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Abstract. Generic Haskell is an extension of Haskell that supports the
construction of generic programs. These lecture notes describe the basic
constructs of Generic Haskell and highlight the underlying theory.

Generic programming aims at making programming more effective by mak-
ing it more general. Generic programs often embody non-traditional kinds of
polymorphism. Generic Haskell is an extension of Haskell [38] that supports the
construction of generic programs. Generic Haskell adds to Haskell the notion of
structural polymorphism, the ability to define a function (or a type) by induction
on the structure of types. Such a function is generic in the sense that it works not
only for a specific type but for a whole class of types. Typical examples include
equality, parsing and pretty printing, serialising, ordering, hashing, and so on.

The lecture notes on Generic Haskell are organized into two parts. This first
part motivates the need for genericity, describes the basic constructs of Generic
Haskell, puts Generic Haskell into perspective, and highlights the underlying
theory. The second part entitled “Generic Haskell: applications” delves deeper
into the language discussing three non-trivial applications of Generic Haskell:
generic dictionaries, compressing XML documents, and a generic version of the
zipper data type.

The first part is organized as follows. Section 1 provides some background
discussing type systems in general and the type system of Haskell in particular.
Furthermore, it motivates the basic constructs of Generic Haskell. Section 2
takes a closer look at generic definitions and shows how to define some popular
generic functions. Section 3 highlights the theory underlying Generic Haskell and
discusses its implementation. Section 4 concludes.

1 Introduction

This section motivates and introduces the basic constructs of Generic Haskell.
We start by looking at type systems.
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A basic knowledge of Haskell is desirable, as all the examples are given either
in Haskell or in Generic Haskell.

1.1 Type systems

Safe languages Most programmers probably agree that language safety is a
good thing. Language safety is quite a colorful term meaning different things
to different people. Here are a few definitions taken from Pierce’s excellent text
book “Types and Programming Languages” [40].

– A safe language is one that makes it impossible to shoot yourself in the foot
while programming.

– A safe language is one that protects its own abstractions.
– A safe language is one that that prevents untrapped errors at run time.
– A safe language is completely defined by its programmer’s manual.

The definitions put emphasis on different aspects of language safety. Quite
clearly, all of these are desirable properties of a programming language.

Now, language safety can be achieved by static type checking, by dynamic
type checking, or—and this is the most common case—by a combination of static
and dynamic checks. The language Haskell serves as an example of the latter
approach: passing an integer to a list-processing function is captured statically at
compile time while taking the first element of the empty list results in a run-time
error.

Static and dynamic typing It is widely accepted that static type systems are
indispensable for building large and reliable software systems. The most cited
benefits of static typing include:

– Programming errors are detected at an early stage.
– Type systems enforce disciplined programming.
– Types promote abstraction (abstract data types, module systems).
– Types provide machine-checkable documentation.

However, type systems are always conservative: they must necessarily reject
programs that behave well at run time.

In a sense, generic programming is about extending the boundaries of static
type systems. This is the reason why these lecture notes have little to offer for
addicts of dynamically typed languages. As we will see, most generic programs
can be readily implemented in a dynamically checked language. (Conceptually,
a dynamic language offers one universal data type; programming a function that
works for a class of data types is consequently a non-issue.)

Polymorphic type systems Polymorphism complements type security by flex-
ibility. Polymorphic type systems like the Hindley-Milner system [33] allow the
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definition of functions that behave uniformly over all types. A standard example
is the length function that computes the length of a list.

data List a = Nil | Cons a (List a)
length :: ∀a . List a → Int
length Nil = 0
length (Cons a as) = 1 + length as

The first line declares the list data type, which is parametric in the type of list
elements. The function length happens to be insensitive to the element type.
This is signalled by the universal quantifier in length’s type signature (read:
List a → Int is a valid type of length for all types a). Though this is not Haskell 98
syntax, we will write polymorphic types always using explicit qualifiers. Most
readers probably know the universal quantifier from predicate logic. Indeed,
there is a close correspondence between polymorphic type systems and systems
of higher-order logic, see [47]. In light of this correspondence we note that the
quantifier in length’s type signature is second-order as it ranges over sets (if we
naively equate types with sets).

However, even polymorphic type systems are sometimes less flexible than
one would wish. For instance, it is not possible to define a polymorphic equality
function that works for all types.

eq :: ∀a . a → a → Bool -- does not work

The parametricity theorem [46] implies that a function of type ∀a . a → a → Bool
must necessarily be constant. As a consequence, the programmer is forced to
program a separate equality function for each type from scratch. This sounds
like a simple task but may, in fact, be arbitrarily involved. To illustrate some
of the difficulties we will go through a series of instances of equality (and other
generic functions). First, however, let us take a closer look at Haskell’s type
system, especially at the data construct.

1.2 Haskell’s data construct

Haskell offers one basic construct for defining new types: a so-called data type
declaration. In general, a data declaration has the following form:

data B a1 . . . am = K1 t11 . . . t1m1 | · · · | Kn tn1 . . . tnmn .

This definition simultaneously introduces a new type constructor B and n data
or value constructors K1, . . . , Kn , whose types are given by

Kj :: ∀a1 . . . am . tj1 → · · · → tjmj → B a1 . . . am.

The type parameters a1, . . . , am must be distinct and may appear on the right-
hand side of the declaration. If m > 0, then B is called a parameterized type.
Data type declarations can be recursive, that is, B may also appear on the right-
hand side. In general, data types are defined by a system of mutually recursive
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data type declarations. A Haskell data type is essentially a sum of products: the
components of the sum are labelled by constructor names; the arguments of a
constructor form a product.

The following sections provide several examples of data type declarations
organized in increasing order of difficulty.

Finite types Data type declarations subsume enumerated types. In this special
case, we only have nullary data constructors, that is, m1 = · · · = mn = 0. The
following declaration defines a simple enumerated type, the type of truth values.

data Bool = False | True

Data type declarations also subsume record types. In this case, we have only
one value constructor, that is, n = 1.

data Fork a = Fork a a

An element of Fork a is a pair whose two components both have type a. This
example illustrates that we can use the same name for a type and for a data
constructor. In these notes we distinguish the two by using different fonts: data
constructors are set in Roman and type constructors in Sans Serif.

Haskell assigns a kind to each type constructor. One can think of a kind as
the ‘type’ of a type constructor. The type constructor Fork defined above has
kind ? → ?. The ‘?’ kind represents nullary constructors like Char, Int or Bool.
The kind κ → ν represents type constructors that map type constructors of kind
κ to those of kind ν. Note that the term ‘type’ is sometimes reserved for nullary
type constructors.

The following type can be used to represent ‘optional values’.

data Maybe a = Nothing | Just a

An element of type Maybe a is an ‘optional a’: it is either of the form Nothing
or of the form Just a where a is of type a. The type constructor Maybe has kind
? → ?.

Recursive types Data type declarations may be recursive or even mutually
recursive. A simple recursive data type is the type of natural numbers.

data Nat = Zero | Succ Nat

The number 6, for instance, is given by

Succ (Succ (Succ (Succ (Succ (Succ Zero))))).

Strings can also be represented by a recursive data type.

data String = NilS | ConsS Char String
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The type String is a binary sum. The first summand, Nil , is a nullary product
and the second summand, Cons, is a binary product. Here is an example element
of String:

ConsS ’F’ (ConsS ’l’ (ConsS ’o’ (ConsS ’r’
(ConsS ’i’ (ConsS ’a’ (ConsS ’n’ NilS )))))).

The most popular data type is without doubt the type of parametric lists; it
is obtained from String by abstracting over Char.

data List a = Nil | Cons a (List a)

The empty list is denoted Nil ; Cons a x denotes the list whose first element is
a and whose remaining elements are those of x . The list of the first six prime
numbers, for instance, is given by

Cons 2 (Cons 3 (Cons 5 (Cons 7 (Cons 11 (Cons 13 Nil))))).

In Haskell, lists are predefined with special syntax: List a is written [a], Nil is
replaced by [ ], and Cons a x by a :x . We will use both notations simultaneously.

The following definition introduces external binary search trees.

data Tree a b = Tip a | Node (Tree a b) b (Tree a b)

We distinguish between external nodes of the form Tip a and internal nodes of
the form Node l b r . The former are labelled with elements of type a while the
latter are labelled with elements of type b. Here is an example element of type
Tree Bool Int:

Node (Tip True) 7 (Node (Tip True) 9 (Tip False)).

The type Tree has kind ? → ? → ?. Perhaps surprisingly, binary type construc-
tors like Tree are curried in Haskell.

The following data type declaration captures multiway branching trees, also
known as rose trees [6].

data Rose a = Branch a (List (Rose a))

A node is labelled with an element of type a and has a list of subtrees. An
example element of type Rose Int is:

Branch 2 (Cons (Branch 3 Nil)
(Cons (Branch 5 Nil)
(Cons (Branch 7 (Cons (Branch 11 Nil)

(Cons (Branch 13 Nil) Nil))) Nil))).

The type Rose falls back on the type List. Instead, we may introduce Rose using
two mutually recursive data type declarations:

data Rose′ a = Branch ′ a (Forest a)
data Forest a = NilF | ConsF (Rose′ a) (Forest a).
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Now Rose′ depends on Forest and vice versa.
The type parameters of a data type may range over type constructors of

arbitrary kinds. By contrast, Miranda (trademark of Research Software Ltd),
Standard ML, and previous versions of Haskell (1.2 and before) only have first-
order kinded data types. The following generalization of rose trees, that abstracts
over the List data type, illustrates this feature.

data GRose f a = GBranch a (f (GRose f a))

A slight variant of this definition has been used by [37] to extend an implemen-
tation of priority queues with an efficient merge operation. The type constructor
GRose has kind (? → ?) → (? → ?), that is, GRose has a so-called second-order
kind where the order of a kind is given by

order(?) = 0
order(κ → ν) = max{1 + order(κ), order(ν)}.

Applying GRose to List yields the type of rose trees.
The following data type declaration introduces a fixed point operator on the

level of types. This definition appears, for instance, in [32] where it is employed
to give a generic definition of so-called cata- and anamorphisms [30].

newtype Fix f = In (f (Fix f))
data ListBase a b = NilL | ConsL a b

The kinds of these type constructors are Fix :: (? → ?) → ? and ListBase :: ? →
(? → ?). Using Fix and ListBase the data type of parametric lists can alternatively
be defined by

type List a = Fix (ListBase a).

Here is the list of the first six prime numbers written as an element of type
Fix (ListBase Int):

In (ConsL 2 (In (ConsL 3 (In (ConsL 5
(In (ConsL 7 (In (ConsL 11 (In (ConsL 13 (In NilL))))))) ))))).

Nested types A regular or uniform data type is a recursive, parameterized
type whose definition does not involve a change of the type parameter(s). The
data types of the previous section are without exception regular types. This
section is concerned with non-regular or nested types [7]. Nested data types are
practically important since they can capture data-structural invariants in a way
that regular data types cannot. For instance, the following data type declaration
defines perfectly balanced, binary leaf trees [20]—perfect trees for short.

data Perfect a = ZeroP a | SuccP (Perfect (Fork a))
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This equation can be seen as a bottom-up definition of perfect trees: a perfect
tree is either a singleton tree or a perfect tree that contains pairs of elements.
Here is a perfect tree of type Perfect Int:

SuccP (SuccP (SuccP (ZeroP (Fork (Fork (Fork 2 3)
(Fork 5 7))

(Fork (Fork 11 13)
(Fork 17 19)) )))).

Note that the height of the perfect tree is encoded in the prefix of SuccP and
ZeroP constructors.

The next data type provides an alternative to the ubiquitous list type if an
efficient indexing operation is required: Okasaki’s binary random-access lists [37]
support logarithmic access to the elements of a list.

data Sequ a = EndS
| ZeroS (Sequ (Fork a))
| OneS a (Sequ (Fork a))

This definition captures the invariant that binary random-access lists are se-
quences of perfect trees stored in increasing order of height. Using this represen-
tation the sequence of the first six prime numbers reads:

ZeroS (OneS (Fork 2 3) (OneS (Fork (Fork 5 7) (Fork 11 13)) EndS )).

The types Perfect and Sequ are examples of so-called linear nests: the param-
eters of the recursive calls do not themselves contain occurrences of the defined
type. A non-linear nest is the following type taken from [7]:

data Bush a = NilB | ConsB a (Bush (Bush a)).

An element of type Bush a resembles an ordinary list except that the i -th element
has type Bushi a rather than a. Here is an example element of type Bush Int:

ConsB 1 (ConsB (ConsB 2 NilB)
(ConsB (ConsB (ConsB 3 NilB) NilB) NilB)).

Perhaps surprisingly, we will get to know a practical application of this data type
in the second part of these notes, which deals with so-called generalized tries.

Haskell’s data construct is surprisingly expressive. In fact, all primitive data
types such as characters or integers can, in principle, be defined by a data dec-
laration. The only exceptions to this rule are the function space constructor and
Haskell’s IO data type. Now, the one-million-dollar question is, of course, how
can we define a function that works for all of these data types.

1.3 Towards generic programming

The basic idea of generic programming is to define a function such as equality by
induction on the structure of types. Thus, generic equality takes three arguments,
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a type and two values of that type, and proceeds by case analysis on the type
argument. In other words, generic equality is a function that depends on a type.

Defining a function by induction on the structure of types sounds like a hard
nut to crack. We are trained to define functions by induction on the structure
of values. Types are used to guide this process, but we typically think of them
as separate entities. So, at first sight, generic programming appears to add an
extra level of complication and abstraction to programming. However, we claim
that generic programming is in many cases actually simpler than conventional
programming. The fundamental reason is that genericity gives you ‘a lot of things
for free’—we will make this statement more precise in the course of these notes.
For the moment, let us support the claim by defining two simple algorithms
both in a conventional and in a generic style (data compression and equality).
Of course, these are algorithms that make sense for a large class of data types.
Consequently, in the conventional style we have to provide an algorithm for each
instance of the class.

Towards generic data compression The first problem we look at is to encode
elements of a given data type as bit streams implementing a simple form of data
compression [25]. For concreteness, we assume that bit streams are given by the
following data type (we use Haskell’s predefined list data type here):

type Bin = [Bit ]
data Bit = 0 | 1.

Thus, a bit stream is simply a list of bits. A real implementation might have a
more sophisticated representation for Bin but that is a separate matter.

We will implement binary encoders and decoders for three different data
types. We consider these types in increasing level of difficulty. The first exam-
ple type is String. Supposing that encodeChar :: Char → Bin is an encoder for
characters provided from somewhere, we can encode an element of type String
as follows:

encodeString :: String → Bin
encodeString NilS = 0 : [ ]
encodeString (ConsS c s) = 1 : encodeChar c ++ encodeString s.

We emit one bit to distinguish between the two constructors NilS and ConsS .
If the argument is a non-empty string of the form ConsS c s, we (recursively)
encode the components c and s and finally concatenate the resulting bit streams.

Given this scheme it is relatively simple to decode a bit stream produced
by encodeString . Again, we assume that a decoder for characters is provided
externally.

decodesString :: Bin → (String, Bin)
decodesString [ ] = error "decodesString"
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decodesString (0 : bin) = (NilS , bin)
decodesString (1 : bin) = let (c, bin1) = decodesChar bin

(s, bin2) = decodesString bin1

in (ConsS c s, bin2)

The decoder has type Bin → (String,Bin) rather than Bin → String to be able
to compose decoders in a modular fashion: decodesChar :: Bin → (Char,Bin),
for instance, consumes an initial part of the input bit stream and returns the
decoded character together with the rest of the input stream. Here are some
applications (we assume that characters are encoded in 8 bits).

encodeString (ConsS ’L’ (ConsS ’i’ (ConsS ’s’ (ConsS ’a’ NilS ))))
=⇒ 1001100101100101101110011101100001100
decodesChar (tail 1001100101100101101110011101100001100)
=⇒ (’L’, 1100101101110011101100001100)
decodesString 1001100101100101101110011101100001100
=⇒ (ConsS ’L’ (ConsS ’i’ (ConsS ’s’ (ConsS ’a’ NilS ))), [ ])

Note that a string of length n is encoded using n + 1 + 8 ∗ n bits.
A string is a list of characters. We have seen that we obtain Haskell’s list

type by abstracting over the type of list elements. How can we encode a list of
something? We could insist that the elements of the input list have already been
encoded as bit streams. Then encodeListBin completes the task:

encodeListBin :: List Bin → Bin
encodeListBin Nil = 0 : [ ]
encodeListBin (Cons bin bins) = 1 : bin ++ encodeListBin bins.

For encoding the elements of a list the following function proves to be useful:

mapList :: ∀a1 a2 . (a1 → a2) → (List a1 → List a2)
mapList mapa Nil = Nil
mapList mapa (Cons a as) = Cons (mapa a) (mapList mapa as).

The function mapList is a so-called mapping function that applies a given func-
tion to each element of a given list (we will say a lot more about mapping
functions in these notes). Combining encodeListBin and mapList we can encode
a variety of lists:

encodeListBin (mapList encodeChar
(Cons ’A’ (Cons ’n’ (Cons ’j’ (Cons ’a’ Nil)))) )

=⇒ 1100000101011101101010101101100001100
encodeListBin (mapList encodeInt (Cons 47 (Cons 11 Nil)))
=⇒ 11111010000000000111010000000000000
(encodeListBin · mapList (encodeListBin · mapList encodeBool))

(Cons (Cons True (Cons False (Cons True Nil)))
(Cons (Cons False (Cons True (Cons False Nil)))
(Nil)))

=⇒ 11110110110111000.
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Here, encodeInt and encodeBool are primitive encoders for integers and Boolean
values respectively (an integer occupies 16 bits whereas a Boolean value makes
do with one bit).

How do we decode the bit streams thus produced? The first bit tells whether
the original list was empty or not, but then we are stuck: we simply do not know
how many bits were spent on the first list element. The only way out of this
dilemma is to use a decoder function, supplied as an additional argument, that
decodes the elements of the original list.

decodesList :: ∀a . (Bin → (a, Bin)) → (Bin → (List a, Bin))
decodesList dea [ ] = error "decodesList"
decodesList dea (0 : bin) = (Nil , bin)
decodesList dea (1 : bin) = let (a, bin1) = dea bin

(as, bin2) = decodesList dea bin1

in (Cons a as, bin2)

This definition generalizes decodesString defined above; we have decodesString ∼=
decodesList decodesChar (corresponding to String ∼= List Char). In some sense,
the abstraction step that led from String to List is repeated here on the value
level. Of course, we can also generalize encodeString :

encodeList :: ∀a . (a → Bin) → (List a → Bin)
encodeList ena Nil = 0 : [ ]
encodeList ena (Cons a as) = 1 : ena a ++ encodeList ena as.

It is not hard to see that encodeList ena = encodeListBin · mapList ena. En-
coding and decoding lists is now fairly simple:

encodeList encodeChar (Cons ’A’ (Cons ’n’ (Cons ’j’ (Cons ’a’ Nil))))
=⇒ 1100000101011101101010101101100001100
encodeList encodeInt (Cons 47 (Cons 11 Nil))
=⇒ 11111010000000000111010000000000000
encodeList (encodeList encodeBool)

(Cons (Cons True (Cons False (Cons True Nil)))
(Cons (Cons False (Cons True (Cons False Nil)))
(Nil)))

=⇒ 11110110110111000.

The third data type we look at is Okasaki’s binary random-access list. Using
the recursion scheme of encodeList we can also program an encoder for binary
random-access lists.

encodeFork :: ∀a . (a → Bin) → (Fork a → Bin)
encodeFork ena (Fork a1 a2) = ena a1 ++ ena a2

encodeSequ :: ∀a . (a → Bin) → (Sequ a → Bin)
encodeSequ ena EndS = 0 : [ ]
encodeSequ ena (ZeroS s) = 1 : 0 : encodeSequ (encodeFork ena) s
encodeSequ ena (OneS a s) = 1 : 1 : ena a ++ encodeSequ (encodeFork ena) s
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Consider the last equation which deals with arguments of the form OneS a s. We
emit two bits for the constructor and then (recursively) encode its components.
Since a has type a, we apply ena. Similarly, since s has type Sequ (Fork a),
we call encodeSequ (encodeFork ena). It is not hard to see that the type of
the component determines the function calls in a straightforward manner. As an
aside, note that encodeSequ requires a non-schematic form of recursion known as
polymorphic recursion [36]. The two recursive calls are at type (Fork a → Bin) →
(Sequ (Fork a) → Bin) which is a substitution instance of the declared type.
Functions operating on nested types are in general polymorphically recursive.
Haskell 98 allows polymorphic recursion only if an explicit type signature is
provided for the function. The rationale behind this restriction is that type
inference in the presence of polymorphic recursion is undecidable [17].

Though the Sequ data type is more complex than the list data type, encoding
binary random-access lists is not any more difficult.

encodeSequ encodeChar (ZeroS (ZeroS (OneS
(Fork (Fork ’L’ ’i’) (Fork ’s’ ’a’)) EndS )))

=⇒ 101011001100101001011011001110100001100
encodeSequ encodeInt (ZeroS (OneS (Fork 47 11) EndS ))
=⇒ 1011111101000000000011010000000000000

In general, a string of length n makes do with 2 ∗ dlg (n + 1)e + 1 + 8 ∗ n bits.
Perhaps surprisingly, encoding a binary random-access list requires fewer bits
than encoding the corresponding list (if the list contains more than 8 elements).

To complete the picture here is the decoder for binary random-access lists.

decodesFork :: ∀a . (Bin → (a,Bin)) → (Bin → (Fork a,Bin))
decodesFork dea bin = let (a1, bin1) = dea bin

(a2, bin2) = dea bin1

in (Fork a1 a2, bin2)
decodesSequ :: ∀a . (Bin → (a,Bin)) → (Bin → (Sequ a,Bin))
decodesSequ dea [ ] = error "decodes"
decodesSequ dea (0 : bin) = (EndS , bin)
decodesSequ dea (1 : 0 : bin)

= let (s, bin ′) = decodesSequ (decodesFork dea) bin
in (ZeroS s, bin ′)

decodesSequ dea (1 : 1 : bin)
= let (a, bin1) = dea bin

(s, bin2) = decodesSequ (decodesFork dea) bin1

in (OneS a s, bin2)

Towards generic equality As a second example, let us work towards imple-
menting a generic version of equality. Taking a look at several ad-hoc instances
of equality will improve our understanding when we consider the generic pro-
gramming extensions Generic Haskell offers.
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Let us start simple: here is equality of strings.

eqString :: String → String → Bool
eqString NilS NilS = True
eqString NilS (ConsS c′ s ′) = False
eqString (ConsS c s) NilS = False
eqString (ConsS c s) (ConsS c′ s ′) = eqChar c c′ ∧ eqString s s ′

The function eqChar :: Char → Char → Bool is equality of characters. As usual,
we assume that this function is predefined.

The type List is obtained from String by abstracting over Char. Likewise,
eqList is obtained from eqString by abstracting over eqChar .

eqList :: ∀a . (a → a → Bool)
→ (List a → List a → Bool)

eqList eqa Nil Nil = True
eqList eqa Nil (Cons a ′ x ′) = False
eqList eqa (Cons a x ) Nil = False
eqList eqa (Cons a x ) (Cons a ′ x ′) = eqa a a ′ ∧ eqList eqa x x ′

Similarly, the type GRose of generalized rose trees is obtained from Rose by
abstracting over the list type constructor (which is of kind ? → ?). Likewise,
eqGRose abstracts over list equality (which has a polymorphic type). Thus,
eqGRose takes a polymorphic function to a polymorphic function.

eqGRose :: ∀f . (∀a . (a → a → Bool) → (f a → f a → Bool))
→ (∀a . (a → a → Bool)

→ (GRose f a → GRose f a → Bool))
eqGRose eqf eqa (GBranch a f ) (GBranch a ′ f ′)
= eqa a a ′ ∧ eqf (eqGRose eqf eqa) f f ′

The function eqGRose has a so-called rank-2 type. In general, the rank of a type
is given by

rank(C) = 0
rank(∀a . t) = max{1, rank(t)}
rank(t → u) = max{inc (rank(t)), rank(u)},

where inc 0 = 0 and inc (n+1) = n+2. Most implementations of Haskell support
rank-2 types. The latest version of the Glasgow Haskell Compiler, GHC 5.04,
even supports general rank-n types.

As a final example, consider defining equality for the fixed point operator on
the type level.

eqFix :: ∀f . (∀a . (a → a → Bool) → (f a → f a → Bool))
→ (Fix f → Fix f → Bool)

eqFix eqf (In f ) (In f ′) = eqf (eqFix eqf ) f f ′
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1.4 Towards Generic Haskell

In the previous section we have seen a bunch of ad-hoc instances of generic
functions. Looking at the type signatures of equality we see that the type of eqT
depends on the kind of T. Roughly speaking, the more complicated the kind of T,
the more complicated the type of eqT . To capture the type of generic functions,
Generic Haskell supports the definition of types that are defined by induction
over the structure of kinds, so-called kind-indexed types.

Apart from the typings, it is crystal clear what the definition of eqT looks like.
We first have to check whether the two arguments of equality are labelled by the
same constructor. If this is the case, then their arguments are recursively tested
for equality. Nonetheless, coding the equality function is boring and consequently
error-prone. Fortunately, Generic Haskell allows us to capture equality once and
for all.

To define generic equality and other generic functions it suffices to cover
three simple, non-recursive data types: binary sums, binary products and nullary
products (that is, the unit data type). Since these types are the building blocks of
data declarations, Generic Haskell is then able to generate instances of equality
for arbitrary user-defined types. In other words, the generic equality function
works for all types of all kinds. Of course, if the user-defined type falls back on
some primitive type, then the generic equality function must also supply code
for this type. Thus, generic equality will include cases for Char, Int, etc. On the
other hand, it will not include cases for function types or for the IO type since
we cannot decide equality of functions or IO actions.

We have already mentioned the slogan that generic programming gives the
programmer a lot of things for free. In our case, Generic Haskell automatically
takes care of type abstraction, type application and type recursion. And it does
so in a type-safe manner.

Kind-indexed types The type of a generic function is captured by a kind-
indexed type which is defined by induction on the structure of kinds. Here are
some examples.

type Encode{[?]} t = t → Bin
type Encode{[κ → ν]} t = ∀a . Encode{[κ]} a → Encode{[ν]} (t a)
type Decodes{[?]} t = Bin → (t, Bin)
type Decodes{[κ → ν]} t = ∀a . Decodes{[κ]} a → Decodes{[ν]} (t a)
type Eq{[?]} t = t → t → Bool
type Eq{[κ → ν]} t = ∀a . Eq{[κ]} a → Eq{[ν]} (t a)

The part enclosed in {[·]} is the kind index. In each case, the equation for kind ?
is the interesting one. For instance, t → t → Bool is the type of equality for
manifest types (nullary type constructors). Perhaps surprisingly, the equations
for function kinds always follow the same scheme, which we will encounter time
and again. We will see in Section 3.3 that this scheme is inevitable because of
the way type constructors of kind κ → ν are specialized.
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The type signatures we have seen in the previous section can be written more
succinctly using the kind-indexed types above.

encodeString :: Encode{[?]} String
encodeList :: Encode{[? → ?]} List

decodesString :: Decodes{[?]} String
decodesList :: Decodes{[? → ?]} List

eqString :: Eq{[?]} String
eqList :: Eq{[? → ?]} List
eqGRose :: Eq{[(? → ?) → (? → ?)]} GRose
eqFix :: Eq{[(? → ?) → ?]} Fix

In general, the equality function for type t of kind κ has type Eq{[κ]} t.

Sums and products Recall that a Haskell data type is essentially a sum of
products. To cover data types the generic programmer only has to define the
generic function for binary sums and binary products (and nullary products).
To this end Generic Haskell provides the following data types.

data Unit = Unit
data a :*: b = a :*: b

data a :+: b = Inl a | Inr b

Note that the operator ‘:*:’ is used both as a type constructor and as a data
constructor (pairing).

In a sense, the generic programmer views the data declaration

data List a = Nil | Cons a (List a)

as if it were given by the following type definition

type List a = Unit :+: a :*: List a,

which makes sums and products explicit (‘:*:’ binds more tightly than ‘:+:’).
The types Unit, ‘:*:’, and ‘:+:’ are isomorphic to the predefined Haskell types

‘()’, ‘(, )’, and Either . The main reason for introducing new types is that it gives
the user the ability to provide special instances for ‘()’, ‘(, )’, and Either . As an
example, you may want to show elements of the pair data type in a special way
(by contrast, we have seen above that ‘:*:’ is used to represent the arguments of
a constructor).

Type-indexed values Given these prerequisites, the definition of generic func-
tions is within reach. The generic programmer has to provide a type signature,
which typically involves a kind-indexed type, and a set of equations, one for
each type constant, where a type constant is either a primitive type like Char,
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Int, ‘→’ etc or one of the three types Unit, ‘:*:’, and ‘:+:’. As an example here is
the definition of the generic encoding function.

encode{|t :: κ|} :: Encode{[κ]} t

encode{|Char|} = encodeChar
encode{|Int|} = encodeInt
encode{|Unit|} Unit = [ ]
encode{|:+:|} ena enb (Inl a) = 0 : ena a
encode{|:+:|} ena enb (Inr b) = 1 : enb b
encode{|:*:|} ena enb (a :*: b) = ena a ++ enb b

Generic functions are also called type-indexed values; the part enclosed in {|·|} is
the type index. Note that each equation is more or less inevitable. Characters and
integers are encoded using the primitive functions encodeChar and encodeInt .
To encode the single element of the unit type no bits are required. To encode an
element of a sum we emit one bit for the constructor followed by the encoding
of its argument. Finally, the encoding of a pair is given by the concatenation of
the component’s encodings. Since the types ‘:+:’ and ‘:*:’ have kind ? → ? → ?,
the generic instances take two additional arguments, ena and enb.

The definition of decode follows the same definitional pattern.

decodes{|t :: κ|} :: Decodes{[κ]} t

decodes{|Char|} = decodesChar
decodes{|Int|} = decodesInt
decodes{|Unit|} bin = (Unit , bin)
decodes{|:+:|} dea deb [ ] = error "decodes"
decodes{|:+:|} dea deb (0 : bin) = let (a, bin ′) = dea bin in (Inl a, bin ′)
decodes{|:+:|} dea deb (1 : bin) = let (b, bin ′) = deb bin in (Inr b, bin ′)
decodes{|:*:|} dea deb bin = let (a, bin1) = dea bin

(b, bin2) = deb bin1

in ((a :*: b), bin2)

Generic equality is equally straightforward.

eq{|t :: κ|} :: Eq{[κ]} t

eq{|Char|} = eqChar
eq{|Int|} = eqInt
eq{|Unit|} Unit Unit = True
eq{|:+:|} eqa eqb (Inl a) (Inl a ′) = eqa a a ′

eq{|:+:|} eqa eqb (Inl a) (Inr b′) = False
eq{|:+:|} eqa eqb (Inr b) (Inl a ′) = False
eq{|:+:|} eqa eqb (Inr b) (Inr b′) = eqb b b′

eq{|:*:|} eqa eqb (a :*: b) (a ′ :*: b′) = eqa a a ′ ∧ eqb b b′
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Generic application Given the definitions above we can encode and decode
elements of arbitrary user-defined data types. The generic functions are invoked
by instantiating the type-index to a specific type, where the type can be any
closed type expression.

encode{|String|} (ConsS ’L’ (ConsS ’i’ (ConsS ’s’ (ConsS ’a’ NilS ))))
=⇒ 1001100101100101101110011101100001100
decodes{|String|} 1001100101100101101110011101100001100
=⇒ (ConsS ’L’ (ConsS ’i’ (ConsS ’s’ (ConsS ’a’ NilS ))), [ ])
encode{|List Char|} (Cons ’A’ (Cons ’n’ (Cons ’j’ (Cons ’a’ Nil))))
=⇒ 1100000101011101101010101101100001100
encode{|List Int|} (Cons 47 (Cons 11 Nil))
=⇒ 11111010000000000111010000000000000
encode{|List (List Bool)|}

(Cons (Cons True (Cons False (Cons True Nil)))
(Cons (Cons False (Cons True (Cons False Nil)))
(Nil)))

=⇒ 11110110110111000.

In the examples above we call encode and decodes always for types of kind ?.
However, the generic functions are far more flexible: we can call them at any
type of any kind. The following session illustrates a more general use (here with
generic equality).

eq{|List Char|} "hello" "Hello"
=⇒ False
let sim c c′ = eqChar (toUpper c) (toUpper c′)
eq{|List|} sim "hello" "Hello"
=⇒ True

If we instantiate the type index to a type constructor, then we have to pass an
‘equality function’ for the type argument as an additional parameter. Of course,
we can pass any function as long as it meets the typing requirements. In the
session above, we pass ‘an equality test’ that ignores case distinctions. Quite
clearly, this gives us an extra degree of flexibility.

Generic abstraction Abstraction is at the heart of programming. Generic
Haskell also supports a simple form of type abstraction. Common usages of
generic functions can be captured using generic abstractions.

similar{|t :: ? → ?|} :: t Char → t Char → Bool
similar{|t|} = eq{|t|} sim

Note that similar is only applicable to type constructors of kind ? → ?.
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1.5 Stocktaking

A generic program is one that the programmer writes once, but which works
over many different data types. Broadly speaking, generic programming aims at
relieving the programmer from repeatedly writing functions of similar function-
ality for different user-defined data types. Examples of generic functions include
equality, parsing and pretty printing, serialising, ordering, hashing, and so on.
A generic function such as a pretty printer or a parser is written once and for
all; its specialization to different instances of data types happens without fur-
ther effort from the user. This way generic programming greatly simplifies the
construction and maintenance of software systems as it automatically adapts
functions to changes in the representation of data.

The basic idea of generic programming is to define a function such as equal-
ity by induction on the structure of types. Thus, generic equality takes three

kinds

types

values

arguments, a type and two values of that type, and proceeds
by case analysis on the type argument. In other words, generic
equality is a function that depends on a type. Consider the
structure of the language Haskell. If we ignore the module
system, Haskell has the three level structure depicted on the
right. The lowest level, that is, the level where computations
take place, consists of values. The second level, which imposes
structure on the value level, is inhabited by types. Finally, on
the third level, which imposes structure on the type level,
we have so-called kinds. Why is there a third level? We have
seen that Haskell allows the programmer to define parametric
types such as the popular data type of lists. The list type constructor can be
seen as a function on types and the kind system allows to specify this in a precise
way. Thus, a kind is simply the ‘type’ of a type constructor.

In ordinary programming we routinely define values that depend on values,
that is, functions and types that depend on types, that is, type constructors.
However, we can also imagine to have dependencies between adjacent levels. For
instance, a type might depend on a value or a type might depend on a kind. The
following table lists the possible combinations:

kinds depending on kinds parametric and kind-indexed kinds
kinds depending on types dependent kinds
types depending on kinds polymorphic and kind-indexed types
types depending on types parametric and type-indexed types
types depending on values dependent types
values depending on types polymorphic and type-indexed functions
values depending on values ordinary functions .

If a higher level depends on a lower level we have so-called dependent types or
dependent kinds. Programming languages with dependent types are the subject
of intensive research, see, for instance, [4]. Dependent types will play little rôle
in these notes as generic programming is concerned with the opposite direction,
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where a lower level depends on the same or a higher level. However, using de-
pendent types we can simulate generic programming, see Section 1.6. If a value
depends on a type we either have a polymorphic or a type-indexed function. In
both cases the function takes a type as an argument. What is the difference
between the two? Now, a polymorphic function stands for an algorithm that
happens to be insensitive to what type the values in some structure are. Take,
for example, the length function that calculates the length of a list. Since it
need not inspect the elements of a given list, it has type ∀a . List a → Int. By
contrast, a type-indexed function is defined by induction on the structure of its
type argument. In some sense, the type argument guides the computation which
is performed on the value arguments.

A similar distinction applies to the type and to the kind level: a parametric
type does not inspect its type argument whereas a type-indexed type is defined
by induction on the structure of its type argument and similarly for kinds. The
following table summarizes the interesting cases.

kinds defined by induction on the structure of kinds kind-indexed kinds
types defined by induction on the structure of kinds kind-indexed types
types defined by induction on the structure of types type-indexed types
values defined by induction on the structure of types type-indexed values

Amazingly, we will encounter examples of all sorts of parameterization in the
lecture notes (type-indexed types and kind-indexed kinds are covered in the
second part).

1.6 Related work

This section puts Generic Haskell into a broader perspective discussing its lim-
itations, possible generalizations and variations and alternative approaches to
generic programming. To illustrate the underlying ideas we will use generic equal-
ity as a running example.

Generic Haskell We have noted in the beginning of Section 1.1 that it is not
possible to define a polymorphic equality function that works uniformly for all
types.

eq :: ∀a . a → a → Bool -- does not work

Consequently, Generic Haskell treats eq as a family of functions indexed by type.
Deviating from Generic Haskell’s syntax eq ’s type could be written as follows.

eq :: {|a :: ?|} → a → a → Bool

A moment’s reflection reveals that this is really a dependent type: the second and
the third argument depend on the first argument, which is a type. Of course,
since equality may be indexed by types of arbitrary kinds eq ’s type signature is
slightly more complicated.

eq :: ∀κ . {|a :: κ|} → Eq{[κ]} a
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The universal quantifier, which ranges over kinds, makes explicit that eq works
for all kinds.

Though the construct {|a ::κ|} → t resembles a dependent type, type-indexed
functions are not first-class citizens in Generic Haskell. For example, we can-
not define a higher-order generic function that takes type-indexed functions to
type-indexed functions. The reason for this restriction is that Generic Haskell
implements genericity by translating a type-indexed function into a family of
(higher-order) polymorphic functions, see Section 3.3.

Type classes Haskell’s major innovation is its support for overloading, based
on type classes. For example, the Haskell Prelude defines the class Eq (slightly
simplified):

class Eq a where
eq :: a → a → Bool

This class declaration defines an overloaded top-level function, called method,
whose type is

eq :: ∀a . (Eq a) ⇒ a → a → Bool.

Before we can use eq on values of, say Int, we must explain how to take equality
over Int values:

instance Eq Int where
eq = eqInt .

This instance declaration makes Int an element of the type class Eq and says
‘the eq function at type Int is implemented by eqInt ’. As a second example
consider equality of lists. Two lists are equal if they have the same length and
corresponding elements are equal. Hence, we require equality over the element
type:

instance (Eq a) ⇒ Eq (List a) where
eq Nil Nil = True
eq Nil (Cons a2 as2) = False
eq (Cons a1 as1) Nil = False
eq (Cons a1 as1) (Cons a2 as2) = eq a1 a2 ∧ eq as1 as2.

This instance declaration says ‘if a is an instance of Eq, then List a is an instance
of Eq, as well’.

Though type classes bear a strong resemblance to generic definitions, they do
not support generic programming. A type class declaration corresponds roughly
to the type signature of a generic definition—or rather, to a collection of type
signatures. Instance declarations are related to the type cases of a generic def-
inition. The crucial difference is that a generic definition works for all types,
whereas instance declarations must be provided explicitly by the programmer
for each newly defined data type. There is, however, one exception to this rule.
For a handful of built-in classes Haskell provides special support, the so-called
‘deriving’ mechanism. For instance, if you define

data List a = Nil | Cons a (List a) deriving (Eq)
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then Haskell generates the ‘obvious’ code for equality. What ‘obvious’ means is
specified informally in an Appendix of the language definition [38]. Of course, the
idea suggests itself to use generic definitions for specifying default methods so
that the programmer can define her own derivable classes. This idea is pursued
further in [23, 1].

Haskell translates type classes and instance declarations into a family of
polymorphic functions using the so-called dictionary passing translation, which
is quite similar to the implementation technique of Generic Haskell.

Intensional type analysis The framework of intensional type analysis [16] was
originally developed as a means to improve the implementation of polymorphic
functions. It was heavily employed in typed intermediate languages not intended
for programmers but for compiler writers. The central idea is to pass types or
representation of types at run time, which can be analysed and dispatched upon.
Thus, equality has the simple type

eq :: ∀a . a → a → Bool -- non-parametric ∀.
As in Generic Haskell equality takes an additional type argument and does a
case analysis on this argument (using a typecase). The resulting code looks
quite similar to our definition of equality. The major difference is that the type
argument is interpreted at run time whereas Generic Haskell does the analysis
at compile time. On the other hand, type-indexed functions are second-class
citizens in Generic Haskell whereas in intensional type analysis they have first-
class status. Originally, the framework was restricted to data types of kind ?, but
recent work [49] has lifted this restriction (the generalization is, in fact, inspired
by our work on Generic Haskell).

Type representations Typed intermediate languages based on intensional
type analysis are expressive but rather complex languages. Perhaps surprisingly,
dynamic type dispatch can be simulated in a much more modest setting: we
basically require a Hindley-Milner type system augmented with existential types.
The central idea is to pass type representations instead of types. As a first try, if
Rep is the type of type representations, we could assign ‘eq ’ the type ∀a . Rep →
a → a → Bool. This approach, however, does not work. The parametricity
theorem [46] implies that a function of this type must necessarily ignore its
second and its third argument. The trick is to use a parametric type for type
representations:

eq :: ∀a . Rep a → a → a → Bool.

Here Rep t is the type representation of t. In [9, 5] it is shown how to define a Rep
type in Haskell (augmented with existential types). This approach is, however,
restricted to types of one fixed kind.

Dependent types We have noted above that the type Generic Haskell assigns
to equality resembles a dependent type. Thus, it comes as little surprise that we
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can simulate Generic Haskell in a dependently typed language [2]. In such a lan-
guage we can define a simple, non-parametric type Rep of type representations.
The correspondence between a type and its representative is established by a
function Type :: Rep → ? that maps a representation to its type. The signature
of equality is then given by

eq :: (a :: Rep) → Type a → Type a → Bool.

The code of eq is similar to what we have seen before; only the typechecking is
more involved as it requires reduction of type expressions.

Historical notes The concept of functional generic programming trades under
a variety of names: F. Ruehr refers to this concept as structural polymorphism
[42, 41], T. Sheard calls generic functions type parametric [44], C.B. Jay and
J.R.B. Cocket use the term shape polymorphism [27], R. Harper and G. Morrisett
[16] coined the phrase intensional polymorphism, and J. Jeuring invented the
word polytypism [28].

The mainstream of generic programming is based on the initial algebra se-
mantics of datatypes, see, for instance [15], and puts emphasis on general recur-
sion operators like mapping functions and catamorphisms (folds). In [43] several
variations of these operators are informally defined and algorithms are given
that specialize these functions for given datatypes. The programming language
Charity [10] automatically provides mapping functions and catamorphisms for
each user-defined datatype. Since general recursion is not available, Charity is
strongly normalizing. Functorial ML [26] has a similar functionality, but a differ-
ent background. It is based on the theory of shape polymorphism, in which values
are separated into shape and contents. The polytypic programming language ex-
tension PolyP [24], a precursor of Generic Haskell, offers a special construct for
defining generic functions. The generic definitions are similar to ours (modulo
notation) except that the generic programmer must additionally consider cases
for type composition and for type recursion (see [19] for a more detailed com-
parison).

Most approaches are restricted to first-order kinded, regular datatypes (or
even subsets of this class). One notable exception is the work of F. Ruehr [42],
who presents a higher-order language based on a type system related to ours.
Genericity is achieved through the use of type patterns which are interpreted
at run-time. By contrast, the implementation technique of Generic Haskell does
not require the passing of types or representations of types at run-time.

Exercise 1. Prove that a function of type ∀a . a → a → Bool is necessarily con-
stant.

Exercise 2. Define an instance of equality for random-access lists.

Exercise 3. Implement a generic version of Haskell’s compare function, which
determines the precise ordering of two elements. Start by defining an appropriate
kind-indexed type and then give equations for each of the type constants Unit,
‘:+:’, and ‘:*:’.



22 R. Hinze, J. Jeuring

Exercise 4. Miranda offers a primitive function force ::∀a . a → a that fully eval-
uates its argument. Implement a generic version of force using Haskell’s seq
function (which is of type ∀a b . a → b → b).

Exercise 5 (Difficult). Define a generic function that memoizes a given function.
Its kind-indexed type is given by

type Memo{[?]} t = ∀v . (t → v) → (t → v)
type Memo{[κ → ν]} t = ∀a .Memo{[κ]} a → Memo{[ν]} (t a).

Note that Memo{[?]} t is a polymorphic type. Hint: memo{|t :: ?|} f should yield
a closure that does not dependent on the actual argument of f .

2 Generic Haskell—Practice

In this section we look at generic definitions in more detail explaining the var-
ious features of Generic Haskell. In particular, we show how to define mapping
functions, reductions, and pretty printers generically.

2.1 Mapping functions

A mapping function for a type constructor F of kind ? → ? lifts a given function
of type a → b to a function of type F a → F b. In the sequel we show how to
define mapping functions so that they work for all types of all kinds. Before we
tackle the generic definition, let us consider some instances first. As an aside,
note that the combination of a type constructor and its mapping function is
often referred to as a functor.

Here is again the all-time favourite, the mapping function for lists.

mapList :: ∀a1 a2 . (a1 → a2) → (List a1 → List a2)
mapList mapa Nil = Nil
mapList mapa (Cons a as) = Cons (mapa a) (mapList mapa as).

The mapping function takes a function and applies it to each element of a given
list. It is perhaps unusual to call the argument function mapa. The reason for
this choice will become clear as we go along. For the moment it suffices to bear
in mind that the definition of mapList rigidly follows the structure of the data
type.

We have seen in Section 1.2 that List can alternatively be defined using an
explicit fixed point construction.

type List′ a = Fix (ListBase a).



Generic Haskell: practice and theory 23

How can we define the mapping function for lists thus defined? For a start, we
define the mapping function for the base functor.

mapListBase :: ∀a1 a2 . (a1 → a2) → ∀b1 b2 . (b1 → b2)
→ (ListBase a1 b1 → ListBase a2 b2)

mapListBase mapa mapb NilL = NilL
mapListBase mapa mapb (ConsL a b)

= ConsL (mapa a) (mapb b)

Since the base functor has two type arguments, its mapping function takes two
functions, mapa and mapb, and applies them to values of type a1 and b1, respec-
tively. Even more interesting is the mapping function for Fix

mapFix :: ∀f1 f2 . (∀a1 a2 . (a1 → a2) → (f1 a1 → f2 a2))
→ (Fix f1 → Fix f2)

mapFix mapf (In v) = In (mapf (mapFix mapf ) v),

which takes a polymorphic function as an argument. In other words, mapFix has
a rank-2 type. The argument function, mapf , has a more general type than one
would probably expect: it takes a function of type a1 → a2 to a function of type
f1 a1 → f2 a2. By contrast, the mapping function for List (which like f has kind
? → ?) takes a1 → a2 to List a1 → List a2. The definition below demonstrates
that the extra generality is vital.

mapList ′ :: ∀a1 a2 . (a1 → a2) → (List′ a1 → List′ a2)
mapList ′ mapa = mapFix (mapListBase mapa)

The argument of mapFix has type ∀b1 b2 . (b1 → b2) → (ListBase a1 b1 →
ListBase a2 b2), that is, f1 is instantiated to ListBase a1 and f2 to ListBase a2.

Now, let us define a generic version of map. What is the type of the generic
mapping function? As a first attempt, we might define

type Map{[?]} t = t → t -- WRONG
type Map{[κ → ν]} t = ∀a . Map{[κ]} a → Map{[ν]} (t a).

Alas, we have Map{[? → ?]} List = ∀a . (a → a) → (List a → List a), which
is not general enough. The solution is to use a two-argument version of the
kind-indexed type Map.

type Map{[?]} t1 t2 = t1 → t2
type Map{[κ → ν]} t1 t2 = ∀a1 a2 .Map{[κ]} a1 a2 → Map{[ν]} (t1 a1) (t2 a2)
map{|t :: κ|} :: Map{[κ]} t t

We obtain Map{[? → ?]} List List = ∀a1 a2 . (a1 → a2) → (List a1 → List a2)
as desired. In the base case Map{[?]} t1 t2 equals the type of a conversion func-
tion. The inductive case has a very characteristic form, which we have already
encountered several times. It specifies that a ‘conversion function’ between the
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type constructors t1 and t2 is a function that maps a conversion function be-
tween a1 and a2 to a conversion function between t1 a1 and t2 a2, for all possible
instances of a1 and a2. Roughly speaking, Map{[κ → ν]} t1 t2 is the type of a
‘conversion function’-transformer. It is not hard to see that the type signatures of
mapList , mapListBase, and mapFix are instances of this scheme. Furthermore,
from the inductive definition above we can easily conclude that the rank of the
type signature corresponds to the kind of the type index: for instance, the map
for a second-order kinded type has a rank-2 type signature.

The definition of map itself is straightforward.

map{|t :: κ|} :: Map{[κ]} t t

map{|Char|} c = c
map{|Int|} i = i
map{|Unit|} Unit = Unit
map{|:+:|} mapa mapb (Inl a) = Inl (mapa a)
map{|:+:|} mapa mapb (Inr b) = Inr (mapb b)
map{|:*:|} mapa mapb (a :*: b) = mapa a :*: mapb b

This definition contains all the ingredients needed to derive maps for arbitrary
data types of arbitrary kinds. As an aside, note that we can define map even
more succinctly if we use a point-free style—as usual, the maps on sums and
products are denoted (+) and (∗).

map{|Char|} = id
map{|Int|} = id
map{|Unit|} = id
map{|:+:|} mapa mapb = mapa + mapb
map{|:*:|} mapa mapb = mapa ∗mapb

Even more succinctly, we have map{|:+:|} = (+) and map{|:*:|} = (∗).
As usual, to apply a generic function we simply instantiate the type-index to

a closed type.

map{|List Char|} "hello world"
=⇒ "hello world"
map{|List|} toUpper "hello world"
=⇒ "HELLO WORLD"

We can also use map to define other generic functions.

distribute{|t :: ? → ?|} :: ∀a b . t a → b → t (a, b)
distribute{|t|} x b = map{|t|} (λa → (a, b)) x

The call distribute{|t|} x b pairs the value b with every element contained in the
structure x .
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2.2 Kind-indexed types and type-indexed values

In general, the definition of a type-indexed value consists of two parts: a type
signature, which typically involves a kind-indexed type, and a set of equations,
one for each type constant. A kind-indexed type is defined as follows:

type Poly{[?]} t1 . . . tn = . . .
type Poly{[κ → ν]} t1 . . . tn = ∀a1 . . . an . Poly{[κ]} a1 . . . an

→ Poly{[ν]} (t1 a1) . . . (tn an).

The second clause is the same for all kind-indexed types so that the generic
programmer merely has to fill out the right-hand side of the first equation.
Actually, Generic Haskell offers a slightly more general form (see Section 2.4),
which is the reason why we do not leave out the second clause.

Given a kind-indexed type, the definition of a type-indexed value takes on
the following schematic form.

poly{|t :: κ|} :: Poly{[κ]} t . . . t

poly{|Char|} = . . .

poly{|Int|} = . . .

poly{|Unit|} = . . .

poly{|:+:|} polya polyb = . . .

poly{|:*:|} polya polyb = . . .

We have one clause for each primitive type (Int, Char etc) and one clause for each
of the three type constructors Unit, ‘:*:’, and ‘:+:’. Again, the generic programmer
has to fill out the right-hand sides. To be well-typed, the poly{|t::κ|} instance must
have type Poly{[κ]} t . . . t as stated in the type signature of poly . Actually, the
type signature can be more elaborate (we will see examples of this in Section 2.4).

The major insight of the mapping example is that a kind-indexed type can
have several type arguments. Recall in this respect the type of the generic equal-
ity function:

type Eq{[?]} t = t → t → Bool
type Eq{[κ → ν]} t = ∀a .Eq{[κ]} a → Eq{[ν]} (t a).

Interestingly, we can generalize the type since the two arguments of equality
need not be of the same type.

type Eq{[?]} t1 t2 = t1 → t2 → Bool
type Eq{[κ → ν]} t1 t2 = ∀a1 a2 . Eq{[κ]} a1 a2 → Eq{[ν]} (t1 a1) (t2 a2)

We can assign eq{|t :: κ|} the more general type Eq{[κ]} t t. Though this gives
us a greater degree of flexibility, the definition of eq itself is not affected by
this change! As an example, we could pass eq{|List|} the ‘equality test’ match ::
Female → Male → Bool in order to check whether corresponding list entries
match.
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2.3 Embedding-projection maps

Most of the generic functions cannot sensibly be defined for the function space.
For instance, equality of functions is not decidable. The mapping function map
cannot be defined for function types since (→) is contravariant in its first argu-
ment:

(→) :: ∀a1 a2 . (a2 → a1) →
∀b1 b2 . (b1 → b2) → ((a1 → b1) → (a2 → b2))

(f → g) h = g · h · f .

In the case of mapping functions we can remedy the situation by drawing from
the theory of embeddings and projections [13]. The central idea is to supply
a pair of functions, from and to, where to is the left-inverse of from, that is,
to · from = id . (If the functions additionally satisfy from · to v id , then
they are called an embedding-projection pair.) We use the following data type
to represent embedding-projection pairs (the code below make use of Haskell’s
record syntax).

data EP a1 a2 = EP{from :: a1 → a2, to :: a2 → a1}
idE :: ∀a . EP a a
idE = EP{from = id , to = id }
(◦) :: ∀a b c . EP b c → EP a b → EP a c
f ◦ g = EP{from = from f · from g , to = to g · to f }

Here, idE is the identity embedding-projection pair and ‘◦’ shows how to com-
pose two embedding-projection pairs (note that the composition is reversed for
the projection). In fact, idE and ‘◦’ give rise to the category Cpoe, the category
of complete partial orders and embedding-projection pairs. This category has
the interesting property that the function space can be turned into a covariant
functor.

(+E) :: ∀a1 a2 .EP a1 a2 → ∀b1 b2 .EP b1 b2 → EP (a1 :+: b1) (a2 :+: b2)
f +E g = EP{from = from f + from g , to = to f + to g }
(∗E) :: ∀a1 a2 .EP a1 a2 → ∀b1 b2 .EP b1 b2 → EP (a1 :*: b1) (a2 :*: b2)
f ∗E g = EP{from = from f ∗ from g , to = to f ∗ to g }
(→E) :: ∀a1 a2 .EP a1 a2 → ∀b1 b2 .EP b1 b2 → EP (a1 → b1) (a2 → b2)
f →E g = EP{from = to f → from g , to = from f → to g }

Given these helper functions the generic embedding-projection map can be de-
fined as follows.

type MapE{[?]} t1 t2 = EP t1 t2
type MapE{[κ → ν]} t1 t2 = ∀a1 a2 . MapE{[κ]} a1 a2 → MapE{[ν]} (t1 a1) (t2 a2)
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mapE{|t :: κ|} :: MapE{[κ]} t t
mapE{|Char|} = idE

mapE{|Int|} = idE

mapE{|Unit|} = idE

mapE{|:+:|} = (+E)
mapE{|:*:|} = (∗E)
mapE{|→|} = (→E)

We will see in Section 3.4 that embedding-projection maps are useful for changing
the representation of data.

2.4 Reductions

The Haskell standard library defines a vast number of list processing functions.
We have among others:

sum, product :: ∀a . (Num a) ⇒ [a ] → a
and , or :: [Bool ] → Bool
all , any :: ∀a . (a → Bool) → ([a] → Bool)
length :: ∀a . [a ] → Int
minimum,maximum :: ∀a . (Ord a) ⇒ [a] → a
concat :: ∀a . [[a]] → [a].

These are examples of so-called reductions. A reduction or a crush [31] is a
function that collapses a structure of values of type t (such a structure is also
known as a container) into a single value of type t. This section explains how to
define reductions that work for all types of all kinds. To illustrate the main idea
we first discuss three motivating examples. Let us start with a generic function
that counts the number of values of type Int within a given structure of some
type.

Here is the type of the generic counter

type Count{[?]} t = t → Int
type Count{[κ → ν]} t = ∀a . Count{[κ]} a → Count{[ν]} (t a)

and here is its definition.

count{|t :: κ|} :: Count{[κ]} t

count{|Char|} c = 0
count{|Int|} i = 1
count{|Unit|} Unit = 0
count{|:+:|} counta countb (Inl a) = counta a
count{|:+:|} counta countb (Inr b) = countb b
count{|:*:|} counta countb (a :*: b) = counta a + countb b
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Next, let us consider a slight variation: the function sum{|t|} defined below
is identical to count{|t|} except for t = Int, in which case sum also returns 0.

sum{|t :: κ|} :: Count{[κ]} t

sum{|Char|} c = 0
sum{|Int|} i = 0
sum{|Unit|} Unit = 0
sum{|:+:|} suma sumb (Inl a) = suma a
sum{|:+:|} suma sumb (Inr b) = sumb b
sum{|:*:|} suma sumb (a :*: b) = suma a + sumb b

It is not hard to see that sum{|t|} x returns 0 for all types t of kind ? (well,
provided x is finite and fully defined). So one might be led to conclude that sum
is not a very useful function. This conclusion is, however, too rash since sum
can also be parameterized by type constructors. For instance, for unary type
constructors sum has type

sum{|t :: ? → ?|} :: ∀a . (a → Int) → (t a → Int)

If we pass the identity function to sum, we obtain a function that sums up a
structure of integers. Another viable choice is const 1; this yields a function of
type ∀a . t a → Int that counts the number of values of type a in a given structure
of type t a.

sum{|List Int|} [2, 7, 1965]
=⇒ 0
sum{|List|} id [2, 7, 1965]
=⇒ 1974
sum{|List|} (const 1) [2, 7, 1965]
=⇒ 3

As usual, we can use generic abstractions to capture these idioms.

fsum{|t :: ? → ?|} :: t Int → Int
fsum{|t|} = sum{|t|} id
fsize{|t :: ? → ?|} :: ∀a . t a → Int
fsize{|t|} = sum{|t|} (const 1)

Using a similar approach we can flatten a structure into a list of elements.
The type of the generic flattening function

type Flatten{[?]} t x = t → [x ]
type Flatten{[κ → ν]} t x = ∀a .Flatten{[κ]} a x → Flatten{[ν]} (t a) x

makes use of a simple extension: Flatten{[κ]} t x takes an additional type param-
eter, x, that is passed unchanged to the base case. One can safely think of x as
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a type parameter that is global to the definition. The code for flatten is similar
to the code for sum.

flatten{|t :: κ|} :: ∀x .Flatten{[κ]} t x

flatten{|Char|} c = [ ]
flatten{|Int|} i = [ ]
flatten{|Unit|} Unit = [ ]
flatten{|:+:|} fla flb (Inl a) = fla a
flatten{|:+:|} fla flb (Inr b) = flb b
flatten{|:*:|} fla flb (a :*: b) = fla a ++ flb b

The type signature of flatten makes precise that its instances are parametric in
the type of list elements. We have, for instance,

flatten{|Char|} :: ∀x . Char → [x]
flatten{|Rose|} :: ∀x .∀a . (a → [x]) → (Rose a → [x]).

Interestingly, the type dictates that flatten{|Char|} = const [ ]. Like sum, the
flatten function is pointless for types but useful for type constructors.

fflatten{|t :: ? → ?|} :: ∀a . t a → [a]
fflatten{|t|} = flatten{|t|} wrap where wrap a = [a ]

The definitions of sum and flatten exhibit a common pattern: the elements of
a base type are replaced by a constant (0 and [ ], respectively) and the pair con-
structor is replaced by a binary operator ((+) and (++), respectively). The generic
function reduce abstracts away from these particularities. Its kind-indexed type
is given by

type Reduce{[?]} t x = x → (x → x → x) → t → x
type Reduce{[κ → ν]} t x = ∀a . Reduce{[κ]} a x → Reduce{[ν]} (t a) x.

Note that the type argument x is passed unchanged to the recursive calls.

reduce{|t :: κ|} :: ∀x . Reduce{[κ]} t x

reduce{|Char|} e op c = e
reduce{|Int|} e op i = e
reduce{|Unit|} e op Unit = e
reduce{|:+:|} reda redb e op (Inl a) = reda e op a
reduce{|:+:|} reda redb e op (Inr b) = redb e op b
reduce{|:*:|} reda redb e op (a :*: b) = reda e op a ‘op‘ redb e op b

Using reduce we can finally give generic versions of Haskell’s list processing
functions listed in the beginning of this section.

freduce{|t :: ? → ?|} :: ∀x . x → (x → x → x) → t x → x
freduce{|t|} = reduce{|t|} (λe op a → a)
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fsum{|t|} = freduce{|t|} 0 (+)
fproduct{|t|} = freduce{|t|} 1 (∗)
fand{|t|} = freduce{|t|} True (∧)
for{|t|} = freduce{|t|} False (∨)
fall{|t|} f = fand{|t|} · map{|t|} f
fany{|t|} f = for{|t|} · map{|t|} f
fminimum{|t|} = freduce{|t|} maxBound min
fmaximum{|t|} = freduce{|t|} minBound max
fflatten{|t|} = freduce{|t|} [ ] (++)

Typically, the two arguments of freduce form a monoid : the second argument is
associative and has the first as its neutral element.

As an aside, note that the definition of fflatten has a quadratic running time.
Exercise 8 seeks to remedy this defect.

2.5 Pretty printing

Generic functions are defined by induction on the structure of types. Annoyingly,
this is not quite enough. Consider, for example, the method showsPrec of the
Haskell class Show . To be able to give a generic definition for showsPrec, the
names of the constructors, and their fixities, must be made available.

To this end we provide one additional type case.

poly{|Con c|} polya = . . .

Roughly speaking, this case is invoked whenever we pass by a constructor. Quite
unusual, the variable c that appears in the type index is bound to a value of type
ConDescr and provides the required information about the name of a constructor,
its arity etc.

data ConDescr = ConDescr{conName :: String,
conType :: String,
conArity :: Int,
conLabels :: Bool,
conFixity :: Fixity}

data Fixity = Nonfix
| Infix{prec :: Int}
| Infixl{prec :: Int}
| Infixr{prec :: Int}

The Con data type itself is a simple wrapper type.

data Con a = Con a

Using conName and conArity we can implement a simple variant of Haskell’s
showsPrec function (ShowS, shows, showChar , and showString are predefined in
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Haskell).

type Shows{[?]} t = t → ShowS
type Shows{[κ → ν]} t = ∀a . Shows{[κ]} a → Shows{[ν]} (t a)
gshows{|t :: κ|} :: Shows{[κ]} t

gshows{|:+:|} sa sb (Inl a) = sa a
gshows{|:+:|} sa sb (Inr b) = sb b
gshows{|Con c|} sa (Con a)
| conArity c 0 = showString (conName c)
| otherwise = showChar ’(’ · showString (conName c)

· showChar ’ ’ · sa a · showChar ’)’

gshows{|:*:|} sa sb (a :*: b) = sa a · showChar ’ ’ · sb b
gshows{|Unit|} Unit = showString ""

gshows{|Char|} = shows
gshows{|Int|} = shows

The first and the second equation discard the constructors Inl and Inr . They
are not required since the constructor names can be accessed via the type pat-
tern Con c. If the constructor is nullary, its string representation is emitted.
Otherwise, the constructor name is printed followed by a space followed by the
representation of its arguments. The fourth equation applies if a constructor has
more than one component. In this case the components are separated by a space.

In a nutshell, via ‘:+:’ we get to the constructors, Con signals that we hit a
constructor, and via ‘:*:’ we get to the arguments of a constructor. Or, to put it
differently, the generic programmer views, for instance, the list data type

data List a = Nil | Cons a (List a)

as if it were given by the following type definition.

type List a = (Con Unit) :+: (Con (a :*: List a))

As a simple example, the list Cons 1 Nil is represented by Inr (Con (1 :*:
Inl (Con Unit))).

It should be noted that descriptors of type ConDescr appear only in the
type index; they have no counterpart on the value level as value constructors
are encoded using Inl and Inr . If a generic definition does not include a case for
the type pattern Con c, then we tacitly assume that poly{|Con c|} polya = polya.
(Actually, the default definition is slightly more involved since a and Con a are
different types: the data constructor Con must be wrapped and unwrapped at the
appropriate places. Section 3.4 explains how to accomplish this representation
change in a systematic manner.) Now, why does the type Con c incorporate
information about the constructor? One might suspect that it is sufficient to
supply this information on the value level. Doing so would work for show , but
would fail for a generic version of read , which converts a string to a value.
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Consider the ‘Con’ case:

greads{|Con c|} ra s = [(x , s3) | (s1, s2) ← lex s,
s1 conName c,
(x , s3) ← ra s2 ].

The important point is that greads produces (not consumes) the value, and yet
it requires access to the constructor name.

The gshows function generates one long string, which does not look pretty
at all when printed out. We can do better using Wadler’s pretty printing com-
binators [48].

data Doc

empty :: Doc
(3) :: Doc → Doc → Doc
string :: String → Doc
nl :: Doc
nest :: Int → Doc → Doc
group :: Doc → Doc
render :: Int → Doc → String

The value empty represents the empty document, the operator ‘3’ catenates two
documents, and string converts a string to an atomic document. The document
nl denotes a potential line break. The function nest increases the indentation
for all line breaks within its document argument. The function group marks its
argument as a unit: it is printed out on a single line by converting all its potential
line breaks into single spaces if this is possible without exceeding a given line-
width limit. Finally, render w d converts a document to a string respecting the
line width w .

The generic function ppPrec{|t|} d x takes a precedence level d (a value
from 0 to 10), a value x of type t and returns a document of type Doc. The
function essentially follows the structure of gshows except that it replaces the
ShowS functions by pretty printing combinators.

type Pretty{[?]} t = Int → t → Doc
type Pretty{[κ → ν]} t = ∀a . Pretty{[κ]} a → Pretty{[ν]} (t a)
ppPrec{|t :: κ|} :: Pretty{[κ]} t

ppPrec{|:+:|} ppa ppb d (Inl a) = ppa d a
ppPrec{|:+:|} ppa ppb d (Inr b) = ppb d b
ppPrec{|Con c|} ppa d (Con a)
| conArity c 0 = string (conName c)
| otherwise = group (nest 2 (ppParen (d > 9) doc))
where doc = string (conName c) 3 nl 3 ppa 10 a

ppPrec{|:*:|} ppa ppb d (a :*: b) = ppa d a 3 nl 3 ppb d b
ppPrec{|Unit|} d Unit = empty
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ppPrec{|Int|} d i = string (show i)
ppPrec{|Char|} d c = string (show c)
ppParen :: Bool → Doc → Doc
ppParen False d = d
ppParen True d = string "(" 3 d 3 string ")"

The helper function ppParen encloses its second argument in parenthesis if its
first evaluates to True.

2.6 Running Generic Haskell

This section explains how to use the Generic Haskell compiler called gh. It has
two basic modes of operation. If gh is called without arguments, the user is
prompted for a file name (relative to the working directory). The compiler then
processes the file and generates an output file with the same basename as the
input file, but the extension ‘.hs’. Generic Haskell source files typically have the
extension ‘.ghs’. Alternatively, input files can be specified on the command line.
A typical invocation is:

path_to_gh/bin/gh -L path_to_gh/lib/ your_file.ghs

A number of command line options are available:

Usage: gh [options...] files...
-v --verbose (number of v’s controls the verbosity)
-m --make follow dependencies
-V --version show version info
-h, -? --help show help

--cut=N cut computations after N iterations
-C --continue continue after errors
-L DIR --library=DIR add DIR to search path

The first level of verbosity (no -v flag) produces only error messages. The second
level (-v) additionally provides diagnostic information and warnings. The third
level (-vv) produces debugging information.

The -m (or --make) option instructs the compiler to chase module dependen-
cies and to automatically process those modules which require compilation.

The option --cut=N stops the compilation after N iterations of the special-
ization mechanism (the default is to stop after 50 iterations). The first level of
verbosity (-v) can be used to report the number of required iterations.

The -C (or --continue) option forces the compiler to continue compilation
even when an error is encountered. This can be used to generate further error
messages or to inspect the generated code.

The Generic Haskell compiler compiles ‘.ghs’ files and produces ‘.hs’ files
which can subsequently be compiled using a Haskell compiler. In addition, the
compiler produces ‘.ghi’ interface files, which will be used in subsequent compi-
lations to avoid unnecessary recompilation. As an example, Figure 1 displays the
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source code for the generic version of Haskell’s shows function. Note that type
arguments are enclosed in {|·|} brackets, while {[·]} embraces kind arguments.

type Shows {[ * ]} t = t -> ShowS

type Shows {[ k -> l ]} t

= forall a . Shows {[ k ]} a -> Shows {[ l ]} (t a)

gshows {| t :: k |} :: Shows {[ k ]} t

gshows {| :+: |} sa sb (Inl a) = sa a

gshows {| :+: |} sa sb (Inr b) = sb b

gshows {| Con c|} sa (Con a)

| conArity c == 0 = showString (conName c)

| otherwise = showChar ’(’ . showString (conName c)

. showChar ’ ’ . sa a . showChar ’)’

gshows {| :*: |} sa sb (a :*: b)

= sa a . showChar ’ ’ . sb b

gshows {| Unit |} Unit = showString ""

gshows {| Char |} = shows

gshows {| Int |} = shows

data Tree a b = Tip a | Node (Tree a b) b (Tree a b)

main = putStrLn (gshows {| Tree Int String |} ex "")

ex :: Tree Int String

ex = Node (Tip 1) "hello"

(Node (Tip 2) "world" (Tip 3))

Fig. 1. A generic implementation of the shows function.

The Generic Haskell compiler generates ordinary Haskell code (Haskell 98
augmented with rank-2 types), which can be run or compiled using the Glasgow
Haskell Compiler, Hugs, or any other Haskell compiler. You only have to ensure
that the path to GHPrelude.hs (and to other Generic Haskell libraries), which
can be found in the lib subdirectory, is included in your compiler’s search path.

The Generic Haskell compiler is shipped with an extensive library, which
provides further examples of generic functions.

Exercise 6. Let M be a monad. A monadic mapping function for a type con-
structor F of kind ? → ? lifts a given function of type a → M b to a function of
type F a → M (F b). Define a generic version of the monadic map. First define a
kind-indexed type and then give equations for each of the type constants.

The standard mapping function is essentially determined by its type (each
equation is more or less inevitable). Does this also hold for monadic maps?
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Exercise 7. Closely related to mapping functions are zipping functions. A binary
zipping function takes two structures of the same shape and combines them into
a single structure. For instance, the list zip takes two lists of type List a1 and
List a2 and pairs corresponding elements producing a list of type List (a1, a2).
Define a generic version of zip that works for all types of all kinds. Hint: the
kind-indexed type of zip is essentially a three parameter variant of Map.

Exercise 8. The implementation of fflatten given in Section 2.4 has a quadratic
running time since the computation of x++y takes time proportional to the length
of x . Using the well-known technique of accumulation [6] one can improve the
running time to O(n). This technique can be captured using a generic function,
called a right reduction. Its kind-indexed type is given by

type Reducer{[?]} t x = t → x → x
type Reducer{[κ → ν]} t x = ∀a . Reducer{[κ]} a x → Reducer{[ν]} (t a) x

The second argument of type x is the accumulator. Fill in the definition of reducer
and define fflatten in terms of reducer . Why is reducer called a right reduction?
Also define its dual, a left reduction.

Exercise 9. The generic function fsize computes the size of a container type.
Can you define a function that computes its height? Hint: you have to make use
of the constructor case Con.

Exercise 10 (this may take some time). In Section 1.3 we have implemented a
simple form of data compression. A more sophisticated scheme could use Huff-
man coding, emitting variable-length codes for the constructors. Implement a
function that given a sample element of a data type counts the number of occur-
rences of each constructor. Hint: consider the type ConDescr. Which information
is useful for your task?

3 Generic Haskell—Theory

This section highlights the theory underlying Generic Haskell (most of the ma-
terial is taken from [22]).

We have already indicated that Generic Haskell takes a transformational
approach to generic programming: a generic function is translated into a family
of polymorphic functions. We will see in this section that this transformation
can be phrased as an interpretation of the simply typed lambda calculus (types
are simply typed lambda terms with kinds playing the rôle of types). To make
this idea precise we switch from Haskell to the polymorphic lambda calculus.
The simply typed lambda calculus and the polymorphic lambda calculus are
introduced in Sections 3.1 and 3.2, respectively. Section 3.3 then shows how to
specialize generic functions to instances of data types.

The polymorphic lambda calculus is the language of choice for the theoretical
treatment of generic definitions. Though Haskell comes quite close to this ideal
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language, there is one fundamental difference between Haskell and (our presen-
tation) of the polymorphic lambda calculus. In Haskell, each data declaration
introduces a new type; two types are equal iff they have the same name. By con-
trast, in the polymorphic lambda calculus two types are equal iff they have the
same structure. Section 3.4 explains how to adapt the technique of Section 3.3
to a type system based on name equivalence.

3.1 The simply typed lambda calculus as a type language

This section introduces the language of kinds and types that we will use in the
sequel. The type system is essentially that of Haskell smoothing away some of its
irregularities. We have see in Section 1.2 that Haskell offers one basic construct
for defining new types: data type declarations.

data B a1 . . . am = K1 t11 . . . t1m1 | · · · | Kn tn1 . . . tnmn
.

From a language design point of view the data construct is quite a beast as it
combines no less than four different features: type abstraction, type recursion,
n-ary sums, and n-ary products. The types on the right-hand side are built from
type constants (that is, primitive type constructors), type variables, and type
application. Thus, Haskell’s type system essentially corresponds to the simply
typed lambda calculus with kinds playing the rôle of types.

In the sequel we review the syntax and the semantics of the simply typed
lambda calculus. A basic knowledge of this material will prove useful when we
discuss the specialization of type-indexed values. Most of the definitions are
taken from the excellent textbook by J. Mitchell [34].

Syntax The simply typed lambda calculus has a two-level structure: kinds and
types (since we will use the calculus to model Haskell’s type system we continue
to speak of kinds and types).

kind terms κ, ν ∈ Kind
type constants C, D ∈ Const
type variables a, b ∈ Var
type terms t, u ∈ Type

Note that we use Greek letters for kinds and Sans Serif letters for types.
Kind terms are formed according to the following grammar.

κ, ν ∈ Kind ::= ? kind of types
| (κ → ν) function kind

As usual, we assume that ‘→’ associates to the right.
Pseudo-type terms are built from type constants and type variables using

type abstraction and type application.

t, u ∈ Type ::= C type constant
| a type variable
| (Λa :: ν . t) type abstraction
| (t u) type application
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We assume that type abstraction extends as far to the right as possible and that
type application associates to the left. For typographic simplicity, we will often
omit the kind annotation in Λa ::ν . t (especially if ν = ?). Finally, we abbreviate
nested abstractions Λa1 . . . . Λam . t by Λa1 . . . am . t.

The choice of Const, the set of type constants, is more or less arbitrary.
However, in order to model Haskell’s data declarations we assume that Const
comprises at least the constants Char, Int, Unit, ‘:+:’, ‘:*:’, and a family of fixed
point operators:

Const ⊇ {Char :: ?, Int :: ?,Unit :: ?, (:*:) :: ? → ? → ?, (:+:) :: ? → ? → ?}
∪{Fixκ :: (κ → κ) → κ | κ ∈ Kind}.

As usual, we write binary type constants infix. We assume that ‘:*:’ and ‘:+:’
associate to the right and that ‘:*:’ binds more tightly than ‘:+:’. The set of
type constants includes a family of fixed point operators indexed by kind. In the
examples, we will often omit the kind annotation in Fixκ.

In order to define ‘well-kinded’ type terms we need the notion of a context.
A context is a finite set of kind assumptions of the form a ::κ. It is convenient to
view a context Γ as a finite map from type variables to kinds and write dom(Γ )
for its domain. Likewise, we view Const as a finite map from type constants to
kinds. A pseudo-type term t is called a type term if there is a context Γ and a
kind κ such that Γ ` t :: κ is derivable using the rules depicted in Figure 2.

Γ ` C :: Const(C)
(t-const)

Γ ` a :: Γ (a)
(t-var)

Γ, a :: ν ` t :: κ

Γ ` (Λa :: ν . t) :: (ν → κ)
(t-→-intro)

Γ ` t :: (ν → κ) Γ ` u :: ν

Γ ` (t u) :: κ
(t-→-elim)

Fig. 2. Kinding rules.

The equational proof system of the simply typed lambda calculus is given by
the rules in Figure 3. Let E be a possibly empty set of equations between type
terms. We write Γ `E t1 = t2 :: κ to mean that the type equation t1 = t2 is
provable using the rules and the equations in E .

The equational proof rules identify a recursive type Fixκ t and its unfolding
t (Fixκ t). In general, there are two flavours of recursive types: equi-recursive
types and iso-recursive types, see [12]. In the latter system Fixκ t and t (Fixκ t)
must only be isomorphic rather than equal. The subsequent development is
largely independent of this design choice. We use equi-recursive types because
they simplify the presentation somewhat.
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Γ ` ((Λa :: ν . t) u = t[a := u ]) :: κ
(t-β)

a not free in t

Γ ` (Λa :: ν . t a = t) :: (ν → κ)
(t-η)

Γ ` (Fixκ t = t (Fixκ t)) :: κ
(t-fix)

Fig. 3. Equational proof rules (the usual ‘logical’ rules for reflexivity, symmetry, tran-
sitivity, and congruence are omitted).

Modelling data declarations Using the simply typed lambda calculus as a
type language we can easily translate data type declarations into type terms. For
instance, the type B defined by the schematic data declaration in the beginning
of this section is modelled by (we tacitly assume that the kinds of the type
variables have been inferred)

Fix (ΛB . Λa1 . . . am . (t11 :*: · · · :*: t1m1) :+: · · · :+: (tn1 :*: · · · :*: tnmn )),

where t1 :*: · · · :*: tk = Unit for k = 0. For simplicity, n-ary sums are reduced
to binary sums and n-ary products to binary products. For instance, the data
declaration

data List a = Nil | Cons a (List a)

is translated to
Fix (ΛList . Λa .Unit :+: a :*: List a).

Interestingly, the representation of regular types such as List can be improved
by applying a technique called lambda-dropping [11]: if Fix (Λf . Λa . t) is regular,
then it is equivalent to Λa . Fix (Λb . t[f a := b ]) where t[t1 := t2 ] denotes the
type term, in which all occurrences of t1 are replaced by t2. For instance, the
λ-dropped version of Fix (ΛList . Λa . Unit :+: a :*: List a) is Λa . Fix (Λb . Unit :+:
a :*: b). The λ-dropped version employs the fixed point operator at kind ?
whereas the original, the so-called λ-lifted version employs the fixed point op-
erator at kind ? → ?. Nested types such as Sequ are not amenable to this
transformation since the type argument of the nested type is changed in the
recursive call(s). As an aside, note that the λ-dropped and the λ-lifted version
correspond to two different methods of modelling parameterized types: families
of first-order fixed points versus higher-order fixed points, see, for instance, [8].

Environment models This section is concerned with the denotational seman-
tics of the simply typed lambda calculus. There are two general frameworks for
describing the semantics: environment models and models based on cartesian
closed categories. We will use environment models for the presentation since
they are somewhat easier to understand.
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The definition of the semantics proceeds in three steps. First, we introduce
so-called applicative structures, and then we define two conditions that an ap-
plicative structure must satisfy to qualify as a model. An applicative structure
is similar to an algebra, in that we need a set of ‘values’ for each kind and an
interpretation for each type constant. Additionally, we have to give meaning to
type abstraction and type application.

Definition 1. An applicative structure A is a tuple (A, app, const) such that

– A = (Aκ | κ ∈ Kind) is a family of sets,
– app = (appκ,ν : Aκ→ν → (Aκ → Aν) | κ, ν ∈ Kind) is a family of maps, and
– const : Const → A is a mapping from type constants to values such that

const(C) ∈ AConst(C) for every C ∈ dom(Const).

The first condition on models requires that equality between elements of function
kinds is standard equality on functions.

Definition 2. An applicative structure A = (A, app, const) is extensional, if
∀φ1, φ2 ∈ Aκ→ν . (∀α ∈ Aκ . app φ1 α = app φ2 α) ⊃ φ1 = φ2.

A simple example for an applicative structure is the set of type terms itself: Let
H be an infinite context that provides infinitely many type variables of each kind.
An extensional applicative structure (Type, app, const) may then be defined by
letting Typeκ = { t | Γ ` t :: κ for some finite Γ ⊆ H}, app t u = (t u), and
const(C) = C.

The second condition on models ensures that the applicative structure has
enough points so that every type term containing type abstractions can be as-
signed a meaning in the structure. To formulate the condition we require the
notion of an environment. An environment η is a mapping from type variables
to values. If Γ is a context, then we say η satisfies Γ if η(a) ∈ AΓ (a) for every
a ∈ dom(Γ ). If η is an environment, then η(a := α) is the environment mapping
a to α and b to η(b) for b different from a.

Definition 3. An applicative structure A = (A, app, const) is an environment
model if it is extensional and if the clauses below define a total meaning function
on terms Γ ` t :: κ and environments such that η satisfies Γ .

AJΓ ` C :: Const(C)Kη = const(C)
AJΓ ` a :: Γ (a)Kη = η(a)
AJΓ ` (Λa :: ν . t) :: (ν → κ)Kη

= the unique φ ∈ Aν→κ such that for all α ∈ Aν

appν,κ φ α = AJΓ, a :: ν ` t :: κKη(a := α)
AJΓ ` (t u) :: κKη = appν,κ (AJΓ ` t :: (ν → κ)Kη) (AJΓ ` u :: νKη)

Note that extensionality guarantees the uniqueness of the element φ whose ex-
istence is postulated in the third clause.

The set of type terms can be turned into an environment model if we identify
type terms that are provably equal. Let E be a possibly empty set of equations
between type terms. Then we define the equivalence class of types [t ] = {T ′ |
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Γ `E t = T ′ :: κ for some finite Γ ⊆ H} and let Typeκ/E = {[t ] | t ∈ Typeκ},
(app/E) [t ] [u] = [t u ], and (const/E) (C) = [C]. Then the applicative structure
(Type/E , app/E , const/E) is an environment model.

The environment model condition is often difficult to check. An equivalent,
but simpler condition is the combinatory model condition.

Definition 4. An applicative structure A = (A, app, const) satisfies the combi-
natory model condition if for all kinds κ, ν and µ there exist elements Kκ,ν ∈
Aκ→ν→κ and Sκ,ν,µ ∈ A(κ→ν→µ)→(κ→ν)→κ→µ such that

app (app K a) b = a
app (app (app S a) b) c = app (app a c) (app b c)

for all a, b and c of the appropriate kinds.

3.2 The polymorphic lambda calculus

We have seen in Section 1.3 that instances of generic functions require first-
class polymorphism. For instance, eqGRose takes a polymorphic argument to
a polymorphic result. To make the use of polymorphism explicit we will use a
variant of the polymorphic lambda calculus [14] (also known as Fω) both for
defining and for specializing type-indexed values. This section provides a brief
introduction to the calculus. As an aside, note that a similar language is also
used as the internal language of the Glasgow Haskell Compiler [39].

The polymorphic lambda calculus has a three-level structure (kinds, type
schemes, and terms) incorporating the simply typed lambda calculus on the
type level.

type schemes r, s ∈ Scheme
individual constants c, d ∈ const
individual variables a, b ∈ var
terms t , u ∈ term

We use Roman letters for terms.
Pseudo-type schemes are formed according to the following grammar.

r, s ∈ Scheme ::= t type term
| (r → s) function type
| (∀a :: ν . s) polymorphic type

A pseudo-type scheme s is called a type scheme if there is a context Γ and a
kind κ such that Γ ` s :: κ is derivable using the rules listed in Figures 2 and 4.

Pseudo-terms are given by the grammar

t , u ∈ term ::= c constant
| a variable
| (λa :: s . t) abstraction
| (t u) application
| (λa :: ν . t) universal abstraction
| (t r) universal application.
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Γ ` r :: ? Γ ` s :: ?

Γ ` (r → s) :: ?
(t-fun)

Γ, a :: ν ` s :: ?

Γ ` (∀a :: ν . s) :: ?
(t-all)

Fig. 4. Additional kinding rules for type schemes.

Here, λa :: ν . t denotes universal abstraction (forming a polymorphic value) and
t r denotes universal application (instantiating a polymorphic value). Note that
we use the same syntax for value abstraction λa :: s . t (here a is a value variable)
and universal abstraction λa :: ν . t (here a is a type variable). We assume that
the set const of value constants includes at least the polymorphic fixed point
operator

fix :: ∀a . (a → a) → a

and suitable functions for each of the other type constants C in dom(Const) (such
as Unit for ‘Unit’, Inl , Inr , and case for ‘:+:’, and outl , outr , and ( :*: ) for
‘:*:’). To improve readability we will usually omit the type argument of fix .

To give the typing rules we have to extend the notion of context. A context
is a finite set of kind assumptions a :: κ and type assumptions a :: s. We say a
context Γ is closed if Γ is either empty, or if Γ = Γ1, a :: κ with Γ1 closed, or if
Γ = Γ1, a :: s with Γ1 closed and free(s) ⊆ dom(Γ1). In the following we assume
that contexts are closed. This restriction is necessary to prevent non-sensible
terms such as a :: a ` λa :: ? . a where the value variable a carries the type
variable a out of scope. A pseudo-term t is called a term if there is some context
Γ and some type scheme s such that Γ ` t :: s is derivable using the typing rules
depicted in Figure 5. Note that rule (conv) allows us to interchange provably
equal types.

The equational proof system of the polymorphic lambda calculus is given
by the rules in Figure 6. When we discuss the specialization of type-indexed
values, we will consider type schemes and terms modulo provable equality. Let
H be an infinite context that provides type variables of each kind and vari-
ables of each type scheme and let E be a set of equations between type schemes
and/or between terms. Analogous to the entities Typeκ, [t ] and Typeκ/E we
define Schemeκ = { s | Γ ` s :: κ for some finite Γ ⊆ H}, the equivalence class
[s ] = { s′ | Γ `E s = s′ :: κ for some finite Γ ⊆ H}, Schemeκ/E = {[s ] | s ∈
Schemeκ}, and Terms = { t | Γ ` t :: s for some finite Γ ⊆ H}, [t ] = { t ′ |
Γ `E t = t ′ :: s for some finite Γ ⊆ H}, and Terms/E = {[t ] | t ∈ Terms}. Note
that [s1 ] = [s2 ] implies Terms1 = Terms2 because of rule (conv).

3.3 Specializing type-indexed values

This section is concerned with the specialization of type-indexed values to con-
crete instances of data types. We have seen in Section 2.1 that the structure
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Γ ` c :: const(c)
(var)

Γ ` a :: Γ (a)
(const)

Γ, a :: s ` t :: r

Γ ` (λa :: s . t) :: (s → r)
(→-intro)

Γ ` t :: (s → r) Γ ` u :: s

Γ ` (t u) :: r
(→-elim)

Γ, a :: ν ` t :: s

Γ ` (λa :: ν . t) :: (∀a :: ν . s)
(∀-intro)

Γ ` t :: (∀a :: ν . s) Γ ` r :: ν

Γ ` (t r) :: s[a := r ]
(∀-elim)

Γ ` t :: r Γ ` (r = s) :: ?

Γ ` t :: s
(conv)

Fig. 5. Typing rules.

Γ ` ((λa :: s . t) u = t [a := u ]) :: r
(β)

a not free in t

Γ ` (λa :: s . t a = t) :: (s → r)
(η)

Γ ` ((λa :: ν . t) r = t [a := r ]) :: s[a := r ]
(β)∀

a not free in t

Γ ` (λa :: ν . t a = t) :: (∀a :: ν . s)
(η)∀

Γ ` (fix r f = f (fix r f )) :: r
(fix)

Fig. 6. Equational proof rules (the usual ‘logical’ rules for reflexivity, symmetry, tran-
sitivity, and congruence are omitted).
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of each instance of map{|t|} rigidly follows the structure of t. Perhaps surpris-
ingly, the intimate correspondence between the type and the value level holds
not only for map but for all type-indexed values. In fact, the process of special-
ization can be phrased as an interpretation of the simply typed lambda calculus.
The generic programmer specifies the interpretation of type constants. Given
this information the meaning of a type term—that is, the specialization of a
type-indexed value—is fixed: roughly speaking, type application is interpreted
by value application, type abstraction by value abstraction, and type recursion
by value recursion.

Before we discuss the formal definitions let us take a look at an example
first. Consider specializing map for the type Matrix given by Λa . List (List a).
The instance mapMatrix is given by

mapMatrix :: ∀a1 a2 . (a1 → a2) → (Matrix a1 → Matrix a2)
mapMatrix = λa1 a2. λmapa :: (a1 → a2) .mapList (List a1) (List a2)

(mapList a1 a2 mapa).

The specialization of the type application t = List a is given by the lambda term
t = mapList a1 a2 mapa, which is a combination of universal application and
value application. Likewise, the specialization of the application List t is given by
mapList (List a1) (List a2) t . Consequently, if we aim at phrasing the specialization
of map as a model of the simply typed lambda calculus we must administer both
the actual instance of map and its type. This observation suggests to represent
instances as triples (s1, s2;maps) where s1 and s2 are type schemes of some kind,
say, κ and maps is a value term of type Map{[κ]} s1 s2. Of course, we have
to work with equivalence classes of type schemes and terms. Let E be a set
of equations specifying identities between type schemes and/or between terms.
Possible identities include outl (t , u) = t and outr (t , u) = u. The applicative
structure M = (M, app, const) is then given by

Mκ = ([s1 ], [s2 ] ∈ Schemeκ/E ;TermMap{[κ]} s1 s2/E)
appκ,ν ([r1 ], [r2 ]; [t ]) ([s1 ], [s2 ]; [u ])

= ([r1 s1 ], [r2 s2 ]; [t s1 s2 u ])
const(C) = ([C], [C ]; [map{|C|}]).

Note that the semantic application function app uses both the type and the
value component of its second argument. It is instructive to check that the
resulting term t s1 s2 u is indeed well-typed: t has type ∀a1 a2 .Map{[κ]} a1 a2 →
Map{[ν]} (r1 a1) (r2 a2), s1 and s2 have kind κ, and u has type Map{[κ]} s1 s2. It
is important to note that the definitions of Map{[κ → ν]} and app go hand in
hand. This explains, in particular, why the definition of Poly{[κ → ν]} is fixed
for function kinds.

Now, does M also constitute a model? To this end we have to show that
M is extensional and that it satisfies the combinatorial model condition. The
first condition is easy to check. To establish the second condition we define
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combinators (omitting type and kind annotations)

Kκ,ν = ([Kκ,ν ], [Kκ,ν ]; [λa1 a2 . λmapa . λb1 b2 . λmapb .mapa ])
Sκ,ν,µ = ([Sκ,ν,µ ], [Sκ,ν,µ ];

[λa1 a2 . λmapa . λb1 b2 . λmapb . λc1 c2 . λmapc .
(mapa c1 c2 mapc) (b1 c1) (b2 c2) (mapb c1 c2 mapc)])

where K and S are given by

Kκ,ν = Λa :: κ .Λb :: ν . a
Sκ,ν,µ = Λa :: (κ → ν → µ) . Λb :: (κ → ν) . Λc :: κ . (a c) (b c).

It is straightforward to prove that the combinatory laws are indeed satisfied.
It remains to provide interpretations for the fixed point operators Fixκ. The

definition is essentially the same for all type-indexed values. This is why the
generic programmer need not supply instances for Fixκ by hand. Here is the
definition of map{|Fixκ|}.

map{|Fixκ|} = λf1 f2 . λmapf :: (Map{[κ → κ]} f1 f2) .
fix (mapf (Fixκ f1) (Fixκ f2))

Note that map{|Fixκ|} essentially equals fix—if we ignore type abstractions and
type applications. Let us check that the definition of map{|Fixκ|} is well-typed.
The universal application mapf (Fixκ f1) (Fixκ f2) has type

Map{[κ]} (Fixκ f1) (Fixκ f2) → Map{[κ]} (f1 (Fixκ f1)) (f2 (Fixκ f2)).

Since we have Fixκ fi = fi (Fixκ fi), we can use rule (conv) to infer the
type Map{[κ]} (Fixκ f1) (Fixκ f2) → Map{[κ]} (Fixκ f1) (Fixκ f2). Consequently,
fix (mapf (Fixκ f1) (Fixκ f2)) has type Map{[κ]} (Fixκ f1) (Fixκ f2) as desired.

Now, let us turn to the general case of generic functions. The definitions
for arbitrary type-indexed values are very similar to the ones for map. The
applicative structure P = (P, app, const) induced by the type-indexed value
poly{|t :: κ|} :: Poly{[κ]} t . . . t is given by

Pκ = ([s1 ], . . . , [sn ] ∈ Schemeκ/E ;TermPoly{[κ]} s1 ... sn/E)
appκ,ν ([r1 ], . . . , [rn ]; [t ]) ([s1 ], . . . , [sn ]; [u ])

= ([r1 s1 ], . . . , [rn sn ]; [t s1 . . . sn u ])
const(c) = ([c], . . . , [c ]; [poly{|c|}]).

where poly{|Fixκ|} is defined

poly{|Fixκ|} = λf1 . . . fn . λpoly f :: (Poly{[κ → κ]} f1 . . . fn) .
fix (poly f (Fixκ f1) . . . (Fixκ fn)).

Three remarks are in order. First, the value domain Pκ is a so-called dependent
product: the type of the last component depends on the first n components. A
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similar structure has also been used to give a semantics to Standard ML’s module
system, see [35]. Second, if t is a closed type term, then PJ∅ ` t::κKη is of the form
([t], . . . , [t ]; [poly{|t|}]) where poly{|t|} is the desired instance. As an aside, note
that this is in agreement with poly ’s type signature poly{|t ::κ|} ::Poly{[κ]} t . . . t.
Third, a type-indexed value can be specialized to a type but not to a type scheme.
This restriction is, however, quite mild. Haskell, for instance, does not allow
universal quantifiers in data declarations. (Recall that we need type schemes to
be able to assign types to instances of generic functions.)

Let us conclude the section by noting a trivial consequence of the special-
ization. Since the structure of types is reflected on the value level, we have, for
instance,

poly{|Λa . f (g a)|} = λa1 . . . an . λpolya .
poly{|f|} (g a1) . . . (g an) (poly{|g|} a1 . . . an polya).

Writing type and function composition as usual this implies, in particular, that
map{|f · g|} = map{|f|} ·map{|g|}. Perhaps surprisingly, this relationship holds for
all type-indexed values, not only for mapping functions. A similar observation is
that poly{|Λa . a|} = λa . λpolya . polya for all type-indexed values. Abbreviating
Λa . a by Id we have, in particular, that map{|Id|} = id . As an aside, note that
these generic identities are not to be confused with the familiar functorial laws
map{|f|} id = id and map{|f|} (ϕ·ψ) = map{|f|} ϕ·map{|f|} ψ, which are base-level
identities.

3.4 Bridging the gap

The polymorphic lambda calculus is the language of choice for the theoretical
treatment of generic definitions as it offers rank-n polymorphism, which is re-
quired for specializing higher-order kinded data types. We additionally equipped
it with a liberal notion of type equivalence so that we can interpret the type def-
inition List a = Unit :+: a :*: List a as an equality rather than as an isomorphism.

Haskell—or rather, extensions of Haskell come quite close to this ideal lan-
guage. The Glasgow Haskell Compiler, GHC, [45], the Haskell B. Compiler, HBC,
[3] and the Haskell interpreter Hugs [29] provide rank-2 type signatures. The lat-
est version of the Glasgow Haskell Compiler, GHC 5.04, even supports general
rank-n types. There is, however, one fundamental difference between Haskell and
(our presentation) of the polymorphic lambda calculus: Haskell’s notion of type
equivalence is based on name equivalence while the polymorphic lambda calculus
employs structural equivalence. In the sequel we explain the difference between
the two views and show how to adapt the specialization to a type system that
is based on name equivalence.

Generic representation types Consider again the Haskell data type of para-
metric lists:

data List a = Nil | Cons a (List a).
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We have modelled this declaration (see Section 3.1) by the type term

Fix (ΛList . Λa .Unit :+: a :*: List a).

Since the equivalence of type terms is based on structural equivalence, we have,
in particular, that List a = Unit :+: a :*: List a (using (t-fix), see Figure 3). The
specialization of generic values described in the previous section makes essential
use of this fact: the List instance of poly given by (omitting type abstractions
and type applications)

fix (λpolyList . λpolya . poly :+: polyUnit (poly :*: polya (polyList polya)))

only works under the proviso that List a = Unit :+: a :*: List a. Alas, in Haskell
List a is not equivalent to Unit :+: a :*: List a as each data declaration introduces
a new distinct type. Even the type Liste defined by

data Liste a = Vide | Constructeur a (Liste a)

is not equivalent to List though only the names of the data constructors are differ-
ent. Furthermore, Haskell’s data construct works with n-ary sums and products
whereas generic definitions operate on binary sums and products. The bottom
line of all this is that when generating instances we additionally have to intro-
duce conversion functions which perform the impedance-matching. Fortunately,
this can be done in a systematic way.

To begin with we introduce so-called generic representation types, which me-
diate between the two representations. For instance, the generic representation
type for List, which we will call List◦, is given by

type List◦ a = Unit :+: a :*: List a.

As to be expected our generic representation type constructors are just unit,
binary sum and binary product. In particular, there is no recursion operator.
We observe that List◦ is a non-recursive type synonym: List (not List◦) appears
on the right-hand side. So List◦ is not a recursive type; rather, it expresses the
‘top layer’ of a list structure.

The type constructor List◦ is (more or less) isomorphic to List. To make the
isomorphism explicit, let us write functions that convert to and fro:

fromList :: ∀a . List a → List◦ a
fromList Nil = Inl Unit
fromList (Cons x xs) = Inr (x :*: xs)
toList :: ∀a . List◦ a → List a
toList (Inl Unit) = Nil
toList (Inr (x :*: xs)) = Cons x xs.

Though these are non-generic functions, it is not hard to generate them mechan-
ically. That is what we turn our attention to now.



Generic Haskell: practice and theory 47

Since the generic definitions work with binary sums and binary products,
algebraic data types with many constructors, each of which has many fields,
must be encoded as nested uses of sum and product. There are many possible
encodings. For concreteness, we use a simple linear encoding : for

data B a1 . . . am = K1 t11 . . . t1m1 | · · · | Kn tn1 . . . tnmn

we generate:

type B◦ a1 . . . am = Σ (Π t11 . . . t1m1) · · · (Π tn1 . . . tnmn
)

where ‘Σ’ and ‘Π’ are defined

Σ t1 . . . tn =
{

t1 if n = 1
t1 :+: Σ t2 . . . tn if n > 1

Π t1 . . . tn =





Unit if n = 0
t1 if n = 1
t1 :*: Π t2 . . . tn if n > 1.

Note that this encoding corresponds closely to the scheme introduced in Sec-
tion 3.1 except that here the argument types of the constructors are not recur-
sively encoded. The conversion functions fromB and toB are then given by

fromB :: ∀a1 . . . am . B a1 . . . am → B◦ a1 . . . am

fromB (K1 x11 . . . x1m1) = inn
1 (tuple x11 . . . x1m1)

. . .
fromB (Kn xn1 . . . xnmn ) = inn

n (tuple xn1 . . . xnmn )
toB :: ∀a1 . . . am . B◦ a1 . . . am → B a1 . . . am

toB (inn
1 (tuple x11 . . . x1m1)) = K1 x11 . . . x1m1

. . .
toB (inn

n (tuple xn1 . . . xnmn )) = Kn xn1 . . . xnmn

where

inn
i t =





t if n = 1
Inl t if n > 1 ∧ i = 1
Inr (inn−1

i−1 t) if n > 1 ∧ i > 1

tuple t1 . . . tn =





Unit if n = 0
t1 if n = 1
(t1 :*: tuple t2 . . . tn) if n > 1.

An alternative encoding, which is based on a binary sub-division scheme, is given
in [18]. Most generic functions are insensitive to the translation of sums and
products. Two notable exceptions are encode and decodes, for which the binary
sub-division scheme is preferable (the linear encoding aggravates the compression
rate).
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Specializing generic values Assume for the sake of example that we want to
specialize the generic functions encode and decodes introduced in Section 1.3 to
the List data type. Recall the types of the generic values (here expressed as type
synonyms):

type Encode a = a → Bin

type Decodes a = Bin → (a, Bin).

Since List◦ involves only the type constants Unit, ‘:+:’ and ‘:*:’ (and the type
variables List and a), we can easily specialize encode and decodes to List◦ a: the
instances have types Encode (List◦ a) and Decodes (List◦ a), respectively. How-
ever, we want to generate functions of type Encode (List a) and Decodes (List a).
Now, we already know how to convert between List◦ a and List a. So it remains to
lift fromList and toList to functions of type Encode (List a) → Encode (List◦ a) and
Encode (List◦ a) → Encode (List a). But this lifting is exactly what a mapping
function does! In particular, since Encode and Decodes involve function types
and we have to convert to and fro, we can use the embedding-projection maps
of Section 2.3 for this purpose.

For mapE we have to package the two conversion functions into a single
value:

convList :: ∀a . EP (List a) (List◦ a)
convList = EP{from = fromList, to = toList}.

Then encodeList and decodesList are given by

encodeList ena = to (mapE{|Encode|} convList) (encode{|List◦|} ena)
decodesList dea = to (mapE{|Decodes|} convList) (decodes{|List◦|} dea).

Consider the definition of encodeList. The specialization encode{|List◦|} ena yields
a function of type Encode (List◦ a); the call to (mapE{|Encode|} convList) then
converts this function into a value of type Encode (List a) as desired.

In general, the translation proceeds as follows. For each generic definition we
generate the following.

– A type synonym Poly = Poly{[?]} for the type of the generic value.
– An embedding-projection map, mapE{|Poly|}.
– Generic instances for Unit, ‘:+:’, ‘:*:’ and possibly other primitive types.

For each data type declaration B we generate the following.

– A type synonym, B◦, for B’s generic representation type.
– An embedding-projection pair convB that converts between B a1 . . . am and

B◦ a1 . . . am .

convB :: ∀a1 . . . am . EP (B a1 . . . am) (B◦ a1 . . . am)
convB = EP{from = fromB, to = toB}
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The instance of poly for type B :: κ is then given by (using Haskell syntax)

polyB :: Poly{[κ]} B . . . B
polyB polya1

. . . polyam

= to (mapE{|Poly|} convB . . . convB) (poly{|B◦|} polya1 . . . polyam
).

If Poly{[κ]} B . . . B has a rank of 2 or below, we can express polyB directly in
Haskell. Figures 7 and 8 show several examples of specializations all expressed
in Haskell.

Generating embedding-projection maps We are in a peculiar situation: in
order to specialize a generic value poly to some data type B, we have to specialize
another generic value, namely, mapE to poly ’s type Poly. This works fine if Poly
like Encode only involves primitive types. So let us make this assumption for the
moment. Here is a version of mapE tailored to Haskell’s set of primitive types:

mapE{|t :: κ|} :: MapE{[κ]} t t
mapE{|Char|} = idE

mapE{|Int|} = idE

mapE{|→|} mapE a mapE b = mapE a →E mapE b

mapE{|IO|} mapE a = EP{from = fmap (from mapE a),
to = fmap (to mapE a)}.

Note that in the last equation mapE falls back on the ‘ordinary’ mapping func-
tion fmap. (In Haskell, fmap, a method of the Functor class, is an overloaded
version of map, which is confined to lists.) In fact, we can alternatively define

mapE{|IO|} = liftE

where

liftE :: ∀f . (Functor f) ⇒ ∀a a◦ .EP a a◦ → EP (f a) (f a◦)
liftE mapE a = EP{from = fmap (from mapE a), to = fmap (to mapE a)}.
Now, the Poly :: π instance of mapE is given by

mapEPoly :: MapE{[π]} Poly Poly
mapEPoly mapE a1

. . . mapE ak
= mapE{|Poly a1 . . . ak|} ρ.

where ρ = (a1 := mapE a1
, . . . , ak := mapE ak

) is an environment mapping type
variables to terms. We use for the first time an explicit environment in order to
be able to extend the definition to polymorphic types. Recall that the specializa-
tion of generic values does not work for polymorphic types. However, we allow
polymorphic types to occur in the type signature of a generic value. Fortunately,
we can extend mapE so that it works for universal quantification over types of
kind ? and kind ? → ?.

mapE{|C|} ρ = mapE{|C|}
mapE{|a|} ρ = ρ(a)
mapE{|t u|} ρ = (mapE{|t|} ρ) (mapE{|u|} ρ)
mapE{|∀a :: ? . t|} ρ = mapE{|t|} ρ(a := idE)
mapE{|∀f :: ? → ? . (Functor f) ⇒ t|} ρ = mapE{|t|} ρ(f := liftE ).
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{- binary encoding -}
type Encode a = a → Bin

encodeUnit :: Encode Unit
encodeUnit = λUnit → [ ]

encode :+: :: ∀a . Encode a → (∀b . Encode b → Encode (a :+: b))
encode :+: encodea encodeb = λs → case s of {Inl a → 0 : encodea a;

Inr b → 1 : encodeb b}
encode :*: :: ∀a . Encode a → (∀b . Encode b → Encode (a :*: b))
encode :*: encodea encodeb = λ(a :*: b) → encodea a ++ encodeb b

mapEEncode :: ∀a b . EP a b → EP (Encode a) (Encode b)
mapEEncode m = EP{from = λh → h · to m, to = λh → h · from m }
{- equality -}

type Equal a1 a2 = a1 → a2 → Bool

equalUnit :: Equal Unit Unit
equalUnit = λUnit Unit → True

equal :+: :: ∀a1 a2 . Equal a1 a2 → (∀b1 b2 . Equal b1 b2

→ Equal (a1 :+: b1) (a2 :+: b2))
equal :+: equal a equalb = λs1 s2 → case (s1, s2) of

{(Inl a1, Inl a2) → equal a a1 a2;
(Inl a1, Inr b2) → False;
(Inr b1, Inl a2) → False;
(Inr b1, Inr b2) → equalb b1 b2}

equal :*: :: ∀a1 a2 . Equal a1 a2 → (∀b1 b2 . Equal b1 b2

→ Equal (a1 :*: b1) (a2 :*: b2))
equal :*: equal a equalb = λ(a1 :*: b1) (a2 :*: b2) → equal a a1 a2 ∧ equalb b1 b2

mapEEqual :: ∀a1 b1 . EP a1 b1 → (∀a2 b2 . EP a2 b2

→ EP (Equal a1 a2) (Equal b1 b2))
mapEEqual m1 m2 = EP{from = λh → λa1 a2 → h (to m1 a1) (to m2 a2),

to = λh → λb1 b2 → h (from m1 b1) (from m2 b2)}
{- generic representation types -}

type Maybe◦ a = Unit :+: a

fromMaybe :: ∀a . Maybe a → Maybe◦ a
fromMaybe Nothing = Inl Unit
fromMaybe (Just a) = Inr a

toMaybe :: ∀a . Maybe◦ a → Maybe a
toMaybe (Inl Unit) = Nothing
toMaybe (Inr a) = Just a

convMaybe :: ∀a . EP (Maybe a) (Maybe◦ a)
convMaybe = EP{from = fromMaybe, to = toMaybe}

Fig. 7. Specializing generic values in Haskell (part 1).
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type List◦ a = Unit :+: a :*: List a

fromList :: ∀a . List a → List◦ a
fromList [ ] = Inl Unit
fromList (a : as) = Inr (a :*: as)

toList :: ∀a . List◦ a → List a
toList (Inl Unit) = [ ]
toList (Inr (a :*: as)) = a : as

convList :: ∀a . EP (List a) (List◦ a)
convList = EP{from = fromList, to = toList}
type GRose◦ f a = a :*: f (GRose f a)

fromGRose :: ∀f a . GRose f a → GRose◦ f a
fromGRose (GBranch a ts) = (a :*: ts)

toGRose :: ∀f a . GRose◦ f a → GRose f a
toGRose (a :*: ts) = GBranch a ts

convGRose :: ∀f a . EP (GRose f a) (GRose◦ f a)
convGRose = EP{from = fromGRose, to = toGRose}

{- specializing binary encoding -}
encodeMaybe :: ∀a . Encode a → Encode (Maybe a)
encodeMaybe encodea = to (mapEEncode convMaybe) (encode :+: encodeUnit encodea)

encodeList :: ∀a . Encode a → Encode (List a)
encodeList encodea = to (mapEEncode convList) (

encode :+: encodeUnit (encode :*: encodea (encodeList encodea)))

encodeGRose :: ∀f . (∀b . Encode b → Encode (f b))
→ (∀a . Encode a → Encode (GRose f a))

encodeGRose encode f encodea

= to (mapEEncode convGRose) (
encode :*: encodea (encode f (encodeGRose encode f encodea)))

{- specializing equality -}
equalMaybe :: ∀a1 a2 . Equal a1 a2 → Equal (Maybe a1) (Maybe a2)
equalMaybe equal a = to (mapEEqual convMaybe convMaybe) (equal :+: equalUnit equal a)

equalList :: ∀a1 a2 . Equal a1 a2 → Equal (List a1) (List a2)
equalList equal a = to (mapEEqual convList convList) (

equal :+: equalUnit (equal :*: equal a (equalList equal a)))

equalGRose :: ∀f1 f2 . (∀b1 b2 . Equal b1 b2 → Equal (f1 b1) (f2 b2))
→ (∀a1 a2 . Equal a1 a2

→ Equal (GRose f1 a1) (GRose f2 a2))
equalGRose equal f equal a

= to (mapEEqual convGRose convGRose) (
equal :*: equal a (equal f (equalGRose equal f equal a)))

Fig. 8. Specializing generic values in Haskell (part 2).
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Two remarks are in order.
Haskell has neither type abstraction nor an explicit recursion operator, so

these cases can be omitted from the definition.
Unfortunately, we cannot deal with polymorphic types in general. Consider,

for instance, the type Poly a = ∀f . f a → f a. There is no mapping function that
works uniformly for all f. For that reason we have to restrict f to instances of
Functor so that we can use the overloaded liftE function. For polymorphic types
where the type variable ranges over types of kind ? things are simpler: since the
mapping function for a manifest type is always the identity, we can use idE .

Now, what happens if Poly involves a user-defined data type, say B? In this
case we have to specialize mapE to B. It seems that we are trapped in a vicious
circle. One possibility to break the spell is to implement mapE for the B data
type ‘by hand’. Fortunately mapE is very well-behaved, so the code generation
is straightforward. The embedding-projection map for the data type B :: κ

data B a1 . . . am = K1 t11 . . . t1m1 | · · · | Kn tn1 . . . tnmn

is given by

mapEB :: MapE{[κ]} B B
mapEB mapE a1

. . . mapE am

= EP{from = fromB, to = toB}
where
fromB (K1 x11 . . . x1m1) = K1 (from{|t11|} ρ x11) . . . (from{|t1m1 |} ρ x1m1)
. . .
fromB (Kn xn1 . . . xnmn ) = Kn (from{|tn1|} ρ xn1) . . . (from{|tnmn |} ρ xnmn )
toB (K1 x11 . . . x1m1) = K1 (to{|t11|} ρ x11) . . . (to{|t1m1 |} ρ x1m1)
. . .
toB (Kn xn1 . . . xnmn ) = Kn (to{|tn1|} ρ xn1) . . . (to{|tnmn |} ρ xnmn )

where from{|t|} ρ = from (mapE{|t|} ρ), to{|t|} ρ = to (mapE{|t|} ρ), and ρ =
(a1 := mapE a1

, . . . , am := mapE am
). For example, for Encode and Decodes we

obtain

mapEEncode :: ∀a a◦ . EP a a◦ → EP (Encode a) (Encode a◦)
mapEEncode mapE a = mapE→ mapE a idE

mapEDecodes :: ∀a a◦ . EP a a◦ → EP (Decodes a) (Decodes a◦)
mapEDecodes mapE a = mapE→ idE (mapE (,) mapE a idE)

where the mapping function mapE (,) is generated according to the scheme above:

mapE (,) :: ∀a a◦ .EP a a◦ → ∀b b◦ . EP b b◦ → EP (a, b) (a◦, b◦)
mapE (,) mapE a mapE b = EP{from = from(,), to = to(,)}

where from(,) (a, b) = (from mapE a a, from mapE b b)
to(,) (a, b) = (to mapE a a, to mapE b b).

Interestingly, the Generic Haskell compiler does not treat mapE in a special
way. Rather, it uses the same specialization mechanism also for mapE instances.
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This is possible because mapE ’s type involves only the type EP, for which we
can specialize mapE by hand.

4 Conclusion

We have presented Generic Haskell, an extension of Haskell that allows the def-
inition of generic programs. We have shown how to implement typical examples
of generic programs such as equality, pretty printing, mapping functions and
reductions. The central idea is to define a generic function by induction on the
structure of types. Haskell possesses a rich type system, which essentially cor-
responds to the simply typed lambda calculus (with kinds playing the rôle of
types). This type system presents a real challenge: how can we define generic
functions and how can we assign types to these functions? It turns out that type-
indexed values possess kind-indexed types, types that are defined by induction
on the structure of kinds.

Though generic programming adds an extra level of abstraction to program-
ming, it is in many cases simpler than conventional programming. The funda-
mental reason is that genericity gives you a lot of things for free. For instance, the
generic programmer only has to provide cases for primitive types and for binary
sums and products. Generic Haskell automatically takes care of type abstraction,
type application, and type recursion.

Generic Haskell takes a transformational approach to generic programming:
a generic function is translated into a family of polymorphic functions. We have
seen that this transformation can be phrased as an interpretation of the simply
typed lambda calculus. One of the benefits of this approach—not mentioned in
these notes—is that it is possible to adapt one of the main tools for studying
typed lambda calculi, logical relations, to generic reasoning, see [22]. To prove a
generic property it suffices to prove the assertion for type constants. Everything
else is taken care of automatically.

Finally, we have shown how to adapt the technique of specialization to
Haskell, whose type system is based on name equivalence.

Acknowledgement. Thanks are due to Andres Löh for implementing the Generic
Haskell compiler.
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