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I. INTRODUCTION

Superstring theories~SSTs! are powerful candidates for
the unification theory of all forces including gravity. There
are various approaches to explore four-dimensional~4D!
string models, for example, the compactification on Calabi-
Yau manifolds@1#, the construction of orbifold models@2,3#,
and so on. Effective supergravity~SUGRA! theories have
been derived based on the above approaches@4–6#. The
structure of SUGRA theory@7# is constrained by considering
field theoretical nonperturbative effects such as a gaugino
condensation@8# and stringy symmetries such as duality@9#
in addition to perturbative results.

Effective theories, however, have several problems. First,
there are thousands of effective theories corresponding to 4D
string models. They have, in general, large gauge groups and
many matter multiplets compared with those of the minimal
supersymmetric standard model~MSSM!. We do not know
how to select a realistic model among them from stringy
theoretical point of view yet. Another serious problem is that
the mechanism of supersymmetry~SUSY! breaking is un-
known. To solve these problems, nonperturbative effects in
SSTs and SUSY field theories should be fully understood.1

At the present circumstances, the following approaches
and/or standpoints have been taken. For the first problem,
study on flat directions is important@12#, because effective
theories have, in general, flat directions in the SUSY limit.
Large gauge symmetries can break into smaller ones and
extra matter fields can get massive through flat directions.
Further, flat directions could relate different models in string
vacua. Actually, some models with realistic gauge groups
and matter contents have been constructed based onZ3 orbi-
fold models@13#. Recently, generic features of flat directions
in Z2n orbifold models have been also investigated@14#.

The flat directions based onZ3 orbifold models have been

analyzed considering the existence of anomalous U~1! sym-
metry @U(1)A# because 4D string models, in general, have
the U(1)A symmetry. Some interesting features are pointed
out in those models. For example, Fayet-IliopoulosD term
@15# is induced at one-loop level2 for U(1)A @16#. As a result,
some scalar fields necessarily develop vacuum expectation
values~VEVs! and some gauge symmetries can break down
@12,13#.

For the second problem, some researches have been done
from the standpoint that the origin of SUSY breaking is un-
specified. That is, soft SUSY-breaking terms have been de-
rived under the assumption that SUSY is broken byF-term
condensations of the dilaton fieldS and/or moduli fieldsT
@18–20#. Some phenomenologically interesting features are
predicted from the structure of soft SUSY-breaking terms
which are parametrized by a few number of parameters, for
example, only two parameters such as a goldstino angleu
and the gravitino massm3/2 in the case with the overall
moduli and the vanishing vacuum energy@21#. The cases
with multimoduli fields are also discussed in Ref.@22#. Re-
cently, study on soft scalar masses has been extended in the
presence of an anomalous U~1! symmetry@23–26#.

This strategy for string phenomenology is quite interest-
ing since the soft SUSY-breaking parameters can be power-
ful probes for physics beyond the MSSM such as SUSY-
grand unified theories, SUGRAs, and SSTs. We give two
examples. The pattern of gauge symmetry breakdown can be
specified by checking certain sum rules among scalar
masses. The specific mass relations are derived for SO~10!
breakings@27,28# and for E6 breakings@29#. String models
with the SUSY breaking due to the dilatonF term lead to the
highly restricted pattern in the absence of U(1)A such as
@19,21#

uAu5uM1/2u5A3um3/2u, ~1!

whereA is a universalA parameter, and gauginos and scalar
fields get masses with common valuesM1/2 and m3/2, re-*Electronic address: ykawamu@gipac.shinshu-u.ac.jp

†Electronic address: kobayast@tanashi.kek.jp
1Recently, there have been various remarkable developments in

study on nonperturbative aspects of SSTs and SUSY models
@10,11#.

2Some conditions for absence of anomalous U~1! are discussed in
Ref. @17#.
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spectively. In this way, soft SUSY-breaking parameters can
play important roles to probe a new physics.

The above two approaches are attractive to explore par-
ticle phenomenology beyond the standard model based on
SST. Hence, it is important to examine what features soft
SUSY-breaking terms can show at low energy when we con-
struct a realistic model through flat direction breaking start-
ing from 4D string models with extra gauge symmetries in-
cluding U(1)A .

In this paper, we derive a formula of soft SUSY-breaking
scalar masses from 4D string models within a more generic
framework. We consider effects of extra gauge symmetry
breaking, that is,D-term andF-term contributions, particle
mixing effects, and heavy-light mass mixing effects. Some
phenomenological implications are discussed based on our
mass formula. In particular, we study the degeneracy and the
positivity of squared scalar masses in special cases. The ef-
fects ofD-term contributions are discussed mainly at the tree
level. In addition, we calculate soft scalar masses explicitly
and derive specific relations among them by taking aZ3
orbifold model as an example. They can be useful as a start-
ing point on the analysis of low-energy physics after includ-
ing quantum corrections.

This paper is organized as follows. In the next section, we
explain our starting point reviewing the structure of effective
SUGRA derived from SST in a field theory limit. In Sec. III,
we derive a formula of soft SUSY-breaking scalar masses
and discuss its phenomenological implications. In Sec. III A,
the scalar potential is discussed. In Sec. III B, we discuss
classification of scalar fields. In Sec. III C, we examine the
existence of heavy-light mass mixing. In Sec. III D, a generic
formula of soft scalar masses is given. In Sec. III E, the
degeneracy and the positivity of squared scalar masses are
discussed in special cases. In Sec. IV, the results of Sec. III
are applied to an explicit model. In Sec. V, we remark on
some extensions. Section VI is devoted to conclusions and
discussions. In the Appendix, formulas of the Ka¨hler metric
and its inverse are summarized.

II. EFFECTIVE SUGRA AS A FIELD THEORY LIMIT
OF STRING MODELS

Effective SUGRAs are derived fromZN orbifold models
taking a field theory limit. Here, we assume the existence of
a realistic effective SUGRA, that is, our starting theory has
the following excellent features.

The gauge group isG5GSM8 3U(1)n3U(1)A3H8 where
GSM8 is a group which contains the standard model gauge
group GSM5SU(3)C3SU(2)L3U(1)Y as a subgroup,
U(1)n are nonanomalous U~1! symmetries, U(1)A is an
anomalousU(1) symmetry, andH8 is a direct product of
some non-Abelian symmetries. The anomalies related to
U(1)A are canceled by the Green-Schwarz mechanism@30#.
When gauginos ofH8 condense, they can trigger SUSY
breaking @8#. Or, H8 might be broken by VEVs of some
scalar fields at a higher energy scale. We take a standpoint
that an origin of SUSY breaking is unspecified.

Chiral multiplets F I are classified into two categories.
One is a set of chiral multiplets whose scalar componentsf i

have large VEVs ofO(M ). Here,M is the gravitational scale
defined asM[MPl /A8p and MPl is the Planck scale.

The dilaton fieldS and the moduli fieldsTi j belong to$F i%.
For the present, we treat only the overall moduli fieldT
(T5T15T25T3, Ti j 50 for iÞ j ) and also neglect moduli
fields Ui corresponding to complex structure. Further, we
neglect effects of threshold corrections and anS-T mixing.
Later, we will discuss the case with several moduli fieldsTi
andUi and the case that Ka¨hler potential has anS-T mixing
term. The other is a set of matter multiplets denoted asFk

which contains the MSSM matter multiplets and Higgs mul-
tiplets. Some of them have nonzero U(1)A
@U(1)n, H8# charges and can induce to the U(1)A @U(1)n,
H8# breaking at high-energy scales by getting VEVs. We
denote the above two types of multiplets together asF I . The
matter multiplets areG nonsinglets and correspond to string
states one to one.

We suppose the following situations related to an extra
gauge symmetry breaking.

~1! The U(1)A symmetry is broken atM by VEVs of S
and some chiral matter multiplets.

~2! Some parts of U(1)n and H8 are broken at much
higher energy scales than the weak scale by VEVs of some
chiral matter multiplets. Those VEVs are smaller than those
of S andT, i.e.,

^fk&!^S&,^T&5O~M !. ~2!

This condition is justified from the fact that aD-term con-
densation of U(1)A vanishes up toO(m3/2

2 ) as will be shown.
Here,m3/2 is the gravitino mass defined later.

~3! The rest extra gauge symmetries are broken spontane-
ously or radiatively by the SUSY breaking effects at some
lower scales.

It is straightforward to apply our method to more compli-
cated situations.

We give a comment here. Such symmetry breaking gen-
erates a scaleMI , which is defined as the magnitude of
VEVs of scalar fields, below the Planck scaleMPl . Using the
ratio MI /MPl , higher-dimensional couplings could explain
hierarchical structures in particle physics like the fermion
masses and their mixing angles. Recently, much attention
has been paid to such a study on the fermion mass matrices
@31,32#. In Ref. @31#, U~1! symmetries are used to generate
realistic fermion mass matrices and some of them are anoma-
lous, while stringy selection rules on nonrenormalizable cou-
plings are used in Ref.@32#.

Next, let us explain the three constituents, the Ka¨hler po-
tential K, the superpotentialW, and the gauge kinetic func-
tion f ab , in effective SUGRAs derived from SSTs. Orbifold
models lead to the following Ka¨hler potentialK @4–6#:

K52 ln~S1S* 1dGS
A VA!23ln~T1T* !

1(
k

~T1T* !nkufku21•••, ~3!

wheredGS
A is a coefficient of the Green-Schwarz mechanism

to cancel the U(1)A anomaly andVA is a vector superfield of
U(1)A . Here and hereafter, we takeM51 according to cir-
cumstances. The dilaton fieldS transforms nontrivially as
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S→S2 idGS
A u(x) under U(1)A with the transformation pa-

rameteru(x). The coefficientdGS
A is given as

kA
1/2dGS

A 5
1

96p2TrQA, ~4!

wherekA is Kac-Moody level of U(1)A andQA is a U(1)A
charge operator. Further,nk’s are modular weights of matter
fields fk. The formulas ofnk are given in Refs.@6,18#. The
same Ka¨hler potential is derived from Calabi-Yau models
with the largeT limit up to twisted sector field’s contribu-
tions.

The superpotentialW consists of the following two parts:

W5WNP1Wpert. ~5!

Here,WNP is a superpotential induced by some nonperturba-
tive effects, and it is expected that VEVs ofS andT are fixed
and SUSY is broken owing to this part. The other part
Wpert is a superpotential at the tree level and starts from
trilinear couplings for massless fields

Wpert5 (
k,l,m

f klmfkflfm1•••, ~6!

where Yukawa couplingsf klm generally depend on the
moduli fields T and the ellipsis stands for terms of higher
orders infk. Note that if the above superpotential includes
mass terms such asmklfkfl, a natural order of these
masses is ofO(M ). Thus, we do not include these fields with
mass terms at the tree level.3 The total Kähler potentialG is
defined asG[K1 lnuWu2. The gauge kinetic functionf ab is
given as f ab5Sdab . For simplicity, here we assume that
Kac-Moody levels satisfyka51 because our results on soft
terms are independent of a value ofka . The scalar potential
is given as

V5V~F !1V~D !,

V~F ![eG@GI~G21! I
JGJ23#, ~7!

V~D ![ 1
2 ~Ref 21!abDaDb

5
1

S1S* @Kk~Taf!k#2

1
1

S1S* S dGS
A

S1S*
1Kk~QAf!kD 2

1
1

S1S* @Kk~QBf!k#21
1

S1S* @Kk~TCf!k#2,

~8!

whereGI5]G/]f I andGJ5]G/]fJ* , and (Ref 21)ab and
(G21) I

J are the inverse matrices of Ref ab and GI
J , respec-

tively. The indicesI , J, . . . run all scalar species, the index
a (B, C) runs generators of theGSM8 @U(1)n, H8# gauge
group, andQB’s are U(1)n charge operators. Note that the
Fayet-IliopoulosD term appears inV(D) for U(1)A if we
replaceS by its VEV @16,12,13#.

By the use of the Ka¨hler potential ~3!, D terms for
U(1)A and U(1)n are given as

DA5
dGS

A

S1S*
1(

k
~T1T* !nkqk

Aufku2 ~9!

and

DB5(
k

~T1T* !nkqk
Bufku2, ~10!

whereqk
A(B) is the U(1)A@U(1)n# charge of the scalar field

fk and we neglect the contributions from higher order terms
@which is denoted as the ellipsis in Eq.~3!# in K.

Finally, let us give our assumption on the SUSY breaking.
The gravitino massm3/2 is given by

m3/25 K eK/2M2 W

M2L , ~11!

where the angular brackets denote the VEV of the quantity.
In the next section, it will be often taken to be real as a phase
convention. TheF-auxiliary fields of the chiral multiplets
F I are defined as

FI[MeG/2M2
~G21!J

I GJ. ~12!

It is assumed that SUSY is broken by theF-term condensa-
tions of f i such that4

^Fi&5O~m3/2M !. ~13!

In this case, stationary conditions ofV by f I require that
VEVs of D-auxilary fields should be very small, i.e.,
^Da&<O(m3/2

2 ) and^V(D)& should vanish up toO(m3/2
4 ), i.e.,

^V(D)&5O(m3/2
4 ) @34,35#.

III. DERIVATION OF SOFT SCALAR MASS FORMULA

A. On scalar potential

The effective theories derived from SSTs have, in general,
flat directions in the SUSY limit, which can be a source to
break gauge symmetries@12#. In this subsection, we discuss
the VEVs of scalar fields in the framework of SUGRA with
U(1)A . The reasons are as follows. First, we should specify
the symmetry-breaking mechanism including U(1)A and its
scale. It is known that the breaking scale is fixed from

3The electroweak symmetry breaking requires the Higgsino mass
of O(m3/2). This mass term called them term can be generated
through nonperturbative effects and/or nonrenormalizable interac-
tions @33#. The WNP includes mass terms generated nonperturba-
tively.

4It is also applicable to the case of SUSY breaking by gaugino
condensations@8# because the dynamics are effectively described
by a nonperturbative superpotential forf i after integrating out
gauginos. However, it is required to extend our discussion for the
SUSY-breaking scenario due to matter fields with U(1)A @26#.
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D-vanishing condition of U(1)A in the SUSY limit @12#.
Second, we should classify scalar fields in a well-defined
manner to derive low-energy effective theory. That is, we
need to specify light fields which appear in a low-energy
spectrum.

Using the notation

f ~ak![(
k

ak~T1T* !nkufku2 ~14!

and the formulas in the Appendix, we can writeV as

V5V~F !1V~D !, ~15!

V~F ![eGFU12~S1S* !
WS

W U2

13S U12~T1T* !
WT

W U2

21D
1U12~T1T* !

WT

W U2

f ~nl!1 f ~1!G , ~16!

V~D ![
1

S1S* (a S dGS
A

S1S*
dAa1 f ~qk

a!D 2

, ~17!

where we neglect the higher order terms off (ak).
Using the stationary condition offk, the magnitudes of

dGS
A /(S1S* )•dAa1 f (qk

a) are estimated asO(m3/2
2 ). Under

the assumption that^fk&!^f i&5O(M ), the VEVs off I are
derived iteratively in the following step. First, we obtain the
solution of the stationary conditions]Ṽ(F)/]f i50 ~we de-
note it asf̃ i), where Ṽ(F) is the scalar potential inV(F)

including only hidden fields.5 Second, the VEVs of matter
fields are determined by the following conditions that the
SUSY is not spontaneously broken in the observable sector:

]W

] fk 50, Da50, ~18!

Wpert50, ~19!

where f i ’s are replaced byf̃ i ’s in W and Da. Next, we
solve the condition]V(F)/]f i50. The effect of matter fields
is introduced through the third and fourth terms in Eq.~16!
and then the VEVs off i receive corrections ofO(MI

2/M ).
We can obtain the next order solutions offk from the con-
ditions ~18! and ~19! where f i ’s are replaced by the im-
proved values. The solutions are denoted asf0

k .
In this way, the symmetry breaking at a very large scale is

induced byD-vanishing condition of U(1)A and the order is
given asO„^dGS

A /(S1S* )&1/2
…. We denote it byMI and it is

estimated as;1021M –1022M by using explicit models.
Other symmetry breaking can occur by the SUSY-breaking
effects spontaneously or radiatively at some lower scalesMI 8
thanMI . In the following sections, we discuss only the case
with two typical symmetry-breaking scalesMI @and M

for U(1)A# andm3/2 for simplicity. Our method is applied to
the case with intermediate-breaking scales.

In Ref. @14#, generic flat directions ofZ2n orbifold models
are discussed. In these flat directions, pairs of fields withR

and R̄ representations in the same twisted sector,nR5nR̄ ,

develop their VEVs aŝ R&5^R̄&Þ0. In the case with
U(1)A , some fields get the VEVs such as

^R&5^R̄&5O(MI) and extra symmetries break as a result. A
very small difference can be generated between the VEVs of
pairs of fields such aŝR&5^R̄&1O(m3/2

2 /MI) by SUSY-
breaking effects. It is crucial for the existence of sizable
D-term condensations ofO(m3/2

2 ) @36,28#.
It is an important subject to study the absolute minimum

of scalar potential and the conditions for the vanishing
vacuum energy. Since the nonperturbative superpotential is
not fully understood, we cannot give a definite answer at
present. On the analysis, quantum corrections to the vacuum

5In this first approximation, we neglect theD term of U(1)A be-
cause it is a quantum correction at one-loop level.

TABLE I. The classification of scalar fields and our notation.

Fields Features

f I Massless states in string theory
f i S, T, . . . , ^f i&5O(M )
fk Matter fields,G nonsinglets
fs G0 singlets
fP G0 nonsinglets
fV f0

V5O(MI)
fX f0

X50

f̂K Heavy complex,mKL5O(MI)

f̂k Light complex,mkl5O(m3/2)

f̂â(N) Heavy real,mâ(N)b̂(N)50

f̂H (f̂H,f̂H* )T

f̂L (f̂ l ,f̂ l* )T

f̂H (f̂K,f̂â(N)
)T

Generators Features

Ta All gauge generators

Tâ(N) Off diagonal and broken atMI

Tâ(D) Diagonal and broken atMI ~or M )

Tâ8 Nonanomalous, diagonal, and broken atMI

QA Anomalous U~1!

QB Nonanomalous extra U(1)’s
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energy are also important@37#.

B. Classification of scalar fields

Now, let us explain a procedure to classify scalar fields
using their VEVs, quantum numbers, SUSY fermionic
masses andD terms. We summarize the classification of sca-
lar fields and our notation in Table I.

~1! The observable fieldsfk’s are classified into two
typesfs (G0 singlets! andfP (G0 nonsinglets! whereG0 is
an unbroken gauge group atMI . Among fs’s, we denote
scalar fields with large VEVs ofO(MI) asfV and others as
fX. ThefV’s contribute to an extra gauge symmetry break-
ing. The indicess, t, . . . run G0 singlet observable fields
andP, Q, . . . runG0 nonsinglet observable fields.

~2! We denote the solutions of the stationary conditions
]V/]f I50 as^f I&. The difference betweenf0

k and^fk& is
estimated as follows. Bothf0

P and^fP& should not be large
@O(MI)# sinceG0 is unbroken atMI . The fact that̂ V(D)&
should vanish up to O(m3/2

4 ) leads to the relation
^fV&5f0

V1O(m3/2
2 /MI). We can show that

^fX&5O(m3/2
2 /MX) for MX.m3/2 and ^fX&5O(m3/2) for

m3/2>MX where MX is a SUSY fermionic mass offX if
there exists no large mixing betweenfX and fV in Kähler
potential.6 Hereafter, we use the angular brackets as the VEV
of the quantity in most cases under the above assumptions.

~3! The general form of Ka¨hler potential is given as

K5K̃~f i ,f j* !1Ks
t ~f i ,f j* !fsf t* 1Hst~f i ,f j* !fsf t1H.c.

1KP
Q~f i ,f j* !fPfQ* 1HPQ~f i ,f j* !fPfQ1H.c.

1KsP
Q ~f i ,f j* !fsfPfQ* 1••• ~20!

and the VEVs ofKI
J are estimated as

^KI
J&5S O~1! O~MI /M ! 0

O~MI /M ! O~1! 0

0 0 O~1!
D ~21!

for I 5 i ,s,P andJ5 j ,t,Q, and the magnitude of^HIJ& is the
same order aŝKI

J&. The Kähler metric^KP
Q& is diagonalized

by a combination of some scale and unitary transformations
~we denote it bySP

Q totally! such as

f~D !P5~S21!Q
PfQ, SP

P8^KP8
Q8&SQ8

†Q
5dP

Q , ~22!

where thef (D)P’s are the scalar fields diagonalizing^KP
Q&.

~4! The SUSY fermionic massmPQ is given as

mPQ5
]2Wpert

]f~D !P]f~D !QU
0

~23!

~in the SUSY limit!. We take a basis of scalar fieldsf̂P to
diagonalize the SUSY fermion mass matrixmPQ . Then, the
scalarsf̂P are given as linear combinations off (D)P’s such
as

f̂P5RQ
Pf~D !Q. ~24!

Note that the Ka¨hler metric ^KP
Q& is still diagonalized in

terms off̂P becauseRP
Q is a unitary matrix. The scalar fields

fP are classified either as ‘‘heavy’’ complex fields
f̂K,f̂L, . . . , ‘‘light’’ fields f̂k,f̂ l , . . . , such as
mKL5O(MI), mkl5O(m3/2), or Nambu-Goldstone fields

f̂â(N)
,f̂b̂(N)

, . . . ~which will be discussed just below!.
~5! The gauge generatorsTa are classified into ‘‘heavy’’

~those broken atMI) Tâ,Tb̂, . . . and ‘‘light’’ ~which remain
unbroken abovem3/2) Ta,Tb, . . . . Further, the broken gen-
erators are classified into those with off-diagonal elements

Tâ(N)
,Tb̂(N)

, . . . and diagonal onesTâ(D)
,Tb̂(D)

, . . . . There
exist the so-called Nambu-Goldstone multipletsf̂â’s corre-

sponding to broken generators.G0 singlet fieldsf̂â(D)
’s are

given as some linear combinations offs’s. The D compo-
nents forâ (N) are rewritten as

D â~N!
5f̂P

† @RS21~Tâ~N!
!f#P1•••, ~25!

where we use the diagonalization of Ka¨hler metric. We can
take a basis which satisfies the relation

@RS21~Tâ~N!
!f#Pu05mâ~N!

dâ~N!P, mâ~N!
5O~MI !. ~26!

The f̂â(N)
’s have no large VEVs due toD-vanishing condi-

tion ~18!. The equality from gauge invariance

]2W

]f I]fJ ~Taf!J1
]W

]fJ ~Ta! I
J50 ~27!

leads to mâI50. The imaginary parts off̂â’s are the
would-be Nambu-Goldstone bosons which are absorbed into
the gauge bosons, and the real parts acquire the same mass of
orderMI as that of the gauge bosons fromV(D) in the SUSY
limit. Hence, the Nambu-Goldstone multiplets belong to the
heavy sector.

In the effective SUGRA derived fromZN orbifold models,
the Kähler potential of matter partsK (M ) is given as

K ~M !5(
s

~T1T* !nsufsu21uf̂Pu2

1(
P,Q

n̂P
Q d~T1T* !

^T1T* &
f̂Pf̂Q*

1
1

2 (
P,Q,R

~ n̂P
Rn̂R

Q2n̂P
Q!

@d~T1T* !#2

^T1T* &
f̂Pf̂Q* 1•••,

~28!

where n̂P
Q5(R21)P

RnRRR
Q and we expand the moduliT in

powers ofm3/2 around its VEV such as

T5^T&1dT1d2T1••• ~29!

6This condition is satisfied in SUGRAs from orbifold models if
the Kähler potential has no mixing terms of order 1 betweenfV and
fX in a holomorphic part offk.
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and we neglect the contribution of moduli fieldsUi . D terms
for U~1! symmetries are given as

DA5
dGS

A

S1S*
1(

s
~T1T* !nsqs

Aufsu21(
P,Q

~ q̂A!P
Qf̂Pf̂Q*

1 (
P,Q,R

n̂P
R~ q̂A!R

Qd~T1T* !

^T1T* &
f̂Pf̂Q* 1•••, ~30!

DB5(
s

~T1T* !nsqs
Bufsu21(

P,Q
~ q̂B!P

Qf̂Pf̂Q*

1 (
P,Q,R

n̂P
R~ q̂B!R

Qd~T1T* !

^T1T* &
f̂Pf̂Q* 1•••, ~31!

where (q̂a)P
Q5(R21)P

RqR
aRR

Q . The parametersmPQ andRQ
P ,

in general, depend on the VEV of the moduli fieldT since
Yukawa couplings have a moduli dependence.

C. Heavy-light mixing terms

In this subsection, we estimate magnitudes of heavy-light
mixing mass terms ^VK

k &[^]2V/]f̂K]f̂k* & and

^VKk&[^]2V/]f̂K]f̂k&.7 After some calculations,̂VK
k & is

expressed as

^VK
k &52m̂KL^Ki

Lk&^Fi&1O~m3/2
2 !, ~32!

where m̂PQ[^exp(K/2M2)&mPQ . The mixing mass, Eq.
~32!, can be ofO(m3/2MI) if the Kähler potential has heavy-
light mixing terms of order 1 in a holomorphic part off̂P.

The chirality-flipped scalar mass^VKk& is written as

^VKk&5m3/2̂ GKki&^F
i&2m̂KL^Kki

L &^Fi&1O~m3/2
2 !.

~33!

If there are Yukawa couplings of order 1 among heavy, light,
and moduli fields in the superpotential, the order of the first
term in the right-hand side~RHS! of Eq. ~33! can be
O(m3/2M ). The second term in the RHS of Eq.~33! can be
of O(m3/2MI) if the Kähler potential has mixing terms of
order 1 among heavy, light, and moduli fields. If there are
Yukawa couplings of order 1 among light and moduli fields
in the superpotential, that is,m3/2̂ Gkli&5O(1), theorder of
the scalar masses for light fields can beO(m3/2M ) and the
weak scale can be destabilized in the presence of weak scale
Higgs doublets with such intermediate masses. This is the
so-called ‘‘gauge hierarchy problem.’’ Only when
m3/2̂ GIJJ8&^F

J8& ’s meet some requirements, does the hierar-
chy survive. In many cases, we require the condition@34,35#

m3/2̂ Gkli&^F
i&<O~m3/2

2 !. ~34!

If we impose the same condition to the case withI 5K and
J5 l , we neglect the effect of the first term in the RHS of Eq.

~33!. ~In the following discussions, we require the above
conditions.! In addition, unless there exist mixing terms
among heavy, light, and moduli in the Ka¨hler potential, there
appear no heavy-light mass mixing terms ofO(m3/2MI). In
string models, whether there exist such mixing terms or not
is model dependent.

D. Soft scalar masses

1. Soft scalar mass terms

For convenience, we introduce new notation related to the
classification of scalar fields:

f̂H[S f̂H

f̂H*
D , f̂L[S f̂ l

f̂ l*
D , ~35!

where heavy fieldsf̂H’s stand forf̂K and f̂â(N)
. The light

fields can get VEVs ofO(m3/2) and induce an extra gauge
symmetry breaking, but we treat them as a sum of the VEVs
and fluctuations since both have the same order and our goal
is to derive soft scalar mass formula atMI . We can take
effects of symmetry breaking atO(m3/2) in a similar way.

Scalar mass terms are written as

Vmass5 1
2 $f̂H* HH8

H f̂H81f̂H* ML8
H f̂L8

1f̂L* MH8
†Lf̂H81f̂L* LL8

L f̂L8%, ~36!

where

H[HH8
H

5S ^VH8
H & ^VHH8&

^VHH8& ^VH
H8&

D , ~37!

M[ML8
H

5S ^Vl 8
H& ^VHl 8&

^VHl 8& ^VH
l 8&

D , ~38!

L[LL8
L

5S ^Vl 8
l & ^Vll 8&

^Vll 8& ^Vl
l 8&

D . ~39!

The order of the above mass matrices is estimated as
H5O(MI

2), M5O(m3/2MI), andL5O(m3/2
2 ). Scalar mass

terms are rewritten as

Vmass5 1
2 ~f̂H* 1f̂L* M†H21!H~f̂H81H21M f̂L8!

2 1
2 f̂L* M†H21M f̂L81 1

2 f̂L* Lf̂L8. ~40!

We discuss the implication of each term in Eq.~40!. The first
term is the mass term among heavy fields. After the integra-
tion of the heavy fieldsf̂H1H21M f̂L, there appearD-term
@36,28,35# and extraF-term contributions@28,35# to scalar
masses which will be discussed later. The second term is
new contributions which appear after the diagonalization of
scalar mass terms. This contribution can be sizable, i.e.,
O(m3/2

2 ), if the heavy-light mass mixing isO(m3/2MI). The
last term is a mass term among light fields. Note that the
heavy fieldsf̂H1H21M f̂L and the light fieldsf̂L used here
are different from properly diagonalized fields up to

7The mixing mass betweenf̂P andf i (s) is forbidden from gauge

invariance. The order of the mixing mass betweenf̂K(k) and

f̂â(N)
is estimated asO(m3/2

2 ) and hence its effect is negligible.
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O(m3/2/MI) terms. The final expressions of scalar masses of
O(m3/2

2 ) for light fields are the same whichever we use as a
definition of the scalar fields. Hence, we use the same nota-
tion f̂k and f̂ l* for light scalar fields which are properly
diagonalized. The extra contribution due to the existence of
heavy-light mass mixing terms is expressed as

Vsoft mass
mix [2 1

2 f̂L* M†H21M f̂L8

5~Vsoft mass
mix ! l

kf̂ lf̂k* 1 1
2 ~Vsoft mass

mix !klf̂
kf̂ l1H.c.,

~41!

where

~Vsoft mass
mix ! l

k52^VlK~V21!L
KVLk&2^VlK~V21!KLVL

k&

2^Vl
K~V21!KLVLk&2^Vl

K~V21!K
L VL

k&,

~42!

~Vsoft mass
mix !kl52^VkK~V21!L

KVl
L&2^VkK~V21!KLVLl&

2^Vk
K~V21!KLVl

L&2^Vk
K~V21!K

L VLl&.

~43!

After the diagonalization ofVmass, there exists an extra
term such as2mKLf̂K(H21M )L

Lf̂L in W where we denote

properly diagonalized fields asf̂K and f̂L again. This term
gives a sizable contribution to soft terms through]W/]f̂K.

2. Parametrization

For the analysis of soft SUSY-breaking parameters, it is
convenient to introduce the following parametrization:

^eG/2~KS
S!21/2GS&5A3Cm3/2e

iaSsinu, ~44!

^eG/2~KT
T!21/2@GT1~KT

T!~K21!k
TGk#&5A3Cm3/2e

iaTcosu.
~45!

Then the vacuum energyV0 is written as

V05^eG@GI~G21! I
JGJ23#&53~C221!m3/2

2 1V0
~M ! ,

~46!

V0
~M !5m3/2

2 ^ f ~1!&~3C222! ~47!

up to ^ f (ak)&2. Relation ~2! implies the relation
^Gk&!^GS&,^GT&. In this case, the parametrization~45! be-
comes simpler such as

^eG/2~KT
T!21/2GT&5A3Cm3/2e

iaTcosu ~48!

andV0 is dominated by the first part, i.e.,

V053~C221!m3/2
2 . ~49!

Soft SUSY-breaking scalar mass terms are given as

Vsoft mass
~0! 5~m3/2

2 1V0!(
k

^~T1T* !nk&ufku2

1(
k

^FI&^KIk
I 8 ~K21! I 8

J8KJ8
Jk

2KIk
Jk&^FJ* &

3^~T1T* !nk&ufku2 ~50!

before heavy fields are integrated out. By the use of the
parametrization,Vsoft mass

(0) for f̂P is rewritten as

Vsoft mass
~0! 5(

P
~m3/2

2 1V0!uf̂Pu21(
P,Q

m3/2
2 C2cos2un̂P

Qf̂Pf̂Q* .

~51!

After heavy fields are integrated out,8 we have the following
mass terms for light fields at the energy scaleMI :

Vsoft mass5(
k

~m3/2
2 1V0!uf̂ku21(

k,l
m3/2

2 C2cos2un̂k
l f̂kf̂ l*

1Vsoft mass
D 1Vsoft mass

extra F 1Vsoft mass
mix 1Vsoft mass

ren , ~52!

where Vsoft mass
D , Vsoft mass

extra F , Vsoft mass
mix , and Vsoft mass

ren are
D-term contributions at the tree level, extraF-term contribu-
tions which will be discussed in the following subsections,
the contributions due to the existence of heavy-light mass
mixing discussed in the previous section and contributions of
renormalization effects fromM to MI , respectively.

3. D-term contributions

The D-term contributions are given as@36,28,35#,

Vsoft mass
D 5(

k,l
(
â~D !

gâ~D !
2

^D â~D !
&~ q̂â~D !

!k
l f̂kf̂ l* , ~53!

wheregâ(D)’s are gauge coupling constants related to diago-
nal generators broken atMI @andM for U(1)A# and we use
the relation^ReS&51/gâ(D)

2 . We omit the terms whose mag-
nitudes are less thanO(m3/2

4 ). Note that the VEVs ofD
terms vanish for unbroken generators and broken ones with
off-diagonal elements. Hereafter, we omit the index (D)
which means the diagonal generators.

Next, we rewriteVsoft mass
D using the parametrization intro-

duced before. For this purpose, it is useful to adapt to the
following formula of D-term condensations@35#:

gâ^D â&52~MV
22!âb̂gb̂^FI&^FJ* &^~D b̂! I

J&, ~54!

where (MV
22) âb̂ is the inverse matrix of gauge boson mass

matrix (MV
2) âb̂ given as

~MV
2 !âb̂52gâgb̂^„Tb̂~f†!…IKJ

I
„Tâ~f!…J&. ~55!

Here, the gauge transformation off I is given as
d«f I5 iga„Ta(f)…I up to space-time-dependent infinitesi-
mal parameters. The above relation~54! is true at the tree
level.

8The procedure is the same as that in Ref.@38#.
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After some straightforward calculations,D-term conden-
sations are written as

gâ
2
^D â&52gâm3/2

2 H ~MV
22!âAgA~126C2sin2u!

3K (
k

qk
A~T1T* !nkufku2L

2(
b̂

~MV
22!âb̂gb̂C2cos2u

3K (
k

qk
b̂nk~T1T* !nkufku2L J . ~56!

We give some comments. We need to introduce three kinds
of model-dependent quantities such as

K (
k

qk
A~T1T* !nkufku2L , ~57!

K (
k

qk
âqk

b̂~T1T* !nkufku2L , ~58!

K (
k

qk
ânk~T1T* !nkufku2L . ~59!

Their magnitudes are of orderO(MI
2). Note that

^(kqk
â8(T1T* )nkufku2&5O(m3/2

2 ) due to theD-vanishing

condition in the presence of SUSY breaking. Here,â8 runs
over only nonanomalousdiagonal-broken generators. The

^D â& ’s are estimated asO(m3/2
2 ) from Eq. ~54! or Eq. ~56!.

Note that they do not necessarily vanish.
The above formula~56! is practical. The same result is

obtained up toO(m3/2
4 /MI

2) even iff0
k’s are used in place of

^fk& on the calculation ofgâ
2
^D â&. @On the other hand, the

situation is different if we use the formula

D â85(kqk
â8(T1T* )nkufku2 directly, that is,D â8’s always

vanish in the SUSY limit.# Actually, we will calculate
D-term condensations using the formula~54! andf0

k’s in the
next section.

In the case that there are no mixing elements between
U(1)A and other symmetries in (MV

2) âb̂, the mass of U(1)A
gauge boson is given as

~MV
2 !A52gA

2 H K (
k

qk
A~T1T* !nkufku2L 2

1K (
k

~qk
A!2~T1T* !nkufku2L J ~60!

by the use of the relationQAS5dGS and (QAf)l5ql
Afl.

Under the assumption that^fk&!M , (MV
2)A is simplified as

~MV
2 !A52gA

2 K (
k

~qk
A!2~T1T* !nkufku2L ~61!

andD-term condensation of U(1)A is written as

gA
2^DA&5

m3/2
2

K (
k

~qk
A!2~T1T* !nkufku2L H ~126C2sin2u!

3K (
k

qk
A~T1T* !nkufku2L

2C2cos2uK (
k

qk
Ank~T1T* !nkufku2L J . ~62!

Furthermore, at that time,D-term condensations of nona-
nomalous symmetries are given as

gâ8
2

^D â8&52m3/2
2 C2cos2u

K (
k

qk
â8nk~T1T* !nkufku2L

K (
k

~qk
â8!2~T1T* !nkufku2L ,

~63!

where broken charges are redefined by the use of diagonal-
ization of (MV

2) â8b̂8. Using the expression~63!, we can show
that there appears no sizableD-term contribution to scalar
masses at the tree level if a broken symmetry is nonanoma-
lous and SUSY is broken by the dilatonF term, i.e.,
cos2u50. In the case that a large mass splitting arises among
soft scalar masses due to radiative corrections, sizable
D-term condensations can appear and survive even in the
limit of dilaton-dominant SUSY breaking as will be shown
in formula ~78!.

In a simple case that only one fieldX, which has no
charges except the U(1)A charge, gets VEV to cancel the
contribution ofS in DA, the above result is reduced to the
previous one obtained in Ref.@24#. Note that our result is not
reduced to that obtained from the theory with the Fayet-
Iliopoulos D term, which is derived from the effective
SUGRA by taking the flat limit first@23#, even in the limit
that udGS

A /qX
Au!1 unless one treatsS as a dynamical field,

because we use the condition^]V/]f I(QAf) I&50 with the
contribution fromS to calculateD-term condensations.

The dominantD-term contributions to mixing mass terms
are obtained as

(
â

gâ
2
^D â&^Kkl

l &^fl* &fk~Tâf! l1H.c. ~64!

The magnitudes are estimated asO„m3/2
4 (MI /M )2

… and so
they are negligible in the case thatMI!M . Note that the
contribution of O(m3/2

4 ) such asga
2^Da&^Hkl&fk(Taf)l

vanishes from gauge invariance of the holomorphic part of
fk in the Kähler potential.
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4. Extra F-term contributions

After the integration of complex heavy fieldsf̂K and
Nambu-Goldstone multipletsf̂â, the followingF-term con-
tributions appear in the low-energy effective scalar potential9

@28,35#:

Vextra F52ud2~D̂KŴ!u21d2~D̂KŴ* !@ 1
2 ĥKklf̂

kf̂ l

1m3/2dKK2^Fi&dKK
i 2m̂KL~H21M ! l

Lf̂ l

2m̂KL~H21M !Llf̂ l* #1H.c.1ud2~D̂ â~N!Ŵ!u2

1^Fs&
]Ŵ

]f̂s
1H.c., ~65!

whered2(D̂KŴ), d2(D̂a(N)Ŵ), and^Fs& are given as

d2~D̂KŴ!52~m̂21!KLd~DsŴ!ĥsLlf̂ l* , ~66!

d2~D̂ â~N!Ŵ!

5m3/2̂ H â~N!k&f̂
k2^Fi&^H â~N!k

i
&f̂k2^Fi&^K â~N!

i l
&f̂ l*

~67!

and

^Fs&5^~K21! t
s&~m3/2* ^Kt&2^Fi&^Ki

t&!, ~68!

respectively. Here,d(DsŴ) is defined as

d~DsŴ![ K S ]s1
Ks

M2D ŴL . ~69!

Further,Ŵ[^exp(K/2M2)&W and Ŵ is, in general, written
as

Ŵ5 1
2 m̂PQf̂Pf̂Q1

1

3!
ĥPQRf̂Pf̂Qf̂R1•••. ~70!

Scalar masses are given as

Vsoft mass
extra F 5~Vsoft mass

extra F !k
l f̂kf̂ l* , ~71!

~Vsoft mass
extra F !k

l [2~m̂21!KLd~DsŴ* !ĥsLk~m̂21!KMd~DtŴ!ĥtMl2$~m̂21!KLd~DsŴ* !ĥsLk@m̂KM~H21M !Ml1^Fi&^KK
il &#1H.c.%

1~m3/2̂ H â~N!k&2^Fi&^H â~N!k
i

&!~m3/2* ^H†â~N!l&2^F j&^H j
†â~N!l&!1^Fi&^Kik

â~N!

&^F j&^K â~N!
j l

&. ~72!

We discuss conditions that (Vsoft mass
extra F )k

l is neglected. If
Yukawa couplings among heavy, light, andG0 singlet fields
are small enough@O(m3/2/MI)#, the first and second terms
are neglected. If we imposeR-parity conservation, the third
and last terms are forbidden since bilinear couplings between
Nambu-Goldstone and light fields areR-parity odd. Here, we
define theR parity of f̂P as

R~f̂â~N!
!511, R~f̂K!5R~f̂k!521.

5. Formula of soft scalar masses

Using scalar mass terms~52!, we have the following
mass formula for light scalar fields at the energy scaleMI :

~m2!k
l uMI

5~m3/2
2 1V0!dk

l 1m3/2
2 C2cos2un̂k

l

1(
â

gâ
2
^D â&~ q̂â!k

l 1~Vsoft mass
extra F !k

l

1~Vsoft mass
mix !k

l 1~Vsoft mass
ren !k

l , ~73!

where (Vsoft mass
ren )k

l is a sum of contributions related to renor-
malization effects fromM to MI and consists of the follow-

ing two parts. One is a radiative correction betweenM and
MI . This contribution (Dm2)k

luM→MI
is given as@39#

~Dm2!k
luM→MI

52(
a

2

ba
C2~Rk

a!@Ma
2~MI !2Ma

2~M !#dk
l

1(
B

1

bB
QRk

~B!@SB~MI !2SB~M !#dk
l , ~74!

SB~MI !5
aB~MI !

aB~M !
SB~M !, ~75!

SB~m![(
Rk

QRk

~B!nRk
~m2!k

k~m!, ~76!

where a runs all the gauge groups butB runs only nona-
nomalous U~1! gauge groups@if GSM8 includes U~1!’s, their
contributions should be added# whose charge operators are
QRk

(a) , C2(Rk
a)’s are the second order Casimir invariants,

Ma’s are gaugino masses, andnRk
is the multiplicity. Here,

we neglect effects of Yukawa couplings. It is straightforward
to generalize our results to the case with large Yukawa cou-
plings. Here, we use the anomaly cancellation condition
(Rk

C2(Rk
a)QRk

(B)nRk
50 and the relation of orthgonality9Here, we neglect the terms ofO„m3/2

4 (MI /M )2
… asMI!M .
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(Rk
QRk

(B)QRk

(B8)nRk
5bBdBB8. Note that there is no contribu-

tion related to U(1)A symmetry since it is broken atM .
The other isD-term contribution due to mass splitting

which is induced by mass renormalization. We denote it by
(DmD

2 )k
l uM→MI

. This contribution is given as

~DmD
2 !k

l uM→MI
5(

â

gâ
2
^DD â&~ q̂â!k

l , ~77!

where

gâ^DD â&[22~MV
22!âb̂gb̂

3K (
k,l,m

f̂l* ~Dm2!m
l uM→MI

~ q̂b̂!k
mf̂kL . ~78!

In the same way, we must consider the effects of radiative
corrections (Dm2)k

l uMI→MI 8
and (DmD

2 )k
l uMI→MI 8

to obtain
scalar mass formula in the case with a lower symmetry-
breaking scaleMI 8.

E. Degeneracy and positivity

Here, we discuss phenomenological implications of our
soft scalar mass formula, especiallyD-term contributions at
the tree level, considering simple cases. In general,D-term
contributions are comparable withF-term contributions@the
first and second terms in the RHS of Eq.~73!#. Our formula
could lead to a strong nonuniversality of soft scalar masses.
Recently, much work is devoted to phenomenological impli-
cations of the nonuniversality@27,28,40#. In addition, various
researches of soft scalar masses have been done in the pres-
ence of anomalous U~1! symmetry@23–26,41#.

Experiments for the process of flavor-changing neutral
current ~FCNC! require that Dmq̃

2 /m3/2
2 ;1022 for the

squarks (q̃1 , q̃2) of the first and the second families with
equal quantum numbers underGSM in the case withmq̃

2
;1

TeV @42#. Hence, we should deriveDmq̃
2 /m3/2

2 '0 within the
level of ;1022. Here and hereafter,DXq̃[uXq̃1

2Xq̃2
u and

a'0 denote such meaning. We examine the degeneracy and
the positivity of squared soft scalar masses, which is an ini-
tial condition atMI , in the case that there are neither particle
mixing in the Kähler potential, nor heavy-light mass mixing
effects, nor extraF-term contributions. Further, we take
V050, i.e., C251, and consider the case that there are no
mixing elements between U(1)A and other symmetries in
(MV

2) âb̂. There exist many other sources which threaten the
suppression of FCNC process, e.g., radiative corrections and
D-term contributions due to horizontal symmetries broken at
the scale belowMI . They are not discussed here, but should
be considered in the search of a realistic model.

1. Anomaly-free symmetry case

Here, we consider models with an anomaly-free symme-
try. In this case, soft scalar masses are obtained at the tree
level as

mk
25m3/2

2 F 11cos2u

3S nk2qk

K (
l

ql
â8nl~T1T* !nluflu2L

K (
l

~ql
â8!2~T1T* !nluflu2L D G . ~79!

If qk^(lql
â8nl(T1T* )nluflu2&.0, squared soft masses

mk
2 can easily become negative, especially for larger value of

cosu.
In the limit that cos2u→0, i.e., the dilaton-dominant

SUSY breaking, we obtain universal soft squark masses with
equal quantum numbers underGSM, mk

25m3/2
2 @43,21#. In

order to realize degenerate soft scalar masses in the other
values of cosu, one needs a ‘‘fine-tuning’’ condition as

Dnq̃5Dqq̃

K (
l

ql
â8nl~T1T* !nluflu2L

K (
l

~ql
â8!2~T1T* !nluflu2L . ~80!

If fields with nonvanishing VEVs have the same modular
weight, i.e., the same Ka¨hler metric, theD-term contribu-
tions on soft scalar masses vanish due to theD-flatness con-
dition. This fact is important. This situation can happen in
some cases. In these cases, degeneracy of soft masses is re-
alized for fields with the same values of modular weights.
One example for the vanishingD-term contribution is shown
in the next section.

Another interesting example is the case where enhanced
gauge symmetries break by VEVs of moduli fields in orbi-
fold models. Gauge symmetries are enhanced at specific
points of moduli spaces, where some massless statesh i also
appear in the untwisted sector. For example,Z3 orbifold
models have enhanced U(1)6 symmetries. Here, we expand
moduli fields t i around these points so that vanishing or
nonvanishing VEVŝ t i& correspond to unbroken or broken
enhanced symmetries. Neithert i nor h i has well-defined
charges under the U(1)’s and wetake linear combinations
si , which have definite U~1! charges@44#. These fieldssi
have the same Ka¨hler metric. If only these fieldssi develop
VEVs and no symmetry other than enhanced symmetries
breaks,D-term contributions on soft scalar masses vanish,
because enhanced symmetries are anomaly-free and fields
developing VEVs have the same Ka¨hler metric.

2. Anomalous U(1) case

Here, we study models with an anomalous U~1! symme-
try. In this case, soft scalar masses are obtained as10

10Throughout this subsection, we omit the superscriptA in the

U(1)A chargeqk
A and the subscriptq̃ in Dnq̃ andDqq̃ .
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mk
25m3/2

2 F11nkcos2u1
qk

^ f ~ql
2!&

$^ f ~ql!&~126sin2u!

2^ f ~qlnl!&cos2u%G , ~81!

wheref (al) denotes Eq.~14!. Here,^ f (ql)& does not vanish
for a finite value of̂ S& because of theD-vanishing condition
of U(1)A . It is remarkable that even if cosu50, theD-term
contribution does not vanish. That is different fromD-term
contributions due to the breakdown of anomaly-free U~1!
symmetries. In general, nonuniversal soft scalar masses are
obtained even if cosu50.

The D-term contribution vanishes if the following fine-
tuning condition is satisfied:

@6^ f ~ql!&2^ f ~qlnl!&#sin2u5^ f ~ql!&2^ f ~qlnl!&.
~82!

We havê f (qlnl)&5nl^ f (ql)& in the case where the fields
in the summation̂ f (qlnl)& have the same modular weight
nl . In this case Eq.~82! reduces as

~62nl!sin2u512nl . ~83!

For nl51, the moduli-dominant SUSY breaking, i.e.,
sinu50, satisfies this condition although this modular weight
nl51 is not naturally obtained@18,45#. The modular weight
satisfyingnl<0 leads to 0,sin2u,1 for Eq. ~83!.

Degenerate soft squark masses are obtained for differ-
ences of modular weights and U(1)A chargesDn andDq in
the case where the following fine-tuning condition is satis-
fied:

@^ f ~ql
2!&Dn16^ f ~ql!&Dq2^ f ~qlnl!&#cos2u

55^ f ~ql!&Dq. ~84!

Soft scalar masses are written for two extreme cases of
the SUSY breaking, i.e., cosu50 and 1 as

mk
2

m3/2
2

5125qk

^ f ~ql!&

^ f ~ql
2!&

for cosu50, ~85!

mk
2

m3/2
2

511nk1qk

^ f ~ql!&2^ f ~qlnl!&

^ f ~ql
2!&

for cosu51.

~86!

Squared soft scalar masses become easily negative for
qk^ f (ql)&.0 in the former case. On the other hand, we
obtain likely negativemk

2 for qk$^ f (ql)&2^ f (qlnl)&%,0 in
the latter case.

We have discussed a simple case where only one field
X develops its VEV in Ref.@24#.

IV. ANALYSIS ON EXPLICIT MODEL

A. Flat direction

In this section, we study U(1)A-breaking effects and de-
rive specific scalar mass relations by using an explicit model
@46#. The model we study is theZ3 orbifold model with a
shift vectorV and Wilson linesa1 anda3 such as

V5 1
3 ~1,1,1,1,2,0,0,0!~2,0,0,0,0,0,0,0!8,

a15 1
3 ~0,0,0,0,0,0,0,2!~0,0,1,1,0,0,0,0!8,

a35 1
3 ~1,1,1,2,1,1,1,0!~1,1,0,0,0,0,0,0!8.

This model has a gauge group as

G5SU~3!C3SU~2!L3SU~2!R3U~1!7

3SO~8!83SU~2!8.

One of U(1)7 is anomalous. This model has matter multi-
plets as

U-sec.: 3@~3,2,1!01~ 3̄ ,1,2!01~1,2,2!0#13@~8,2!681~1,1!2128 #,

T-sec.~NOSC50!: 9@~3,1,1!41~ 3̄ ,1,1!4#115@~1,2,1!41~1,1,2!4#13~1,2,2!413@~1,2,1!~1,2!228 1~1,1,2!~1,2!228 #

124~1,2!228 160~1,1,1!413~1,1,1!28 ,

T-sec.~NOSC521/3!: 9~1,1,1!4 ,

where the number of suffix denotes the anomalous U~1!
charge defined asQA[Q52Q6 and NOSC is the oscillator
number. This model has TrQA5864. The U~1! charge gen-
erators of U(1)7 are defined in Table II.

This model has many SU(3)C3SU(2)L3SU(2)R sin-
glets as shown above. These fields are important for flat di-
rections leading to realistic vacua. For example, this model
includes the following SU(3)C3SU(2)L3SU(2)R singlets:

u: Qa5~0,0,0,0,26,6,0!,

Y: Qa5~0,24,24,0,2,22,0!,

S1 : Qa5~0,24,24,0,24,4,0!,

D38 : Qa5~6,4,0,22,22,0,22!,
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D48 : Qa5~6,4,0,2,22,0,2!,

D58 : Qa5~26,0,4,22,0,2,22!,

D68 : Qa5~26,0,4,2,0,2,2! ,

where U(1)7 chargesQa (a51,2, . . . ,7) arerepresented in
the basis of Table II. Here, we follow the notation of the
fields in Ref.@46# except theDi8 fields. TheseDi8 fields are
SU~2! 8 doublets in the nonoscillated twisted sector with
nk522, corresponding toTi fields in Ref.@46#. The others
are singlets under any non-Abelian group. Theu field corre-
sponds to the untwisted sector withnu521. In addition,S1
corresponds to the nonoscillated twisted sector withnk522
andY corresponds to the twisted sector with a nonvanishing
oscillator number. Thus, the fieldY has the modular weight
nY523. There exist vacuum solutions up toO(m3/2

2 ) @46#,

^~T1T* !21uuu2&5v1 , ~87!

^~T1T* !23uYu2&5^~T1T* !22uD38u
2&5^~T1T* !22uD68u

2&

5v2 ,

^~T1T* !22uS1u2&5^~T1T* !22uD48u
2&

5^~T1T* !22uD58u
2&5v3 ,

wherev i>0. Along this flat direction, the gauge symmetries
break as U(1)73SU(2)8→U(1)3. One of the unbroken
U(1)3 charges corresponds toQB2L . Here, we define the
broken charges as

Q18[
1
3 ~2Q11Q22Q32Q52Q6!,

Q28[
1

A3
~2Q41Q7!,

Q38[
1

A2
~Q21Q3!,

QA[Q52Q6 ,T83,

where T83 is a third component of generators of SU(2)8.
Note that the gauge boson mass matrix is not diagonalized in
this definition of charges. The modular weights and broken
charges of the light scalar fields and the fields with VEVs are
given in Table III. For the light fields, we follow the notation

of fields in Ref.@46#. Chiral multiplets are denoted asQL for
left-handed quarks,QR right-handed quarks,L for left-
handed leptons, andR for right-handed leptons. In addition,
H are Higgs doublets.

The D-vanishing condition for U(1)A requires

K dGS
A

S1S*
L 212v1212v350. ~88!

Using the solution~87!, we have

^ f ~nl!&52v127v226v3 , ~89!

^ f ~1!&5v113v213v3 . ~90!

For simplicity, we study the solution,

v15
1

12K dGS
A

S1S*
L , v25O~m3/2

2 !, v35O~m3/2
2 !. ~91!

Using TrQA5864 and^ReS&;2, we estimatev1;M2/53.
In this case, a single symmetry U(1)A is broken atM . The
other extra symmetries could break radiatively at some inter-
mediate scales.

B. Soft mass relations

We derive specific relations among soft scalar masses.
The basic idea and the strategy are the same as those in Refs.
@27–29#. The SUSY spectrum at the weak scale, which is
expected to be measured in the near future, is translated into
the soft SUSY-breaking parameters. The values of these pa-
rameters at higher energy scales are obtained by using the

TABLE II. U ~1! charge generators in terms of E83E88 lattice
vectors.

Q156(1,1,1,0,0,0,0,0)(0,0,0,0,0,0,0,0)8
Q256(0,0,0,1,21,0,0,0)(0,0,0,0,0,0,0,0)8
Q356(0,0,0,0,0,1,1,0)(0,0,0,0,0,0,0,0)8
Q456(0,0,0,0,0,0,0,1)(0,0,0,0,0,0,0,0)8
Q556(0,0,0,0,0,0,0,0)(1,0,0,0,0,0,0,0)8
Q656(0,0,0,0,0,0,0,0)(0,1,0,0,0,0,0,0)8
Q756(0,0,0,0,0,0,0,0)(0,0,1,1,0,0,0,0)8

TABLE III. The modular weights and broken U~1! charges for
the light scalar fields and the scalar fields with large VEVs. An
anomalous U~1! chargeQA is defined asQA[Q52Q6. We denote

the third component of generators of SU~2! 8 asT38 and the number

in the seventh column represents the eigenvalue of 2T38 for the
field component with VEV.

String states nk Q81 A3Q82 A2Q83 QA
2T38

QL 21 6 0 26 0 0
QR 21 26 0 26 0 0
H 21 0 0 12 0 0
L (L4) 22 22 0 22 4 0
R (R5) 22 2 0 22 4 0
L8 (L3) 22 22 0 22 4 0

L̄ 8 (L5) 22 22 0 22 4 0

R8 (R4) 22 2 0 22 4 0

R̄8 (R1) 22 2 0 22 4 0

u 21 0 0 0 212 0
Y 23 0 0 28 4 0
S1 22 0 0 28 28 0
D38 22 6 26 4 22 1
D48 22 6 6 4 22 21
D58 22 26 26 4 22 1
D68 22 26 6 4 22 21

56 3855GENERIC FORMULA OF SOFT SCALAR MASSES IN . . .



renormalization group equations~RGEs! @39#. In many
cases, there exist some relations among these parameters.
They reflect the structure of high-energy physics. Hence, we
can specify the high-energy physics by checking these rela-
tions.

The generic formula of scalar mass is given as Eq.~73!.
We have the same number of observable scalar masses as
that of species of scalar fields, e.g., 17 observables in the
MSSM. There are several model-dependent parameters in the
RHS of Eq.~73! such asm3/2

2 1V0, cosu, and so on. If the
number of independent equations is more than that of un-
known parameters, nontrivial relations exist among scalar
masses.

We assume that Yukawa couplings among heavy and
light fields are small enough and theR parity is conserved. In
such a case, we can neglect the effect of extraF-term con-
tributions. Since the light fieldsf̂k are equal to just string
states in this model, there are no mixing terms among heavy
and light fields in the Ka¨hler potential. As discussed in Sec.
III C, there appear no heavy-light mixing terms of
O(m3/2MI) if Yukawa couplings among heavy, light, and
moduli fields are suppressed sufficiently, i.e.,

^ŴHki&5O(m3/2/M ). At that time, the quantitiesn̂k
l and

(q̂a)k
l are simplified as

n̂k
l 5nkdk

l , ~ q̂a!k
l 5qk

adk
l . ~92!

Under the above assumptions and excellent features, our
soft scalar mass formula is written in a simple form such as

~m2!kuMI
5m3/2

2 1m3/2
2 nkcos2u1(

â

gâ
2
^D â&qk

â

5m3/2
2 H 11nkcos2u1

qk
A

12
~527cos2u!J , ~93!

where we takeV050, i.e.,C51. Here, we use the formula
of D-term condensation~62! and the values

^ f ~qA!&5212v1 , ^ f ~qAnk!&512v1 ,

^ f „~qA!2
…&5144v1 .

In this model, the gauge boson mass matrix is diagonalized
for the components of U(1)A and U(1)38 up to m3/2

2 /MI
2 .

In Table IV, we give a ratiomk
2/m3/2

2 at M for all light
species exceptGSM8 singlets in two extreme cases, cos2u50
and cos2u51. For cos2u51, Li ( i 53,4,5) and Rj
( j 51,4,5) fields acquire negative squared masses and they
could trigger a ‘‘larger’’ symmetry breaking including the
dangerous charge symmetry breaking. In addition, we have a
strong nonuniversality of soft masses. However, in this
model, soft masses are degenerate for squarks and sleptons
with same quantum numbers underGSM because they have
same quantum numbers under the gauge groupG and same
modular weights. Hence, it does not lead to a dangerous
FCNC process.

We have the following relations atM by eliminating
model-dependent parameters:

mQ̃L

2
5mQ̃R

2
5mH

2 , mL̃
2
5mR̃

2 , 13mQ̃L

2
53mL̃

2
15m3/2

2 ,

~94!

where the tilde represents scalar components.
On the top of that, the gaugino massM1/2 is obtained as

@21#

M1/2
2 53m3/2

2 sin2u. ~95!

We can use this gaugino mass to obtain a relation not includ-
ing m3/2 as

3mQ̃L

2
5M1/2

2 . ~96!

In the case that the SUSY breaking is induced by the
dilaton F term, there are no modular weight dependence.
Hence, we have a more specific relation such that

8mQ̃L

2
53mL̃

2 . ~97!

Further, various contributions should be added at lower
energy scales. For example, theD-term contribution can ap-
pear after the breakdown of extra gauge symmetries.

In general, original string states are different from the
MSSM fields in string models includingGSM @46#. The co-
efficientsRP

Q of linear combinations depend on the VEVs of
moduli fields. A study of soft masses in such a situation has
been carried out by using an explicit model@47#.

V. REMARKS ON EXTENSION OF KA¨ HLER POTENTIAL

Here we discuss extensions of our soft mass formula for
different types of Ka¨hler potentials. At the one-loop level,
the dilaton fieldS and the moduli fieldT are mixed in the
Kähler potential as

2 ln@S1S* 1D~T1T* !#23ln~T1T* !. ~98!

In this case we can obtain the same parametrization of soft
scalar masses as the case without the mixing, i.e.,
D(T1T* )50, except replacing cos2u as

TABLE IV. The particle contents and the ratios ofmk
2/m3/2

2 . We
refer to the chiral multiplets asQL for left-handed quarks,QR for
right-handed quarks,H for Higgs doublets,L for left-handed lep-

tons, andR for right-handed leptons. The fieldsL8, L̄ 8 and R8,

R̄8 are extra SU(2)L and SU(2)R doublets, respectively.

Rep. qk
A

mk
2/m3/2

2 uM

cos2u50 cos2u51

U-sec. QL (3,2,1) 0 1 0

QR ( 3̄ ,1,2) 0 1 0

H (1,2,2) 0 1 0
T-sec. L (1,2,1) 4 8/3 25/3
(NOSC50) R (1,1,2) 4 8/3 25/3

L8 (1,2,1) 4 8/3 25/3

L̄ 8 (1,2,1) 4 8/3 25/3

R8 (1,1,2) 4 8/3 25/3

R̄8 (1,1,2) 4 8/3 25/3
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cos2u→F12
~T1T* !2D9~T1T* !

3@S1S* 1D~T1T* !#Gcos2u, ~99!

whereD9(T1T* ) is the second derivative ofD(T1T* ) by
T.

In general, string models have several moduli fields other
than one overall moduli fieldT. In this case, theirF terms
could contribute on the SUSY breaking and one needs more
goldstino angles to parametrize theseF terms. For example,
we discuss the models with three diagonal moduli fieldsTi
( i 51,2,3). These moduli fields have the following Ka¨hler
potential:

2(
i

ln~Ti1Ti* ! ~100!

instead of23ln(T1T* ) in the case of the overall moduli
field. Here, we parametrize their contributions on the SUSY
breaking as@22#

^eG/2~KTi

Ti !21/2GTi&5A3Cm3/2e
iaTicosuQ i , ~101!

where ( iQ i
251. Using these parameters,F-term contribu-

tions on soft scalar masses are written as

m3/2
2 1V013m3/2

2 C2(
i

nikcos2uQ i
2 , ~102!

wherenik is a modular weight offk for the i th moduli field
Ti . Similarly, D-term contributions can be written by the use
of these parameters. For example, theD-term condensations
~63! are extended as

gâ8
2

^D â8&523m3/2
2 C2cos2u

3(
i

Q i
2
K (

k
qk

â8nik~T1T* !nkufku2L
K (

k
~qk

â8!2~T1T* !nkufku2L ,

~103!

where (T1T* )nk means) i 51
3 (Ti1Ti* )nik.

Some orbifold models have complex structure moduli
fields Ui . In such models, a Ka¨hler potential includes holo-
morphic parts offk as @48#

1

~Ti1Ti* !~Ui1Ui* !
ff8. ~104!

We can extend our formula into these models. These holo-
morphic parts are important for mixing of fields. Further,
they could originate them term with a suitable order, natu-
rally.

The Kähler potential can receive radiative corrections and
be modified by nonperturbative effects. Our approach is ge-
neric and basically available to other types of Ka¨hler poten-
tial although one might need more complicated parametriza-
tion than Eqs.~44! and ~45!.

VI. CONCLUSIONS AND DISCUSSIONS

We have derived the formula of soft SUSY-breaking sca-
lar masses from the effective SUGRA derived from 4D
string models within a more generic framework. The gauge
group contains extra gauge symmetries including the anoma-
lous U~1!, some of which are broken at a higher energy
scale. Such breaking is related to the flat direction breaking
in the SUSY limit. It is supposed that there are two types of
matter multiplets classified by supersymmetric fermion mass
and D term, i.e., heavy fields and light ones. The physical
scalar fields are, in general, linear combinations of original
fields corresponding to massless states in string models.

The mass formula contains the effects of extra gauge
symmetry breaking, i.e.,D-term and extraF-term contribu-
tions, particle mixing effects, and heavy-light mass mixing
effects. TheD-term contributions to soft scalar masses are
parametrized in terms of three types of new parameters in
addition to the goldstino angle, gravitino mass, and vacuum
energy. These contributions, in general, are sizable. In par-
ticular, D-term contribution of U(1)A survives even in the
case of the dilaton-dominant SUSY breaking. TheD-term
contributions for anomaly-free U~1! symmetries vanish at the
tree level if the fields developing VEVs have the same
modular weight. ExtraF-term contributions are neglected in
the case where Yukawa couplings among heavy, light, and
G0 singlet fields are suppressed and theR parity is con-
served. In the case that there exist mixing terms among
heavy, light, and moduli fields in the Ka¨hler potential, the
extra contributions can appear after the diagonalization of
scalar mass terms in the presence of heavy-light mass mix-
ings of O(m3/2MI).

We have discussed the degeneracy and the positivity of
squared scalar masses in special cases where there is neither
particle mixing in the Ka¨hler potential, nor heavy-light mass
mixing effects, nor extraF-term contributions. We find that
the F-term contribution from the difference among modular
weights and theD-term contribution to scalar masses can
destroy universality among scalar masses atM and/orM I .
This nondegeneracy among squark masses of first and sec-
ond families endangers the discussion of the suppression of
FCNC process. On the other hand, the difference among
U~1! charges is crucial for the generation of fermion mass
hierarchy@31#. It seems to be difficult to make two discus-
sions compatible. As a byway, we can take a model that the
fermion mass hierarchy is generated due to nonanomalous
U~1! symmetries and SUSY is broken by the dilaton
F-term condensation. For example, it is supposed that
anomalies from contributions of the MSSM matter fields are
canceled out by those of extra matter fields in such a model.
Further ‘‘stringy’’ symmetries are also useful for fermion
mass generation leading to degenerate soft scalar masses
@32#, because these symmetries do not induceD terms.

Many fields could acquire negative squared masses and
they could trigger a ‘‘larger’’ symmetry breaking including
the dangerous color and/or charge symmetry breaking. This
type of symmetry breaking might be favorable in the case
whereGSM8 is a large group like a grand unified group. These
results might be useful for model building.

We have calculatedD-term condensations and derived
specific scalar mass relations by taking an explicit string
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model. It is expected that such relations can be novel probes
to select a realistic string model since they are model depen-
dent.

The moduli fields have a problem in string cosmology
because their masses are estimated as ofO(m3/2) and they
weakly couple with the observable matter fields, i.e., through
the gravitational couplings@49#. They decay slowly to the
observable matter fields. That makes the standard nucleosyn-
thesis dangerous. In our model, some linear combinations of
S, T, and other fields such asX remain light whoseF terms
are ofO(m3/2M ) and break the SUSY. It is supposed that the
couplings between such fields and observable fields are
strongly suppressed to guarantee the stability of the weak
scale. Such a problem have to be considered for the light
linear combinations, too.

ACKNOWLEDGMENTS

The authors are grateful to I. Joichi, T. Komatsu, J. Louis,
H. Nakano, D. Suematsu, and M. Yamaguchi for useful dis-
cussions.

APPENDIX: KÄ HLER POTENTIAL AND ITS
DERIVATIVES IN STRING MODELS

The Kähler potentialK in ZN orbifold models is given as
@4–6#

K52 ln~S1S* !23ln~T1T* !1(
k

~T1T* !nkufku2

~A1!

in the case of overall moduli. Here, we neglect higher order
terms related to matter fields. The derivatives ofK are given
as

KS
S5

1

~S1S* !2 , KS
T50, KS

k50,

KT
T5

3

~T1T* !2 1(
k

nk~nk21!~T1T* !nk22ufku2,

KT
l5nl~T1T* !nl21fl, Kk

l5~T1T* !nkdk
l .

The determinant ofKI
J is calculated as

D[detKI
J

5

3)
l

~T1T* !nl

~S1S* !2~T1T* !2H 12(
k

nk

3
~T1T* !nkufku2J .

~A2!

The inverses (K21) I
J are given as

~K21!S
S5~S1S* !2, ~K21!S

T50, ~K21!S
k50,

~K21!T
T5

)
k

~T1T* !nk

~S1S* !2D

5
~T1T* !2

3 H 11(
k

nk

3
~T1T* !nkufku2J

1O~ ufu4!,

~K21!k
T52

nk~T1T* !fk*

32(
l

nl~T1T* !nluflu2

52
nk

3
~T1T* !fk* H 11(

l

nl

3
~T1T* !nluflu2J

1O~f* ufu4!,

~K21!k
l5

3~T1T* !2nkdk
l

32(
l

nl~T1T* !nluflu2

5~T1T* !2nkdk
l1O~ ufu2!,

wheref represents scalar field of matter multiplet.
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