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Abstract

In this paper, we propose a Bayesian approach to image

hallucination. Given a generic low resolution image, we

hallucinate a high resolution image using a set of training

images. Our work is inspired by recent progress on natu-

ral image statistics that the priors of image primitives can

be well represented by examples. Specifically, primal sketch

priors (e.g., edges, ridges and corners) are constructed and

used to enhance the quality of the hallucinated high resolu-

tion image. Moreover, a contour smoothness constraint en-

forces consistency of primitives in the hallucinated image by

a Markov-chain based inference algorithm. A reconstruc-

tion constraint is also applied to further improve the quality

of the hallucinated image. Experiments demonstrate that

our approach can hallucinate high quality super-resolution

images.

1. Introduction

Image super-resolution has become an active research

topic in computer vision lately. Super-resolution techniques

have many applications ranging from video quality en-

hancement to image compression. Most super-resolution

techniques require multiple low resolution images to be

aligned in sub-pixel accuracy. In this paper, however, we

focus on image super-resolution from a single image.

Clearly, single image super-resolution is an under-

constrained problem because many high resolution images

can produce the same low resolution image. Previous work

on single image super-resolution can be categorized into

three classes: functional interpolation, reconstruction-based

and learning-based. Functional interpolation methods often

blur the discontinuities and do not satisfy the reconstruc-

tion constraint. Under the reconstruct constraint, the down-
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Figure 1. Comparison of different super-resolution tech-

niques. Top: the original image. (a) Nearest Neighbor

(simply copying pixels), (b) Bicubic (functional interpola-

tion), (c) Backporjection (reconstruction-based) and (d) Im-

age hallucination (learning-based approach).

sampled high resolution reconstructed image should be as

close as possible to the original low resolution image. Fig-

ures 1(a) and (b) show the results of nearest neighbor inter-

polation and bicubic interpolation of a low resolution im-

age respectively. Edge-based interpolation methods [2, 15]

have also been proposed. Reconstruction-based methods

[6, 9] satisfy the reconstruction constraint but cannot guar-

antee contour smoothness. Figure 1 (c) shows the result

of a reconstruction-based approach using backprojection

[6]. Some “jaggy” and “ringing” artifacts are clearly vis-

ible along the edges. In this paper, we propose a learning-
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based approach. To construct the super-resolution image,

we “steal” high frequency details that do not exist in the low

resolution image from a number of training images. A good

quality super-resolution image reconstructed using our ap-

proach is shown in Figure 1(d). This is, in spirit, similar to

face hallucination [3] and other related low-level learning

work [4, 5, 7].

This is why we call our approach “image hallucina-

tion”. Unlike “face hallucination” [3], however, our ap-

proach works for generic images. Instead of assuming

generic smoothness priors that are used in interpolation ap-

proaches, learning-based approaches choose a recognition-

based prior based on a set of recognition decisions on the

low resolution image IL. For instance, the input IL can be

divided into a number of partitions where each partition is

classified into a subclass and is associated with a subclass

prior. If the integration of subclass priors is more power-

ful than a generic smoothness prior, the learning-based ap-

proach can outperform the other approaches. Impressive

results have been obtained in domain-specific applications

(e.g., face, text [3, 7]). However, to do “image hallucina-

tion” for generic images, what are the basic recognition ele-

ments in the generic image? How to learn the prior for each

subclass?

In this paper, we propose primal sketches [8] as the nat-

ural basic recognition elements to get a recognition-based

prior for generic images. Firstly, the low resolution image

is interpolated as the low frequency part of a high resolution

image. This low frequency image is then decomposed into

a low frequency primitive layer and a non-primitive layer.

Each primitive in the primitive layer is recognized as part

of a subclass, e.g. an edge, a ridge or a corner at differ-

ent orientations and scales. For each subclass, its training

data (i.e., high frequency and low frequency primitive pairs)

are collected from a set of natural images. Secondly, for

the input low resolution image, a set of candidate high fre-

quency primitives are selected from the training data based

on low frequency primitives. From this set of candidates, a

consistent high frequency primitive layer is inferred using

a Markov chain model. The super-resolution image is ob-

tained by combining the high frequency primitive layer with

the low frequency image, followed by a backprojection al-

gorithm enforcing the reconstruction constraint.

The performance of the learning-based approach is de-

pendent on the priors we use. Specifically, using training

samples, the priors are represented by a set of examples in a

non-parametric way. The generalization of training data is

the key to do hallucination for the generic image. Whether

or not sample in a generic image can find a good match in

the training data determines how successful a learning based

approach can be. However, it is hard to learn a good prior

for an arbitrary image patch in natural images. It is demon-

strated by the statistical analysis on an empirical data set in

Section 3. Fortunately, the statistical analysis in Section 3

also shows primal sketch priors can be learned well from a

number of examples that we can computationally afford to-

day. Therefore, we propose to do image hallucination with

primal sketch priors.

Our work on image hallucination is also motivated by

the recent progress on natural image statistics [1, 14]. For

example, it is shown in [1] that the intrinsic dimensionality

of image primitives is very low. Low dimensionality makes

it possible to represent well all the image primitives in nat-

ural images by a small number of examples. These inspire

us to use the image primitive as the basis recognition ele-

ment to take advantage of the strong structure information

in generic images.

The rest of this paper is organized as follows. In Section

2, we give the overview of our image hallucination. The

details of algorithm are described in Sections 3 and 4. The

experimental results shown in Section 5 demonstrate that

our model is effective and efficient. We conclude the paper

in Section 6.

2. Overview

An overview of our approach is shown in Figure 2. The

approach consists of three steps. In step 1, a low frequency

image I l
H is interpolated from the low resolution image IL.

In step 2, a high frequency primitive layer Ip
H is hallucinated

or inferred from I l
H based on the primal sketch priors. In

step 3, we enforce the reconstruction constraint to get the

final high resolution image IH .

In our approach, we hallucinate the lost high frequency

information of primitives (e.g., edges) in the image, but not

the non-primitive parts of the image. The key observation

in this paper is that we hallucinate only the primitive part

of the image, because we can effectively learn the priors of

primitives - “primal sketch priors”, but not the priors of non-

primitives. The MAP of primitive layer Ip
H is hallucinated

from I l
H and prior p(Ip

H),

Ip∗
H = arg max p(Ip

H |I l
H)

= arg max p(I l
H |Ip

H)p(Ip
H).

(1)

Section 3 shows the details about how to learn the primal

sketch priors p(Ip
H). And how to hallucinate Ip∗

H is pre-

sented in Section 4.

After getting hallucinated primitive layer Ip
H , we can ob-

tain an intermediate result Ig
H that does not satisfy the re-

construction constraint in general. Backprojection [6] is an

iterative gradient-based minimization method to minimize

the reconstruction error:

It+1

H = It
H + (((It

H ∗ h) ↓ s − IL) ↑ s) ∗ p (2)

where p is a “backprojection” filter. In our case, the final

solution is obtained simply by using Ig
H as the starting point.
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Figure 2. The overview of our approach. IL is the low resolution image. Il
H is the bicubic interpolation of IL. The key

of our approach is that a high frequency primitive layer I
p∗
H is hallucinated based on the primal sketch prior p(Ip

H) provided by

the primitives training data. The final high resolution image IH is obtained from the intermediate result I
g

H by enforcing the

reconstruction constraint.
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Figure 3. The filter bank used for primitives extraction

(a) and typical primitives extracted (b).

The final high resolution image IH is shown in Figure 2

(e). Noise and artifacts are significantly reduced with the

reconstruction constraint.

3 Primal Sketch Priors

In this section, we describe how to learn the primal

sketch priors. Furthermore, we study why the primitives can

be effectively represented by samples but the non-primitives

cannot. This statistical analysis sheds light on the difficulty

of generic image super-resolution using learning-based ap-

proaches and sample images.

3.1 Primal Sketch

We take an example-based approach to learn two things

from training data. One is the primal sketch prior p(Ip
H).

This prior is actually represented by a collection of exam-

ples in a non-parametric form. The other is the statistical

relationship between low frequency primitives (interpola-

tion of low resolution primitive) and high frequency prim-

itive (difference between high resolution primitive and low

frequency primitives). Each example consist of a pair of

primitives. These pairs capture the statistical relationship in

which we are interested.

We represent each image primitive by a 9x9 image patch.

The primitives are extracted by orientation energy [13],

OEσ,θ = (I ∗ fodd
σ,θ )2 + (I ∗ feven

σ,θ )2

where fodd
σ,θ and feven

σ,θ are the first and second Gaussian

derivative filters at scale σ and orientation θ. These filters

consist of a filter bank shown in Figure 3 (a) (2 scales and

16 orientations). We extract the patches along the contours.

The primitives such as step-edge, ridge, corners, T-junction

and terminations are extracted. Typical patches in a sub-

class are shown in Figure 3 (b).

From Pattern theory [11], the observed image primitive x

is generated by the latent pattern z underlying some global

geometric and photometric transformations, such as transla-

tion, scaling, orientation and lighting. The generative model

of image primitive B can be defined as,

B = c · GtGoGsz + d (3)

where c is contrast, d is DC bias for lighting, and Gt, Gs
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Figure 4. The ROC curves of primitive training data (a)

and component training data (b) at different sizes. X-axis is

match error and Y-axis is hit-rate.

and Go are translation, scaling and orientation transforma-

tion matrices respectively. The local transformations such

as subpixel location, curvature and local intensity varia-

tions, are absorbed into z.

To reduce the dimensionality of primitives, we follow

the same assumption [4] that the statistical relationship be-

tween low frequency primitives and high frequency primi-

tives is independent of some transformations including con-

trast, DC bias and translation. Let Bl be a low frequency

primitive and Bh a corresponding high frequency primitive.

We normalize Bl to get a normalized low frequency primi-

tive B̂l,

B̂l =
1

cl
· G−1

t (Bl − dl) = GoGsz
l (4)

where Gt is approximated by I because the center of each

primitive we extract is on the contour. DC bias d is esti-

mated by the mean E[B]. The contrast c is estimated by

E[|B − E[B]|].
Each example consists of a normalized low frequency

primitive B̂l, its contrast cl and a high frequency primitive

Bh. The primal sketch priors are represented by all the ex-

amples in a non-parametric way.

3.2 Why Primal sketch?

Why do we choose only the primitive for hallucination?

The answer lies in the low dimensionality of the primitive

manifold. On the other hand, the dimensionality of the non-

primitive manifold is too high to be represented well by the

number of examples we can afford computationally. We

demonstrate this key observation by statistical analysis on

an empirical data set. Luckily, humans are more sensitive

to the high contrast intensity changes [8] because strong

stimuli are produced in the visual field by the structural el-

ements, i.e., primitives in image.

To evaluate the generalization capability of training data

for nearest neighbor matching, a Receiver Operating Char-

acteristics (ROC) curve is used to demonstrate the tradeoff

between hit rate and match error. For a given match error

e, the hit rate h is the percentage of test data whose match

errors are less than e. Each test sample x’s match error e(x)
is defined by a metric between x and the nearest sample x

′

in the training data. We use the metric e(x) = ‖x−x
′‖

‖x‖ . At

a given match error, the higher hit rate represents the better

generalization of the training data.

For convenience, each 9× 9 patch extracted from an im-

age is called component. We study two ROC curves from

a primitive training data set Dp (where each example is a

primitive) and a component training data Di (where each

example is not necessarily a primitive), as shown in Fig-

ure 4. An empirical data set (1000 Hateren natural images

[14]1) are divided equally into training images and test im-

ages. Dp and Di are constructed (with uniformly sampling)

from training images. Each component is normalized as

well. The ROC characteristics of Dp and Di are evaluated

on test images. About 10,000 test samples are uniformly

sampled from the test images. To reduce the sensitivity of

sampling, each curve is the average result of 50 repeated ex-

periments (the training data and test data in each experiment

are re-sampled from images).

Two observations are found from the ROC curves in Fig-

ure 4. One is that the hit rate of Dp is higher than that of Di

(for |Di| = |Dp|) at any match error (except for 0 and 1).

When |Dp| = 106, the match error is less than 0.2 for 85%

primitives in the test images. Furthermore, 97% od the test

data can find good matching examples in Dp in error range

0.3. But the corresponding hit rates are 48% and 60% for

Di. That means about half of the components cannot find

good examples in the training data if we use components for

image hallucination. The other one is that the slope of Dp’s

ROC curve increases significantly as |Dp| increases. A bet-

ter ROC of Dp can be expected when N = 107 (3GB byte

memory storage required for 9x9 patches!). However, the

the slope of Di’s ROC curve is close to a constant at differ-

ent |Di|s. If we extrapolate Figure 4 (b), reaching a 80% hit

rate at match error 0.2 is hopeless with current storage and

computing capabilities. Therefore, the primitive manifold

can be represented well by a small number of examples, but

the component manifold cannot. This is why we only focus

on the primitive layer in image hallucination.

4 Image hallucination

The task now is to hallucinate the high frequency prim-

itive layer Ip∗
H given I l

H according to MAP (1). Figure 5

shows the training phase and synthesis phase of our image

hallucination.

1http://hlab.phys.rug.nl/archive.html
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Figure 5. Image Hallucination. In the training phase,

pairs of normalized low frequency primitive B̂l and high

frequency primitive Bh are collected into the training data.

In the synthesis phase, the M best matched examples are

selected from the training data for each normalized low fre-

quency primitive B̂l in the test image. The final high fre-

quency primitive Bh is obtained by a Markov chain based

inference algorithm.

4.1 Training

The training images are derived from 16 high resolution

natural images in Figure 8. The low resolution images IL

are simulated from the high resolution images by blurring

and down-sampling. Then, the low frequency image Il
H

is interpolated (bicubic) from IL and the high frequency

image is obtained from IH by subtracting I l
H . The low

frequency primitive Bl and corresponding high frequency

primitive Bh are extracted from these training images. We

normalize Bl to get B̂l by (4). Each example in the training

data consists of B̂l, its contrast cl and Bh.

4.2 Synthesis: Markov chain based Inference

For any low resolution test image IL, a low frequency

image I l
H is interpolated from IL at first. We assume

that the primitive layer Ip
H to be inferred is a linear sum

of a number of N high frequency primitives {Bh
n, n =

1, . . . , N}. The underlying low frequency primitives

{Bl
n, n = 1, . . . , N} in the I l

H are shown in Figure 6 (b).

Note that the center of each image patch is on the contours

extracted in I l
H and the neighboring patches are overlapped.

A straightforward nearest neighbor algorithm can be

used for this task. For each low frequency primitive Bl
n,

we get its normalized B̂l
n, then we find the best matched

(a) (b)

(c) (d)

Figure 6. Comparison. (a) The low-frequency image. (b)

The patches extracted along a contour. (c) Nearest neighbor

algorithm. (d) Markov chain based algorithm.

normalized low frequency primitive to B̂l
n in the training

data and paste the corresponding high frequency primi-

tive. However, this simple method cannot preserve contour

smoothness because the consistency of neighboring primi-

tives is ignored, as shown in Figure 6 (c). Therefore, we

present a Markov chain based inference algorithm to en-

force the contour smoothness constraint (Figure 6 (d)).

To ensure the high frequency primitives to be consistent

along the contour, the primitives are grouped into a number

of K contours C = {Ck, k = 1, . . . , K} by a greedy 8-

neighbors algorithm. We approximate the joint posterior

p(Ip
H |I l

H) in (1) by the products of the posterior of each

contour,

p(Ip
H |I l

H) = p(C|I l
H) ≈

∏

k

p(Ck|I
l
H). (5)

Each contour Ck is a first order Markov chain model,

p(Ck|I
l
H) ∝

nk−1∏

i

Ψ(Bh
i , Bh

i+1)

nk∏

i

Φ(Bl
i, B

h
i ) (6)

where Bl
i is the ith low frequency primitive on contour

Ck in I l
H , Bh

i is the corresponding high frequency prim-

itive to be inferred, nk is the number of patches on Ck.

Ψ(Bh
i , Bh

i+1) is the compatibility function between two ad-

jacent patches. Φ(Bl
i, B

h
i ) is the local evidence function

between Bl
i and Bh

i .

For each Bl
i, we compute its normalized primitive B̂l

i

and the contrast cl
i by equation (4). Its scaling and ori-

entation parameters are estimated during primitive extrac-

tion. Because the relationship between B̂l
i and Bh

i is one-

to-multiple mapping, M (8 in our experiments) best match-

ing normalized low frequency primitives {B̂l(m),m =
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Figure 7. Comparison of the “Lena” image at 3X magnification.

1, · · · ,M} to B̂l
i are selected from the same subclass as Bl

i

in the training data. Let Bh(m) and cl
m be the correspond-

ing high frequency primitive and the contrast of B̂l(m) in

the training data. The number of m high frequency patches

are {Bh
i (m) =

cl

i

cl
m

Bh(m),m = 1, · · · ,M}. The scale fac-

tor
cl

i

cl
m

compensates Bh(m) for the different contrasts be-

tween B̂l
i and B̂l(m).

Each candidate Bh
i (m) is treated equally by set-

ting Φ(Bl
i, B

h
i ) = 1

M
. The compatibility function

Ψ(Bh
i , Bh

i+1) is defined by the compatibility of neighboring

patches, Ψ(Bh
i , Bh

i+1) = exp(−(d(Bh
i , Bh

i+1)/σ2
d), where

d(Bh
i , Bh

i+1) is the Sum Squared Difference (SSD) of the

overlapping region between Bh
i and Bh

i+1 and σd is a tun-

ing variance.

The optimal MAP solution of (6) for each contour Ck is

obtained by running the Belief Propagation (BP) [12] algo-

rithm. The details of the BP algorithm are not presented due

to space limitations.

5. Experimental Results

We tested our approach on a set of generic images. The

input low resolution image is produced by blurring and

downsampling the high resolution image. Our experimen-

tal results are shown in Figures 7, 9 - 12, all with a mag-

nification factor of 3. The PSF is a Gaussian function with

a standard variance of 1.4. The “backprojection” filter p
is also a Gaussian kernel with a standard variance of 2.2.

Note that we do hallucination on the image intensity only

because the humans are more sensitive to the brightness in-

formation. The color channels are simply interpolated by a

bicubic function.

About 1,400,000 primitive examples are extracted from

16 representative natural images (see Figure 8) on a Kodak

Figure 8. Training images. All training examples in this

paper are extracted from these images (1536x1024 pixels).

website 2. All primitives are divided into 36 subclasses (2

scales x 16 orientations) by the scale and orientation infor-

mation estimated using the orientation energy. Thus, the

training data is organized hierarchically. The top level cap-

tures the primitive’s global structure. The bottom level is a

non-parametric representation that captures the local varia-

tions of the primitives. This two-level structure can speed

up the AAN tree searching algorithm [10] in the training

data. The run time of this algorithm is 20-100 seconds on a

Pentium IV 1.7G PC for all the images in our experiments.

We compare our approach with bicubic interpolation,

sharpened bicubic interploation (using the “unsharp mask”

in Adobe Photoshop with the default parameters onto the

bicubic interpolation) and backprojection algorithm in Fig-

ure 7, 9-12. Bicubic is the smoothest one. Sharpened bicu-

bic and backprojection methods introduce strong “ringing

effect”, especially along the contours in images. On the

other hand, sharper and smoother contours are hallucinated

by our approach (see the edges of the hat in Figure 7 (e),

hairs in Figure 11, etc.). Figure 12 shows more results. (We

2http://www.kodak.com/digitalImaging/samples/imageIntro.shtml



Figure 9. The “Monarch” image magnified 3X using sharpen bicubic (left), backprojection (middle) and our approach (right).

Figure 10. The “Zebra” image magnified 3X using sharpen bicubic (left), backprojection (middle) and our approach (right).

Figure 11. The “Girl” image magnified 3X using sharpen bicubic (left), backprojection (middle) and our approach (right).



Figure 12. Image Hallucination results magnified 3X. The bottom row is hallucinated from the top row.

Bicubic Backprojection Our Method

Image RMS ERMS RMS ERMS RMS ERMS

Lena 14.0 18.1 7.4 9.3 6.0 7.4

Monarch 32.1 38.4 22.2 26.6 20.4 21.6

Zebra 59.1 64.7 42.0 45.4 38.0 40.9

Girl 11.3 14.5 7.8 10.2 7.1 9.1

Table 1. RMS pixel error and Edge Squared Mean Error

(ERMS) pixel error for different approaches.

recommend the audience to see the electronic version.)

To compare the results quantitatively, we compute the

RMS pixel error on the whole image and the edge regions

respectively. Table 1 shows the results of applying on four

images. Our approach outperforms the other approaches,

especially around the edge regions where human perception

cares most.

6. Conclusions

In this paper, an image hallucination approach has been

presented based on the primal sketch priors. For single im-

age super-resolution, encouraging results are obtained for

generic images. For practical applications, the robustness

of our approach with respect to an inaccurate PSF needs to

be studied in further work.
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