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Generic formula of soft scalar masses in string models
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We derive a formula of soft supersymmetry-breaking scalar masses from four-dimensional string models
within a more generic framework. We consider the effects of extra gauge symmetry breaking including an
anomalous (1) breaking through flat directions, that iB-term andF-term contributions, particle mixing
effects, and heavy-light mass mixing effects. Some phenomenological implications are discussed based on our
mass formula[S0556-282(197)03117-2

PACS numbgs): 04.65:+e, 11.25.Mj, 12.60.Jv

[. INTRODUCTION analyzed considering the existence of anomalo(y Bym-
metry [U(1),] because 4D string models, in general, have
Superstring theorie¢SSTS are powerful candidates for the U(1), symmetry. Some interesting features are pointed
the unification theory of all forces including gravity. There out in those models. For example, Fayet-lliopouldgerm
are various approaches to explore four-dimensio@)  [15]is induced at one-loop levefor U(1), [16]. As a result,
string models, for example, the compactification on Calabisome scalar fields necessarily develop vacuum expectation
Yau manifoldg 1], the construction of orbifold mode[g,3],  values(VEVs) and some gauge symmetries can break down
and so on. Effective supergravigBUGRA) theories have [12,13.
been derived based on the above approadHes|. The For the second problem, some researches have been done
structure of SUGRA theor}7] is constrained by considering from the standpoint that the origin of SUSY breaking is un-
field theoretical nonperturbative effects such as a gaugingpecified. That is, soft SUSY-breaking terms have been de-
condensatiof8] and stringy symmetries such as duali§y  rived under the assumption that SUSY is brokenFsyerm
in addition to perturbative results. condensations of the dilaton fiell and/or moduli fieldsT
Effective theories, however, have several problems. Firs{,18—20. Some phenomenologically interesting features are
there are thousands of effective theories corresponding to 4predicted from the structure of soft SUSY-breaking terms
string models. They have, in general, large gauge groups anthich are parametrized by a few number of parameters, for
many matter multiplets compared with those of the minimalexample, only two parameters such as a goldstino a#igle
supersymmetric standard mod®SSM). We do not know and the gravitino massng, in the case with the overall
how to select a realistic model among them from stringymoduli and the vanishing vacuum enerf1]. The cases
theoretical point of view yet. Another serious problem is thatwith multimoduli fields are also discussed in RE22]. Re-
the mechanism of supersymmetf8USY) breaking is un- cently, study on soft scalar masses has been extended in the
known. To solve these problems, nonperturbative effects ipresence of an anomalougl) symmetry[23—26.
SSTs and SUSY field theories should be fully understbod. ~ This strategy for string phenomenology is quite interest-
At the present circumstances, the following approache$ng since the soft SUSY-breaking parameters can be power-
and/or standpoints have been taken. For the first problenful probes for physics beyond the MSSM such as SUSY-
study on flat directions is importapt 2], because effective grand unified theories, SUGRAs, and SSTs. We give two
theories have, in general, flat directions in the SUSY limit.examples. The pattern of gauge symmetry breakdown can be
Large gauge symmetries can break into smaller ones argpecified by checking certain sum rules among scalar
extra matter fields can get massive through flat directionsnasses. The specific mass relations are derived fgl@O
Further, flat directions could relate different models in stringbreakings[27,28 and for Eg breakings[29]. String models
vacua. Actually, some models with realistic gauge groupswith the SUSY breaking due to the dilaténterm lead to the
and matter contents have been constructed bas&d orbi-  highly restricted pattern in the absence of U{13uch as
fold models[13]. Recently, generic features of flat directions [19,2]]
in Z,,, orbifold models have been also investigaféd].
The flat directions based afy orbifold models have been |A|=|M = 3| ma, (1)

whereA is a universalA parameter, and gauginos and scalar
*Electronic address: ykawamu@gipac.shinshu-u.ac.jp fields get masses with common valukl,, and mg,, re-
"Electronic address: kobayast@tanashi.kek.jp
!Recently, there have been various remarkable developments in
study on nonperturbative aspects of SSTs and SUSY models?Some conditions for absence of anomalou$)lare discussed in
[10,11. Ref.[17].
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spectively. In this way, soft SUSY-breaking parameters caThe dilaton fieldS and the moduli fieldd;; belong to{®'}.
play important roles to probe a new physics. For the present, we treat only the overall moduli fidld
The above two approaches are attractive to explore pa(T=T,=T,=T;, T;;=0 for i#j) and also neglect moduli
ticle phenomenology beyond the standard model based dields U; corresponding to complex structure. Further, we
SST. Hence, it is important to examine what features sofheglect effects of threshold corrections andSm mixing.
SUSY-breaking terms can show at low energy when we contater, we will discuss the case with several moduli fi€lgls
struct a realistic model through flat direction breaking start-andU; and the case that léer potential has aB-T mixing
ing from 4D string models with extra gauge symmetries in-term. The other is a set of matter multiplets denotedb4s
cluding U(1),. which contains the MSSM matter multiplets and Higgs mul-
In this paper, we derive a formula of soft SUSY-breakingtiplets. Some of them have nonzero Ugl)
scalar masses from 4D string models within a more generifU(1)", H'] charges and can induce to the ULIJ(1)",
framework. We consider effects of extra gauge symmetryH’] breaking at high-energy scales by getting VEVs. We
breaking, that isP-term andF-term contributions, particle denote the above two types of multiplets togethe®asThe
mixing effects, and heavy-light mass mixing effects. Somematter multiplets ar& nonsinglets and correspond to string
phenomenological implications are discussed based on ouéfates one to one.
mass formula. In particular, we study the degeneracy and the We suppose the following situations related to an extra
positivity of squared scalar masses in special cases. The &fauge symmetry breaking.
fects ofD-term contributions are discussed mainly at the tree (1) The U(1), symmetry is broken aM by VEVs of S
level. In addition, we calculate soft scalar masses explicitlyand some chiral matter multiplets.
and derive specific relations among them by takingza (2) Some parts of U(1) and H' are broken at much
orbifold model as an example. They can be useful as a starkigher energy scales than the weak scale by VEVs of some

ing point on the analysis of low-energy physics after includ-chiral matter multiplets. Those VEVs are smaller than those
ing quantum corrections. of SandT, i.e.,

This paper is organized as follows. In the next section, we
explain our starting point reviewing the structure of effective
SUpGRA derived fr%rFr)] SSTina fiel% theory limit. In Sec. lll, () <(5)(T)=0(M). @)
we derive a formula of soft SUSY-breaking scalar masses
and discuss its phenomenological implications. In Sec. Il A, This condition is justified from the fact that@-term con-
the scalar potential is discussed. In Sec. Ill B, we discusslensation of U(1) vanishes up t@(m3,,) as will be shown.
classification of scalar fields. In Sec. lll C, we examine theHere, m,, is the gravitino mass defined later.
existence of heavy-light mass mixing. In Sec. Il D, a generic  (3) The rest extra gauge symmetries are broken spontane-
formula of soft scalar masses is given. In Sec. Il E, theously or radiatively by the SUSY breaking effects at some
degeneracy and the positivity of squared scalar masses ak@ver scales.
discussed in special cases. In Sec. 1V, the results of Sec. Ill |t is straightforward to apply our method to more compli-
are applied to an explicit model. In Sec. V, we remark oncated situations.
some extensions. Section VI is devoted to conclusions and We give a comment here. Such symmetry breaking gen-
discussions. In the Appendix, formulas of theter metric  erates a scalé,, which is defined as the magnitude of

and its inverse are summarized. VEVs of scalar fields, below the Planck scMe,. Using the
ratio M, /Mp,, higher-dimensional couplings could explain
Il. EFFECTIVE SUGRA AS A FIELD THEORY LIMIT hierarchical structures in particle physics like the fermion
OF STRING MODELS masses and their mixing angles. Recently, much attention

has been paid to such a study on the fermion mass matrices

Effective SUGRAs are derived froly orbifold models  [31,32. In Ref.[31], U(1) symmetries are used to generate
taking a field theory limit. Here, we assume the existence ofegalistic fermion mass matrices and some of them are anoma-
a realistic effective SUGRA, that is, our starting theory hasjous, while stringy selection rules on nonrenormalizable cou-
the following excellent features. plings are used in Ref32].

The gauge group i6=Ggyx U(1)"XU(1)sXH" where Next, let us explain the three constituents, théka po-

Ggy is a group which contains the standard model gaugeential K, the superpotentialV, and the gauge kinetic func-
group Ggy=SU(3)cxXSU(2). xU(1)y as a subgroup, tionf,g, in effective SUGRASs derived from SSTs. Orbifold
U(1)" are nonanomalous (@) symmetries, U(1) is an  models lead to the following Kder potentialk [4—6]:
anomalousU (1) symmetry, andH’ is a direct product of
some non-Abelian symmetries. The anomalies related to
U(1), are canceled by the Green-Schwarz mechapioh
When gauginos ofH’ condense, they can trigger SUSY
breaking[8]. Or, H’' might be broken by VEVs of some + 2 (THT)™ 42+, ()
scalar fields at a higher energy scale. We take a standpoint “

that an origin of SUSY breaking is unspecified.

Chiral multiplets®' are classified into two categories. wheregg is a coefficient of the Green-Schwarz mechanism
One is a set of chiral multiplets whose scalar componghts to cancel the U(1) anomaly and/, is a vector superfield of
have large VEVs 0O(M). Here,M is the gravitational scale U(1),. Here and hereafter, we také=1 according to cir-
defined asM=Mp/\/87 and Mp, is the Planck scale. cumstances. The dilaton fiell transforms nontrivially as

K=—In(S+S* + 65Va) —3IN(T+T*)
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S—S—i88s0(x) under U(1) with the transformation pa- WhereG,=dG/d¢' andG’=3G/d¢5 , and (Ré™ 1), and

rameterd(x). The coefficient&és is given as (Gfl),J are the inverse matrices of Rg, and G}, respec-
tively. The indiced, J, ... run all scalar species, the index

2 1 A a (B, C) runs generators of th&g,, [U(1)", H'] gauge
Ka GS:WTrQ ' (4) group, andQ®s are U(1)' charge operators. Note that the

Fayet-lliopoulosD term appears itv(®) for U(1), if we
wherek, is Kac-Moody level of U(1) andQ” is a U(1),  replaceS by its VEV [16,12,13.
charge operator. Furthar,’s are modular weights of matter ~ By the use of the Kaler potential (3), D terms for
fields ¢*. The formulas of, are given in Refs[6,18. The  U(1)a and U(1}' are given as
same Kaler potential is derived from Calabi-Yau models
with the largeT limit up to twisted sector field's contribu- DA 5és
tions. S+ S*

The superpotentidlV consists of the following two parts:

+§ (T+T*)"qh| ¢4 9

and
W=Wyp+ Wpert- )
B_ *\NqB| 4|2
Here,Wyp is a superpotential induced by some nonperturba- D 2 (T+ Tl &% (10
tive effects, and it is expected that VEVs®andT are fixed
and SUSY is broken owing to this part. The other partwhereqﬁ(B) is the U(1)[U(1)"] charge of the scalar field
Wt i @ superpotential at the tree level and starts fromp” and we neglect the contributions from higher order terms
trilinear couplings for massless fields [which is denoted as the ellipsis in E@®)] in K.
Finally, let us give our assumption on the SUSY breaking.

The gravitino massng, is given by
Woer= 20 f,ud" Mt (6)
K\

Mgp= < eK/ZMZ%VZ> ; (11)
where Yukawa couplingd,,, generally depend on the
moduli fieldsT and the ellipsis stands for terms of higher
orders ing”. Note that if the above superpotential includes
mass terms such as,, 4", a natural order of these
masses is 0O(M). Thus, we do not include these fields with
mass terms at the tree leveThe total Kaler potentialG is
defined asG=K + In|W. The gauge kinetic functiof, s is FIEMGG/ZMZ(G—l)IGJ (12)
given asf,z=Sé,5. For simplicity, here we assume that 7
Kac-Moody levels satisfk,=1 because our results on soft |t js assumed that SUSY is broken by theterm condensa-
terms are independent of a valuelof. The scalar potential  tions of ¢' such that
is given as

where the angular brackets denote the VEV of the quantity.
In the next section, it will be often taken to be real as a phase
convention. TheF-auxiliary fields of the chiral multiplets
@' are defined as

(F')=0(mgM). (13
v=VF 4+ v®)
In this case, stationary conditions ®f by ¢' require that
VP =eS[G!(G~1)’G,—3], 7 VEVs of D-auxilary fields should be very small, i.e.,
[G1(G)iG,3] @ (D¥)=<0(m3,,) and(V(®)) should vanish up t®(m3,), i.e.,
_ N vy =0(mi,) [34,35.
VO =1(Ref1),,DDA (V) =0(mjy) [34,39

1 2 I1l. DERIVATION OF SOFT SCALAR MASS FORMULA

= gy KuT9)"]
+ A. On scalar potential
1 A 2 The effective theories derived from SSTs have, in general,
GS A ik ) : . e .
=3 —S*+KK(Q ®) flat directions in the SUSY limit, which can be a source to
S+ break gauge symmetri¢42]. In this subsection, we discuss

1 1 the VEVs of scalar fields in the framework of SUGRA with

+ W[KK(QB¢)“]2+ ST o [K (TC®)]2, U(1)5. The reasons are as follows. First, we should specify
the symmetry-breaking mechanism including U{3nd its
(8 scale. It is known that the breaking scale is fixed from

3The electroweak symmetry breaking requires the Higgsino mass“it is also applicable to the case of SUSY breaking by gaugino
of O(mg»). This mass term called thg term can be generated condensation$8] because the dynamics are effectively described
through nonperturbative effects and/or nonrenormalizable interadsy a nonperturbative superpotential fgf after integrating out
tions [33]. The Wyp includes mass terms generated nonperturba-gauginos. However, it is required to extend our discussion for the
tively. SUSY-breaking scenario due to matter fields with U 126].
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D-vanishing condition of U(1) in the SUSY limit[12]. TABLE I. The classification of scalar fields and our notation.
Second, we should classify scalar fields in a well-defined )
manner to derive low-energy effective theory. That is, we ;
need to specify light fields which appear in a low-energy 4
spectrum. ( v
Using the notation & ¢
X
f(a)=3 a,(T+T*)"| ¢ 2 (14 o = | ¢
‘ " = ¢ q‘SK
and the formulas in the Appendix, we can wrifeas
¢P = &k
V=VF +vD), (15)
q‘Sa(N)
WS 2 W—I— 2 . . \
VF)=gC 1_(5+s*)W +3 1_('|'+T*)W -1 Fields Features
W2 d)f Massless states in string theory
1= (T+T* ) f(nx)+f(1)}, (16) ¢ ST,....(¢)=0(M)
w o Matter fields,G nonsinglets
¢° Gy singlets
1 S 2 " Gy nonsinglets
(D)= GS Aa a d)V V=O M
v _54_3*; (S-l—S* o +f(q,<)> ) (17 e ¢o¢é:(o D)

R Heavy complexuk, =0(M))
where we neglect the higher order termsfé4, ). » Light complex, s = O(Ms,)
Using the stationary condition ap”, the magnitudes of ~ o) Heavy real e _o

564 (S+S¥)- A +1(q%) are estimated a®(m3,). Under ¢’ y o "f“(NT)B(N)
the assumption thdip*)<({¢')=0O(M), the VEVs of¢' are ?H (47, ¢n)
derived iteratively in the following step. First, we obtain the e (<z>',¢>A|*)T
solution of the stationary condition®/(F)/9¢'=0 (we de- o (K, 3™ T
note it as'), where V(F) is the scalar potential iv(F) Generators Features
including only hidden fields. Second, the VEVs of matter a
. . ! -, T All t
fields are determined by the following conditions that the ~(N) Off di gauge generators
. : . a iagonal and broken av,
SUSY is not spontaneously broken in the observable sector: o ]
T® Diagonal and broken a1, (or M)
W —0. D=0 18 T Nonanomalous, diagonal, and brokeriVat
apc T QA Anomalous 1)
Q" Nonanomalous extra(1)’s
Wyer=0 (19
pert ’

where ¢'’s are replaced byp'’'s in W and D®. Next, we

solve the conditio@V(F)/3¢'=0. The effect of matter fields for U(1),] andm, for simplicity. Our method is applied to
is introduced through the third and fourth terms in Et6)  the case with intermediate-breaking scales.

and then the VEVs ofp' receive corrections aD(M{/M). In Ref.[14], generic flat directions df,,, orbifold models
We can obtain the next order solutionsof from the con-  are discussed. In these flat directions, pairs of fields With
ditions (18) and (19) where ¢"s are replaced by the im- and?representations in the same twisted seat@is Ny,

proved values. The solutions are denotedpgs _ = .
In this way, the symmetry breaking at a very large scale i{/€Velop their VEVs as(R)=(R)#0. In the case with

induced byD-vanishing condition of U(1) and the orderis Y(1)a, some fields get the VEVs such as
given asO(( 524 (S+S*))¥?). We denote it byM, and it is (R)=(R)=0(M,) and extra symmetries break as a result. A
estimated as~10 'M-10?M by using explicit models. Very small difference can be %nerated between the VEVs of
Other symmetry breaking can occur by the SUSY-breakingairs of fields such agR)=(R)+0O(m3,/M,) by SUSY-
effects spontaneously or radiatively at some lower sddles  breaking effects. It is crucial for the existence of sizable
thanM, . In the following sections, we discuss only the caseD-term condensations @(m3,,) [36,28.
with two typical symmetry-breaking scalelgl; [and M It is an important subject to study the absolute minimum
of scalar potential and the conditions for the vanishing
vacuum energy. Since the nonperturbative superpotential is
SIn this first approximation, we neglect tiiz term of U(1), be-  not fully understood, we cannot give a definite answer at
cause it is a quantum correction at one-loop level. present. On the analysis, quantum corrections to the vacuum
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energy are also importafis7]. (in the SUSY limiy. We take a basis of scalar fields’ to
diagonalize the SUSY fermion mass matfixg. Then, the
B. Classification of scalar fields scalarsg” are given as linear combinations #f2)"’s such

Now, let us explain a procedure to classify scalar fields?S
using their VEVs, quantum numbers, SUSY fermionic
masses anB terms. We summarize the classification of sca-
lar fields and our notation in Table I.

(1) The observable fieldgp*’s are classified into two
types¢® (G, singlets and ¢ (G, nonsinglets whereG, is

$P=RGp. (24)

Note that the Khler metric (KQ) is still diagonalized in

terms of P becausdR? is a unitary matrix. The scalar fields

an unbroken gauge group Bt,. Among ¢°'s, we denote ‘?P are classified either as ‘“heavy” complex fields

scalar fields with large VEVs dD(M,) as¢" and others as ¢ ¢", ..., “light” fields ¢! ..., such as
#*. The ¢"’s contribute to an extra gauge symmetry break-#xL=O0(M)), u=0(mgy), or Nambu-Goldstone fields
ing. The indicess, t, ... runGq singlet observable fields ¢ ),&SB(N), ... (which will be discussed just belgw
andP, Q, ... runGy nonsinglet observable fields. (5) The gauge generatofs* are classified into “heavy”

(2) We denote the solutions of the stationary conditionsthose broken a1,) T#,T#, ... and “light’ (which remain
dVIdg¢'=0 as(¢'). The difference betweeps and(¢*) is  unbroken aboveny,) T, TP, ... . Further, the broken gen-
estimated as follows. Bottg and(¢") should not be large erators are classified into those with off-diagonal elements
[O(M))] sinceGy is unbroken aM, . The fact thafVv(®)) — 1a®™ 5™ = 4 diagonal ones®” T8, ... There
should vanish up toO(mg,) leads to the relation gyict the so-called Nambu-Goldstone multiplét&'s corre-

(V)=¢pg+0O(m3/M). We can show that ) ) D),
<¢>X>=O(m§,2/Mx) for My>may, and ()= O(myy) for sponding to broken generatofSq singlet fields¢“ s are

. A , iven as some linear combinations ¢f's. The D compo-
my,=My where My is a SUSY fermionic mass op* if g fora™) . ¢ P
there exists no large mixing betweeX and ¢V in Kahler ~ NENts fora”™ are rewritten as
potential® Hereafter, we use the angular brackets as the VEV

of the quantity in most cases under the above assumptions.
(3) The general form of Klaler potential is given as

D= BHRS T 1P+ -, (25

where we use the diagonalization of idar metric. We can
take a basis which satisfies the relation

K=K(¢',¢7) K¢, ¢7)d°dF +Hsl( @', b} ) @'+ H.c.

o)

_ . 1ma™y 1P — oV sa(Np -
+KB(¢', %) pP G+ Hpo(#', ¢} ) p¥ 2+ H.c. [RSHT )] |o=p* 6% 7, =0(M)). (26
+KS( ', ) p5bT b+ - - - (200 The fi)“(N)’s have no large VEVs due tD-vanishing condi-
tion (18). The equality from gauge invariance
and the VEVs oK} are estimated as 92W o) SW eI ,
W( é) +(?753( )= (27)

O(1) O(M,/M) 0
<K|J>: O(M, /M) 0o(1) 0 (21 leads to u,=0. The imaginary parts ofp®s are the
0 0 o(1) would-be Nambu-Goldstone bosons which are absorbed into
the gauge bosons, and the real parts acquire the same mass of
_ _ _ _ orderM, as that of the gauge bosons frafP) in the SUSY
for1=i,s,P andJ=j,t,Q, and the magnitude ¢H;) isthe  |imit. Hence, the Nambu-Goldstone multiplets belong to the
same order aék}). The Kehler metric(Kg) is diagonalized  heavy sector.

by a combination of some scale and unitary transformations |n the effective SUGRA derived fromy orbifold models,

(we denote it bySg totally) such as the Kéler potential of matter parts ™) is given as
$OP=(SHGe% SE(KR)SP=R, (@ KM=X (T+TH)M ¢+ g7
where theg®P’s are the scalar fields diagonalizidg 3). LS Rg OTHT*) s oy
(4) The SUSY fermionic masg.pq is given as o T A(T+T*) Q

1 mone am [S(THT*]?. .
2 - 2 RAQ__ AQ P
J Wpert + 2P’Q’R (nPnR nP) <T+T*> d) QSB—}- cey

T (23
96@PapPR|

MPQ
(28)

where nS=(R™)EnzRY and we expand the moduli in
6Th?_s condition is satisfied in SUGRAs from orbifold models if powers ofm,, around its VEV such as
the Kéhler potential has no mixing terms of order 1 betwgéehand
¢* in a holomorphic part o~ T=(T)+ 6T+ 6T+ (29
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and we neglect the contribution of moduli fields. D terms  (33). (In the following discussions, we require the above
for U(1) symmetries are given as conditions) In addition, unless there exist mixing terms
among heavy, light, and moduli in the Klar potential, there
SN appear no heavy-light mass mixing terms@fms;,,M,). In
A= +§ (T+T*)"qg] % +E CORR string models, whether there exist such mixing terms or not

S+S* is model dependent.
~a@d(THTH) T*) s o
+ 2 p(q VR T Ty (T+7%) @F ¢Q (30 D. Soft scalar masses
1. Soft scalar mass terms
DB=YD (T+T*)”sqs|¢5| +2 (qB) o [f;’é For convenience, we introduce new notation related to the
s classification of scalar fields:
HT+T*). H ot
+ 98— -, (31 ¢ . ¢
o ARy 4P (Y ¢H_( w2 ), a5
A ok

where §*)8=(R™1)BqaRS. The parametergpq and R, . . . _
in general, depend on the VEV of the moduli fieldsince ~ Where heavy fieldst™s stand for¢™ and ¢* . The light

Yukawa couplings have a moduli dependence. fields can get VEVs oD(mg;) and induce an extra gauge
symmetry breaking, but we treat them as a sum of the VEVs
C. Heavy-light mixing terms and fluctuations since both have the same order and our goal

is to derive soft scalar mass formula e, . We can take
In this subsection, we estimate magnitudes of heavy-lightffects of symmetry breaking &(ms,) in a similar way.

mixing mass terms (VK)=(?VIadpKady) and Scalar mass terms are written as
(Vi) =(d2VI13¢Ka¢X).” After some calculations(VE) is . . .
expressed as Vmass= 3 { g H L, M + pIM T -
~ i Sk TLAH | Gk £L!
(VEY= — g (KERY(FTY + O(m2),), (32) + QM 9"+ ELLGE ) (36)

where upo=(expK/2M?))upo. The mixing mass, Eq. where

(32), can be ofO(mg;,M,) if the Kahler potential has heavy- H Hh
(Vi) (V)

light mixing terms of order 1 in a holomorphic part ¢f. H=H" = (37)
The chirality-flipped scalar mas¥/y,) is written as (Vyur) (Vﬂ/)
(Vi = Mg Giid(F') = e (Kig ) () + O(m3y). ) (Vi
(33 M=m"=| , (39)
Vi) (v
If there are Yukawa couplings of order 1 among heavy, light,
and moduli fields in the superpotential, the order of the first (V' )
term in the right-hand sidRHS) of Eg. (33) can be L=L% = I’ ) (39)
O(mg,M). The second term in the RHS of E@®3) can be v v

of O(mg;,M,) if the Kahler potential has mixing terms of
order 1 among heavy, light, and moduli fields. If there areThe order of the above mass matrices is estimated as
Yukawa couplings of order 1 among light and moduli fieldsH = O(M; ) M= O(mg,M,), andL= O(m3,2) Scalar mass
in the superpotential, that isjgX Gy i) =O0(1), theorder of  terms are rewritten as
the scalar masses for light fields can ®ém;,,M) and the
weak scale can be destabilized in the presence of weak scale  ymass- %(gb’;ﬁ (})ZM tH *1)H(§},H’+ H M (},ﬁ’)
Higgs doublets with such intermediate masses. This is the
so-called “gauge hierarchy problem.” Only when —LPEMTH T IMPL +1dEL o7 (40)
m3,2<G|JJ,><FJ )’'s meet some requirements, does the hierar-
chy survive. In many cases, we require the condifis,35 We discuss the implication of each term in E4Q). The first
term is the mass term among heavy fields. After the integra-
MyA Gy FY<O(m3),). (34)  tion of the heavy fieldgh™ +H 1M ¢~, there appead-term
[36,28,35 and extraF-term contributiong 28,35 to scalar
If we impose the same condition to the case WithK and  masses which will be discussed later. The second term is
J=I, we neglect the effect of the first term in the RHS of Eq.new contributions which appear after the diagonalization of
scalar mass terms. This contribution can be sizable, i.e.,
O(m%,z), if the heavy-light mass mixing i®(ms,M;). The
"The mixing mass betweep® and ¢'® is forbidden from gauge last term is a mass term among light fields. Note that the
invariance. The order of the mixing mass betweghi and  heavy fieldsp’+H ™M ¢* and the light fieldsh” used here
&“(N) is estimated a®©(m3,,) and hence its effect is negligible. are different from properly diagonalized fields up to
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O(mg;/M)) terms. The final expressions of scalar masses of

JK K
O(m3,,) for light fields are the same whichever we use as a +§ (PR K = KI(FY)
definition of the scalar fields. Hence, we use the same nota-
tion * and ¢y for light scalar fields which are properly X((T+T*)")| "2 (50)

diagonalized. The extra contribution due to the existence of

heavy-light mass mixing terms is expressed as
Vrsncjl)‘(t mass. %3’2 MTH™'M ;by

:(V?ol?t mas I¢ ¢k 2( mlﬁmasgkl(ﬁ ¢I+H c.,

(41
where
(leftmasgl <VIK(V71)EVLK>_<V|K(V71)KLVE>
—(VEOV i VR = VIV ThRVY),
(42
(le?tmasgkl (VkK(V_l)EVH_<VkK(V_1)KLVL|>

—(VR(V D VY = VRV HRV).
(43)

After the diagonalization o™ there exists an extra

term such as— uy d(H *M):p* in W where we denote
properly diagonalized fields ask and ¢~ again. This term
gives a sizable contribution to soft terms through/ d¢X.

2. Parametrization

For the analysis of soft SUSY-breaking parameters, it is

convenient to introduce the following parametrization:

(e82(KE)~Y2GS) = \/3C my 6! ssing, (44)

(€®(KD) Y GT+(KH(K™HIGX])= V3Cmy £ *Tcog.
(45)

Then the vacuum energy, is written as

Vo=(e®[G'(G H]G,;—3])=3(C2— 1)mZ,+ V™",

(46)
Vo' =mi(f(1))(3C?~2) (47
up to (f(a,))? Relation (2) implies the relation
(G*)<(GS),(G"). In this case, the parametrizatio#5) be-
comes simpler such as

(e®A(KT)~12GT) = \[3Cmy ' *Tcosp (48)
andV, is dominated by the first part, i.e.,
=3(C2-1)m3,. (49)

Soft SUSY-breaking scalar mass terms are given as

Vol mass (m3,2+vo>2 ((THT*)")| "2

before heavy fields are integrated out. By the use of the
parametrizationV%), ... for ¢F is rewritten as

V(sg%t mass_ ; (m§/2+ VO)l &SP|2+ % mg/zczcoszeﬁ&%%’é .
(51)

After heavy fields are integrated diiye have the following
mass terms for light fields at the energy scile:

Vsoft mass— Ek (m§/2+ VO)l a’k|2+ ; m%/ZCZCOSQ_Hﬁlk;bka’I*

extra F mix ren
+ Vsoft mass Vsoft mass Vsoft mass Vsoft mass (52)
where V2 yexta P mix and Ve are
soft mass soft mass soft mass soft mass

D-term contributions at the tree level, extaterm contribu-
tions which will be discussed in the following subsections,
the contributions due to the existence of heavy-light mass
mixing discussed in the previous section and contributions of
renormalization effects frorM to M, , respectively.

3. D-term contributions

The D-term contributions are given 486,28,35,
2 2D\ 22D | A KA
VsDoft mass:g:d %) g;(D)<D >(q )Lq’)kqﬁl* ’ (53)

wheregp)'s are gauge coupling constants related to diago-
nal generators broken 8, [andM for U(1),] and we use

the relation(ReS)= 1/g§(D). We omit the terms whose mag-
nitudes are less tha®(mj3,). Note that the VEVs ofD
terms vanish for unbroken generators and broken ones with
off-diagonal elements. Hereafter, we omit the indeX) (
which means the diagonal generators.

Next, we rewriteV2, ... using the parametrization intro-
duced before. For this purpose, it is useful to adapt to the
following formula of D-term condensations35]:

9:(D%)=2(My*)Fgy(F)(FIX(DP)), (54
where Q\A\jzzfﬁ is the inverse matrix of gauge boson mass
matrix (M2)*# given as

(M) *P=2g,95((TA(@NKYT(4)))).  (55)
Here, the gauge transformation of' is given as
5,0'=19,(T*(#)) up to space-time-dependent infinitesi-
mal parameters. The above relati®¥) is true at the tree
level.

8The procedure is the same as that in FR@§].
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After some straightforward calculation®,-term conden-
sations are written as

g§<D&>:z%m§,2{ (My?)*Aga(1—B6CsirRo)
X<E q’:(T+T*>“~|¢>“|2>
—E (My

“ﬁg C2%cog6

(56)

><<2 q‘;’nK(T+T*)”K|¢K|2>]-
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2
mg,

<E (q";‘>2<T+T*>“~|¢K|2>

ga(D% = {(l—GCZSinZB)

><<2 qﬁ(T+T*>“K|¢K|2>
—Czcos’-0<2 qﬁnK(T+T*)“K|¢K|2>]. (62)

Furthermore, at that time)-term condensations of nona-
nomalous symmetries are given as

We give some comments. We need to introduce three kinds

of model-dependent quantities such as

<E qf:(T+T*>"~|¢K|2>, (57)
<2 QﬁQE(T+T*)“K|¢“IZ>, (58
<2 Q%ﬂK(T+T*)“K|¢>K|2>- (59)
Their magnitudes are of orderO(Mf). Note that

<2Kq,‘f'(T+T*)”K|¢"|2>=O(m§,2) due to theD-vanishing
condition in the presence of SUSY breaking. Heré,runs
over only nonanomalousdiagonal-broken generators. The
(D%)’s are estimated a®(m3,,) from Eq. (54) or Eq. (56).
Note that they do not necessarily vanish.

The above formulg56) is practical. The same result is
obtained up td(mg,/M{) even if ¢§’s are used in place of
{¢*) on the calculation ogE<D“>. [On the other hand, the
situation is different if we use the formula
D« = s ,q% (T+T*)"|p*|2 directly, that is, Da"s always
vanish in the SUSY limif. Actually, we will calculate
D-term condensations using the form@&) and ¢'s in the
next section.

> (@ )2T+T*)| 42
(63)

<Z qi'nK(T+T*)”K|¢K|2>
g (Dy=—m2,C C052u< >

where broken charges are redefined by the use of diagonal-
ization of (M2)«'#’. Using the expressiof63), we can show
that there appears no sizalleterm contribution to scalar
masses at the tree level if a broken symmetry is honanoma-
lous and SUSY is broken by the dilatoR term, i.e.,
cog6=0. In the case that a large mass splitting arises among
soft scalar masses due to radiative corrections, sizable
D-term condensations can appear and survive even in the
limit of dilaton-dominant SUSY breaking as will be shown

in formula (78).

In a simple case that only one fiel, which has no
charges except the U(Z)charge, gets VEV to cancel the
contribution ofS in DA, the above result is reduced to the
previous one obtained in R¢R4]. Note that our result is not
reduced to that obtained from the theory with the Fayet-
lliopoulos D term, which is derived from the effective
SUGRA by taking the flat limit firsf23], even in the limit
that | 5540 <1 unless one treatS as a dynamical field,

In the case that there are no mixing elements betweeBecause we use the conditiéaV/d¢'(Q $)')=0 with the

U(1), and other symmetries it2)“#, the mass of U(1)
gauge boson is given as

2
(M%>A=2gi[<2 q’;‘(T+T*>“K|¢“|2>
<E(q T+T*>”|¢|2>] (60)

by the use of the relatio®”S= 655 and Q"¢)*=qs¢.
Under the assumption thapp*)<M, (M2)* is simplified as

(M6>A=29i<2(qﬁ)Z(T+T*>"K|¢“|2> (62)

and D-term condensation of U(})is written as

contribution fromS to calculateD-term condensations.
The dominanD-term contributions to mixing mass terms
are obtained as

S gD S (TP) +He. (64

The magnitudes are estimated Gsm‘g‘,z(MMM)z) and so
they are negligible in the case thit,<M. Note that the
contribution of O(m3,) such asg?(D*)(H,)¢*(T*¢)*
vanishes from gauge invariance of the holomorphic part of
¢* in the Kahler potential.
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4. Extra F-term contributions 52(6&<N)W)

After the integration of complex heavy fields® and _ i ~ K i ~ K TN
Nambu-Goldstone multipletg?, the following F-term con- = MaHaong ¢ = (Fi){H 00 ¢ = (FiXKG o) &
tributions appear in the low-energy effective scalar potehtial (67)
[28,35:

and
vexiaF— _ | 52(D W) 2+ 62(DXW*)[ LAy 34" (F3)=((K™H(m3(K") = (F')(K})), (68)
+Mgp0K i — (Fi) Kk — e (H M) ! respectively. Hereg(D W) is defined as
— L (HTIM)Y 3% 1+ H.c.+ | 52D oo W) |2 . K\ -
miL( )= ] | (Dam )| 5(DSW)E< 3s+M_;)W>- (69)
IW
+(F%) ——+H.c., (65) ) . _
10N Further, W= (exp/2M?))W and W is, in general, written
as
where s2(DW), §%(D,mW), and(F®) are given as a1l
W= 3 upoep” ¢+ ahPQR¢P¢Q¢R+ R (70)
(D W) = — (1™ D S(DM)hH BT, (66)  Scalar masses are given as
|
Voitmass (Veoit mastk &1 (7D

(Ve P A= — (u ™ HKES(DIW* ) g ™1 em (D W) AM! —{ (™ HKES(DSW* ) g f e (H MM+ (Fi)(K )T+ H.c}

+ (M H o) = (F)(H o) (M HTE ™ = (FIYHTE™) (PR WF (K ). (72)

We discuss conditions thatVE§aFf )l is neglected. If ing two parts. One is a radiative correction betwéérand

Yukawa couplings among heavy, light, a@g singlet fields M, . This contribution Amz),”(|,\,|_,MI is given ag39]

are small enoughO(ms,/M,)], the first and second terms

are neglected. If we impode-parity conservation, the third >

and last terms are forbidden since bilinear couplings bet\Neen(AmZmM_)MI =— 2 —Cz(Rﬁ)[Mi(M - Mi(M)]&ﬁ

Nambu-Goldstone and light fields aReparity odd. Here, we @ ba

define theR parity of ¢ as 1

. . . +2 - QRISs(M) ~Se(M)]8), (74)

R(¢* )=+1, R($)=R(¢")=-1 5 Te

5. Formula of soft scalar masses ag(M))

Sg(M))= ag(M) ———S5g(M), (79

Using scalar mass term&2), we have the following
mass formula for light scalar fields at the energy sddle

2)idm, = M3+ Vo) &+ m3,Ccos on Se(1) =2 Qkng (M)(1), (76)

a a extra F
+E 9 <D M(ADict (Vesitmasdi where a runs all the gauge groups bt runs only nona-

mix nomalous W1) gauge groupsif Gg, includes U1)'s, their
+ (Vsott mas§k+( soft mas%kv (73 contributions should be adde@hose charge operators are
QK. C,(R%)'s are the second order Casimir invariants,

where W2 )\ is a sum of contributions related to renor- M,'S are gaugino masses, ang_is the multiplicity. Here,
malization effects fronM to M, and consists of the follow- we neglect effects of Yukawa couplings. It is straightforward
to generalize our results to the case with large Yukawa cou-
plings. Here, we use the anomaly cancellation condition
®Here, we neglect the terms &f(m3,(M,/M)?) asM, <M. ZRKCZ(Ri)Q(REZ)anzo and the relation of orthgonality
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ERKQ(RB)QEB')anbBéBB,. Note that there is no contribu-
tion related to U(1) symmetry since it is broken afl.

The other isD-term contribution due to mass spliting ™M
which is induced by mass renormalization. We denote it by
(Am%)L|MHMI. This contribution is given as

2__ 2
c=m3,| 1+cogd

<2 qi'nx(T+T*)”*|¢”lz>

(AMD)idm—m, =2 GA(ADN)(G)}, (77) x| = ag - (79
@ <§ (ay )2(T+T*>“»|¢K|2>
where .
If qk(EAqf'nA(T+T*)”A|¢‘|2>>0, squared soft masses
g(ADY)= —2(M\72)5‘Bg;; mZ can easily become negative, especially for larger value of
cos.
~ N In the limit that co46—0, i.e., the dilaton-dominant
* 2\ A BYM 1 K ’ ’
X < K;ﬂ $x(Am )ﬂ|M%M|(q Vi d" ). (78) SUSY breaking, we obtain universal soft squark masses with

equal quantum numbers undéisy,, mi=ms, [43,21. In
order to realize degenerate soft scalar masses in the other

In the same way, we must consider the effects of radiativg,alueS of cos, one needs a “fine-tuning” condition as

corrections Amz)lklMlﬂer and (Am%)L|MIHM|, to obtain
scalar mass formula in the case with a lower symmetry- )

breaking scaléM,,. <; qf'nA(T+T*)“A|¢*|2>

Ang=Adq3 -

E. Degeneracy and positivity <E (qf/)z(T+T*)”%|¢"|2>

Here, we discuss phenomenological implications of our »
soft scalar mass formula, especiallyterm contributions at
the tree level, considering simple cases. In gen&alerm If fields with nonvanishing VEVs have the same modular
contributions are comparable wifirterm contributiongthe  weight, i.e., the same Kder metric, theD-term contribu-
first and second terms in the RHS of E@3)]. Our formula  tions on soft scalar masses vanish due toDk#atness con-
could lead to a strong nonuniversality of soft scalar masseglition. This fact is important. This situation can happen in
Recently, much work is devoted to phenomenological impli-some cases. In these cases, degeneracy of soft masses is re-
cations of the nonuniversalif27,28,4Q. In addition, various  alized for fields with the same values of modular weights.
researches of soft scalar masses have been done in the pr&sie example for the vanishirg-term contribution is shown
ence of anomalous (@) symmetry[23—26,41. in the next section.

Experiments for the process of flavor-changing neutral Another interesting example is the case where enhanced
current (FCNC) require that Am%/m§,2~ 10°2 for the gauge symmetries break by VEVs of moduli fields in orbi.—.
squarks §1,,) of the first and the second families with folq models. G_auge symmetries are enhanced at specific

. L2 points of moduli spaces, where some massless stataso
equal quantum numbers undégy in tzhe case W'trm?iwl appear in the untwisted sector. For examgg, orbifold
TeV [42]. Hence, we should derivAma/mé,ﬁO within the  models have enhanced Uf13ymmetries. Here, we expand
level of ~10"2. Here and hereafteAXaE|Xal—X52| and moduli fields 7; around these points so that vanishing or

a~0 denote such meaning. We examine the degeneracy af®nvanishing VEVg7;) correspond to unbroken or broken
the positivity of squared soft scalar masses, which is an inienhanced symmetries. Neithey nor 7; has well-defined

tial condition atM, , in the case that there are neither particlecharges under the (@)'s and wetake linear combinations
mixing in the Kler potential, nor heavy-light mass mixing Si. Which have definite W) charges[44]. These fieldss,
effects, nor extraF-term contributions. Further, we take have the same Kder metric. If only these fields; develop
V=0, i.e.,C?=1, and consider the case that there are no/EVs and no symmetry other than enhanced symmetries
mixing elements between U(4)and other symmetries in breaks,D-term contributions on soft scalar masses vanish,
: rces which threaten thé)ecause_ enhanced symmetries are anomaly-free and fields
radiative corrections arg]evelopmg VEVs have the same Ilar metric.

(80)

(M\Z,) @B There exist many other sou
suppression of FCNC process, e.g.,
D-term contributions due to horizontal symmetries broken at
the scale belowM, . They are not discussed here, but should 2. Anomalous U(1) case
be considered in the search of a realistic model. Here, we study models with an anomalougllUsymme-
try. In this case, soft scalar masses are obtainéll as
1. Anomaly-free symmetry case

Here, we consider models with an anomaly-free symme-
try. In this case, soft scalar masses are obtained at the treé®Throughout this subsection, we omit the superscéipin the
level as U(1)a chargegy and the subscripg in Ang andAdg.
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Ik - mg (f(a)
2_m2.|1 20+ —(f 1—6sir? X 15t =
—(f(ayny))cos 6} |, (81) 2 f —(f
wheref(a,) denotes Eq(14). Here(f(q,)) does not vanish M2 » (86)

for a finite value of S) because of th®-vanishing condition
of U(1), . Itis remarkable that even if c6s0, theD-term Squared soft scalar masses become easily negative for
contribution does not vanish. That is different frdterm qf in the f h hy hg
contributions due to the breakdown of anomaly-fre€l)U Ak (_qx_))>0 n t_e c;rmer case. On the other an(_j, we
symmetries. In general, nonuniversal soft scalar masses apgtam likely negativem for aii(f(d,))—(f(axn))} <0 in

obtained even if ca&=0. thev\llatt?]r casg_. d imol h | field
The D-term contribution vanishes if the following fine- € nave CdISCUSSEd a Simple case where only one fie

tuning condition is satisfied: X develops its VEV in Ref[24].

[6<f(qx)>—<f(qu)>]Sin29=<f(qx)>—<f(qxnx)>-(82) IV. ANALYSIS ON EXPLICIT MODEL

A. Flat direction
We have(f(q,n,))=n,(f(q,)) in the case where the fields

in the summatioqf(q,n,)) have the same modular weight
n, . In this case Eq(82) reduces as

In this section, we study U(}L)breaking effects and de-
rive specific scalar mass relations by using an explicit model
[46]. The model we study is th&; orbifold model with a

(6—n,)sirfd=1—n, . (83  shift vectorV and Wilson linesa; andas such as
For ny,=1, the moduli-dominant SUSY breaking, i.e., V=3(1,1,1,1,2,0,002,0,0,0,0,0,0.0,
sing=0, satisfies this condition although this modular weight
n, =1 is not naturally obtainefll8,45. The modular weight a,=3(0,0,0,0,0,0,0,20,0,1,1,0,0,0,0,
satisfyingn, <0 leads to &< sirf<1 for Eq. (83).
Degenerate soft squark masses are obtained for differ- a;=1%(1,1,1,2,1,1,1,01,1,0,0,0,0,0,0.

ences of modular weights and U(lghargesAn andAq in
the case where the following fine-tuning condition is satiS—nis model has a gauge group as
fied:

[<f(Q72\)>An+6<f(Q>\)>Aq_<f(Q>\n>\)>]CO§0 G=SU(3)c X SU(2) X SU(2)rX U(1)’
=5(f(ay)Aa. (84) X SQ(8)' X SU(2)".

Soft scalar masses are written for two extreme cases dbne of U(1Y is anomalous. This model has matter multi-
the SUSY breaking, i.e., c6s0 and 1 as plets as

U-sec.: 3(3,2,1)+ (3—,1,2)0+ (1,2,20]1+3[(8,25+ (1,1 5],
T-sec(Nposc=0): 9[(3,1,1),4+ (3—,1,1)4] +15(1,2,1)4+(1,1,2,4]+3(1,2,2,+3[(1,2,)(1,2_ ,+(1,1,2(1,2"_,]
+24(1,2" ,+60(1,1,1),+3(1,1,) _g,

T'SEC(NOSCZ_I/S): 9(1,1,1)4,

where the number of suffix denotes the anomalou$) U u: Q,=(0,0,0,0-6,6,0),
charge defined a@*=Qs— Qg and Npsc is the oscillator
number. This model has ©*=864. The W1) charge gen- Y: Q,=(0,—4,-4,02-20

erators of U(1} are defined in Table II.

This model has many SU(8XSU(2) XSU(2); sin-
glets as shown above. These fields are important for flat di-
rections leading to realistic vacua. For example, this model
includes the following SU(3)X SU(2), X SU(2)g singlets: D3: Qa=(6,4,0-2,-2,0-2),

S Qa=(0,—4,—4,0-4,4,0),
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TABLE Il. U(1) charge generators in terms of¥Ej; lattice TABLE Ill. The modular weights and broken(l) charges for
vectors. the light scalar fields and the scalar fields with large VEVs. An
anomalous (1) chargeQ” is defined a®)”=Q;— Q4. We denote
Q:=6(1,1,1,0,0,0,0,0)(0,0,0,0,0,0,0'0) the third component of generators of @ asT® and the number
Q,=6(0,0,0,15-1,0,0,0)(0,0,0,0,0,0,0,0) in the seventh column represents the eigenvalue T Zor the
Q3=6(0,0,0,0,0,1,1,0)(0,0,0,0,0,0,0,0) field component with VEV.
Q,=6(0,0,0,0,0,0,0,1)(0,0,0,0,0,0,0/0)
Qs=6(0,0,0,0,0,0,0,0)(1,0,0,0,0,0,0,0) String states  n, Q' \3Q'? 2Q'®* Q* 7%
Qs=6(0,0,0,0,0,0,0,0)(0,1,0,0,0,0,0/0)
Q,=6(0,0,0,0,0,0,0,0)(0,0,1,1,0,0,0,0) Qu -1 6 0 -6 0 0
Qx -1 -6 0 -6 0 0
H -1 0 0 12 0 0
' _ _ L (Ly) -2 -2 0 -2 4 0
D) Qa=(6,4,0,2-2,0,2), . 2 ° 2 ) :
. o _ _ L’ (L) -2 -2 0 -2 4 0
Ds: Qa=(—6,0,4-2,0,2-2), o I IS
Dg: Q.=(-6,04,2,02.2, R"(Ry) -2 2 0 —2 4 0
R’ (Ry) -2 2 0 -2 4 0
where U(1) chargexQ, (a=1,2,...,7) araepresented in
the basis of Table II. Here, we follow the notation of the ! -1 0 0 0 —12 0
fields in Ref.[46] except theD, fields. TheseD/ fields are 3 0 0 -8 4 0
SU(2)’ doublets in the nonoscillated twisted sector with Sl, -2 0 0 -8 -8 0
n,=—2, corresponding td; fields in Ref.[46]. The others DC;‘ -2 6 -6 4 —2 1
are singlets under any non-Abelian group. Thield corre- Dy —2 6 6 4 -2 -1
sponds to the untwisted sector with= —1. In addition,S; Ds -2 -6 —6 4 -2 1
corresponds to the nonoscillated twisted sector witk —2  Ds -2 -6 6 4 -2 -1

andY corresponds to the twisted sector with a nonvanishing
oscillator number. Thus, the fieM has the modular weight

ny=—3. There exist vacuum solutions up @&(mz,,) [46], of fields in Ref.[46]. Chiral multiplets are denoted &5 for

left-handed quarksQg right-handed quarksl. for left-

(T+T*)"Yu|2 =04, (87) handed !eptons, ani for right-handed leptons. In addition,
H are Higgs QOL_lbIets. N _
(T+T5)3|Y| = ((T+T*) D42 = ((T+T*)"2|D}/?) The D-vanishing condition for U(1 requires
= 52
U2, GS
—12v,—123=0. 88
<s+s* 1 3 (88)

(THT*) 2SS A =((T+T*)"?D}/?)

—(THT*) D% =0, Using the solution87), we have

wherev;=0. Along this flat direction, the gauge symmetries (f(m))=~v1=Tvo6vs, ®9
break as U(19xSU(2) —U(1)3. One of the unbroken (F(1)) =01+ 30,+ 3vs. (90)
U(1)3 charges corresponds @Qg_, . Here, we define the
broken charges as For simplicity, we study the solution,
Q1=3(2Q:+Q2—Q3—Qs—Qo), 1] Shg , ,
01:1_2< S+S*>’ v=0(mM3,), v3=0(M3y). (99)

1
»=—"=(2Q4+Q7), _ ,
Q: V3 Qe Qr Using TIQ”=864 and(ReS)~2, we estimatay;~M?/53.
In this case, a single symmetry U(l)s broken atM. The
1 other extra symmetries could break radiatively at some inter-

Q3= \/§(Q2+ Q3). mediate scales.

B. Soft mass relations

QAEQs_QG,T/sa . - .

We derive specific relations among soft scalar masses.
where T'? is a third component of generators of SU(2) The basic idea and the strategy are the same as those in Refs.
Note that the gauge boson mass matrix is not diagonalized if27—29. The SUSY spectrum at the weak scale, which is
this definition of charges. The modular weights and brokerexpected to be measured in the near future, is translated into
charges of the light scalar fields and the fields with VEVs areghe soft SUSY-breaking parameters. The values of these pa-
given in Table lll. For the light fields, we follow the notation rameters at higher energy scales are obtained by using the
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renormalization group equationRGEsg [39]. In many TABLE IV. The particle contents and the ratiosrof/m3,. We
cases, there exist some relations among these parametemfer to the chiral multiplets aQ, for left-handed quarksQg for

They reflect the structure of high-energy physics. Hence, wéight-handed quarks: for Higgs doublets| for left-handed lep-
can specify the high-energy physics by checking these relgens, andR for right-handed leptons. The fields’, L" andR’,

tions. R’ are extra SU(2) and SU(2} doublets, respectively.
The generic formula of scalar mass is given as &§).
We have the same number of observable scalar masses as mzIm3
that of species of scalar fields, e.g., 17 observables in the A
MSSM. There are several model-dependent parameters in the Rep. i cos§=0  cose=1
RHS of Eq.(73) such asm§,2+VO, co¥, and so on. If the y-sec. Q. (3,2,1) 0 1 0
number of independent equations is more than that of un- Qr (3,1,2) 0 1 0
known parameters, nontrivial relations exist among scalar H (1,2,2) 0 1 0
masses. sec. L (1,2,1) 4 8/3 —5/3
We assume that Yukawa couplings among heavy ané[N _0) R (1.1,2) 4 8/3 _5/3
light fields are small enough and tReparity is conserved. In  * " °°¢ N
L' (1,2,1) 4 8/3 -5/3
such a case, we can neglect the effect of ekti@rm con- —_

L | . K ) . L’ (1,2,1) 4 8/3 —5/3
tributions. Since the light fieldg" are equal to just string R (1.1.2) 4 8/3 _5/3
states in this model, there are no mixing terms among heavy —_
and light fields in the Kaler potential. As discussed in Sec. R'(112) 4 8/3 —503
lIIC, there appear no heavy-light mixing terms of
O(mgM,) if Yukawa couplings among heavy, light, and 5 5 ) 5 5 5 5 )
moduli  fields are suppressed sufficiently, i.e., Mg =Mg =My, Mr=mMg, 13n5L=3mt+5m3,2,
(W) =0(mg,/M). At that time, the quantities, and (94)
(0 are simplified as where the tilde represents scalar components.

- - On the top of that, the gaugino m is obtained as
Ne=Nedis (G%4= 0 3y - 92 213 P Jaug bz
Under the above assumptions and excellent features, our M32,,=3m3,,siré. (95

soft scalar mass formula is written in a simple form such as . _ _ _ _
We can use this gaugino mass to obtain a relation not includ-

) , , ing My, as
(M?)y|, = M3+ mgpnico$ 0+ 2 g-(D)ay ’ 5
o 3m6L: M 1/2- (96)
A
=m3, 1+ncofh+ 2—;(5—7co§0) , (93 In the case that the SUSY breaking is induced by the

dilaton F term, there are no modular weight dependence.

Hence, we have a more specific relation such that
where we také/,=0, i.e.,C=1. Here, we use the formula

of D-term condensatiof62) and the values 8m6 zgm%_ 97
L
(f(@M)y=—1201, (f(g"n))=12;, Further, various contributions should be added at lower
energy scales. For example, theterm contribution can ap-
(f(g™?)) =144, . pear after the breakdown of extra gauge symmetries.

In general, original string states are different from the

In this model, the gauge boson mass matrix is diagonalizef!SSM fields in string models includinGsy [46]. The co-

for the components of U(})and U(1), up tom3,/M?. efficientsRY of linear combinations depend on the VEVs of
In Table IV, we give a ratiom?/m3, at M for all light moduli fields. A study of soft masses in such a situation has

species excepBly, singlets in two extreme cases, ges0  Deen carried out by using an explicit modar].
and co$6=1. For codp=1, L; (i=34,5) and R
(j=1,4,5) fields acquire negatlve squared masses and theyr REMARKS ON EXTENSION OF KA HLER POTENTIAL

could trigger a “larger” symmetry breaking including the o6 \ve discuss extensions of our soft mass formula for

dangerous charge symmetry breaking. In addition, we have Gitferent types of Khler potentials. At the one-loop level,

strong nonuniversality of soft masses. However, in thi 'Sthe dilaton fieldS and the moduli fieldT are mixed in the

model, soft masses are degenerate for squarks and slept

HR3hler potential as
with same quantum numbers undBgy because they have P

same quantum numbers under the gauge g@uand same —IN[S+S* +A(T+T*)]-3In(T+T*). (98)
modular weights. Hence, it does not lead to a dangerous
FCNC process. In this case we can obtain the same parametrization of soft

We have the following relations a¥l by eliminating scalar masses as the case without the mixing, i.e.,
model-dependent parameters: A(T+T*)=0, except replacing cé8 as
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(T+T*)2A"(T+T*) VI. CONCLUSIONS AND DISCUSSIONS

— cos 6, 99
3[S+S*+A(T+T*)] ©9 We have derived the formula of soft SUSY-breaking sca-

, . o . lar masses from the effective SUGRA derived from 4D
whereA"(T+T*) is the second derivative &f(T+T*) by  string models within a more generic framework. The gauge
T. ) o group contains extra gauge symmetries including the anoma-

In general, string models have several moduli fields otheyg ;5 1), some of which are broken at a higher energy
than one overall moduli field. In this case, theiF terms  goq1e Sych breaking is related to the flat direction breaking

could contribute on the SUSY breaking and one needs morg, 1o SUSY limit. It is supposed that there are two types of

golds_tlno angles to param_etrlze ther_&erms. For ex_ar_nple, matter multiplets classified by supersymmetric fermion mass
vy(a_dlscuss tr;]e models \I’V':(h lthreﬁ dlagﬁna;l rIFOd.u“..f'h?rdS andD term, i.e., heavy fields and light ones. The physical
(i _1’2.’3_)' These moduli fields have the following tHer scalar fields are, in general, linear combinations of original
potential: . . . )
fields corresponding to massless states in string models.
The mass formula contains the effects of extra gauge
—E In(T;+TF) (100 symmetry breaking, i.eD-term and extré-term contribu-
‘ tions, particle mixing effects, and heavy-light mass mixing
effects. TheD-term contributions to soft scalar masses are
\})arametrized in terms of three types of new parameters in
addition to the goldstino angle, gravitino mass, and vacuum
energy. These contributions, in general, are sizable. In par-
612 1 T — 12~ Tos - ticular, D-term contribution of U(1) survives even in the
(e7(K7) %GTi)=\3Cmgpe'“Ticosp®;, (10D case of the dilaton-dominant SUSY breaking. Theterm
contributions for anomaly-free (@) symmetries vanish at the
Where2i®i2:]__ Using these parameterS;term contribu- tree level if the fields developing VEVs have the same
tions on soft scalar masses are written as modular weight. Extrd-term contributions are neglected in
the case where Yukawa couplings among heavy, light, and
G, singlet fields are suppressed and fReparity is con-
M3+ Vo+3m3,C2 > n;,Cos007, (102 seorved:q In the case thaﬁpthere exist miSiong germs among
' heavy, light, and moduli fields in the ‘léer potential, the
extra contributions can appear after the diagonalization of

wheren;,. is a modular weight ot“ for theith moduli field lar m terms in the presen f heavv-light m Mix-
T;. Similarly, D-term contributions can be written by the use scajar mass terms € presence of heavy-lig ass

. ings of O(mg,M)).
?é?;c)hg?: gzre«':lnrgztde; For example, Bierm condensations We have discussed the degeneracy and the positivity of

squared scalar masses in special cases where there is neither
particle mixing in the Kaler potential, nor heavy-light mass
mixing effects, nor extrd-term contributions. We find that
. the F-term contribution from the difference among modular
<2 qi/niK(T+ T*)”x|¢"|2> weights and theD-term contribution to scalar masses can
K destroy universality among scalar massedlaand/orM; .
a2 e n a2\ This nondegeneracy among squark masses of first and sec-
; () (THT*)"] " ond families endangers the discussion of the suppression of
FCNC process. On the other hand, the difference among
(103 y(1) charges is crucial for the generation of fermion mass
. 3 n hierarchy[31]. It seems to be difficult to make two discus-
where T+T .) « meanslli_ ,(T; +T7) "« sions compatible. As a byway, we can take a model that the
~ Some orbifold models have complex structure modulifermion mass hierarchy is generated due to nonanomalous
f|e|dSL.Ji . In such mOdeIS, a Kder pOtentIal includes holo- U(l) Symmetries and SUSY is broken by the dilaton
morphic parts ofp* as[48] F-term condensation. For example, it is supposed that
anomalies from contributions of the MSSM matter fields are
, canceled out by those of extra matter fields in such a model.
¢e" (104 Further “stringy” i [
gy” symmetries are also useful for fermion
mass generation leading to degenerate soft scalar masses
We can extend our formula into these models. These hold-32], because these symmetries do not indDcterms.
morphic parts are important for mixing of fields. Further, Many fields could acquire negative squared masses and
they could originate the. term with a suitable order, natu- they could trigger a “larger” symmetry breaking including
rally. the dangerous color and/or charge symmetry breaking. This
The Kzhler potential can receive radiative corrections andtype of symmetry breaking might be favorable in the case
be modified by nonperturbative effects. Our approach is gewhereGgy, is a large group like a grand unified group. These
neric and basically available to other types ofika poten-  results might be useful for model building.
tial although one might need more complicated parametriza- We have calculated-term condensations and derived
tion than Egs(44) and(45). specific scalar mass relations by taking an explicit string

cogh—|1

instead of—3In(T+T*) in the case of the overall moduli
field. Here, we parametrize their contributions on the SUS
breaking ag22]

g2,(D%")y= —3m3,C2cog0

(Ti+THUi+U)
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model. It is exp_eqed t_hat such re!ations can be novel probes Ki=n, (T+T*)M 1M, K,”(z(TJr T*)nxgﬁ.
to select a realistic string model since they are model depen-
dent. The determinant oK} is calculated as

The moduli fields have a problem in string cosmology

_ J
because their masses are estimated aS(afi;;) and they A=deK;
weakly couple with the observable matter fields, i.e., through
the gravitational coupling§49]. They decay slowly to the [] (T+T1%)™
observable matter fields. That makes the standard nucleosyn- _ A [1_2 &(T+T*)nK|¢K|z
thesis dangerous. In our model, some linear combinations of (S+S)AT+ T*)2l <~ 3 '
S, T, and other fields such as remain light whosd- terms 5
are ofO(mg;,M) and break the SUSY. It is supposed that the (A2)
couplings between such fields and observable fields arg¢he inverses K~1)] are given as
strongly suppressed to guarantee the stability of the weak S .
scale. Such a problem have to be considered for the light — (K™1)g=(S+S*)% (K Hg=0, (K 1)&=0,
linear combinations, too.
IT (7+1%)™
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APPENDIX: KA HLER POTENTIAL AND ITS +O(|¢|4)
DERIVATIVES IN STRING MODELS ’
The Kanler potentialk in Zy orbifold models is given as (K-1)T=— N(T+T*)px
[4_6] ) *\N N2
32 m(T+T*)"™ ¢
K=—In(S+S*)—3IN(T+T*)+ >, (T+T*)"| |2 N n
K _ K A N2
(A1) ——3<T+T*>¢:[1+§ S (T+T)M ¢ l}
in the case of overall moduli. Here, we neglect higher order +0(¢*|]%
terms related to matter fields. The derivativeoére given '
as 3(T+T*) "«
) (K-1)he ( «
S~ T— K_ 3— n(T+T* )M M2
K3=grerz: K0, K&=0, 2y )" B

3 =(T+T*) "8+ 0(| ¢,
K%WJF 2 N (N = 1)(T+T*)"2[¢~|2,

where ¢ represents scalar field of matter multiplet.
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