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Abstract. Real time and markerless motion capture is an active re-
search area, due to applications in human-computer interactions, for ex-
ample. A large part of the existing markerless motion capture methods
require an initialization step, consisting in finding the initial position of
the different limbs of the subject. In this paper, we propose a new method
for interactive time initialization step, only based on morphological and
topological information and which can be easily adapted to any kind of
model (full human body or only hand, animals, for example).
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1 Introduction

Motion capture without marker is a highly active research area, as shown by
Moeslund and al. [1]: between 2000 and 2006, more than 350 papers on this topic
have been published. Markerless motion capture approaches can be classified in
two categories: those which detect the pose of the subject independently at each
frame, and those which start by an initialization step in order to find the initial
pose of the subject, then use tracking to find the pose in the following frames. In
most of these methods, the initialization step uses an a priori model, which can be
of several kinds, describing different information: kinematic skeleton, shape, color
priors. Most of real-time methods for full body pose estimation purpose [2–4] use
both color priors and shape fitting for the initialization. The method proposed
in [5], close to interactive time (about one iteration per second), uses kinematic
skeleton fitting.

In a context of generic motion capture, where the subject can be a full body,
the hand, or the the upper part of the body for example, some of this infor-
mation cannot be retained, as the color information (hands have homogeneous
color). Furthermore, the shape of the subject can differ from person to person.
In addition, from our point of view, the a priori model in generic motion capture
must be as simple as possible.

Our goal is to propose a motion capture initialization method which has the
following properties:

interactive runtime: our method must be fast enough to be usable in online
context (more than one iteration per second).



markerless: our method does not require any kind of marker.
generic: our method has to be compatible with any subject.

Our method is based on 3D shape obtained by visual hull reconstruction. In
our method, we use a voxel representation of the visual hull, in opposition to
the polygonal representation. This choice is guided by the fact that we use some
discrete treatments which are easy and fast to perform in a voxel grid. As we
use a small number of cameras, the 3D shape can contain some deformities, as
variations of limb thickness, noisy surface, or ghost limbs (i.e. parts which not
exist in the subject). Thus only the global topology of the shape and the length
of the different limbs are well preserved.

The method starts by extracting this information by skeletonizing the shape
(Sec.2). Then a data tree representation of the skeleton is extracted (Sec.3), con-
taining all the information we need: positions of ending and intersection points
on vertices, and distances between them on edges.

Then, according to the edge information, we proceed to a matching between
an a priori model and the data tree (Sec.4). Finally, we discriminate similar
limbs if necessary, using “between” constraints of the model (Sec.5). Figure 1
show the complete pipeline of our method.
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Fig. 1. Pipeline of our method.

1.1 A Priori Model Definition

Our a priori model is very simple. It consists of a tree, where vertices represent
the different parts of the subject, and the edges contain information on distance
between the different parts. Two kinds of models can be considered (see Fig.2
for examples):

– the incomplete models, which are part of a biggest shape, as in the case of
hand pose estimation. In this case, a part of the shape intersects the border
of the 3D acquisition space, and we represent this part in the model as an
infinite limb.



– the complete models, for subjects fully contained in the 3D acquisition space,
as in the case of full human body motion capture, for example.

In addition of the tree representation, two kinds of constraints can be added:

“Between” constraints specify the position of a part between two others, in
order to discriminate similar limbs. In the case of hand model, we require
e.g. that the index is between the thumb and the middle finger. More details
about “between” constraints are given in Sec.5.

“Coordinate” constraints require a particular spatial position of a part in
regard of the spatial position of one of its neighbor. In the case of full body
model for example, we require that the head is above the torso. Constraints
of this kind improve the matching robustness.
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Fig. 2. From left to right: description of the hand model, model tree for the hand,
description of the full body model, and model tree for the full body.

2 Skeletonization

Topology-preserving operators, like homotopic skeletonization, are used to trans-
form an object while leaving unchanged its topological characteristics. In discrete
grids (Zn, with n = 2, 3), such a transformation can be defined thanks to the
notion of simple point [6–8]: intuitively, a point of an object (i.e., a subset of
Z
n) is called simple if it can be deleted from this object without changing its

topological characteristics.
The most “natural” way to thin an object consists of removing some of

its border points in parallel, in a symmetrical manner. By repeating such a
procedure until stability, one can obtain a well-centered “skeleton” of the original
object. However, parallel deletion of simple points does not, in general, guarantee
topology preservation. In fact, such a guarantee is not obvious to obtain, even
for the 2D case. To check whether a point is simple or not, it is sufficient to
examine its 3× 3× 3 neighborhood (3× 3 in 2D), but such a local criterion does
not allow to check whether a simple point may be safely removed together with
other ones.



In [9], G. Bertrand introduces a general framework for the study of parallel
thinning in any dimension. The most fundamental result proved in [9] is that, if a
subset Y of an objectX contains the so-called critical kernel ofX, then Y has the
same topological characteristics as X. In [10], several new parallel algorithms to
compute curvilinear skeletons are proposed, in which topological and geometrical
conditions are clearly separated, unlike in many previous works. The topological
soundness of these algorithms is proved thanks to the aforementioned property
of critical kernels. Furthermore, these algorithms may be expressed by the way
of masks and are relatively simple to implement.

The skeletonization algorithm that we use in this study is named ACK3

in [10]. We choose this algorithm for its computational speed, the possibility of
parallelization, and for the quality of the resulting skeleton (very low amount of
noise, and guaranty that branch thickness is always of one voxel (asymmetrical
skeleton). Since the complete presentation of this algorithm is beyond the scope
of this paper, we give here a sketch of its main lines.

Let us describe one step of algorithm ACK3. Let X be the current object.
The set S of all simple points of X is computed, as well as the set I of all
1D isthmuses of X (points of which the removal would break locally X into sev-
eral components). Then a subset Y of X is computed, that verifies the following
conditions: i) Y is a superset of X \ S, ii) Y contains the critical kernel of X,
and iii) Y contains I. If Y = X then the algorithm stops, otherwise X is set to
Y and the algorithm continues.

In the case of incomplete models, we have to take into consideration the part
of the shape which is on the border of grid. Preliminary to the iterative process,
the set B of the border points contained in X is computed. For each connected
component of B, we compute the centroid, which will be preserved during the
skeletonization process. Figure 3 show iterations results, for both kinds of model.

Fig. 3. From left to right, results of successive iterations of skeletonization. Top: human
model. Bottom: hand model. The circled points represent the border points used to
constraint the skeletonization.



3 Extraction of Data Tree Representation

We extract the data tree representation from the skeleton obtained in the pre-
vious step. The skeleton points can be classified into three classes, in regard of
their number of neighbors included in the skeleton: ending points (exactly one
neighbor included in the skeleton), linking points (exactly two neighbors), and
intersection points (strictly more than two neighbors).

The points of interest are the ending points and the intersection points. For
each of them, we create a vertex in the data tree. If several intersection points
are neighbors, we merge their associated vertices. Intersection points and ending
points are connected by sequences of linking points. For each sequence, we create
an edge between vertices associated to its extremities, weighted by the length of
the sequence, incremented by one if an extremity is an ending point. See Fig.4
for an example with a 2D skeleton.

In the case of an incomplete model, the skeleton is tied to contain at least one
border point. It implies that at least one intersection point is a border point. We
consider that all the edges having a bounding vertex associated with a border
point have infinite weight. See Fig.4 for an example with a 2D skeleton.

A skeleton can contain cycles, for example if a sequence of linking points has
its two extremities in the same point. In this case, the extracted graph is not a
tree, and we stop the pipeline for the current frame.
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Fig. 4. Example of a data tree extraction from a 2D skeleton. On the left, the 2D
skeleton, with pixels labeled by i,e and l representing respectively intersection, ending,
and linking points. The light gray pixel represents a border point. In the middle, the
data tree extracted from the skeleton, with the edge weights represented by numbers.
On the right, the data tree extracted from the skeleton, in the case of an incomplete
model.

4 Matching with A Priori Model

The data tree can be affected by different kinds of noise, which must be taken into
consideration during the matching: due to the irregularities of the shape surface,
skeleton branches without important topological signification can appear. These
branches are not difficult to remove, but the problem is that it generates new



vertices in the tree. These vertices, after the removing of branches, uselessly split
an edge (and its weight) into two parts, making difficult a good matching. The
second kind of noise is due to the skeletonization: a cluster of vertices linked by
weakly weighted edges in the data tree can correspond to a vertex with more
than three neighbors in the model tree. In order to match the data tree with the
model tree, we use the optimal homeomorphic alignment method [11], especially
designed to be robust in regard of these kinds of noise.

4.1 Preliminary Definitions and Notations

In order to present the homeomorphic alignment, some definitions and notations
are necessary. We denote a weighted tree as a triplet T = (V,E, ω), V is a finite
set (called the vertex set), A is a subset of V × V (called the edge set), and ω is
a mapping from A to R

+, corresponding to the weights.
An homeomorphic alignment is based on edit operations: deletion consists of

removing an edge in the tree, resizement consists of changing the weight of an
edge, and merging consists of replacing two edges (a, b) and (b, c), where b has
exactly two neighbors, by an unique edge (a, c) weighted by ω((a, b))+ω((b, c)),
and removing b from V . The merging kernel of a tree T is obtained by applying
iteratively all possible mergings on T .

The cost of an operation is equal to the variation of weights in the tree before
and after the application of the involved operation. Then, the cost of a deletion
is equal to the deleted edge weight and is denoted by γ(w, 0), where w is the
weight of the deleted edge. In the same way, the cost of a resizement γ(w,w′) is
equal to the difference between the former weight w and the new weight w′ of
the resized edge. A merging has a null cost, since the total weight of the tree is
preserved by the operation.

In order to match trees with infinite weights, we have to take the convention
that γ(+∞,+∞) = 0.

Two weighted trees T = (VT , ET , ωT ) and T ′ = (V ′
T
, E′

T
, ω′

T
) are said to

be isomorphic if there exists a bijection f : VT → V ′
T
, such as for any pair

(x, y) ∈ VT × VT , (x, y) ∈ ET if and only if (f(x), f(y)) ∈ E′
G
.

Two weighted graphs T = (VT , ET , ωT ) and T ′ = (V ′
T
, E′

T
, ω′

T
) are homeo-

morphic if there exists an isomorphism between the merging kernel of T and the
merging kernel of T ′.

4.2 Homeomorphic Alignment Definition

Let T1 = (V1, E1, ω1) and T2 = (V2, E2, ω2) be two weighted trees. Let T ′
1 =

(V ′
1 , E

′
1, ω

′
1) and T ′

2 = (V ′
2 , E

′
2, ω

′
2) be weighted graphs obtained by deleting edges

in T1 and T2, such that there exists an homeomorphism between T ′
1 and T ′

2

(not necessarily unique). Let T ′′
1 = (V ′′

1 , E′′
1 , ω

′′
1 ) and T ′′

2 = (V ′′
2 , E′′

2 , ω
′′
2 ) be

the merging kernel of T ′
1 and T ′

2, respectively. By definition, there exists an
isomorphism I between T ′′

1 and T ′′
2 . The set of all couples of arcsH = {(e, e′); e ∈

E′′
1 , e

′ ∈ E′′
2 , e

′ = I(e)} is called an homeomorphic alignment of T1 with T2 (see
figure 5).



The cost CH of H is the sum of the costs of all operations used to homeomor-
phically align T1 and T2: the deletion of edges in T1 and T2, to obtain T ′

1 and T ′
2

respectively, and the resizement for each edge e1 ∈ E′′
1 to the weight of H(e1).

An homeomorphic alignment with minimal cost is said to be optimal. The cost
of an optimal homeomorphic alignment is called the homeomorphic alignment
distance.
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Fig. 5. Left: two trees G1 and G2. Middle: G′

1 and G
′

2, obtained respectively from G1

and G2 by deletion of edges, and which are homeomorphic. Right: G′′

1 and G
′′

2 , which
are respectively the merging kernels of G′

1 and G
′

2, and which are isomorphic. Dotted
lines represent an optimal homeomorphic alignment.

The “coordinate” constraints of the model are applied during the optimal
homeomorphic alignment: the cost of the resizement of a model edge (vM , v′

M
),

weighted by wM , to the weight wD of a data edge (vD, v′
D
) is equal to +∞

if there is a constraint C associated to (vM , v′
M
), and the 3D point associated

to vD is in a spatial position relative to the one associated to v′
D

which is not
compatible with C.

For the purpose of scale invariance, we start our method by normalizing the
weights of the two trees, so that the sum of all non-infinite weights in a tree is
equal to 1. Then, we compute the homeomorphic alignment distance between
the trees, using the algorithm described in [11]. If the distance is greater than a
given threshold Td, which is defined by the user, we assume that the data tree
is not enough similar to the model tree to provide a good matching, and we
stop the pipeline for this frame. Otherwise, we use the optimal homeomorphic
alignment to match the labels associated to the model vertices, with the 3D
positions associated to the data vertices.

The number of non-aborted matchings, and their quality, obviously depend
on the choice of the threshold value Td : as both trees are normalized, Td = 2
means that none matching will be aborted (both trees can be deleted), but the
resulting matching can be null, or poor. In the other hand, a lower value yields
a lower amount of non-aborted matchings, but with better probability of good
matching.



5 Discrimination of Similar Limbs Using Model

“Between” Constraints

In case of similar limbs, the matching with the model tree can generate multiple
solutions. In the case of our model of hand, as the descriptions of index, middle
finger, ring finger and little finger are identical, the matching will give a set of
four possible positions for each finger. To solve this problem, we introduce the
“between” constraints. It consists of constraining the position of some limb to lie
between two other ones. A usual ternary relation “between” definition is based
on collinearity [12] : a point is said to be between two other points P1 and P2

if it belongs to the segment P1P2. However, this definition is too restrictive. On
the other hand, we could say that a point is between P1 and P2 if its projection
on the line (P1P2) is between P1 and P2. In this case, the problem is that there
exist triplets (P1, P2, P3) such that each point is between the two others (for
example, the three vertices of an equilateral triangle).

We propose a definition which is not too restrictive, and which gives at most
one possibility of “betweenness” for three points P1, P2, P3 : consider B the
unique ball with diameter P1P2 which contains P1 and P2. The point P3 is
between P1 and P2 iff P3 ∈ B. An other formulation is that P3 is between two

points P1 and P2 iff the angle between
−−−→
P3P1 and

−−−→
P3P2 is greater than

π

2
. Then,

if there exists a “between” constraint on model vertices, defined by a sequence
m0, ...,mn, the corresponding data vertices d0, ..., dn, with associated positions

P0, ..., Pn must be chosen such as, for each i ∈ [1, n− 1],
−−−−→
PiPi−1 ·

−−−−→
PiPi+1 < 0.

6 Implementation and Results

Our method has been tested on a computer with a processor Intel(R) Core(TM)
2 Quad Q8200 at 2.33 GHz, a GPU Nvidia(R) Geforce(TM) 9800 GT and 3
Go of RAM. Our implementation is implemented in C++, and the visual hull
is computed on GPU, using GLSL. For the tests, we use two data sets: a set
for hand pose estimation, produced by our team, and the dancer set produced
by the INRIA Perception Group 1, for full body body pose estimation. We have
tested our method for different voxel grid resolutions, in order to estimate the
computation speed, the number of matchings and their quality.

Figure 6 shows the results of speed measurement. Since image data must be
loaded from a data base instead of being captured online, shape acquisition cost
is overestimated. It can be observed that our implementation reaches interactive
time. However, our program is still a prototype, and can be widely optimized, e.g.
by parallelizing the skeletonization step. The difference of initialization speed for
both models can be explained by taking into consideration the time complexities
of the two costly steps: the skeletonization time complexity is in O(SG+SS ∗TS),
where SG and SS are respectively the size of the voxel grid and the size of the (in
voxels), and TS the thickness of the shape. The tree matching time complexity

1 http://4drepository.inrialpes.fr/



is in O(S2 ∗ (D ∗ 23∗D + S2 ∗D)), where S and D are respectively the maximal
size and the maximal degree of the both trees. The values of SS , TS , S and D

being higher for the hand model, the initialization speed for this model is slower
than for the other one.
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Fig. 6. Speed results for two kinds of model (Left: human body model; Right: hand
model) for different sizes of grid. (The complete grid size is N3 voxels).

Figure 7 shows some results of pose initialization. The accuracy of our method
obviously depends on the size of the voxel grid. It is also the case for the propor-
tion of non-aborted matchings, and for their probability to give robust matching,
as shown in Table 6. The reasons of high rate of aborted matching are different
for the two sets. In the case of the dancer set, it is due to the fact that the pose
of the subject does not always allow the initialization : an arm can be too close
to the torso, cycles can appear, or other cases of the same kind. In the case of
the hand set, even if the hand always has a good pose for initialization (spread
fingers), the positioning of the four cameras is not efficient enough to provide a
good shape reconstruction.

grid side threshold Td matching FP

40 0.4 52% 16.3%
40 2.0 87.5% 15.4%
100 0.4 58% 11.2%
100 2.0 71.5% 9%

grid side threshold Td matching FP

40 0.4 40.6% 40%
40 2.0 75.6% 49.8%
100 0.4 18.1% 0.0%
100 2.0 61.5% 0.0%

Table 1. Matching count. Left: dancer data set. Right: hand data set. A matching is
considered as a false positive (FP) if at least one part is not in a correct position.

7 Conclusion

In this paper, we have presented a new method for generic pose initialization,
for markerless motion capture purpose. The performances of our method allow
the initialization in interactive time, for an online usage. Our future works will
focus on the detection of 2-degree joints, as elbows or shoulders, which can be
detected by the presented method, and on the optimization of our prototype, in
the aim to reach real time initialization.



Fig. 7. Some examples of initial pose estimation results. In green, the skeleton, in blue
the matched points, and in red, the corresponding labels.
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