADS should support efficient search and update. We investigate different kinds of
ADSs and compare their operation costs. Our results reveal that the tree-based ADSs are efficient,
supporting search and update with O(log n) cost, where n is the number of data blocks.

• Ease of rebalance. To have the logarithmic costs, the ADS should remain balanced after any
number of updates. The binary search tree based solutions (e.g., Merkle tree) used in many schemes
do not satisfy this condition (see Section 3.1 for details), and are not good candidates for dynamic
data outsourcing. On the other hand, authenticated versions of skip list, AVL tree, red-black tree,
and 2-3 tree can be efficiently rebalanced.

• Implicit order. The ADS must arrange the data blocks or their respective tags according to their
location in the outsourced data in a way that updating one tag does not affect (all) the remaining
tags. One way is to divide the set of file blocks into subsets, each storing the number of blocks it
contains (known as the rank). It is obvious that an update in a subset will not affect the other
subsets with whom there is nothing in common.

We show the general framework for providing data authenticity in dynamic data outsourcing contexts
that consists of a homomorphic verifiable tag scheme and an implicitly-ordered ADS to keep the tags.

3

1.3 Our contributions

Under the observations above, our contributions are:

• We propose a generic framework for construction of efficient DPDP schemes, describing the required
components and their properties. We show that efficient DPDP schemes can be constructed given
black-box access to an implicitly-ordered ADS and a homomorphic verifiable tag scheme. The
existing schemes [18, 45, 47, 20] are all specific cases of our general model.

• We investigate the requirements of ADSs to be used in DPDP schemes: the ADS should be
implicitly-ordered. We show that a relative indexing mechanism like rank satisfies the require-
ments. We also show how to convert an explicitly-ordered ADS into an implicitly-ordered ADS
and apply this on several popular ADSs.

• The tag scheme used should be homomorphic and verifiable. Homomorphism improves performance
by auditing without downloading all challenged blocks, and verifiability provides security.

• We investigate two kinds of DPDP schemes: basic and blockless. The basic scheme does not use a
tag scheme, but is secure. The blockless scheme employs homomorphic verifiable tags, and is more
communication-efficient.

Section 2 presents our model and the related work. Section 3 defines authenticated data structures and
how to make them implicitly-ordered. In Section 4, we show our basic construction using an implicitly-
ordered ADS and proves its security. Section 5 defines the necessary tag schemes and incorporates them
to our basic construction to achieve our blockless DPDP framework, and proves its security. Finally, in
Section 6 we discuss some extensions and compare the known solutions within our framework.

2 Background

Figure 2: Our model.

Model. There are two parties in our DPDP model. The data owner
(also known as the client) performs the required pre-computations,
e.g., she computes the tags and builds the ADS, and transfers them
along with her files to the server. Later, she asks the server to per-
form audit and update (deletion, modification, or insertion) opera-
tions on the outsourced data, giving him the necessary information
about the operation. The server performs the operation and pre-
pares a proof that the operation is performed properly, and sends
it back to the client. We expect that the client executes the audit

occasionally to make sure the server keeps storing her data intact. This is depicted in Figure 2.

Adversarial model. The server is untrusted, i.e., he can act maliciously or made by others to act
so. He may cheat by attacking the integrity of the outsourced data through adding/deleting files or
updating the file contents, while trying to be undetected, or hiding data loss due to viruses or hardware
crashes. In this paper, we consider confidentiality as an orthogonal issue, where it can be satisfied by
encrypting each data block individually. Thus, we only focus on integrity.

Notation. We use x ← X to denote that x is sampled uniformly from the set X, |X| to represent
the number of elements of X, and || to show concatenation. PPT denotes probabilistic polynomial time,
and λ is the security parameter. We represent a file f with n blocks as f = (f1||f2||...||fn), and use fi
to refer to the ith block.

A function ν : Z+→[0, 1] is called negligible if ∀ positive polynomials p, ∃ constant c such that ∀ k >
c, ν(k) < 1/p(k). Overwhelming probability is greater than or equal to 1 − ν(k) for some negligible
function ν(k). By efficient algorithms, we mean those with expected running time polynomial in λ.

2.1 Related Work

Static PDP. The PDP scheme [3] provides probabilistic guarantees of possession of the outsourced
file using a challenge-response mechanism. It uses homomorphic verifiable tags, using which the server
aggregates the challenged blocks and tags, and sends only one aggregated block and one aggregated tag,
reducing the communication.

4

Wang et al. [43] used BLS signatures [9] in a similar manner to provide privacy preserving public
auditing for static data. The scheme is publicly verifiable to allow a third party auditor (TPA) to perform
the auditing on behalf of the client, while preventing the TPA from accessing the client data. The idea
is to blind the (PDP-like) proofs coming from the server. Similarly, Wang [44] proposed the concept of
proxy provable data possession (PPDP). The proxy is an entity who is involved on behalf of the client
in a publicly verifiable PDP protocol with the server and checks the integrity of the client’s outsourced
data regularly. Shah et al. [36, 37] encrypts the data before outsourcing, and uses privacy-preserving
third-party auditing.

Zhu et al. [48] proposed a cooperative PDP (CPDP) scheme using homomorphic verifiable response
and hash index hierarchy for a cooperation environment involving multiple cloud service providers that
store and maintain the client’s data. This is different from the multi-copy schemes in the sense that the
client is only communicating with one entity that is known as the organizer. Th organizer is responsible
for communication between the client and the servers.

Dynamic PDP. The above schemes do not support dynamic operations on the outsourced data,
making them suitable only for archival purposes.

Ateniese et al. [4] proposed SPDP as a semi-dynamic PDP scheme. They pre-compute and store at
the server a number of random challenges with the corresponding answers, i.e., the number of challenges
a client can perform is limited and fixed a priori. Moreover, an update invalidates all remaining (unused)
challenge answers, and the client should compute and send to the server a new set of challenge answers
to be used by the challenges following the update.

Erway et al. [18] introduced the rank-based authenticated skip list to give the first fully dynamic PDP
scheme. The rank-based authenticated skip list supports block updates with O(log n) cost, where n is the
number of file blocks. In their first scheme, they used data blocks in the rank-based authenticated skip
list, and hence, all challenged blocks are sent to the client. In their second scheme using the RSA-based
tags, all challenged blocks are aggregated into one and sent to the client as part of the proof. Esiner
et al. [20] extended this work using FlexList [19] that uses the size of data in bytes (not the number
of blocks) accessible from each node. This allows the data blocks to be variable in size as well as the
variable-size updates.

Wang et al. [45] used the Merkle hash tree [30] with BLS signatures, which are publicly verifiable
homomorphic authenticators, to propose a publicly verifiable DPDP scheme. However, there is an
important issue: In cases the insertion (or deletion) operations are not distributed uniformly, and most
of them are concentrated on a specific part of the file, the tree will be imbalanced after applying these
operations, losing its logarithmic benefits (see Section 3.1 for details).

Barsoum and Hasan [6] proposed a DPDP scheme performing full block-level dynamic operations on
the outsourced data. It uses a block status table to keep track of the updates on the outsourced data.

Etemad and Küpçü [21] extended DPDP to provide reliability and scalability using multiple servers
without the need to modify anything at the client side. It uses a hierarchical rank-based authenticated
skip list that supports distribution and replication of any part of the outsourced data, arbitrarily.

Generic PDP. Ateniese et al. [5] proposed a framework to use any identification protocol satisfying
certain homomorphic properties for constructing public-key homomorphic linear authenticators (HLAs).
Then, they showed how a publicly-verifiable proof of storage scheme satisfying the following properties
can be built using any public-key HLA: 1) The data is static, 2) the communication complexity is
independent of the file size, and 3) it supports an unbounded number of verifications. Until our work,
no work has extended this generic framework to the dynamic setting.

Static Proofs of Retrievability (PoR). As these are closely related to PDP schemes, we will
briefly mention PoR type schemes as well. First proposed by Juels and Kaliski [29], PoR is an integrity
checking scheme for static outsourced data. It provides strong retrievability guarantees using erasure-
correcting codes, i.e., in case of any unauthorized data manipulation, the erasure-correcting code will
help recover the original data. Juels and Kaliski’s PoR supports only a limited number of challenges.
Compact PoR [35] combines erasure-correcting codes together with PDP-like techniques. It supports
public verifiability and removes the upper bound on the number of audits. Dodis et al. [16] identified
different variants of PoR and gave optimal PoR schemes for each one, with improved static PoR schemes.

Dynamic PoR. Stefanov et al. [39] proposed Iris as a dynamic PoR scheme inside a cloud file system.
Iris is a semi-dynamic PoR scheme since the erasure-coding data are stored locally (on a trusted party
called portal). The first dynamic PoR scheme with full security definition and proof is proposed by Cash
et al. [11, 12]. Recently, Chandran et al. [13] and Shi et al. [38] proposed other dynamic PoR schemes.

5

Generic PoR. Shacham and Waters [35] showed the relationship among static PDP and PoR
schemes: A static PoR scheme can be constructed employing a PDP scheme together with erasure-
correcting codes. Etemad and Küpçü [23] proposed a general framework for constructing dynamic PoR
schemes, using black-box access to a static PoR scheme and a dynamic PDP scheme. They also discussed
different architectures of the outsourced memory and their effect on the scheme efficiency. The focus
of this work is on DPDP, and the PoR discussion is included for completeness only. But, our DPDP
generalization will also benefit the DPoR generalization of Etemad and Küpçü [23] as a building block.

3 Ordered Authenticated Data Structures

Authenticated data structures are employed by an untrusted server answering clients’ queries on behalf
of a trusted data owner for proving authenticity of the answer [40, 41, 33, 26]. Since the data is no more
in direct control of the owner, these ADSs ensure the client about originality of the answer. An ADS
scheme is defined as follows [33, 22]:

Definition 3.1 (ADS scheme) An ADS scheme consists of the following polynomial-time algorithms:

• (sk, pk)← KeyGen(1λ) is a probabilistic algorithm run by the client. Given the security parameter
λ as input, it generate a secret and public key pair (sk, pk). She sends the public key to the server.

• (ans, π)← Certify(pk, cmd) is run by the server upon receipt of a command cmd from the client,
taking the public key pk as input. If cmd is a query command, the client uses the proof π to verify
authenticity of the answer ans. If cmd is an update command, the ans is null, and π conveys
information for the client to update her local metadata.

• ({accept, reject}, st′)←Verify(sk, cmd, ans, π, st) is run by the client to verify the server re-
sponses. The secret key sk, the answer ans, the proof π, and the current local metadata st are
given as input. It generates an accept or a reject signal based on the verification result. The
client updates her local metadata (to st′) according to update commands whose proofs are accepted.

3.1 The Update Problem

At a high level, the ADS computes and keeps a function (e.g., hash) of each data item to be protected.
It can be stored locally, or outsourced along with the data. During verification, the client checks the
received data items against their respective values in the ADS, and decides on authenticity of the answer.

Assume the dataset to be outsourced is D = (d1, d2, ..., dn), and a function g() is used to compute a
value vj = g(dj , j)

1 for each dj ∈ D. The index j of each data item dj is given as input to g() to bind
the computed value vj to the location of dj . This is because the order of data items is important; e.g.,
changing the order of blocks of a text file generates a different file.

When a new data item di is being inserted, the set D is modified to D = (d1, d2, ..., di−1, di, di+1,
..., dn+1). Each item located already at position j with i ≤ j ≤ n is now at position j + 1, and its vj
should now be updated as vj+1 = g(dj+1, j + 1). A new value vi = g(di, i) is computed and stored for
the recently-added di. Similar steps are taken when an item di is deleted, making all values vi+1 to vn
be re-computed.

Therefore, the worst case cost of an update operation is linear in the number of data items. This is
because each data item dj is bound to its dedicated position j that is changed with any insertion/deletion
in the interval [1, j]. We call these ADSs the explicitly-ordered ADSs. Several examples of different
explicitly-ordered ADSs used for data outsourcing are provided in Section 3.3. In contrast, the ADSs
that do not explicitly bind each item to its dedicated position are called implicitly-ordered ADSs. Section
3.2 formalizes this concept and Section 3.4 gives examples of different implicitly-ordered ADSs.

The property an implicitly-ordered ADS uses to arrange the data items does not directly depend on
their positions, but can be used to locate each item. The actual requirement is that whenever an item
is added or removed, no other items (or a very limited number of them) are affected. This is possible
by recursively dividing a dataset into subsets of its successive items and computing a property on each
subset. This informally means that each subset keeps the order of its elements without regarding other
subsets, ensuring that a change in one subset would not affect the other subsets.

1The function may take other inputs, but these two inputs are sufficient for describing the problem simply.

6

Table 1: ADS comparison based on operation complexities.

Complexity class Example Search Update

Linear (Ordered) Accumulator [8] O(1) O(n)

Sublinear Authenticated hash table [32] O(1) O(nǫ)

Logarithmic
Rank-based authenticated

O(log n) O(log n)
skip list [18]

The property can be the rank (the number of items or the size of data) of each subset. However, not
all similar properties can be used for constructing implicitly-ordered ADSs. For example, the maximum
(minimum) of the item positions or values in the subset cannot be used for building such ADSs. Since
the maximum (minimum) of the item positions depends directly on the item positions, an insertion or
deletion will again affect all remaining nodes. The maximum (minimum) of the item values arranges the
items in the ADS differently from their order in the dataset, and hence, is not suitable for searching.

To support dynamic operations efficiently, an ADS should not store (any function of the) explicit
positions of its data items. An implicit property such as the rank helps find and locate all items
recursively, while making efficient updates possible.

3.2 From Explicitly-ordered ADSs to Implicitly-ordered ADSs

Figure 3: General form of partitioning.

Converting a linear explicitly-ordered ADS to an
implicitly-ordered ADS essentially means reducing the
update cost from linear to sublinear. For this, we can
divide the dataset into partitions, and store each par-
tition in a separate explicitly-ordered ADS. Hence, up-
dating an item will only affect one partition. To keep
unity of the entire dataset, we need to tie these parti-
tions together in a secure manner. The general form is
shown in Figure 3. The n items at the lowest level are
divided into n/t partitions, each of size t. All items in
a partition are children of a node at one level above.
These internal nodes are also divided into partitions of
size t in the same way. This process goes on until the

root is constituted, and generates ⌈logt n⌉+ 1 levels.
Letting t = n produces one partition of size n at level zero, and a root node at level one. The update

cost is O(n) and the search cost is O(1). Accumulator is an example of this type. Setting t =
√
n leads to√

n partitions at level zero, each of size
√
n, organized in a three-level architecture. Hence, the search cost

is 3, which is O(1), and the update cost is
√
n at each level, leading to 3

√
n in total, that is O(

√
n). When

t = nǫ, the search cost is O(logt n) = O(1/ǫ) and the update cost is O(t logt n) = O(nǫ/ǫ). For constant
ǫ, these are O(1) and O(nǫ) as in the authenticated hash table [32]. The minimum possible value is t = 2
that generates partitions of size two at the lowest level, and log n levels, leading to 2 log n = O(log n)
search cost and O(log n) update cost. In fact, this is a binary tree. A comparison among these ADS
types regarding their operation complexities is given in Table 1.

Therefore, an implicitly-ordered ADS is tree-based in general. The rank-based authenticated skip list
[18] and Flexlist [19] are two examples. Flexlist is built on the length of data, and handles variable-length
data blocks. Formal definitions follow.

Notation. A tree T has some leaf nodes on which the internal nodes are built. We denote the set
of leaves and internal nodes of T as L(T) and I(T), respectively. Each internal node has some (two
for binary tree) children. We show the parent node of each node u ∈ T as P (u). By definition, the
parent node of the root is null. For each non-leaf internal node u ∈ I(T), we show its children as
C(u) = {v ∈ T : P (v) = u}.

Definition 3.2 (Rank-based tree) In a rank-based tree: 1) Each node u ∈ T has a property called
rank, denoted as R(u). 2) For each leaf node u ∈ L(T), R(u) = the number (size) of data block(s) u stores2.
3) For each internal node u ∈ I(T), R(u) = Σv∈C(u)R(v).

2A leaf node storing a vector can count it as one element, or as many as its size. In either case, the order of elements
of the vector is preserved separately, e.g., by storing hash of the whole vector or binding each element to its position.

7

By rank-based ADS, we mean a rank-based tree. Figures 7a and 10a present rank-based ADSs where
the rank of each node is the total number and size of blocks accessible through that node, respectively.

Definition 3.3 (Authenticated tree) In an authenticated tree: 1) Each node u ∈ T stores some
authentication information denoted as A(u). 2) For each leaf node u ∈ L(T), A(u) is computed as a
function g(du, infu), where du is the data item stored at u and infu shows the other required information
(e.g., the position of u in the tree, or its label). 3) For each internal node u ∈ I(T), A(u) is computed
as a function g(A(v1), ..., A(vt), infu), where A(vi) is the authentication information of the ith children
of u and infu represents other required information (e.g., the number of u’s children, or its label).

Lemma 3.1 An authenticated tree can be rank-based.

Proof 3.1 Storing rank R(u) of each node u in the extra information infu of the function g() in Def-
inition 3.3 makes an authenticated tree rank-based. This does not affect security of the authenticated tree.

Definition 3.4 (Implicitly-ordered tree) An implicitly-orde- red tree is an authenticated tree in which:
1) the authentication information A(u) of a node u does not directly depend on the position of u in the
tree, while 2) all leaf nodes can be located starting from the root, given their position in the tree.

Lemma 3.2 A rank-based authenticated tree is implicitly-ordered.

Proof 3.2 The first condition is easy to verify. The following search algorithm shows how to locate
a leaf node using its position in the tree, starting from root. (It uses a binary tree for simplicity and
familiarity, but it is applicable on other trees with slight modification.)

Search. To search for the ith node in a rank-based ADS, starting from the root, we compare i with
the rank of the left child (below in an skip list). If i ≤ leftchild.rank, the node we are looking for is in
the left subtree and we continue with the left child, otherwise we set i = i− leftchild.rank to compute
the proper relative index, and continue with the right child. This process goes on until the ith node is
met at the leaf level, as illustrated in Algorithm 3.1. This algorithm works for a tree that stores data
items only at the leaf nodes. If the internal nodes also store data items, we need to check for the data
in all visited nodes. It requires small changes to support this case. Search algorithms of the existing
schemes [18, 20] are special cases of our generic implicitly-ordered ADS search algorithm.

3.3 Explicitly-ordered Authenticated Data Structures

Merkle hash tree [30] is an explicitly-ordered ADS. Figure 4a presents a Merkle hash tree storing a
file f divided into 8 blocks as f = (f0||f1||...||f7). The file blocks are stored only in leaf nodes, and
each internal node stores a value computed as a function of values of it children. We do not show the
functions in figures for simplicity. To find the ith block, the search algorithm follows the corresponding
path on the tree based on the binary representation of i. Since each block occupies its dedicated position,
inserting a value in an intermediate position requires all existing values from that position up to the end
be moved one place ahead and re-bound to their new positions. After deleting a block, e.g., the fourth

Algorithm 3.1: Search

Input: Node: Root node of the tree,
i : The relative position of the block being searched.

Output: π: The membership proof.

1 if Node.leftchild == NULL then
2 return Node.value;
3 else
4 if i ≤ Node.leftchild.rank then
5 return Search(Node.leftchild, i) || Node.rightchild.value;
6 else

// If interior nodes store data, first compare with the current node itself.
7 return Node.leftchild.value ||
8 Search(Node.rightchild, i−Node.leftchild.rank);

8

(a) An explicitly-ordered Merkle hash tree. (b) f3 is deleted.

Figure 4: Deleting a block (f3) form an explicitly-ordered Merkle hash tree.

(a) An explicitly-ordered authenticated skip list. (b) f3 is deleted.

Figure 5: Deleting a block (f3) form an explicitly-ordered authenticated skip list.

block (f3) in Figure 4a, all remaining blocks should be shifted one place back, and re-bound to the new
positions, as illustrated in Figure 4b. The nodes updated due to this deletion are drawn bold. Note
that the internal nodes also need to be updated, since the authentication information changes. This
operation requires O(n) re-computations not only on the data structure but also on the authentication
information, requiring cryptographic re-computation as well.

Authenticated skip list is another tree-based explicitly-ordered ADS as used in Figure 5a for
storing the same file f=(f0|| f1||...||f7). Deleting f3 leads to the ADS in Figure 5b that shows changes
in all remaining nodes up to the end in bold lines.

There is an important difference between a Merkle hash tree and an authenticated skip list: while
the former is probabilistically balanced, the latter may become imbalanced. Even if the position-based
complexity issues are somehow resolved, in case of many insertions to the same position, a Merkle tree
loses the logarithmic cost benefits and becomes a linear ADS.

Since the main problem with these two ADSs is the position update problem, one may choose not
to assign the block positions consecutively, and leave some positions empty between any two successive
blocks. This allows some limited dynamism: When a block is inserted, it is assigned an unused position
in the range it belongs to. Figure 6a represents an authenticated skip list who stores the blocks at
positions that are multiples of their position in the file, i.e., f0 is stored at position 0, f1 at position
1000, f2 at position 2000,.... Hence, 999 new blocks can be inserted between each two successive blocks.
Adding a new block between f4 and f5 in Figure 6a leads to the ADS in Figure 6b.

When all empty positions are occupied, the original problem will again be encountered, though it
can be solved for another limited time with a rebuild that assigns new positions to all blocks and creates
empty positions in between. The rebuild is a linear operation.

There is another important problem with this ADS. The client has no way to find the position each
block is outsourced at. For example, she cannot realize that the 4th and 6th blocks are stored at positions
4000 and 5000, respectively, but the 5th block is kept at position 4500. Hence, she cannot perform block
search on the outsourced data that is the base for other operations.

3.4 Implicitly-ordered Authenticated Data Structures

An implicitly-ordered Merkle hash tree and an implicitly-ordered authenticated skip list are shown in
Figures 7a and 9a, respectively. Each node has a rank specifying the number of blocks accessible through
that node, and is used during search, as described in Algorithm 3.1. File blocks are stored only at leaf
nodes. Each internal node stores a value computed based on the values of its children and its own rank.

9

(a) An explicitly-ordered authenticated skip list with non-
contiguous block indices.

(b) A block is added to the position 4500.

Figure 6: Adding a block into an explicitly-ordered authenticated skip list with non-contiguous block indices.

(a) An implicitly-ordered Merkle hash tree. (b) f3 is deleted.

Figure 7: Deleting a block (f3) form an implicitly-ordered Merkle hash tree.

Figure 8: Storing data at internal
nodes as well.

An update operation affects the nodes on the path from the updated
node up to the root, as shown in Figures 7b and 9b, that is an O(log n)
operation [34, 26]. No update is required at the other parts of the ADS.

Alternatively, one can store the blocks at both leaf and internal
nodes. This way, Figure 7a is converted into Figure 8. The search
algorithm needs to look for file blocks at the internal nodes as well.

FlexList [19] is another rank-based authenticated skip list, where
the rank of a node is the length of data accessible through that node,
as represented in Figure 10a. This figure stores a file of size 15 KB
divided into blocks of different lengths. The operation complexities are
logarithmic. Figure 10b illustrates insertion of a new block (f3) of size
2 KB into Figure 10a.

Since the blocks are not bound to their positions, and the rank of each node is independent of the rank
of other nodes that do not have anything in common (e.g., a rank update in the left subtrees of Figures
7a and 8 will not affect their right subtrees), update operations will not affect other nodes. Deleting a
block, e.g., the fourth block (f3) in Figures 7a and 9a, affects only the ranks of O(log n) nodes on the
path from the node storing f3 up to the root, as illustrated in Figures 7b and 9b. The positions of the
remaining blocks will be adapted automatically. The same holds when a new block is inserted, as shown
in Figure 10b.

Other ADSs. We can add the rank property into other authenticated balanced trees, such as AVL
[1], red-black [7, 27], or 2-3 trees [2] to make them implicitly-ordered. In these ADSs, after an update,
only the nodes on the path from the update point up to the root may need to update their ranks. In
the AVL tree, for example, there are two kinds of rebalancing operations to eliminate any imbalance in
the tree that might happen after an update [46]: single rotation and double rotation. Figure 11a shows
an imbalanced AVL tree after an insertion in the left subtree of Ri. The single rotation changes the
ADS into the one shown in Figure 11b, which shows that this operation changes only the ranks of the
nodes Ri and Ri+t. The ranks of all subtrees and the path from the parent of Ri up to the root will not
change, but their authentication information require re-computation done in O(log n) time.

10

(a) An implicitly-ordered authenticated skip list. (b) f3 is deleted.

Figure 9: Deleting a block (f3) form an implicitly-ordered authenticated skip list.

(a) A FlexList storing a 15KB file. (b) A 2KB block f3 is inserted.

Figure 10: Inserting a new block (f3) into a FlexList.

3.5 ADS Security Definitions

Definition 3.5 (Correctness of ADS) For all valid proofs π and answers ans the server generates
for the client commands, Verify algorithm accepts with overwhelming probability.

Definition 3.6 (The ADS security game) is played between two stateful parties: the challenger act-
ing as client, and the adversary playing the role of server:

Key generation The challenger generates the private and public keys (sk, pk) by running KeyGen(1λ),
and shares the public key pk with the adversary.

Setup The adversary sends a command cmd with an answer ans and a proof π to the challenger. The
challenger verifies them using Verify, and shares the result with the adversary. The challenger
applies the update commands whose proofs are accepted on her local data. These interactions are
repeated polynomially-many times. Call the latest version of date stored at the challenger’s ADS, D.

Challenge The adversary sends to the challenger a command cmd, an answer ans′, and a proof π′. He
wins if his answer ans′ does not match the result of running cmd on D, while cmd, ans′, and π′

are accepted by the challenger.

Definition 3.7 (Security of ADS) The ADS is secure if no PPT adversary can win the ADS game
with probability better than negligible in the security parameter.

Proof 3.3 This is proven for different ADSs separately. Merkle [30] introduced and showed the security
of Merkle hash tree. Goodrich et al. [24] investigated the security of the ADSs based on RSA one-way
accumulator. Noar and Nissim [31] did the job for 2-3 trees. Papamanthou et al. proved the security of
authenticated hash tables [32] and the ADSs based on the authenticated skip list or red black tree [33].
Etemad and Küpçü [21, 22] proved security of the HADS.

Adding rank affects only the function A(.) computing authentication information of the nodes. It does
not influence security of the ADS; the same security definitions and proofs are applicable. For example,
the process of adding rank to an authenticated skip list and proving its security is discussed in [18].

11

(a) An imbalanced AVL tree. (b) Single rotation and rank update.

Figure 11: Single rotation and rank update on .

4 Basic DPDP Construction

PDP [3] and many following schemes [14, 43, 44, 36, 37, 48] support only static data, making them
suitable for archival storage. However, to make the cloud storage functional, we need to support dynamic
operations on the outsourced data.

Two problems with dynamism, as stated in Observation 2, are the complexity of update operations
and the possibility of replay attacks, i.e., a malicious server can ignore updates on the outsourced data
and generate proofs using an old (correct) version of data that passes the client verification. One simple
way to prevent the replay attacks is to store some (small) information (e.g., a hash value) about each
block at the client side (as metadata), which entails O(n) local storage, where n is the number of file
blocks. But, this local metadata cannot be easily outsourced as it will be either insecure or inefficient,
and it does not solve the complexity problem. On the other hand, keeping nothing about the outsourced
data locally, the client has no way of checking data integrity.

There are different ways of generating constant-size metadata for a large file divided into n blocks:
Aggre- gating or hash-chaining all blocks, storing the blocks in an accumulator or in a tree. The aggre-
gation and hash-chaining require all blocks for verification and are inefficient communication-wise. The
accumulator is not efficient computationally since an update has cost O(n). We need an ADS sampling
all file blocks with a constant-size metadata, where a block update does not affect other blocks. The ADS
should associate each block to its specific position in the file to prevent re-ordering them maliciously,
and efficiently preserve their order even in the presence of update operations.

Definition 4.1 (DPDP scheme) A DPDP scheme is composed of the following interactive protocols
between a stateful client and a stateful server3:

• Setup(1λ): The client starts up this protocol to generate the secret and public keys, given the
security parameter λ. She gives the public key to server.

• Update(
−−−−−−−→
op, ind, val): The client uses this protocol to ask the server perform each opi ∈ {Insert,

Delete, Modify} on the position indi, given the value vali (empty for deletion). There should be a
value in the indthi position for modification.

• Read(
−→
ind): is used by the client to read the blocks specified by an index vector

−→
ind. She specifies−→

ind as input, and outputs the respective values
−→
val with a proof π showing authenticity of

−→
val.

• Audit(): The client specifies a challenge vector and uses this protocol to check if the server keeps
storing the outsourced data correctly. She finally outputs an acceptance or a rejection notification.

During the execution of Setup, both the client and the server create their own local states. The
protocols following Setup will use these local states, and the following Update protocols will update
them. The client can either send the whole file f in one execution of the Update protocol, or send it

3We define the scheme as a set of interactive protocols, different from the original definition of Erway et al. [18], and
similar to the dynamic PoR definition of Cash et al. [11].

12

block-by-block by running the Update protocol multiple times. Both methods result in the same final
configuration on the server.

We defined two similar protocols Read and Audit. For now, they do the same job4, i.e., the Audit can
be used to read the selected parts of the outsourced data. Later on, when we talk about the efficiency,
it will be clear that a separate read protocol is needed.

4.1 DPDP from Implicitly-ordered ADSs (Basic Construction)

Constructing the ADS. An implicitly-ordered ADS, Figure 7a, 9a, or 10a for instance, is used to
construct a dynamic provable data possession scheme. Each block of a large file f = (f1||f2||...||fn) is
assigned to the corresponding node of the ADS. Leaf nodes store a function (e.g., hash) of the assigned
blocks, and each internal node is assigned a value computed as a function of the values of its children
and its own rank, according to the construction rules of the ADS.

The client constructs the ADS and outsources it together with the file to the server, and keeps only
the digest stored at the root of the ADS. The Update command builds the ADS at the outset, and
performs the following updates on it. It requires the operation op ∈ {Insert, Delete, Modify}, the block
index i, and the new value of the block for Insert and Modify. For each update, the client prepares the
corresponding command according to the ADS format, and sends it to the server. On receipt, the server
performs the update on both the file and the respective ADS, and sends the proof of operation to the
client. The client verifies the proof, and if accepted, updates the locally-stored digest to the new value.
Later audits will be checked against this new value.

To read the ith block, the client uses Read protocol with the input i that returns the ith block and its
membership proof. The client accepts the block if the proof is verified. In an Audit protocol, the client
chooses a vector of block indices at random, ~c, and sends the corresponding command to the server,
who generates the membership proof for all challenged blocks and sends it back. The client reconstructs
the required parts of the ADS according to the proof, and compares the computed root digest with the
one stored locally. Any mismatch leads to a rejection, and is an indication of the server’s misbehavior.
Figure 12 represents our basic DPDP construction using an implicitly-ordered ADS.

4.2 Dynamic Provable Data Possession Security Definitions

We define security of a DPDP scheme through the following game, inspired by the definitions from [3, 18]:

Definition 4.2 (The data possession game of DPDP) The game is played between a stateful chal-
lenger S acting as the client and a stateful adversary A playing the role of the server.

Setup. The challenger runs Setup(1λ) to generate the secret and public key pair (sk, pk), and shares
the public key with the server.

Adaptive queries. The adversary A specifies a file F and asks the challenger S to outsource it. S
starts the corresponding Update protocol with A. Then, A gives the required information to S and
asks her to start a protocol Update, Read or Audit. S starts the requested protocol and notifies A
about the result, whether an acceptance or a rejection. S updates her local metadata according to
the Update protocols that are verified. This process is repeated polynomially-many times. Call the
last version of file generated according to the accepted Update runs, F.

Challenge. Finally, A asks S to start an Audit protocol. S specifies a challenge vector ~c and runs the
Audit protocol with A. A wins if his answer is accepted by S. For extraction, S can reset A to the
point before the challenge phase started, and repeat the challenge polynomially-many times. (S is
about to extract the challenged parts of F through the A’s responses that are accepted by Audit.)

Definition 4.3 (Security of DPDP) A DPDP scheme is secure if for any PPT adversary A who
wins the above game with non-negligible probability, there exists a PPT extractor who can extract the
challenged parts of the file with non-negligible probability by rewinding A polynomially many times.

4An inefficient way to read t blocks is to use the Audit protocol t times; one block is read in each run.

13

Let Λ = (KeyGen, Certify, Verify) be a secure ADS scheme.
Construct a DPDP scheme D = (Setup, Update, Read, Audit) as:

• Setup(1λ):

– The client runs (sk, pk) = Λ.KeyGen(1λ),

– outputs (sk, pk), and sends pk to the server.

• Update(
−−−−−−−→
op, ind, val):

– The client prepares the respective update command cmd, and

– sends the command cmd and (
−−−−−−−→
op, ind, val) to the server.

– The server applies (
−−−−−−−→
op, ind, val) on the outsourced data,

– runs π = Λ.Certify(pk, cmd), and sends π to the client.

– The client runs Λ.Verify(sk, cmd, null, π, stC).

– If it is accepted, she updates her local state accordingly.

– Otherwise, the server’s misbehaviour is detected.

• Read(
−→
ind):

– The client send the read command cmd to the server.

– The server runs (ans, π) = Λ.Certify(pk, cmd), and

– sends back the answer ans and proof π.

– The client runs Λ.Verify(sk, cmd, ans, π, stC).

– If it is accepted, she consumes the read data.

– Otherwise, the server’s misbehaviour is detected.

• Audit():

– The client generates a challenge vector ~c, and

– sends the respective audit command cmd to the server.

– The server runs (ans, π) = Λ.Certify(pk, cmd), and

– sends back the answer ans and proof π.

– The client runs Λ.Verify(sk, cmd, ans, π, stC).

– If it is accepted, she will be convinced with high probability that the server is
storing her data intact.

– Otherwise, the server’s misbehaviour is detected.

Figure 12: The basic DPDP construction.

4.3 Security of Basic DPDP Construction

Theorem 4.1 If Λ = (KeyGen, Certify, Verify) is a secure implicitly-ordered ADS scheme, our con-
struction, given in Figure 12, is a secure DPDP scheme.

Proof 4.1 According to Definition 4.3, a DPDP scheme is secure if the challenger can extract the actual
challenged blocks whenever the adversary wins the data possession game. That is, if the adversary’s
answer is accepted by the challenger, he should have knowledge of the challenged blocks.

We reduce security of the DPDP scheme to that of the underlying implicitly-ordered ADS. If a PPT
adversary A wins the data possession game with non-negligible probability, we use it to construct a PPT
algorithm B who breaks security of the ADS with non-negligible probability or we can extract the original
blocks from the challenge. B acts as the challenger in the data possession game with A and, in parallel,
plays the role of server in the ADS game with ADS challenger CA. B internally runs an honest server.
CA generates the ADS public and private keys, and sends the public key to B who forwards a copy

to A and the honest server S. The parties run the adaptive queries phase during which B sends A’s
requests to CA and sends its answer to A and S.

Once the adaptive queries phase is done, A asks B to start an Audit protocol. B generates a random
challenge vector ~c and sends it to A and S. On receipt, A prepares and returns the answer and proof to
B. If the proof verifies, then the adversary wins the game. There are two options:

1. The adversary’s answer (the challenged blocks returned) is different from that of S. In this case,
B forwards adversary’s answer and proof to CA as a forgery for the ADS.

14

(a) Basic scheme. (b) Blockless scheme.

Figure 13: Proof generation using the basic and blockless DPDP schemes.

2. The adversary’s answer (the challenged blocks returned) matches that of S. In this case, B outputs
adversary’s answer as the result of extraction. (Note that the challenged data blocks are themselves
included in the proof, and the extractor does not need to put any extra effort.)

Whenever A wins with some probability p, one of the above options must have happened with the
same probability. Since the ADS is secure, either p must be negligible, or we can extract the challenged
blocks correctly, with non-negligible probability.

5 Blockless Dynamic Provable Data Possession

In the basic scheme given in previous section, the server sends all challenged blocks as part of the proof to
the client. This is required by the ADS to enable the client verify authenticity of the challenged blocks.
Obviously, block length can be a system parameter, and can be made small. But remember that smaller
blocks would mean more blocks for the same file size, increasing n, and hence increasing the complexity
of the ADS operations. There is indeed a way to ensure the server’s response to the client is independent
of the block size. This is called blockless verification in the literature.

The observations mentioned in Section 1.2 state that the main problems with dynamic operations
over the outsourced data are related to managing the tags. Storing the tags, instead of file blocks, in an
implicitly-ordered ADS enables the client to update the tags according to the updates on the outsourced
file. The ADS guarantees the authenticity of tags, which in turn, guarantee integrity of the respective
file. Moreover, this reduces the communication (not asymptotically) since a tag is smaller than the
respective block, and the tag size is a constant independent of the block size.

Using the homomorphic verifiable tags (HVT) that are introduced first by Ateniese et al. [3] and later
used by others in diverse forms [18, 48, 35], brings another advantage: blockless verification [3]. It means
the client can verify that the server possesses the challenged blocks, even without access to the actual
blocks. Using this important property, in response to a challenge, the server aggregates all challenged
blocks into one block and sends it together with the ADS proof that includes the respective tags to
the client. In essence, instead of putting all challenged blocks in the proof, the corresponding tags are
included. This reduces the proof size considerably. Figures 13a and 13b visualize proof generation using
the basic and efficient DPDP schemes, respectively.

Let b be the size of a block, t be the size of a tag value (t < b), and a be the size of a the authentication
information A(.). A challenge vector of size c generates a proof of size (at most) c(b + a log n) in the
basic scheme and b + c(t + a log n) using HVTs. For a 1 GB file divided into n = 500, 000 blocks each
of size b = 2 KB, c = 460 blocks in a challenge, and employing a 32 B hash function as A(.), the ADS
proof is ∼ 273 KB. Hence, the basic scheme generates proofs of size 273 KB + 460∗2 KB ≃ 1193 KB.
Using HVTs of size t = 128 B, all challenged blocks are aggregated into one block and sent to the client
along with the ADS proof including the respective tags. This leads to a proof of size 273 KB + 2 KB +
460∗128 B ≃ 332 KB in our example, showing ∼ 4X improvement.

5.1 Tag Schemes

Tag schemes are used to provide message integrity that aims checking whether the received message is
exactly the one sent by the origin. Data outsourcing schemes proposed for cloud use the same concept
to enable the client check the authenticity of retrieved data.

To catch a misbehaving server with a high probability, the client regularly audits her data. Each audit
checks authenticity of c randomly-selected blocks that is required to provide satisfactory probabilistic
authenticity guarantees. A regular verifiable tag scheme is not efficient enough in this regard.

15

Using a homomorphic verifiable tag scheme, all challenged blocks can be aggregated into one block,
in a way that the authenticity of all of them (and hence, the whole outsourced file with high probability)
can be inferred. We assume the aggregation of data blocks are performed by the server, but either the
client or the server can aggregate the tags. This, however, will not affect the communication efficiency.

Definition 5.1 (Homomorphic verifiable tag scheme) A homomorphic verifiable tag scheme con-
sists of the following polynomial-time algorithms:

• (sk, pk) ← KeyGen(1λ) is a probabilistic algorithm run by the client to set up the scheme and
generate a secret and public key pair (sk, pk), given the security parameter λ. The client then
sends the public key pk to the server.

• ~t ← TagGen(sk, f) is a probabilistic algorithm run by the client to generate the tags of file blocks.
Given the secret key sk and the file f as input, it generates a vector of homomorphic tags ~t.

• µ← CombineData(pk, f,~c) is a deterministic algorithm run by the server upon receipt a challenge
vector ~c. It also takes as input the public key, and the file f , and generates a data block µ.

• τ ← CombineTag(pk,~t,~c) is a deterministic algorithm run by either the client or server to generate
an aggregated tag τ , given the public key pk, the vector of tags ~t, and a challenge vector ~c as input.

• (µ, τ)← Prove(pk, f,~t,~c) is a deterministic algorithm run by the server to compute and return an
(aggregated) answer µ along with the aggregated tag τ to a query given as a challenge vector ~c.

• {accept, reject} ← Verify(sk,~c, µ, τ) is a deterministic algorithm run by the client to verify the
received block(s) and tag(s). The secret key sk, the challenge vector ~c, and the aggregated block µ
and tag τ are given as input. It outputs an acceptance or a rejection notification.

We now give the security definitions of an HVT scheme inspired by definitions from [5].
Correctness. An HVT scheme is correct if ∀ λ ∈ N, ∀ (pk, sk)← KeyGen(1λ), ∀ f, ∀ ~t← TagGen(

sk, f), and ∀ ~c ∈ Z
c
n we have: Verify(sk,~c, CombineData(pk, f,~c), CombineTag(pk,~t,~c)) = accept.

Security. Informally, an HVT scheme is secure if no PPT adversary can generate a valid aggregated
tag (or a set of tags to be aggregated) for a new set of data blocks were not already provided by the
client. Next, we define the unforgeability game for the HVT scheme.

Definition 5.2 (Unforgeability game of an HVT scheme) Let Π = (KeyGen, Tag, CombineData,
CombineTag, Prove, Verify) be an HVT scheme. The Unforgeability game ForgeGameA(λ) between a
challenger S acting as the client and an adversary A playing the role of server is defined as follows. The
adversary has oracle access to TagGen(sk, .) for any message of his choice.

• Initialization. S runs KeyGen(1λ) to generate the key pair (pk, sk), and shares sk with A.
• Setup. The adversary A, given 1λ and oracle access to TagGen(sk, .), outputs a file f . The chal-
lenger runs ~t← TagGen(sk, f) and sends ~t to A. A continues to have oracle access to TagGen(sk, .).

• Challenge. A outputs a challenge vector ~c, a data block µ′, and a tag t′.

A wins the game if his answer (µ′ and t′) to the selected challenge vector ~c gets accepted by the chal-
lenger while µ′ 6=CombineData(pk, f,~c). The output of the experiment is 1 in this case, and 0 otherwise.

Definition 5.3 (Unforgeability of an HVT scheme) A homomorphic verifiable tag scheme Π=(Key-
Gen, TagGen, CombineData, CombineTag, Prove, Verify) is unforgeable under an adaptive chosen-message
attack if ∀ PPT adversaries A, ∃ a negligible function ν() such that: Pr[ForgeGameA(λ) = 1] ≤ ν(λ).

5.2 Blockless DPDP Construction

Constructing the ADS. The client computes HVTs of all file blocks, puts them in an implicitly-ordered
ADS, and outsources the ADS along with the file and tags at the server, while keeping the digest of the
ADS locally as metadata. The ADS guarantees the server stores the tags intact, and uses the correct tags
in responses to the client queries. The HVTs, in turn, are used to verify that the server keeps genuine
outsourced file blocks. This combination results in an efficient DPDP scheme.

Later on, the client challenges a random subset of the blocks. In response, the server gives a proof
including two parts. The first part is generated using the ADS and, if accepted, indicates the tags
coming from the server are authentic. The second part is the aggregation of the challenged blocks, which

16

Let Λ = (KeyGen, Certify, Verify) be a secure ADS scheme, and Π = (KeyGen, TagGen,
CombineTag, CombineData, Prove, Verify) be a secure HVT scheme. Construct a DPDP
scheme D = (Setup, Update, Read, Audit) as:

• Setup(1λ):

– The client runs (skΛ, pkΛ) = Λ.KeyGen(1λ), and (skΠ, pkΠ) = Π.KeyGen(1λ),

– outputs sk = {skΛ, skΠ} and pk = {pkΛ, pkΠ}, and

– sends pk to the server.

• Update(
−−−−−−−→
op, ind, val):

– The client runs ti = Π.TagGen
skΠ

(indi, vali) ∀ opi ∈ {Insert, Modify},

– prepares cmd according to the ADS format, and

– sends [~t,] (
−−−−−−−→
op, ind, val), and cmd to the server.

– The server [stores ~t,] processes (
−−−−−−−→
op, ind, val),

– runs π = Λ.Certify(pkΛ, cmd), and sends back π.

– The client runs Λ.Verify(skΛ, cmd, null, π, stC).

– If it is accepted, she updates her local state accordingly.

– Otherwise, the server’s misbehaviour is detected.

• Read(
−→
ind):

– The client sends the read command cmd to the server.

– The server runs (anst, π) = Λ.Certify(pkΛ, cmd),

– sets ansb = {requested blocks} and ans = {ansb, anst}, and

– sends ans and π to the client.

– The client runs Λ.Verify(skΛ, cmd, anst, π, stC) and Π.Verify(skΠ,
−→
ind,

ΠCombineData(pkΠ, ansb,
−→
ind), Π.CombineTag(pkΠ, anst,

−→
ind)).

– If both are accepted, she consumes the data, ansb.

– Otherwise, the server’s misbehavior is detected.

• Audit():

– The client generates a challenge vector ~c, and

– sends the respective audit command cmd to the server.

– The server runs (anst, π) = Λ.Certify(pkΛ, cmd) and (µ, τ)← Prove(skΠ, f,~t,~c),
and sends anst, π, µ and τ to the client.

– The client runs Λ.Verify(skΛ, cmd, anst, π, stC) and Π.Verify(skΠ,~c, µ, τ).

– If both verifications were accepted, she will be convinced that the server is storing
her data intact, with high probability.

– Otherwise, the server’s misbehavior is detected.

Figure 14: Construction of a blockless dynamic provable data possession scheme.

(together with a similar aggregation of the tags5) shows that the server keeps the challenged file blocks
(and hence, the outsourced file with high probability) intact.

Figure 14 gives the general form of constructing an efficient dynamic provable data possession scheme
given black-box access to an HVT scheme and an implicitly-ordered ADS scheme.

5.3 Security of the Blockless DPDP

Theorem 5.1 If Π=(KeyGen, TagGen, CombineTag, CombineData, Prove, Verify) is a secure HVT sch-
eme, and Λ=(KeyGen, Certify, Verify) is a secure implicitly-ordered ADS, our construction in Figure
14 is a secure DPDP scheme according to Definition 4.3.

Proof 5.1 According to Definition 4.3, a DPDP scheme is secure if the adversary possesses sufficient
knowledge of the challenged blocks in order to win the data possession game. This, in turn, helps the
challenger extract the actual challenged blocks.

5This aggregation can be done by either the server or the client that already has the required tags. To lighten the
burden of the client, we can ask the server to compute and send it as part of the proof.

17

We reduce security of the DPDP scheme to that of its building blocks: the implicitly-ordered ADS
and the homomorphic verifiable tag scheme. If a PPT adversary A wins the data possession game with
non-negligible probability, we use it to construct a PPT algorithm B who breaks security of either of the
two schemes, with non-negligible probability. B plays the role of the challenger in the data possession
game with A, and simultaneously, acts as the server in the ADS game played with the ADS challenger
CA and in the tag game played with the tag challenger CT . B internally runs an honest server S.
CA and CT generate their public and private key pairs, and share their public keys with B who relays a

copy to A and the honest server S. The parties execute the adaptive queries phase during which A asks B
to start a protocol ∈ {Update, Read, Audit}. For Read and Audit, B generates a challenge vector, sends
it to both A and S, and forwards the answer parts from A to the respective challengers for verification. B
notifies A about the verification result. For Update, B first asks CT to generate and return the respective
tags (if it is insertion or modification), and then asks CA to prepare the respective command. Finally, B
relays to both A and S what he receives from CA and CT .

Once the adaptive queries phase is done, A asks B to start an Audit protocol. B specifies a random
challenge vector ~c, and sends it to both A and S. On receipt, A and S generate the answer and proof
and send them back. The adversary wins the game if the proof verifies. Two possible cases are:

1. The adversary’s answer (the challenged blocks returned) is different from that of S. This case
represents a forgery for the ADS. B separates the respective parts of the adversary’s answer and
proof, relays them to CA, and wins the ADS game with CA.

2. The adversary’s answer (the challenged blocks returned) matches that of S. In this case, B rewinds
the adversary to the state before the Audit protocol ran, and repeats the Audit protocol polynomially-
many times to extract the challenged blocks. (We give a high level proof idea as we did not give
a concrete construction. While existing HVT schemes all combine the data and tags linearly, any
combining formula is applicable subject to existence of a proper extraction method. Currently, only
the extraction of linear combinations is known. Since the adversary sends the aggregated data
blocks to the challenger, we should show the challenger is able to extract the original file blocks.
Ateniese et al. [5] showed the extraction process for the homomorphic linear authenticators where
the aggregated answer is a linear combination of the challenged blocks. The extractor rewinds the
adversary polynomially-many times. The process stops when c-many (c is the size of challenge
vector) accepted linearly independent answers are found, and the challenged blocks can be extracted
by solving the system of linear equation on the challenged blocks and the respective answers.)

One of the above cases must have happened with some probability p for the adversary to win with
the same probability p. Since both the ADS and tag schemes are secure, either p must be negligible,
or we can extract the challenged blocks correctly, with non-negligible probability. Putting all together,
our general blockless DPDP construction given in Figure 14 is secure supposed the underlying tag and
implicitly-ordered ADS schemes are secure.

6 Extensions and Comparison

6.1 Hierarchical DPDP

Both our DPDP schemes provide integrity of a single file outsourced to an untrusted cloud server.
However, sometimes a hierarchy of files is being outsourced [18], or some problems require extra properties
such as availability [21]. Both problems can be handled in the same way employing hierarchical schemes.
A useful property of implicitly-ordered ADSs is that they can be organized in a hierarchical manner,
where the real data items are stored at leaf ADSs and each level serves as data for a level above. Making
a hierarchical ADS (HADS) using (potentially different) regular ADSs is analyzed in detail by Etemad
and Küpçü [21, 22].

We briefly describe building an HADS for a hierarchy of files and folders using the example in
Figures 15a and 15b. An ADS is built for each file in the innermost folders, e.g., info.txt in folder tom
and travel.txt, paper.tex, and letter.doc in folder rose, in Figure 15a. Roots of these ADSs in each folder
are used as data to create an ADS for the folder. This process goes on until the ADS of root folder is
built whose digest is stored in the client’s local metadata. Figure 15b shows the HADS constructed for
the hierarchy of files in Figure 15a.

18

(a) A small part of a directory structure. (b) An HADS storing the directory.

Figure 15: A small part of a directory structure stored in an HADS.

An important property of the HADS is that it does not affect the DPDP scheme. It only affects the
server proof generation and the client verification mechanism. Moreover, using the HADS, the server can
employ any degree of replication and distribution. He can create any number of the same ADS and/or
even distribute them among multiple servers, while the whole process is transparent to the client [21].

Employing the HADS or storing the whole directory hierarchy in a flat form, i.e., building a separate
ADS for each file and storing them all in the same place without regarding their location in the directory
hierarchy is a storage/computation tradeoff for the client. Using HADS, she stores a constant metadata
while she needs to verify proofs of all level in the respective hierarchy. On the other hand, a flat
architecture requires her to verify only one proof while increasing the metadata linearly in the number
of all outsourced files.

6.2 Comparison

Our scheme proposes a general framework for constructing efficient DPDP schemes, given access to a
secure implicitly-ordered ADS scheme and a secure HVT scheme. All existing DPDP schemes are specific
cases of this general model.

By ignoring data dynamism (hence, throwing away the implicitly-ordered ADS) and using RSA-
based HVTs, we achieve the PDP [3]. Also, ignoring data dynamism and using algebraic signature based
HVTs gives the data possession checking scheme by Chen [14]. PPDP [44] and CPDP [48] are also static
schemes based on BLS signatures.

Zhang and Blanton [47] store a range of data blocks on which an update is performed for each node
in the block update tree. The integrity of each block is protected using MAC. Instantiating the ADS as
the block update tree, and the HVT as the MAC in our general model generates this scheme.

Esiner et al. [20] proposed FlexList, which supports variable-size blocks, and used it to construct a
DPDP scheme, FlexDPDP. FlexList, as an implicitly-ordered ADS, together with the RSA-based HVTs
make a special case of our general scheme.

Using an implicitly-ordered Merkle hash tree together with BLS signatures for blocks reduces our
scheme to that proposed by Wang et al. [45].

A comparison among these schemes is given in Table 2.

7 Conclusion

A general framework for constructing secure DPDP schemes is presented in this paper. Also, requirements
of the building blocks are discussed. We argued that a secure DPDP scheme can be constructed with
black-box access to a homomorphic verifiable tag scheme and an implicitly-ordered ADS scheme.

The implicitly-ordered ADS is based on a property that does not depend directly on the block
positions, making later updates possible. However, to be efficient enough, tree-like structures such as
authenticated skip list, or 2-3 tree are good candidates. These structures pose a good rebalance property
after updates.

The homomorphicity of tag schemes helps aggregate all challenged blocks into one, hence, enhances
the communication while still providing verifiability.

We showed that almost all existing DPDP schemes use the same architecture. We analyzed this
architecture in detail and developed the general framework for constructing (PDP and) DPDP schemes,

19

Table 2: A comparison of DPDP schemes. (X◦ means the scheme is not efficiently or fully dynamic.)

Scheme Dynamic?
ADS Tag

Type Rank-based? Type Homomorphic?

PDP [3] × Vector × RSA-based X

AS-RDPC [14] × Vector × Algebraic signature X

PPDP [44] × Vector × BLS signature X

CPDP [48] × Vector × BLS signature X

Wang et al. [42] X◦ Matrix × Blinded token ×

[6] X◦ Block status table × Incremental numbers ×

SPDP [4] X◦ Vector × Hash-based token ×

EDPDP [47] X◦ Block update tree × MAC ×

PV-DPDP [45] X◦ Merkle hash tree × BLS signature X

DPDP [18] (scheme I)
X

Auth. skip list
X

- ×

DPDP [18] (scheme II)
Factoring-based X

DPDP [17] (RSA tree) RSA tree

FlexDPDP [20] X FlexList X Factoring-based X

encompassing existing ones. Newer proposals can now build the two parts (the ADS and the tags)
separately. Once the ADS is proven secure, it can be converted to an implicitly-ordered version via our
framework and can be used to construct a basic DPDP scheme. If unforgeability of the homomorphic
tags is also proven, they can be combined to obtain a blockless DPDP scheme using our framework.
Thus, we expect our framework to yield to novel proposals improving several aspects of the existing
schemes, and also to serve as a comparison metric.

Acknowledgement

We acknowledge the support of TÜBİTAK, the Scientific and Technological Research Council of Turkey,
under project number 114E487, as well as European Union COST Action IC1306.

References

[1] M AdelsonVelskii and Evgenii Mikhailovich Landis. An algorithm for the organization of informa-
tion. Technical report, DTIC Document, 1963.

[2] Alfred V Aho and John E Hopcroft. Design & Analysis of Computer Algorithms. Pearson Education
India, 1974.

[3] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary Peterson,
and Dawn Song. Provable data possession at untrusted stores. In CCS’07. ACM, 2007.

[4] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik. Scalable and efficient
provable data possession. In SecureComm, page 9. ACM, 2008.

[5] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from homomorphic iden-
tification protocols. In ASIACRYPT, pages 319–333. Springer, 2009.

[6] Ayad Barsoum and Anwar Hasan. Enabling dynamic data and indirect mutual trust for cloud
computing storage systems. IEEE Parallel and Distributed Systems, 24(12), 2013.

[7] Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta infor-
matica, 1:290–306, 1972.

[8] J. Benaloh and M. De Mare. One-way accumulators: A decentralized alternative to digital signa-
tures. In EUROCRYPT’93, pages 274–285. Springer, 1994.

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In ASIACRYPT,
pages 514–532. Springer, 2001.

[10] K.D. Bowers, A. Juels, and A. Oprea. Hail: A high-availability and integrity layer for cloud storage.
In CCS’09, pages 187–198. ACM, 2009.

20

[11] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retrievability via oblivious ram.
In EUROCRYPT’13, pages 279–295. Springer, 2013.

[12] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retrievability via oblivious ram.
Journal of Cryptology, pages 1–26, 2015.

[13] Nishanth Chandran, Bhavana Kanukurthi, and Rafail Ostrovsky. Locally updatable and locally
decodable codes. In Theory of Cryptography, pages 489–514. Springer, 2014.

[14] Lanxiang Chen. Using algebraic signatures to check data possession in cloud storage. Future
Generation Computer Systems, 29(7):1709–1715, 2013.

[15] Reza Curtmola, Osama Khan, and Randal Burns. Robust remote data checking. In 4th ACM
international workshop on Storage security and survivability, pages 63–68. ACM, 2008.

[16] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via hardness amplification.
In TCC, pages 109–127. Springer, 2009.

[17] C. Chris Erway, Alptekin Kupcu, Charalampos Papamanthou, and Roberto Tamassia. Dynamic
provable data possession. Cryptology ePrint Archive, Report 2008/432, 2008.

[18] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia. Dynamic prov-
able data possession. ACM Trans. on Information and System Security, 17(4), 2015.

[19] Ertem Esiner, Adilet Kachkeev, A Küpçü, and Ö Özkasap. Flexlist: optimized skip list for secure
cloud storage. Technical report, Technical Report, Koç University, 2013.

[20] Ertem Esiner, Alptekin Küpçü, and Öznur Özkasap. Analysis and optimization on flexdpdp: A
practical solution for dynamic provable data possession. Intelligent Cloud Computing (ICC14),
2014.

[21] Mohammad Etemad and Alptekin Küpçü. Transparent, distributed, and replicated dynamic prov-
able data possession. In Applied Cryptography and Network Security, pages 1–18. Springer, 2013.

[22] Mohammad Etemad and Alptekin Küpçü. Database outsourcing with hierarchical authenticated
data structures. In Information Security and Cryptology–ICISC 2013, pages 381–399. Springer,
2014.

[23] Mohammad Etemad and Alptekin Küpçü. Generic efficient dynamic proofs of retrievability. Cryp-
tology ePrint Archive, Report 2015/880, 2015. http://eprint.iacr.org/.

[24] Michael Goodrich, Roberto Tamassia, and Jasminka Hasić. An efficient dynamic and distributed
cryptographic accumulator. Information Security, pages 372–388, 2002.

[25] M.T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictionary with
skip lists and commutative hashing. 2:68–82, 2001.

[26] M.T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient authenticated data structures for
graph connectivity and geometric search problems. Algorithmica, 60(3):505–552, 2011.

[27] Leo J Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In 19th Annual
Symposium on Foundations of Computer Science, pages 8–21. IEEE, 1978.

[28] Christian Hanser and Daniel Slamanig. Efficient simultaneous privately and publicly verifiable
robust provable data possession from elliptic curves. ePrint Archive, 2013:392, 2013.

[29] Ari Juels and Burton S. Kaliski, Jr. Pors: proofs of retrievability for large files. In CCS’07, pages
584–597, New York, NY, USA, 2007. ACM.

[30] Ralph Merkle. A certified digital signature. In CRYPTO’89, pages 218–238. Springer, 1990.

[31] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. Selected Areas in
Communications, IEEE Journal on, 18(4):561–570, 2000.

21

[32] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables. In CCS’08, pages
437–448. ACM, 2008.

[33] Charalampos Papamanthou and Roberto Tamassia. Time and space efficient algorithms for two-
party authenticated datastructures. Information and Communications Security, pages 1–15, 2007.

[34] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM,
33(6):668–676, 1990.

[35] Hovav Shacham and Brent Waters. Compact proofs of retrievability. Journal of cryptology, 26(3),
2013.

[36] Mehul A Shah, Mary Baker, Jeffrey C Mogul, Ram Swaminathan, et al. Auditing to keep online
storage services honest. In HotOS, 2007.

[37] Mehul A Shah, Ram Swaminathan, and Mary Baker. Privacy-preserving audit and extraction of
digital contents. IACR Cryptology ePrint Archive, 2008:186, 2008.

[38] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical dynamic proofs of retriev-
ability. In ACM CCS, pages 325–336. ACM, 2013.

[39] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: A scalable cloud file system with
efficient integrity checks. In ACSAC, pages 229–238. ACM, 2012.

[40] R. Tamassia. Authenticated data structures. Algorithms-ESA 2003, pages 2–5, 2003.

[41] Roberto Tamassia and Nikos Triandopoulos. On the cost of authenticated data structures. Technical
report, Center for Geometric Computing, Brown University, 2003.

[42] Cong Wang, Qian Wang, Kui Ren, Ning Cao, and Wenjing Lou. Toward secure and dependable
storage services in cloud computing. IEEE Transactions on Services Computing, 5(2):220–232, 2012.

[43] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving public auditing for data
storage security in cloud computing. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[44] Huaqun Wang. Proxy provable data possession in public clouds. IEEE Trans. on Services Comput-
ing, 6:551–559, 2013.

[45] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling public verifiability and data
dynamics for storage security in cloud computing. In Computer Security–ESORICS 2009, pages
355–370. Springer, 2009.

[46] Mark Allen Weiss. Data structures and problem solving using Java. Pearson Education Inc., 2009.

[47] Yihua Zhang and Marina Blanton. Efficient dynamic provable possession of remote data via balanced
update trees. In ACM SIGSAC, pages 183–194. ACM, 2013.

[48] Yan Zhu, Hongxin Hu, Gail-Joon Ahn, and Mengyang Yu. Cooperative provable data possession for
integrity verification in multicloud storage. Parallel and Distributed Systems, IEEE Transactions
on, 23(12):2231–2244, 2012.

22

