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GENERIC LATTICE IDEALS

IRENA PEEVA AND BERND STURMFELS

I. Introduction

Let S = k[x1, . . . , xn] be a polynomial ring over a field k and I a homogeneous
ideal in S. A basic problem in commutative algebra is to construct the minimal
free resolution FI of S/I over S. The resolution is nicely structured and simple
when I is a complete intersection: in this case FI is the Koszul complex. Complete
intersections are ideals whose generators have sufficiently general coefficients, so
they might be regarded as generic among all ideals.

Yet there is another, entirely different, notion of genericity: ideals whose gen-
erators are generic with respect to their exponents – not their coefficients. This
point of view was developed for monomial ideals in [BPS]. In the present work we
introduce a notion of genericity for lattice ideals, which include ideals defining toric
varieties. If L is any sublattice of Zn, then its associated lattice ideal in S is

IL := 〈xa − xb : a,b ∈ Nn and a− b ∈ L 〉,
where monomials are denoted xa = xa1

1 · · ·xann for a = (a1, . . . , an).
We call a lattice ideal IL generic if it is generated by binomials with full support,

i.e.,

IL = 〈xa1 − xb1 , xa2 − xb2 , . . . , xar − xbr 〉,(1.1)

where none of the r vectors ai − bi has a zero coordinate. The term “generic” is
justified by Theorem 4.1, which is a recent result in integer programming theory
due to Barany and Scarf [BS]; it shows that, in a well-defined sense, almost all
lattices L are generic.

In Section 2 we introduce the Scarf complex ∆L of an arbitrary sublattice L
in Zn. This is an infinite simplicial complex on which L acts with finitely many
orbits. This complex first appeared (in a different form) in work of Barany, Howe,
Scarf and Shallcross [BHS], [BSS]. In Section 3 we define a complex FL of free
S-modules which is the algebraic counterpart of ∆L. It is contained in the minimal
free resolution of S/IL by Theorem 3.2. After that we study the generic case. The
main results in this paper are:

• Theorem 4.2, which shows that FL is the minimal free resolution of S/IL if
L is generic, and Corollary 5.5. The resolution is monomial and does not
depend on char(k).
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• Theorems 5.2 and 5.4, which show how to recover the Scarf complex of a
generic lattice ideal from that of a reverse lexicographic initial ideal. The
latter is a monomial ideal and its Scarf complex is the finite simplicial complex
defined in [BPS, §3].

The foundation for our constructions is Theorem 2.5, which establishes the connec-
tion to the resolution for codimension 2 lattice ideals given in [PS].

2. The Scarf complex

Throughout this paper we assume that L is a nonzero sublattice of Zn which
contains no nonnegative vectors. This ensures that the ideal IL is homogeneous
with respect to some grading where deg(xi) is a positive integer di. For any finite
subset J of L we define max(J) to be the vector which is the coordinatewise
maximum of J , that is,

max(J) =
(
max {a1}a∈J , max {a2}a∈J , . . . , max {an}a∈J

) ∈ Zn.

In [BPS, §3] a simplicial complex ∆M , the Scarf complex, was associated with any
finite subset M of Nn. We extend this definition to the infinite subset L of Zn as
follows:

∆L := { J ⊂ L : max(J) 6= max(J ′) for all finite subsets J ′ ⊂ L other than J}.
Note that any set J in ∆L has cardinality at most n. We have {a} ∈ ∆L for every
a ∈ L since L contains no nonnegative vectors. Thus ∆L is an infinite simplicial
complex of dimension at most n− 1. There is a natural action of the lattice L on
∆L, since J ∈ ∆L if and only if J + a ∈ ∆L for any a ∈ L. We identify ∆L with
its poset of nonempty faces, and we form the quotient poset ∆L/L. This poset is
called the Scarf complex of L.

Example 2.1. Let n = 2 and L be the lattice spanned by (1,−1). Then ∆L
is the infinite one-dimensional simplicial complex determined by consecutive pairs
{(i,−i), (i+ 1,−i− 1)} for i ∈ Z. The Scarf complex ∆L/L consists of one 1-cell
and one 0-cell.

We consider the link of the origin 0 in the complex ∆L:

∆0
L := { J ⊂ L \ {0} : J ∪ {0} ∈ ∆L }

and we identify the Scarf complex ∆L/L with the link ∆0
L modulo the action by L.

Proposition 2.2. Let L be any sublattice of Zn.
(a) The simplicial complex ∆L is locally finite, i.e., the link of every vertex in

∆L is finite.
(b) The Scarf complex ∆L/L is a finite poset.

Proof. An element a ∈ L is called primitive if there exists no b ∈ L\{0, a} , such
that b+ ≤ a+ and b− ≤ a−, where a+ = max(a, 0) and a− = max(−a, 0). The
set of all primitive vectors in L is finite; see [Stu, Theorem 4.7]. It is called the
Graver basis of IL.

Let a be a vertex of ∆0
L. No vector b ∈ L\{0, a} satisfies b ≤ max(a, 0) = a+.

So a is primitive. We conclude that ∆0
L has only finitely many vertices. Since L

acts transitively on the vertices of ∆L, all links are isomorphic to ∆0
L and hence

finite. Moreover, every element of ∆L/L has a representative in ∆0
L. This proves

both (a) and (b).
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GENERIC LATTICE IDEALS 365

The vertices of ∆0
L are called neighbors in [BS]. In the proof of Proposition

2.2 we argued that every neighbor is primitive. The converse is far from true. In
general, there are many more primitive vectors than neighbors.

Next we interpret the Scarf complex in terms of lattice-free polytopes. This
relates it to our constructions for the codimension 2 case in [PS] and to the poly-
hedral constructions in [BHS] and [BSS]. Let B = (bij) be an integer n× d-matrix
whose columns are a basis of L. Each vector u in Zd corresponds to a binomial

x(Bu)+ − x(Bu)− in IL, and every binomial (without monomial factors) in IL can
be represented uniquely in this way.

Abbreviate Γ := Zn/L. Both S and S/IL are graded by the abelian group Γ.
The set of all monomials of a fixed degree C ∈ Γ is called a fiber. Equivalently, the
fibers are the congruence classes of Nn modulo L. The fiber containing a particular
monomial xm can be identified with the lattice points in the polytope

Pm := conv
({u ∈ Zd : Bu ≤ m })(2.1)

via the linear map Pm ∩ Zd → Nn, u 7→ m − Bu. Thus, the fiber is the set of
nonnegative integer solutions of a linear system of equations. The following lemma
is straightforward.

Lemma 2.3. Two of the polytopes Pm and Pm′ in Rd are lattice translates of each
other if and only if the vector m−m′ ∈ Zn lies in the lattice L.

Disregarding lattice equivalence, we write PC := Pm for m ∈ C. We introduce
a partial order ≺ on the set Nn/L of all fibers as follows: If C1 and C2 are fibers,
then C2 � C1 if and only if there exists a monomial xr such that xr · C2 ⊆ C1.
Equivalently, we have C2 � C1 if and only if PC2 is a subpolytope of PC1 modulo
lattice translation.

In the special case of a toric ideal when L is saturated (and IL is prime), it is
convenient to construct the poset (Nn/L,�) as follows: Write L as the kernel of
a nonnegative integer (n−d) × n-matrix A. Let NA denote the subsemigroup of
Nn−d generated by the columns of A. The semigroup NA is partially ordered via
w1 � w2 if and only if w2−w1 ∈ NA. The map u 7→ A·u defines an isomorphism
of posets between (Nn/L,�) and (NA,�).

We next define a special class of fibers. Let gcd(C) denote the greatest com-
mon divisor of all monomials in C. A fiber C is called basic if gcd(C) = 1 and
gcd(C\{xa}) 6= 1 for all xa ∈ C. Note that if C is basic, then every lattice point
in PC is a vertex of PC .

Lemma 2.4. Let C be a basic fiber and m a monomial in C. The monomials in
C\{m} divided by their greatest common divisor form a basic fiber.

Proof. The considered monomials form an entire fiber C̃ because otherwise we
would have gcd(C) 6= 1, which is a contradiction. By construction gcd(C̃) = 1.

Take a monomial m̃ ∈ C̃. In order to show that C̃ is basic, we have to show that
the monomials in C̃\{m̃} have a nontrivial greatest common divisor. Since C is
basic we have that g := gcd(C\{m}) 6= 1, h := gcd(C\{m̃g}) 6= 1 and gcd(g, h) = 1.

Hence gcd(C̃\{m̃}) is a multiple of h.

We consider the subposet of (Nn/L,�) whose elements are all basic fibers. This
subposet is finite, as the next theorem shows.

Theorem 2.5. The poset of basic fibers is isomorphic to the Scarf complex ∆L/L.
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Proof. Let J be a finite subset of L. Consider the set of monomials

CJ = {xmax(J)−a : a ∈ J }.
This set is a subset of a fiber. It is an entire fiber if and only if max(J) 6=
max(J ∪ {b}) for all b ∈ L\J . If CJ is a fiber, then the following three condi-
tions are equivalent:

a) max(J) 6= max(J\{b}) for all b ∈ J ;
b) for any m ∈ CJ , the set CJ\{m} divided by its greatest common divisor forms

a fiber;
c) CJ is a basic fiber.

Conditions b) and c) are equivalent by Lemma 2.4, and since gcd(CJ ) = 1 by
construction.

The above construction defines a map from the Scarf complex into the poset of
basic fibers as follows: Let F be an element in ∆L/L. Choose a representative J of
F . If J ′ is another representative, then J ′ = J−a for some a ∈ L, hence CJ = CJ′ .
Set CF = CJ . Thus, the assignment F 7→ CF gives a well-defined order-preserving
map ψ from ∆L/L into the poset of basic fibers. We will show that ψ is bijective.

First, we show that ψ is injective. Suppose that CF = CF̃ . Then xmax(J)−a =

xmax(J̃)−ã for some a, ã ∈ L. The equality max(J) = max(J̃ + a − ã) implies

J = J̃ + a− ã, since max(J) is attained uniquely. Hence F = F̃ .
It remains to show that ψ is surjective. Let C be a basic fiber and xe ∈ C.

Consider the set J : = { a ∈ L : xe−a ∈ C }. As shown in the first part of the
proof, J represents an element in ∆L/L since C is basic. Clearly, ψ(J) = C.

3. The algebraic Scarf complex

In this section we construct a complex of free S-modules from the Scarf complex
∆L/L, and we show that it is contained in the minimal free resolution of S/IL
over S. The ring S/IL and its minimal free resolution are graded by the group

Γ = Zn/L, and hence so is the module TorSj (S/IL, k) =
⊕

C∈Γ Tor
S
j (S/IL, k)C .

The Γ-graded Betti number βj,C is the k-dimension of TorSj (S/IL, k)C . It counts
the minimal (j + 1)-st syzygies of S/IL having degree C. Note that the minimal
generators of IL are the first syzygies.

Construction 3.1. The algebraic Scarf complex is the complex of free S-modules

FL =
⊕

C∈∆L/L
S · EC ,

where EC denotes a basis vector in homological degree |C| − 1, and the sum runs
over all basic fibers C. By Lemma 2.4 it is well defined to take the differential
acting as

∂(EC) =
∑

m∈C sign(m,C) · gcd(C\{m}) · EC\{m} ,

where sign(m,C) is (−1)l+1 if m is in the l’th position in the lexicographic ordering
of C. The sign convention ensures that FL is a complex, that is, ∂2 = 0. This
construction appears in a special case in [PS]. It is the lattice analogue of [BPS,
Construction 2.1].

Theorem 3.2. The complex FL is contained in the minimal free resolution GL of
S/IL.
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The statement “is contained” has the following meaning: Let (GL, d) be the
minimal free resolution of S/IL over S. There exists an inclusion of Γ-graded free
S-modules FL ⊆ GL such that d maps FL to itself, the restriction of d to FL
coincides with ∂, and any minimal generator of FL is a minimal generator of GL.

We will use the following formula (3.1) for the Betti numbers βj,C . The formula
first appeared in [Sta, Theorem 7.9] for toric ideals; by [PS, Lemma 2.1] it holds for
lattice ideals. Let TC be the simplicial complex generated by the supports of all
monomials in C. In other words, TC is a simplicial complex on the set {1, . . . , n}
and a subset F of {1, . . . , n} is a face of TC if and only if the fiber C contains a
monomial xa = xa1

1 x
a2
2 · · ·xann whose support supp(a) := {i : ai 6= 0} contains F .

The formula expresses the Betti numbers β∗,C in Γ-degree C by the ranks of the

reduced homology groups H̃∗(TC ; k):

βj+1,C = rank H̃j(TC ; k) for j ≥ −1.(3.1)

Proof of Theorem 3.2. Suppose that GL has a minimal generator of homological
degree i ≥ 1 and Γ-degree C. It follows from the minimality that GL has a
minimal generator of homological degree i − 1 and Γ-degree strictly smaller than
C. By induction, we conclude that there exists a chain of fibers C = Ci � Ci−1 �
· · · � C1 � C0 = {1} such that GL has a minimal generator of homological degree
j and Γ-degree Cj for j = 0, 1, . . . , i. By (3.1) it follows that gcd(Cj) = 1 for
0 ≤ j ≤ i. (This is because gcd(Cj) 6= 1 implies that TCj is a cone and so it has no
reduced homology.) If C is a basic fiber, then by Lemma 2.4 it follows that for each
0 ≤ j ≤ i the fiber Cj is a monomial multiple of a basic fiber; since gcd(Cj) = 1
we conclude that Cj is basic. Thus, if C is a basic fiber, then the existence of the
above chain implies that i < |C|.

We will prove Theorem 3.2 by induction on the homological degree. The be-
ginning of FL is

⊕
C SEC −→ S, where the sum is over all fibers consisting of

two relatively prime monomials. Differences of such monomials are clearly minimal
generators of IL, and therefore

⊕
C SEC −→ S is contained in GL.

Suppose that FL ⊆ GL holds in homological degrees less than i. The elements

{ ∂(EC) : |C| = i+ 1 }
are syzygies and we have to prove that they are minimal. Assume the opposite
and let ∂(EC) be one such nonminimal syzygy. That is, ∂(EC) is an S-linear
combination of syzygies of strictly smaller Γ-degrees. Therefore GL has a minimal
generator of homological degree i and Γ-degree C ′ strictly less than C. By (3.1) it
follows that gcd(C ′) = 1. (This is because gcd(C ′) 6= 1 implies that TC′ is a cone
and so it has no reduced homology.) Since C is basic we see by Lemma 2.4 that
C ′ is a monomial multiple of a basic fiber. As gcd(C′) = 1 we conclude that C′ is
basic as well. Therefore, we have the inequalities i < |C ′| < |C| = i+ 1 which is a
contradiction.

We call a fiber C spherical if the complex TC has the homology of a (|C| − 1)-
sphere.

Lemma 3.3. Every basic fiber is spherical.

Proof. We use (3.1) to compute the Betti numbers. Consider the cover of TC by the
simplices supp(m) for m ∈ C. The nerve NC of that cover is a simplicial complex
on C whose homology equals the homology of TC . We will show that the nerve
NC equals the boundary of the |C|-simplex. The condition gcd(C) = 1 implies
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368 IRENA PEEVA AND BERND STURMFELS⋂
m∈C supp(m) = ∅; hence C 6∈ NC . For every m′ ∈ C we have gcd(C\{m′}) 6= 1

and therefore
⋂
m∈C\{m′} supp(m) 6= ∅, which implies C\{m′} ∈ NC .

Corollary 3.4. Let IL be a lattice ideal whose Betti numbers are concentrated in
basic fibers, i.e., βj,C > 0 implies C is basic. Then FL is the minimal free resolution
of S/IL.

Proof. By Theorem 3.2 the complex FL is contained in the minimal free resolution.
By construction, this complex has a free generator in each Γ-degree, which is a
basic fiber. But by Lemma 3.3 any Γ-graded Betti number is either 0 or 1, and
the latter happens when the Γ-degree is a basic fiber. Therefore, FL is the entire
minimal free resolution.

4. Generic lattice ideals

Recall from (1.1) that a lattice ideal IL is generic if it is generated by binomials
with full support. In this section we first explain why a generic lattice ideal is
called generic. Then we show that its minimal free resolution is the algebraic Scarf
complex.

Consider the vector space Rn×d of real n × d-matrices, and let Rn×d
• denote

the open subset of rank d matrices whose image contains no nonnegative vector.
Let Zn×d be the lattice of integer n× d-matrices and set Zn×d

• := Rn×d
• ∩ Zn×d.

Every matrix B ∈ Zn×d
• determines a rank d lattice LB := imageZ(B). These

are the lattices considered in this paper. We call a matrix B ∈ Zn×d• generic if
the ideal ILB is generic. The following theorem is the motivation for our definition
of genericity; it is a reformulation of recent results of Barany and Scarf [BS] on
neighbors associated to lattice-free convex bodies.

Theorem 4.1 (Barany and Scarf 1996). (a) The set { λ · B : λ > 0, B ∈ Zn×d•
generic } is dense in Rn×d

• in the classical topology.
(b) For every generic matrix B ∈ Zn×d• there exists an open convex polyhedral

cone CB ⊂ Rn×d
• containing B and such that all matrices in CB ∩Zn×d

• are generic
with the same Scarf complex.

The following description of the Barany-Scarf cone CB is useful for constructing
explicit examples of generic lattice ideals: CB consists of all matrices B′ ∈ Rn×d•
such that the composition Im(B) → Rd → Im(B′) preserves the sign pattern of
each neighbor of LB. The next theorem was conjectured jointly with Dave Bayer.

Theorem 4.2. If IL is generic, then FL is the minimal free resolution of S/IL.

Proof. Let C be any fiber which is not basic. By Corollary 3.4, it suffices to show
that the simplicial complex TC is contractible. If gcd(C) 6= 1, then TC is a cone
over the support of gcd(C) and hence contractible.

Suppose that gcd(C) = 1. Since C is not basic, we can choose a monomial
xa ∈ C such that gcd(C\{xa}) = 1. If supp(xa) = {x1, . . . , xn} , then ∆C

is the (n − 1)-simplex and we are done. We may suppose xi 6∈ supp(xa). Since
gcd(C\{xa}) = 1, there exists xb ∈ C\{xa} such that xi 6∈ supp(xb). We conclude
that the fiber C has at least two monomials xa and xb which do not contain the
variable xi.

We will show that TC is a cone over xi and hence contractible. Let F be any face
of TC not containing xi. We must construct a face G of TC such that F ∪ {xi} ⊆
G. Write F = supp(xf ) and let xb be any other monomial with xi 6∈ supp(xb).
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Write xf = xd · xf ′ and xb = xd · xb′ where supp(xf ′) ∩ supp(xb′) = ∅. Since

xf ′−xb′ ∈ IL and since IL is generated by binomials with full support, there exists
a monomial xc with xb′−xc ∈ IL and supp(xb′)∪supp(xc) = {x1, . . . , xn}. This

implies {xi} ∪ supp(xf ′) ⊆ supp(xc). Now, xcxd ∈ C. Then G := supp(xcxd) is
a face of TC , and {xi} ∪ F ⊆ G, as desired.

Corollary 4.3. If IL is generic, then the Γ-graded Hilbert series of S/IL equals∑
C basic(−1)|C|−1 · tdeg(C)∏n

i=1(1− tdeg(xi))
,

where tdeg( · ) are monomials representing elements in the semigroup Nn/L ⊂ Γ.

Remark 4.4. Let IL be a generic lattice ideal.
1. The minimal free resolution FL is independent of the characteristic of the

field k.
2. FL is monomial, that is, the entries in the matrices of the differential ∂ are

monomials, except in the 0’th matrix, which contains the generators of IL.
3. Each Γ-graded Betti number is either 0 or 1; in particular IL has a unique

minimal set of Γ-homogeneous binomial generators. This follows from Lemma 3.3.
4. The poset of basic fibers (i.e. the Scarf complex) is encoded in the numerator

of the Γ-graded Hilbert function written in the form as in Corollary 4.3. Thus, the
Γ-graded Hilbert function, the minimal free resolution FL and the Scarf complex
∆L/L determine each other.

Example 4.5. By exhaustive search using MAPLE we found that k[t20, t24, t25, t31]
is the generic monomial curve in A4 of smallest degree. It is defined by the ideal

IL = 〈 a4 − bcd, a3c2 − b2d2, a2b3 − c2d2, ab2c− d3,

b4 − a2cd, b3c2 − a3d2, c3 − abd 〉
in k[a, b, c, d]. The lattice L is the Z-kernel of the matrix A = ( 20 24 25 31 ) and is
spanned by the vectors (4,−1,−1,−1), (−2, 4,−1,−1), (−1,−1, 3,−1) in Z4. The
poset of all fibers can be identified with the numerical semigroup spanned by 20, 24,
25 and 31. For instance, the fiber over 177 equals

{
a4b3c, a3bd3, a2c3d2, b4c2d

}
.

This is a basic fiber, which represents a tetrahedron. There are 33 basic fibers.
The Scarf complex ∆L/L consists of six tetrahedra, twelve triangles, seven edges,
and one vertex. The minimal free resolution of S/IL is FL, which has the form

0
∂−→ S6 ∂−→ S12 ∂−→ S7 ∂−→ S

∂−→ 0. The action of the differential ∂ is deter-
mined by the covering relations in the poset of basic fibers and homogeneity. For
example, the above listed fiber of 177 is a tetrahedron and covers the fibers of
137, 153, 152, 146 which are triangles, therefore ∂(E177) = x2

1 · E137 − x2 · E153

+ x3 · E152 − x4 · E146. (Here we write Eα for the basis vector EC of FL if C is
the fiber over α ∈ N.)

5. Reverse lexicography

We fix a generic lattice ideal IL in S = k[x1, . . . , xn]. Our objective is to relate
the Scarf complex of IL to the Scarf complexes of its reverse lexicographic initial
monomial ideals. The latter are finite simplicial complexes and are much easier to
compute.

Choose positive integers d1, . . . , dn such that IL is homogeneous with respect to
the grading deg(xi) = di. Fix any degree reverse lexicographic term order ≺ relative
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to this grading on S, that is, we order monomials as follows: xa1
1 x

a2
2 · · ·xann ≺

xb11 x
b2
2 · · ·xbnn if

∑n
i=1 aidi <

∑n
i=1 bidi, or if

∑n
i=1 aidi =

∑n
i=1 bidi and the last

nonzero coordinate of (a1 − b1, . . . , an − bn) is positive. Let M = in≺(IL) be the
initial monomial ideal.

Lemma 5.1. The minimal generators of IL form a Gröbner basis with respect to
≺.

Proof. This follows from [PS, Lemma 8.4] since every minimal generator contains
the variable xn.

For the monomial ideal M we form the Scarf complex ∆M as defined in [BPS,
§3]: the vertices of ∆M are the minimal generators of M , and the faces of ∆M are
subsets of generators whose least common multiple is uniquely attained.

Lemma 5.1 gives a bijection between the vertices of ∆M and the edges of ∆L/L,
by sending each monomial generator of M to the corresponding binomial generator
of IL. This is the i = 0 case of the following more general result.

Theorem 5.2. The i-faces of ∆M are in bijection with the (i+1)-faces of ∆L/L
for all i.

Proof. We consider the link at the origin, ∆0
L. Each i-face I of ∆0

L corresponds to
an (i + 1)-face I ∪ {0} of ∆L. Since L acts transitively on the vertices of ∆L, we
can identify the Scarf complex ∆L/L with the link ∆0

L modulo the action by L.
Let J be any finite subset of L. After translation we may assume that 0 ∈ J

and each a ∈ J\{0} satisfies xa− ≺ xa+

. We have max(J) = max(a+ : a ∈
J\{0} ) and therefore xmax(J) is the least common multiple of the monomials in M
corresponding to J\{0}. This least common multiple is uniquely attained among
finite sets of monomials in M if and only if the maximum max(J) is uniquely
attained among finite subsets J of L.

Example 5.3. Different reverse lexicographic initial ideals can have nonisomorphic
Scarf complexes. We show this for the semigroup ring k[xz3, xy4z, xy3, xy3z7,xy2z4]
which defines a toric surface in P4. Its homogeneous prime ideal equals

〈 c7d3 − ab6e3 , ac2d2 − be4 , a2b5 − c5de ,

a3b4d− c3e5 , a4b3d3 − ce9 , a5b2cd5 − e13 〉.
This is the lattice ideal for L = Z{(1,−1, 2, 2,−4), (4, 3,−1, 3,−9)} ⊂ Z5. It is
generic. Its reverse lexicographic initial ideals for c smallest and d smallest are

Mc = 〈 ab6e3, be4, a2b5, a3b4d, a4b3d3, e13 〉 ,
Md = 〈 ab6e3, be4, a2b5, c3e5, ce9, e13 〉 .

The Scarf complexes of these two monomial ideals are as follows: ∆Mc is the
shellable nonpure complex consisting of the edge {2, 6} and the three triangles
{1, 2, 3}, {2, 3, 4}, {2, 4, 5}, while ∆Md

is the non-shellable pure complex consist-
ing of the three triangles {1, 2, 3}, {2, 4, 5}, {2, 5, 6}. (Here each vertex is labeled
according to the above ordering of the minimal generators.) These two simplicial
complexes are clearly not isomorphic.

Example 5.3 shows that the bijection in Theorem 5.2 is not a poset isomorphism.
Actually, it is an inclusion of posets ∆M ↪→ ∆L/L. In the next theorem we explain

how to recover all the order relations in ∆L/L from ∆M . We denote by xa+
i −xa−i
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the minimal generators of IL and we assume that xn is the smallest variable and

that it divides xa−i .

Theorem 5.4. The poset ∆L/L is derived from ∆M in the following way. Let J be
a face of ∆M and hence of ∆L/L. Then J covers J\{j} for all j ∈ J and it covers

one additional face J̃ constructed as follows: set mJ = lcm(xa+
j : j ∈ J), consider

the set of monomials

{
mJ

xa+
j

xa−j : j ∈ J
}

divided by their greatest common divisor

and let p be the unique monomial among them which is not divisible by xn; then J̃

is the unique (|J | − 1)-face of ∆M such that lcm(xa+
j : j ∈ J̃) = p.

Proof. By the bijections in Theorems 2.5 and 5.2, J corresponds to a basic fiber

CJ containing mJ . We have CJ\{mJ} =

{
mJ

xa+
j

xa−j : j ∈ J
}

. Divide this set by

its greatest common divisor. The result is a fiber C̃. There is a unique monomial
p ∈ C̃ which is not divisible by the smallest variable xn. Translate p to the origin
in its fiber C̃ as in the proof of Theorem 5.2. We conclude that there is a unique

(|J | − 1)-face J̃ of ∆M such that lcm(xa+
j : j ∈ J̃) = p.

Corollary 5.5. The minimal free resolution of S/IL is the free S-module

FL =
⊕

J∈∆M

S · EJ ,

where the basis element EJ is placed in homological degree |J |. The differential acts
as

∂(EJ) =
∑
i∈J

sign(i, J) · mJ

lcm(xa+
j : j ∈ J\i)

· EJ\i ± m̃J · EJ̃ ,

where mJ = lcm(xa+
j : j ∈ J), m̃J = gcd(xa−j : j ∈ J), and J̃ is described in

Theorem 5.4. (The sign “±” is determined by the lattice translation in the proof of
Theorem 5.4.)

Proof. Apply Theorem 5.4. Construction 3.1 and Theorem 4.2 provide the desired
form for the resolution, with the special term gcd(C\{mJ}) ·EC\{mJ} replaced by

m̃J · EJ̃ . The coefficient equals m̃J = gcd(C\{mJ}) = gcd

(
mJ

xa+
j

xa−j : j ∈ J
)

=

s ·gcd
(
xa−j : j ∈ J

)
, where s is a monomial. We will prove that s = 1; assume the

opposite. Let xi be a variable which divides s. Therefore xi divides mJ

xa
+
l

for some

l. In particular, xi divides mJ . Hence there exists an index j such that xi does not

divide mJ

x
a
+
j

. As xi divides xa+
j we have that it does not divide xa−j . Hence xi does

not divide mJ

x
a
+
j

xa−j , which is a contradiction.

Remarks 5.6. 1. The module FL =
⊕

J∈∆M
S ·EJ can be equipped with a differ-

ential ∂′, which is the same as ∂ but with the term m̃J ·EJ̃ erased. Then (FL, ∂′)
coincides with the algebraic Scarf complex FM constructed in [BPS] and therefore
FM is always contained in the minimal free resolution of S/M . Corollary 5.5 shows
how to recover FL from FM .
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Among the homogeneous ideals I in S only very few cases are known where
the minimal free resolution of I can be read off directly from the minimal free
resolution of an initial monomial ideal in≺(I). Generic lattice ideals have this
remarkable property.

2. We emphasize that Corollary 5.5 holds independently of whether the algebraic
Scarf complex FM is exact (i.e. FM provides the minimal free resolution of S/M).
It is an open question whether genericity of IL implies that the Scarf complex of M
is exact. If M is generic, then the answer is positive and in this case IL and M have
the same Γ-graded Betti numbers by Theorem 5.2 and [BPS]. However, M need
not be generic even if IL is generic; for instance, M is not generic in Example 4.5.

3. We obtain the following algorithm for computing the minimal free resolution
of S/IL: by Lemma 5.1, we can read off the initial monomial ideal M from the
minimal generators of IL, then we compute the Scarf complex of M (e.g. using
the convexity method in [BPS, §5]), then for each i-face J in ∆M we compute the

(i− 1)-face J̃ described in Theorem 5.4. The output is the minimal free resolution
given in Corollary 5.5.

Example 5.3. (continued) Take the reverse lexicographic term order e � a � b �
c � d. The initial monomial ideal of IL is Md, and its Scarf complex ∆Md

consists
of the three triangles {1, 2, 3}, {2, 4, 5}, {2, 5, 6}. From Corollary 5.5 we obtain the
minimal free resolution of IL in the following form: the basis vectors E• are indexed
by the six vertices, eight edges and three triangles of ∆Md

, and the differential acts
as follows:

1’st syzygies: E1 7→ ab6e3 − c7d3, E3 7→ a2b5 − c5de, E5 7→ ce9 − a4b3d3,
E2 7→ be4 − ac2d2, E4 7→ c3e5 − a3b4d, E6 7→ e13 − a5b2cd5,

2’nd syzygies: E12 7→ eE1 − ab5E2 − c2d2E3, E25 7→ e5cE2 − bE5 + ad2E4,
E13 7→ aE1 − be3E3 − c5dE2, E26 7→ e9E2 − bE6 + acd2E5,
E23 7→ a2b4E2 − e4E3 − c2dE4, E45 7→ e4E4 − c2E5 + a3b3dE2,
E24 7→ c3eE2 − bE4 − adE3, E56 7→ e4E5 − cE6 + a4b2d3E2,

3’rd syzygies: E123 7→ aE12 − eE13 + bE23 − c2dE24

E245 7→ e4E24 − c2E25 + bE45 − adE23

E256 7→ e4E25 − cE26 + bE56 − ad2E45.

The underlined terms are the special terms which are last in the sum of Corol-
lary 5.5; they describe the assignment J 7→ J̃ in Theorem 5.4. For instance, if
J = {1, 2} then J̃ = {3}. If we erase all underlined terms, then we get the minimal
free resolution of Md.
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