
Generic Middleware Substrate through

Modelware⋆

Charles Zhang, Dapeng Gao and Hans-Arno Jacobsen

University of Toronto
{czhang,gilbert,jacobsen}@eecg.toronto.edu

Abstract. Conventional middleware architectures suffer from insuffi-
cient module-level reusability and the ability to adapt in face of func-
tionality evolution and diversification. To overcome these deficiencies,
we propose the Modelware methodology adopting the Model Driven Ar-
chitecture (MDA) approach and aspect oriented programming (AOP).
We advocate the use of models and views to separate intrinsic func-
tionalities of middleware from extrinsic ones. This separation effectively
lowers the concern density per component and fosters the coherence and
the reuse of the components of middleware architectures. Comparing to
the conventionally designed version, Modelware improves benchmark per-
formances by as much as 40% through architectural optimizations. Our
evaluation also shows that Modelware considerably reduces coding efforts
in supporting the functional evolution of middleware and dramatically
different application domains.

1 Introduction

The construction of system software such as middleware is complex. A con-
tributing factor to this complexity, as we have observed first hand, is that the
code-level design reusability in conventional middleware architectures is inca-
pable of adequately dealing with “change” in two dimensions: time (functional
evolution) and space (functional diversification).

The reusability in conventionally developed software components is insuffi-
cient due to the lack of explicit means to effectively distinguish intrinsic and ex-
trinsic architectural elements. Borrowing terms from subject-oriented program-
ming [10], we use the term “intrinsic” to characterize middleware architectural
elements that are essential, invariant, and repeatedly used despite the variations
of the application domains. These “common abstractions” are typically pattern-
based designs, such as proxy, forwarder-receiver [7], and acceptor [16]. Contrarily,
we use the term “extrinsic” to denote elements that are vulnerable to refinements
or can become optional when the application domains change. A simple exam-
ple of an “extrinsic” property is “thread-level concurrency,” including patterns

⋆ In Middleware 2005: ACM/IFIP/USENIX 6th International Middleware Confer-
ence,November 28th - December 2nd, 2005 Grenoble, France. This research has been
supported in part by an NSERC grant and in part by an IBM CAS fellowship for
the first author. The authors are very grateful for this support.



such as leader/follower [16], which can become redundant when threading poli-
cies are controlled by user applications or if the underlying platform, such as
Java Card1, does not support threads at all. As we have reported in our previ-
ous work [23], “intrinsic” and “extrinsic” properties interact non-modularly in
conventional middleware architectures. Consequently, middleware architects are
faced with immense architectural complexities because the concern density per-
module is high. The code-level reusability of the “common abstractions”is also
drastically reduced because the generality of intrinsic components is restricted
by the “extrinsic” properties in face of domain variations.

Conventional middleware architectures also lack effective means to reuse “ex-
trinsic” properties, especially ones that are crosscutting [13] in nature, i.e., not
localized within modular boundaries. We illustrate this problem through the
example of data marshalling: a major CORBA feature converting the “typed”
application data to an array of bytes. We study three popular implementations
of CORBA, namely ORBacus 2, a commercial ORB, JacORB 3, an open source
ORB, and Sun’s ORB, shipped with every Java2.0 SDK. Figure 1 lists the imple-
mentations of the marshalling of the data type long. These three independent
implementations are nearly identical in terms of structure and algorithm. Two
design concepts are reused by all of the implementors: the “buffer”, holding a
byte array representing the raw data, and the “shifting and masking” algorithm
for decomposing four bytes of a long value into four byte values. The desired
approach is to package this marshalling functionality for type long, along with
the about 20 other data types in CORBA, as part of a marshalling library, so
that it becomes a reusable development artifact. Conventional architectures have
fallen short of doing so because they are incapable of componentizing and reusing
crosscutting concerns as analyzed in our previous work [24]. Our investigation
has revealed similar problems with many other major CORBA functionalities.
Being able to componentize and to reuse these functionalities tremendously fa-
cilitates the construction of middleware systems.

To tackle the afore-mentioned problems, we propose a new architectural
paradigm, Modelware, which embodies the “multi-viewpoints” [14] approach. We
capture “intrinsic properties”, or common abstractions, in a base view consisting
of a set of coherent components free of crosscutting concerns. We use role-based
aspect views and aspect libraries to capture “extrinsic properties”, i.e., domain
variations. we adopt the Model Driven Architecture (MDA) 4 in both types of
views as the vehicle for the mapping abstractions to implementations. Concrete
middleware instances can be produced by the realization process: selecting the
implementations of the abstractions in both kinds of views, and the projection
process: creating ontological relationships between the elements in aspect views
and those in the base view.

1 Java Card. http://java.sun.com/products/javacard/index.jsp
2 ORBacus. http://www.iona.com/orbacus
3 JacORB. http://www.jacorb.org
4 MDA. http://www.omg.org/mda



Fig. 1. Data marshaling of type long in A:JacORB, B:Sun ORB, and
C:ORBacus

In describing our experience of the Modelware paradigm, we make the follow-
ing contributions in this paper:

1. We present Modelware, a model-driven approach, to separate middleware
architectural concerns into multiple “viewpoints”: an “intrinsic view” imple-
menting common middleware functionalities through simple and coherent
modules, and “aspect views” providing abstractions for crosscutting con-
cerns.

2. We present the implementation details of the views in Modelware. More
specifically, we describe the “realization” process for both the base view
and aspect views and the “projection” process for mapping aspect view onto
the base view.

3. We present a thorough evaluation of the Modelware paradigm to illustrate
both the performance benefit and the high-level code reuse in supporting
functional variations in both space and time.

The rest of the paper is organized as follows: we first introduce generic models
including both the intrinsic models and aspect models of Modelware in Section 3;
we then describe in Section 4 how transformations can be used to concretize
generic models and to integrate aspect models to support flexible compositions of
middleware functionalities; evaluations of Modelware are presented in Section 5.

2 Background and Related Work

Background and related work can be classified into two categories: aspect-oriented
programming approaches and model-driven approaches. We will present these
categories in turn and discuss similarities and difference to our approach.



Aspect-oriented Programming – Aspects modularize crosscutting concerns,
coding concerns that are not localized within modular boundaries. Aspect-oriented
programming (AOP) allows the developer to cleanly encapsulated crosscutting
concerns in separate modules [13]. Aspect-oriented languages, such as AspectJ5,
defines a set of new language constructs to support two kinds of crosscutting:
dynamic crosscutting and static crosscutting. Dynamic crosscutting is defined by
means of join points that denote well-defined points in the execution of a pro-
gram. A pointcut refers to a collection of join points and parameters associated
with these join points. A method-like construct, referred to as an advice, is used
to define aspect code executed before, after or in place of a join point. Static
crosscutting affects the static structure of a program, such as classes, interfaces,
and the type hierarchy. Inter-type declarations are used to introduce new fields
and methods into classes or interfaces, as well as new entities into existing type
hierarchies through the declare parents construct. An aspect module includes
pointcuts, the associated advices, inter-type declarations, and declare parents
constructs.

In the context of middleware, we refer to aspect-oriented programming ap-
proaches as existing software platforms that expose hooks for applications using
these platforms to adapt, alter, modify, or extend the normal execution flow of a
service requested. In that sense, the CORBA interceptor mechanisms, although
not explicitly positioned as an aspect-oriented approach, belongs to this cate-
gory. Other recent examples, explicitly positioning themselves as aspect-oriented
approaches, are the JBoss AOP approach [3] and the Spring AOP approach [1].
The key difference to our work is that these approaches expose a number of hooks
for enabling the use of the middleware in an aspect-oriented style. However, our
main objective is to build aspect-oriented middleware through the use of aspect-
oriented programming techniques, with the goal of increasing the modularity of
the resulting middleware, to improve the concern separation in the middleware
implementation, and to ultimately enable an automated model-driven approach.

AspectJ2EE [5] is a new aspect-oriented language, specifically targeted at
the generalized implementation of J2EE application servers and applications. It
is a programming language that could form the basis for an approach like ours.

Other approaches have used aspects for the development of middleware, for
example, Facet [11] illustrates the use of aspects for the development of an event
channel. We have shown how middleware implementations can be successfully
refactored with aspects, increasing modularity and configurability [23, 22]. None
of these approaches investigates reusability of aspects and effects of aspects on
the evolution, as is our objective with Modelware.

Some work has been done on designing reusable aspects. Clarke and Walker[4]
suggest the use of compositional patterns to better decouple the implementation
of crosscutting concerns from the base classes of a system. Soares et al. [19]
show how the use of abstract aspects effects the re-usability of aspects refactored
from a health-care management system. Both approaches are very different from

5 AspectJ, http://www.eclipse.org/∼aspectj



the role-based approach of designing aspect-oriented libraries presented in this
paper.
Model-driven Development – Generally speaking, model-driven development
refers to a software development process that based on models of the software
synthesized code. The Model Driven Architecture process (MDA) is one promi-
nent examples of a model-driven development approach. MDA advocates de-
veloping complex systems through multiple and hierarchical viewpoints. The
“Platform Independent Viewpoint” and the associated “Platform Independent
Model” does not specify the details necessary for running the system on a partic-
ular platform, which makes it suitable for abstracting the essential functionalities
of a system across a number of middleware platforms. By combining the specifi-
cations of the PIM with the details of how to use a particular type of platform,
a “Platform Specific Model” is established. A set of mapping rules relate a PIM
to its PSM that lays out the details with respect to a given middleware plat-
form. How mappings can be effectively realized is still in question. The approach
suggested in this paper is one possible realization for automating the mapping
between different views and models.

Other approaches aiming at realizing a model-driven approach are [17, 2].
CoSMIC [17] defines a set of domain-specific tools for composing and deploying
distributed real-time and embedded middleware-based applications. Bonnet et
al. [2] describe a model-driven software process for the automated configuration
and personalization of smart card software. Both approaches do not employ
aspect-oriented techniques, which is central to our approach.

3 Generic Models in Modelware

The orthogonal natures among middleware functionalities allow Modelware to
enable multiple viewpoints at the architectural level: a base view containing
common middleware functionalities through a conventional layered hierarchy
of modules, and a collection of aspectual views, each containing an “extrinsic”
functionality. We raise the levels of abstractions in both kinds of views through
models. Benefited from this design, the components of base view modules become
much simpler and more coherent, thus, more tolerant to variations of applica-
tion contexts. Leveraging traditional object-oriented design principles, both base
and aspectual functionalities can be flexibly supported with different concrete
implementations. The models in the base view carry many invariant proper-
ties which foster the creation of middleware-specific aspect libraries. Modelware

can be thought as methodology for attacking the problem of commonality and
variability [6] through the combination of conventional modules and aspects.

Before details of the models are discussed, we want to rephrase a few MDA
nomenclatures in the context of Modelware. Our definition of the Platform In-
dependent Model (PIM) refers to abstract concepts in both the base view and
aspect views. We define the Platform Specific Model (PSM) as the refined models
of these concepts for specific functional requirements or deployment platforms.
For aspect views, in addition to PIM and PSM models, we introduce role mod-



Fig. 2. Base view and aspectual views

els as abstractions for the behavior of aspects. As illustrated in Figure 2, each
aspect view contains its own set of role models. An aspect view interacts with
base view models via roles in a non-localized manner.

3.1 Invariant concepts in base view

It has long been recognized in literatures [7, 16, 21] that design patterns play
essential roles in middleware architectures. In their specific problem contexts,
design patterns exhibit invariance in both space and time. The Modelware base
view is composed of a collection of “invariant concepts” including patterns as
well as a number of design choices which we believe to represent common and
essential functionalities of middleware.

3.1.1 Models of invariant concepts

The primary responsibility of the “invariant concepts” in the base view is to
support the transparent interpretation and transportation of RPC operations.
We enumerate a few essential elements and describe their semantics with respect
to how they interpret the application requests made through RPC:

1. Proxies (stub and skeleton): Stubs and skeletons are entities masking the
middleware substrate as native programming facilities of the user applica-
tion. Proxies see the application requests as regular method invocations.

2. Connection facilities (acceptor and connector): Acceptors and connectors
“decouple the connection and initialization of peer services ... from the pro-
cessing these peer services perform after they are connected and initial-
ized”[16]. Connection facilities see the application requests as a sequence
of bytes sent to or received from network hosts.

3. Protocols (initiator and responder): Protocol initiators and responders (also
called forwarder-receiver [7]) leverage connection facilities and implement a
particular sequence of message exchange between clients and servers. Pro-
tocols see the application requests as a set of generic messages subject to a
specific temporal order and a specific spatial structure.



4. Request sessions and service sessions: A request session and a service session
represents an instance of interaction among elements of proxies and proto-
cols in the client and the server side, respectively. Sessions see application
requests as instances of collaborations between proxies and protocols.

5. Buffer: Buffer is a commonly used data structure for encapsulating the ap-
plication data. Buffer represents the application requests as a bounded array
of bytes and provides interfaces to manipulate this array.

6. Messages (outgoing and incoming): Messages, including both outgoing and
incoming messages, represent the encoding and decoding of byte-oriented
data in Buffer with respect to type-oriented data in user applications. Mes-
sages see application requests as typed and directional data traversing the
middleware stack.

7. Servant: Servant is the internal representation in Modelware of the hosted
servers. It serves as a level of indirection between Protocols and Skeletons

to facilitate management tasks. It sees application requests as invocation
requests to be dispatched to the destination services.

3.1.2 Simplicity and invariance

There are two important goals driving our design of the base view models: sim-
plicity and invariance. In Modelware, models of these concepts are kept simple
and minimal. On average, there are only around two operations associated with
each entity, and most of these operations accept a single input parameter. This
kind of simplicity is not arbitrary but derived from a small middleware core
refactored out of its complex original version. In other words, this base view
is intended to capture the smallest common denominator of middleware archi-
tectural variations. In fact, an implementation of this base view is capable of
supporting CORBA-style RPC on platforms as small as Java Card, discussed in
detail in Section 5.

More importantly, the base view concepts are stable designs surviving evolu-
tions and variations in many middleware implementations. In addition to design
patterns, some concepts are specified as standards, such as request (specified as
streams in CORBA) and servant (specified as the object adaptor in CORBA).
Others are widely adopted practices, such as buffer and session6. Being resilient
to evolution is crucial to the base view in Modelware as it provides the founda-
tion, i.e., architectural invariance, for establishing and integrating aspect views.
As summarized by Grady Booch7, we adhere to the “simplicity via common
abstractions and mechanisms” principle to manage the complexity of change in
middleware architectures.

6 These design elements are present in all of the three major open source Java CORBA
implementations, namely JacORB, ORBacus, and Sun ORB.

7 Grady Booch. The Complexity of Programming Models. Keynote speech at AOSD
2005.http://www.booch.com/architecture/blog/artifacts/Complexity.ppt



3.2 Aspect views

Aspect models and views re-distribute the complexity of middleware implemen-
tation from a single flat module hierarchy to multiple separated and independent
implementations of specialized middleware concerns. In Modelware, each view is
oriented upon one or many roles specifying a specific interpretation of the Model-

ware base view. These interpretations are encapsulated within the aspect view in
the form of additional program states (role attributes), interactions among roles
within the view (role relationships), and interfaces for transferring control be-
tween aspectual views and the base view (contracts). Each aspect view interacts
with the base view through “projection”: a process of establishing an ontological
relationship by mapping aspect roles to base view entities and fulfilling the as-
pect contracts on them. There are two types of contracts: abstract interception
points (or pointcut in AOP terms) and abstract operations enforced by roles.
Abstract operations link the behavior of a role to an base-view entity. Abstract
pointcuts define points of execution and associated computation contexts of the
base view for aspect views to intervene. Each aspect view is modularized as one
or many reusable aspect components.

Different from generic roles in design patterns as well as conventional aspect
oriented treatments of patterns [12, 9], we make heavy use of domain-specific
roles that know about the base view abstractions such as buffer or transport.
This dependency is necessary for making a large number of middleware func-
tionalities reusable such as the synchronous communication model, the mar-
shalling/unmarshalling of data types, and many others. We believe this depen-
dency does not restrict the flexibility of the architecture for two reasons: 1. due
to the strong invariance of the base view, the pointcut mapping is stable because
the modular structures and the dynamic behaviours of the base view models are
unlikely to change rapidly; 2. the dependency is made upon abstract models,
therefore, stay unaffected by the platform specific implementations. To further
illustrate aspect views, we present two concrete implementations: the thread-
level concurrency library and the data type marshalling library. The projection
process of aspect views is presented in Section 4.

3.2.1 Thread-level concurrency view

Description: Threads are common concurrency primitives popular in middle-
ware implementations for achieving efficient request handling. From the per-
spective of the thread-level concurrency view (TC view for short), entities in
the base view are of three kinds: non-concurrent, thread owners, and objects
carrying the logic for the concurrent task. Currently, the TC view supports two
well-studied middleware concurrency models, thread-per-connection and thread
pool8. The thread-per-connection model detaches a new thread for a new network
client. The thread-pool concurrency model initializes a fixed number of threads

8 A third concurrency model, Reactive, as used in TAO [18], is also implemented as
a separate view. Due to the length limit, we defer the discussion to an extended
version of the paper



to execute tasks simultaneously. Threads in the thread-pool model are reused
upon the completion of the task instead of being destroyed. The behaviour of
threads is implemented in the library and automatically applied to the objects
in the base view if these objects “play” the prescribed roles through specific
projection transformations as illustrated in Figure 3. We discuss details of these
transformations in Section 4.

Type: Domain independent. The TC view does not depend on any abstrac-
tions in the base view.

Roles and role relationships: The basic roles in the TC view are Thread
Owner and Thread Worker. The thread worker contains the program logic to be
executed concurrently, and the thread owner is an object in which the thread
worker is created. Through projection, the thread owner role transforms the
corresponding base view entities to different types of thread containers, and the
thread worker role forces the corresponding base view object to conform to a
uniform interface used by the internal threads of the library. Each role has two
sub-roles to support the afore-mentioned two concurrency models.

Attributes: The common attributes of all thread owners are the base name
of the thread, the thread group, and the synchronization primitive. This syn-
chronization primitive is used if the execution thread of the owner needs to wait
for the completion of the task in the thread. The thread-per-connection owner
contains a repository of created threads. The thread-pool owner contains a repos-
itory of threads, a data buffer, and the size of the thread pool. No additional
attributes are associated with the thread worker role. View-specific attributes
are “mixed-in” with base view entities through AspectJ capabilities as shown in
Section 4.

Role contracts: Each thread owner role is associated with a set of abstract
operations and pointcuts. For instance, threads in the TC view are associated
with states, much like Java threads. These states are often required to coordinate
with the running state of the base view objects, e.g., observing the creation, the
activation, or the disposal of the thread owners. The “stateTranslate” opera-
tion defined by the thread owner role forces base view objects which “play” this
role to provide concrete mappings of base view states. Every thread owner is also
associated with a set of abstract pointcuts, among which the most fundamental
ones are to denote when threads need to be created and destroyed. In the case of
the thread-pool model, an additional pointcut is used to define the point when
the new data arrive, and a sleeping thread can be awoken to consume them.

3.2.2 Data type view

Description: Data marshalling/unmarshalling is an essential middleware func-
tionality responsible for translating typed information in the middleware user
application into an ordered array of bytes. The data type view is an aggregation
of a number of primitive type views, each specializing in dealing with a single
middleware data type.

Type: Domain-dependent. The data type view makes use of the Buffer ab-
straction in the base view.



Fig. 3. Roles in concurrency view

Roles: The data type view consists of two roles, the marshaller role and the
unmarshaller role. They represent entities responsible for encoding and decoding
the user application data of the middleware.

Role relationships, attributes: No relationships are implemented between
the marshaller role and the unmarshaller role as they represent two independent
directions of data conversion. The data type roles do not have attributes because
they are operation-oriented.

Role contracts: Both roles force the projected base view objects to imple-
ment an interface for retrieving the underlying data, i.e., a Buffer instance.

4 Transformation

The transformation process in Modelware consists of two independent operations:
1. realization, mapping base view models and aspect view models to concrete
implementations; 2. projection, mapping aspect libraries to concrete implemen-
tations of the base view. The realization operation relies on an implementation
library that stores simple and coherent implementation models. We discuss all
the transformation within the Java language framework as it provides a mature
environment for supporting both the base view and aspect views. The following
sections describe the realization and the projection processes in detail.

4.1 Realization: PIM to PSM transformations

The PIM to PSM mapping is to establish mappings between abstract model
elements and their concrete implementations through either sub-typing or direct
substitution. Central to this process is the Modelware implementation library
which aggregates two types of reusable components: functional implementations
and public application programming interfaces (APIs). The implementation of
models can be native, if it is part of the implementation library, or foreign, if



it already exists in third-party libraries. Proper adaptation of foreign imple-
mentations might be needed to conform to the operations of Modelware enti-
ties. For example, Modelware can leverage zero-copy buffers in the Java NIO
libraries to achieve high performance I/O. The adaptation of the foreign com-
ponent ByteBuffer to the IBuffer base view entity is simple leveraging the
language facilities and the bytecode weaving capabilities of AspectJ.

Most of the native implementations come out of a crosscutting free version
of ORBacus as a result of our long term refactoring efforts [23, 24]. A notewor-
thy characteristic of these implementations is that they are deliberately kept
minimal by supporting simple behavior. For instance, the implementation of re-
quest handling assumes no response, and the transports are non-concurrent and
incapable of handling fragmented messages. To reduce the coupling among con-
crete implementations, a number of patterns can be used including factories [8]
and inversion of control (IOC) principles9. We currently use factories and are
developing external dependency directives through either scripts or graphical
tools.

The Modelware implementation library also contains modules defining public
application programming interfaces. A particular set of public APIs represents
a predefined “look and feel” for accessing middleware services. For instance,
there are multiple public APIs for enabling the pluggability of network trans-
ports in CORBA such as the Extensible Transport Framework (ETF), defined
by the OMG, and the Open Communications Interface (OCI), defined in ORBa-
cus10. Conventionally, public APIs are typically hardwired to implementations
at the development time by a type hierarchy. In Modelware, the base view mod-
els serve as a level of indirection between the implementations and the public
APIs, so that public APIs can be plugged in and changed at post-compilation
time. As illustrated in Figure 4, by separately managing the implementation and
the interface, better flexibility and reusability can be achieved by creating the
appropriate “look and feel” under external transformation directives.

4.2 Projection: Transformation of aspect views

The transformation of aspect models and views consists of both “realization”
and “projection” operations. The purpose of the “realization” operation is to
select concrete implementations for the aspect functionality. This is identical to
the “realization” operation in the base view. The “projection” operation con-
sists of two steps. We first determine the correspondence between entities in the
base view and the roles in the aspect view. In the aspect library code, roles are
represented by Java interfaces and instrumented with additional operations and
states through AspectJ. Leveraging AspectJ’s capability of type hierarchy mod-
ification, this mapping operation is straightforward and affects every concrete

9 Martin Fowler. Inversion of Control Containers and the Dependency Injection pat-
tern http://www.martinfowler.com/articles/injection.html

10 ORBacus OCI http://www.orbacus.com/support/new site/manual/4.2.1/users

guide/index.html



OCI API ETF API

Acceptor_
interface

Acceptor_
interface

Conventional Approach Modelware Approach

Development time
type dependency

OCI API ETF API

Acceptor_
interface Transformation time

type dependency

OCI
Transformation

(weave)
profile

ETF
Transformation

(weave)
profile

Acceptor_impl Acceptor_impl

Acceptor_impl

Fig. 4. Transform-time API dependency in Modelware

implementation of the mapped base view entity. Once the mapping is estab-
lished, we need to fulfill the contracts declared by the aspect view. This is a
process of locating concrete interception points and providing implementations
of new operations for the base view classes, as the result of “role playing”. Since
contracts are composed of abstract programming elements, the enforcement can
be accomplished by the AspectJ compiler.

To further illustrate the mapping process, we present a usage scenario of
the concurrency aspect view. Figure 5 shows the Modelware implementation of
the server-side request handling. While the focus is not the exact semantics of
these statements, we want to illustrate a typical “simplistic” Modelware imple-
mentation – it is only about the operational logic of request processing. Many
common concerns, such as iterative processing, thread safety, and concurrency,
are absent. Instead of hardwiring into code as in conventional ways, we illustrate
how we enable the “thread-per-connection” concurrency support with a minimal
coding effort using the Modelware threading aspect library.

Figure 5(B) is a code snippet showing only the core operations of the thread
library. Line A defines a contract using an abstract pointcut to capture the
constructor invocation of the ThreadWorker made by the ThreadOwner. Lines
B2-B5 create a thread before the constructor call, assign the newly constructed
ThreadWorker to the thread, start the thread, and return the created Thread-

Worker instance. The “thread-per-connection” concurrency model requires the
server-side request handling, i.e., the operation process (line 5 in Figure 5(A)),
to execute in a separate thread. Therefore, the base-view class ProtocolResponder
plays the ThreadWorker role, and the base-view class ProtocolResponderFactory
(line 4) the ThreadOwner role. Figure 5(C) shows the projection code: line 1-
2 modify the type hierarchy of the base view entities; line 3 fulfills the ab-
stract pointcut contract by specifying the constructor call of all subtypes of
ProtocolResponder; line 4 cancels the invocation to the to-be-made-concurrent
method “process” in the main thread, and line 5-6 fulfills another contract by
specifying the method “process” is to be executed concurrently. The actual



Fig. 5. Transformation of the thread-level concurrency view

functionality of our thread library11 is more complex including thread lifecycle
management, state transition support, synchronization support, and others. Our
experience, also as shown in this simplified example, is that, once the roles are
mapped, the code needs to be created is simple and small in size. In addition,
since the projection code itself is an aspect module, many different projections
can be implemented to support additional concurrency models without intrusive
changes to the base view entities. In addition, in scenarios where middleware
threading is not required or cannot be used, the plain implmentations can still
be used.

5 Evaluation

Our assessment of Modelware examines both the performance characteristic and
the programming effort for the use of Modelware models and libraries in build-
ing common middleware operations. For this purpose, we choose to support
CORBA interfaces as a case study, although Modelware is not designed specif-
ically for CORBA. For the performance evaluation, we compare the Modelware

11 Please visit Modelware website for details of the implementations. http://www.msrg.
utoronto.ca/code/Modelware



CORBA (MORB) implementation with ORBacus using Benchie [20], an third-
party CORBA benchmark suite. We also quantify the programming effort in
three case studies: 1. creating CORBA-like middleware; 2. supporting function-
ality evolution of middleware in time; 3. supporting functional diversity in space,
i.e., different computing platforms from Java Card, to mobile devices, and to
desktop environment.

5.1 Modelware functionalities

The key base view elements of Modelware are implemented largely by generically
reusing ORBacus components such as buffer, acceptor, connector, transport, and
GIOP encoding/decoding algorithms. The following properties are implemented
in aspect libraries: data types such as long and char, two way communication
model, thread-level concurrency, thread safety, codeset support, Java NIO sup-
port(including reactive request handling), and many others. These properties
are largely orthogonal to each other and can be flexibly combined. The base
view elements, without any aspect libraries, are capable of handling remote in-
vocations with octet and integer data types. The reliability of messaging passing
is guaranteed at the network level, and the receiving side processes requests
passively.

5.2 Runtime characteristics

In this set of performance evaluations, we primarily want to demonstrate the
benefit of the architectural flexibility of Modelware in competing with ORBacus

on the same set of benchmark measurements collected by Benchie. The perfor-
mance delta should not be influenced much by algorithmic factors but mainly
architectural ones since almost all of the critical Modelware functions, such as
data marshalling and unmarhalling, GIOP protocol stack, and connection man-
agement, are just reused ORBacus implementations. The benchmark tests are
performed on Pentium 4 2GHZ PC running Linux Redhat 8.0. We disable the
concurrency protection of user applications for both MORB and ORBacus12.

We present three categories of benchmark tests: a. roundtrip pings repre-
senting the minimum cost of CORBA stack traversals; b. data marshalling/-
unmarshalling operations representing the performance of client-encoding and
server-decoding capabilities; c. multi-server tests representing the dispatching
capabilities of CORBA. We customize13 MORB for these three categories as fol-
lows: since the concurrency support is not necessary for tests in categories a and
b, “threading” and “thread-safe locks” become redundant and are configured
out of the architecture. We denote this configuration as “MORB A”. We enable
the “concurrency” support and disable all other features such as “interceptor”
and “context” for category c Benchie tests in the “MORB B” configuration.

12 This is the default policy of ORBacus
13 A reminder that our customization only involves changing the selections of compiled

classes for bytecode weaving.



Fig. 6. Benchmark comparison of Modelware to ORBacus

We have created 12 configurations of MORB for the complete tests. Due to the
length limit, we present the more detailed and complete benchmarking results
in an extended version of this paper. We show the results of benchmark tests
for both MORB configurations and ORBacus in Figure 6. Figure 6:A shows that,
for 10,000 pings, MORB shows dramatic performance improvements over ORBa-

cus, as the shape of the histogram of “MORB A” shifts to the left of that of
ORBacus. The average invocation time for MORB is 105 microseconds, a 43%
speed-up comparing to 183 microseconds found with ORBacus. We believe this is
primarily due to the Modelware’s ability of lifting concurrency overheads since,
once we enable “concurrency” and “thread-safe” features in “MORB B”, the
average invocation time increases to 161 microseconds. In the marshalling and
unmarshalling performance comparisons (Figure 6 B and C), the improvement
decreases from 40% to 12%, as the descending differential curves on both graphs
show. This confirms the fact that MORB reuses the encoding/decoding algo-
rithms of ORBacus, and the performance difference tends to diminish, as the
data exchange work dominates the request processing. Figure 6 D shows that,
in the absence of facilities such as “interceptors” and “context”, the dispatching
can be more efficient in MORB compared to ORBacus, an architectural flexibility
enabled by Modelware to optimize for performance.



5.3 Transformation for evolution in time: Platform evolution

In many performance-sensitive application domains, high performance is often
a mandatory requirement in addition to the location transparency. This trans-
lates to low overhead and fast response for request processing in the middleware
layer. TAO [18] is a successful example of high-performance implementations
exploiting techniques such as zero-copy buffer, reactive communication models,
and the high speed network I/O. For a lot of conventional middleware imple-
mentations, many such techniques are not employed because of the limitations
of the underlying OS and VM at the time of the design. The evolution of OSs
or VMs might lift these design limitations in the infrastructure but not easily in
the middleware architecture. This is because leveraging new capabilities often
requires systematic, i.e., crosscutting, changes to many middleware architectural
layers such as the data representation and the network communication design.
The new I/O introduced in Java 1.4 platforms14 is an example of VM evolution
having profound impacts on Java-based middleware architectures. Its zero-copy
buffer and asynchronous I/O primitives can be used to dramatically improve
the performance of traditional stream-oriented middleware message passing. In
Modelware, this improvement is captured entirely in a separate aspect library
and can be transparently applied to the base view at post-compilation time.

The core entities of the Async aspect library consist of a reactor and four
roles: AsyncAccpetor, AsyncConnector, AsyncTransport, and AsyncWorker.
The primary function of the library is to disable the blocking operations in con-
ventional Java network I/O, initialize and install “channels” onto appropriate
roles, and register these roles with the Reactor. The Reactor dispatches in-
coming data to corresponding AsyncWorkers based on their registration keys.
There are two different approaches of projecting this library to the base view,
one being mapping these four roles to the base view model entities. The “async”
functionality thus affects all concrete implementations of Acceptor, Connector,
and Transport. However, in foreseeing future non-socket based connection man-
agement in Modelware, we chose to project onto the concrete implementations
instead15. The library is 30KB in zipped byte-code size. The projection code
only involves base view models and their implementations. Therefore, no new
code is created for MORB to become reactive except the mapping of an ab-
stract pointcut. This mapping starts the Reactor when MORB is initialized by
standard CORBA APIs.

To quantify the performance improvement, we simulate a multi-connection
scenario as follows: we host MORB on a IBM ThinkPad T41 running Win-
dowsXP, and we start a number of clients on a Pentium 4 2G box running the
Linux 2.4 kernel. The two computers are on a wireless LAN. Each client uses 300
“oneway” calls to warm up, and the time is taken for the completion of the next
300 calls. All the clients are separate processes synchronized by a semaphore to
try to create as many simultaneous connections on the server side as possible.

14 Java NIO. http://java.sun.com/j2se/1.4.2/docs/guide/nio/
15 As we mentioned earlier, projection is done through “declare parents” statements

and very easy to modify.



Table 1 summarizes the average time for each scenario comparing the reactive
MORB with the proactive version (unit is in milliseconds). Our results confirms
the findings [15] that request processing based on asynchronous I/O greatly al-
leviates the middleware overhead of threading when the number of simultaneous
incoming connections is large (over 50 in our case). In Modelware, these two
communication facilities can be inter-changed at the bytecode level.

Number of clients 10 50 100 500

Ave. Proactive 43.3 476.98 250.49 620.59
Ave. Reactive 73.1 195.02 135.53 208.67
Improvements percentage 0% 60% 46% 66%

Table 1. Improvements of using Java New I/O in Modelware

5.4 Support evolution in space: Platform diversity

Application domains of middleware systems have diverged from traditional en-
terprise environments to mobile and embedded devices due to the popularity of
ubiquitous computing. Differences of computing environments manifest in the
middleware architecture as different APIs, communication styles, data types,
and many others, even though the RPC semantic does not change. In conven-
tional architectures, evolving middleware into different platforms or domains
often results in non-modular modifications to the architecture so that the code
reusability of common functionalities is dramatically reduced.

The focus of this experiment is to measure how well Modelware supports
reusability in creating middleware platforms for three dramatically different ap-
plication domains: smart cards (Java Card), mobile devices (J2ME), and tradi-
tional environments (J2SE). We measure reusability as the ratio of the code size
(LOC) between reused components in the implementation library and the en-
tire middleware implementation. We distinguish between two types of usability:
inter-domain reusability, where components are reused in all three platforms,
and intra-domain reusability, where components are selected for a specific plat-
form. We have implemented three Modelware-based CORBA implementations:
the Java Card platform (872 LOC and 56.1k bytecode size), the J2ME platform
(1894 LOC and 219k bytecode size for the full configuration), and MORB (3346
LOC and 283k bytecode size for the full configuration). The J2ME version is
created and tested using the Nokia Series 60 emulator16. The Java Card version
is created and tested on the Sun Java Card toolkit 2.2.1. The Java Card im-
plementation is significantly smaller than the J2SE and J2ME versions because
Java Card applications always play a passive role in the master-slave model17.

16 Nokia Series 60 Platform. http://forum.nokia.com
17 Java Card: http://www.javaworld.com/javaworld/jw-03-1998/jw-03-javadev.html



Therefore, we only implement the request processing functionality for the Java
Card instance of Modelware.

In Table 2, we report our measurements of both inter-platform and intra-
platform reusability for these three implementations. For each implementation,
we also list the features being reused or created. Our experimental implementa-
tions show that different flavors of ORBs can be created with a high degree of
reusability. The code to be newly created to support new platforms ranges from
2% to 9% of the entire ORB code size.

Platform: Standard desktop platform (J2SE)

Overall reusability: 91.36% (cross-domain 16.56%, intra-domain 74.8%)
Cross-domain reuse: Buffer, GIOP Protocol, messages, stub, request, response, servant.
Intra-domain reuse: Object reference, concurrency control, transport, type support,
two-way communication, protocol initiator and responder, OMG interfaces
Newly created: ORB interface impl, OMG interface adaptation for Modelware

components

Platform: Mobile devices (J2ME)

Overall reusability: 97.5% (cross-domain 24.15%, intra-domain 73.28%)
Cross-domain reuse: Buffer, GIOP Protocol, messages, stub, request, response, servant.
Intra-domain reuse: Object reference, concurrency control, type support except
float & double, two-way communication, transport, protocol initiator, protocol responder,
OMG interfaces
Newly created: J2me version of the ORB interface implementation, OMG interface
adaptations as mentioned previously.

Platform: Embedded devices (Java Card)

Overall reusability: 97% (cross-domain 63.53%, intra-domain 34.27%)
Cross-domain reuse: Buffer, GIOP Protocol, messages, stub, request, response, servant.
Intra-domain reuse: Transport, protocol responder, Modelware hashtable,
Modelware vector
Newly created: Java card ORB interface implementation
Table 2. Reusability study of Modelware in supporting different application
platforms

6 Conclusion

We believe one of the main reasons for insufficient component reuse in system
software such as middleware is the presence of crosscutting concerns. We have
observed two major characteristics of this deficiency. Firstly, many middleware
abstractions, such as design patterns and usage idioms, live persistently across
evolution stages, but their implementations do not exist as development artifacts



that can be directly reasoned and reused. Second, many designs and algorithms
are repeatedly applied in conventional architectures. Unfortunately, due to their
crosscutting nature, no effective ways exist in explicitly representing, evolving,
and reusing them.

Our solution to overcome these difficulties is through Modelware in applying
the model-driven approach to the middleware architecture itself. The founda-
tion of our approach is to enable “multiviews” in the middleware architecture.
That is, we explicitly represent the intrinsic properties or the internal logic of the
middleware through platform independent models in the “base view” of the mid-
dleware architecture. The implementations of these abstract concepts, i.e., the
Platform Specific Model, are stored in the implementation library. The transfor-
mation between PIM and PSM models are in form of dependency descriptions.
In addition to the base view, we model and encapsulate crosscutting properties
of the middleware architecture in individual aspect views. Aspect views dilute
the density of the per-module design complexity by exploiting the orthogonal-
ities among middleware design concerns. In our case studies, we are able to
add new computing capabilities to Modelware through reusable aspect libraries.
We have also illustrated that supporting functional diversification in space with
Modelware only requires relatively small coding efforts.

We are currently continuing in evaluating Modelware approaches in the fol-
lowing directions: we are working fervently in supporting the complete set of
CORBA functionalities through Modelware in order to conduct a more thorough
comparison; we are working on facilitating the configuration process through tool
support and automated reasoning. At the same time, we are also interested in
how Modelware supports other flavors of middleware systems besides those based
on RPC. Modelware will be serving as an important platform for experiment-
ing with the properties of aspect oriented middleware – our long term research
focus.

References

1. Chapter 5. Spring AOP: Aspect oriented programming with spring. In
www.springframework.org, Accessed 05/2005.

2. Stephane Bonnet and Olivier Potonnie. A model-driven approach for smart card
configuration. In GPCE, Vancouver, October 24-28 2004.

3. Bill Burke and Adrian Brock. Aspect-oriented programming and JBoss. In ON
Java.com, 05/28/2003.

4. Siobhn Clarke and Robert J. Walker. Composition patterns: An approach to de-
signing reusable aspects. In ICSE, pages 5–14, Toronto, Canada, May 2001.

5. Tal Cohen and Joseph Gil. AspectJ2EE = AOP + J2EE. In ECOOP, pages
219–243, 2004.

6. James Coplien, Daniel Hoffman, and David Weiss. Commonality and variability
in software engineering. IEEE Softw., 15(6):37–45, 1998.

7. Frank Buschmann et al. A System of Patterns. John Wiley & Sons, 1997.

8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, 1995.



9. Jan Hannemann and Gregor Kiczales. Design Pattern Implementation in Java
and AspectJ. In Proceedings of the 17th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 161–173.
ACM Press, 2002.

10. William Harrison and Harold Ossher. Subject-oriented programming: a critique
of pure objects. In Proceedings of the eighth annual conference on Object-oriented
programming systems, languages, and applications, pages 411–428. ACM Press,
1993.

11. Frank Hunleth and Ron Cytron. Footprint and Feature Management using Aspect-
Oriented Programming Techniques. In Languages, Compilers, and Tools for Em-
bedded Systems (LCTES’02), 2002.

12. Elizabeth A. Kendall. Role model designs and implementations with aspect-
oriented programming. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pages 353–369. ACM Press, 1999.

13. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

14. Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework for express-
ing the relationships between multiple views in requirements specification. IEEE
Trans. Softw. Eng., 20(10):760–773, 1994.

15. D. C. Schmidt. ACE: An Object-Oriented Framework for Developing Distributed
Applications. In the 6th USENIX C++ Technical Conference, Cambridge, MA,
April 1994. USENIX Association.

16. Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture Patterns for Concurrent and Networked Objects,
volume 2 of Software Design Patterns. John Wiley & Sons, Ltd, 1 edition, 1999.

17. Douglas C. Schmidt, Aniruddha Gokhale, Balachandran Natarajan Sandeep
Neema, and et al. CoSMIC: An MDA generative tool for distributed real-time and
embedded component middleware and applications. In OOPSLA 2002 Workshop
on Generative Techniques in the Context of Model Driven Architecture, Seattle,
WA, November 2002.

18. Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The design of the tao
real-time object request broker. Computer Communications, 21(4), April 1998.

19. Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution
and persistence aspects with AspectJ. In OOPSLA, pages 174–190, 2002.

20. Petr Tuma and Adam Buble. Open CORBA Bench Marking. SPECTS 2001.
URL: http://nenya.ms.mff.cuni.cz/∼bench.

21. Uwe Zdun, Michael Kircher, and Markus Volter. Remoting patterns. In IEEE
Internet Computing, number 6, pages 60–68, November/December 2004.

22. Charles Zhang, Dapeng Gao, and Hans-Arno Jacobsen. Towards Just-in-time Mid-
dleware Platforms. In 4th International Conference on Aspect Oriented Systems
and Design, Chicago, IL, March 2005.

23. Charles Zhang and Hans-Arno Jacobsen. Refactoring Middleware with Aspects.
IEEE Transactions on Parallel and Distributed Systems, 14(11):1058–1073, Novem-
ber 2003.

24. Charles Zhang and Hans-Arno Jacobsen. Resolving Feature Convolution in Mid-
dleware Systems. In Proceedings of the 19th ACM SIGPLAN conference on Object-
oriented Programming, Systems, Languages, and Applications, September 2004.


