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Abstract

This paper addresses the challenge of establishing a bridge between deep convolu-

tional neural networks and conventional object detection frameworks for accurate and

efficient generic object detection. We introduce Dense Neural Patterns, short for DNPs,

which are dense local features derived from discriminatively trained deep convolutional

neural networks. DNPs can be easily plugged into conventional detection frameworks in

the same way as other dense local features(like HOG or LBP). The effectiveness of the

proposed approach is demonstrated with the Regionlets object detection framework. It

achieved 46.1% mean average precision on the PASCAL VOC 2007 dataset, and 44.1%

on the PASCAL VOC 2010 dataset, which dramatically improves the original Regionlets

approach without DNPs. It is the first approach efficiently applying deep convolutional

features for conventional object detection models.

1 Introduction

Detecting generic objects in high-resolution images is one of the most valuable pattern recog-

nition tasks, useful for large-scale image labeling, scene understanding, action recognition,

self-driving vehicles and robotics. At the same time, accurate detection is a highly challeng-

ing task due to cluttered backgrounds, occlusions, and perspective changes. Predominant

approaches [5] use deformable template matching with hand-designed features. However,

these methods are not flexible when dealing with variable aspect ratios. Wang et al. recently

proposed a radically different approach, named Regionlets, for generic object detection [23].

It extends classic cascaded boosting classifiers [22] with a two-layer feature extraction hi-

erarchy , and is dedicatedly designed for region based object detection. Despite the suc-

cess of these sophisticated detection methods, the features employed in these frameworks

are still traditional features based on low-level cues such as histogram of oriented gradi-

ents(HOG) [3], local binary patterns(LBP) [1] or covariance [19] built on image gradients.
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Figure 1: Deep Neural Patterns (DNP) for object detection

With the success in large scale image classification [11], object detection using a deep

convolutional neural network also shows promising performance [7, 18]. The dramatic im-

provements from the application of deep neural networks are believed to be attributable to

their capability to learn hierarchically more complex features from large data-sets. Despite

their excellent performance, the application of deep CNNs has been centered around image

classification, which is computationally expensive when transferred to perform object de-

tection. For example, the approach in [7] requires around 2 minutes to evaluate one image.

Furthermore, their formulation does not take advantage of venerable and successful object

detection frameworks such as DPM or Regionlets which are powerful designs for modeling

object deformation, sub-categories and multiple aspect ratios.

These observations motivate us to propose an approach to efficiently incorporate a deep

neural network into conventional object detection frameworks. To that end, we introduce

the Dense Neural Pattern (DNP), a local feature densely extracted from an image with an

arbitrary resolution using a deep convolutional neural network trained with image classifi-

cation datasets. The DNPs not only encode high-level features learned from a large image

data-set, but are also local and flexible like other dense local features (like HOG or LBP).

It is easy to integrate DNPs into the conventional detection frameworks. More specifically,

the receptive field location of a neuron in a deep CNN can be back-tracked to exact coordi-

nates in the image. This implies that spatial information of neural activations is preserved.

Activations from the same receptive field but different feature maps can be concatenated to

form a feature vector for that receptive field. These feature vectors can be extracted from any

convolutional layers before the fully connected layers. Because spatial locations of receptive

fields are mixed in fully connected layers, neuron activations from fully connected layers do

not encode spatial information. The convolutional layers naturally produce multiple feature

vectors that are evenly distributed in the evaluated image crop ( a 224×224 crop for exam-

ple). To obtain dense features for the whole image which may be significantly larger than

the network input, we resort to “network-convolution” which shifts the crop location and

forward-propagate the neural network until features at all desired locations in the image are

extracted. As the result, for a typical PASCAL VOC image, we only need to run the neural

network several times to produce DNPs for the whole image depending on the required fea-

ture stride, promising low computational cost for feature extraction. To adapt our features for

the Regionlets framework, we build normalized histograms of DNPs inside each sub-region
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of arbitrary resolution within the detection window and add these histograms to the feature

pool for the boosting learning process. DNPs can also be easily combined with traditional

features in the Regionlets framework as explained in Sec. 3.3.

2 Review of Related Work

Generic object detection has been improved over years, due to better deformation model-

ing, more effective multi-viewpoints handling and occlusion handling. Complete survey of

the object detection literature is certainly beyond the scope of this paper. Representative

works include but not limited to Histogram of Oriented Gradients [3], Deformable Part-

based Model and its extensions [5], Regionlets [23], etc. This paper aims at incorporating

discriminative power of a learned deep CNN into these successful object detection frame-

works. The execution of the idea is based on Regionlets object detection framework which is

currently the state-of-the-art detection approach without using a deep neural network. More

details about Regionlets are introduced in Sec. 3.3.

Recently, deep learning with CNN has achieved appealing results on image classifica-

tion [11]. This impressive result is built on prior work on feature learning [8, 14]. The

availability of large datasets like ImageNet [4] and high computational power with GPUs

has empowered CNNs to learn deep discriminative features. A parallel work of deep learn-

ing [12] without using convolution also produced very strong results on the ImageNet clas-

sification task. In our approach, we choose the deep CNN architecture due to its unique

advantages related to an object detection task as discussed in Sec. 3.1. The most related

work to ours is [7] which converts the problem of object detection into region-based image

classification using a deep convolutional neural network. Our approach differs in two as-

pects: 1) We provide a framework to leverage both the discriminative power of a deep CNN

and recently developed effective detection models. 2) Our method is 74x faster than [7].

There have been earlier work in applying deep learning to object detection [15]. Among

these, most related to ours is the application of unsupervised multi-stage feature learning for

object detection [17]. In contrast to their focus on unsupervised pre-training, our work takes

advantage of a large-scale supervised image classification model to improve object detection

frameworks. The deep CNN is trained using image labels on an image classification task.

3 Dense Neural Patterns for Object Detection

In this section, we first introduce the neural network used to extract dense neural patterns,

Then we provide detailed description of our dense feature extraction approach. Finally, we

illustrate the techniques to integrate DNP with the Regionlets object detection framework.

3.1 The Deep Convolutional Neural Network for Dense Neural
Patterns

Deep neural networks offer a class of hierarchical models to learn features directly from

image pixels. Among these models, deep convolutional neural networks (CNN) are con-

structed assuming locality of spatial dependencies and stationarity of statistics in natural

images [11, 13, 16]. The architecture of CNNs gives rise to several unique properties de-

sirable for object detection. Firstly, each neuron in a deep CNN corresponds to a receptive
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field [9] whose projected location in the image can be uniquely identified. Thus, the deeper

convolutional layers implicitly capture spatial information, which is essential for modeling

object part configurations. Secondly, the feature extraction in a deep CNN is performed in

a homogeneous way for receptive fields at different locations due to convolutional weight-

tying. More specifically, different receptive fields with the same visual appearance produce

the same activations. This is similar to a HOG feature extractor, which produces the same

histograms for image patches with the same appearance. Other architectures such as local re-

ceptive field networks with untied weights (Le et al., 2012) or fully-connected networks 1 do

not have these properties. Not only are these properties valid for a one-layer CNN, they are

also valid for a deep CNN with many stacked layers and all dimensions of its feature maps2.

By virtue of these desirable properties, we employ the deep CNN architecture. We build a

CNN with five convolutional layers inter-weaved with max-pooling and contrast normaliza-

tion layers as illustrated in Figure 2. In contrast with [11], we did not separate the network

into two columns, and our network has a slightly larger number of parameters. The deep

CNN is trained on large-scale image classification with data from ILSVRC 2010. To train

the neural network, we adopt stochastic gradient descent with momentum [14] as the opti-

mization technique, combined with early stopping [6]. To regularize the model, we found it

useful to apply data augmentation and the dropout technique [8, 11]. Although the neural

network we trained has fully connected layers, we extract DNPs only from convolutional

layers since they preserve spatial information from the input image.
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Figure 2: Architecture of the deep convolutional neural network for extracting dense neural

patterns.

3.2 Dense Neural Patterns

After the deep CNN training on large-scale image classification, the recognition module is

employed to produce dense feature maps on high-resolution detection images. We call the

combination of this technique and the resulting feature set Dense Neural Patterns (DNPs).

The main idea for extracting dense neural pattern is illustrated in Figure 3 and Figure 4.

In the following paragraphs, we first describe the methodologies to extract features using a

deep CNN on a single image patch. Then, we describe the geometries involved in applying

“network-convolution” to generate dense neural patterns for the entire high-resolution image.

Each sub-slice of a deep CNN for visual recognition is commonly composed of a convo-

lutional weight layer, a possible pooling layer, and a possible contrast-normalization layer [10].

1Neural networks in which every neurons in the next layer are connected with every neuron on the previous

layer
2To see this in an intuitive sense, one could apply a “network-convolution”, and abstract the stack of locally

connected layers as one layer



W. Y. ZOU, X. WANG, M. SUN, Y. LIN: DENSE NEURAL PATTERNS, REGIONLETS 5

All three layers could be implemented by convolutional operations. Therefore, seen from the

perspective of preserving the spatial feature locations, the combination of these layers could

be perceived as one convolutional layer with one abstracted kernel. The spatial location of

the output can be traced back by the center point of the convolution kernel.
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Figure 3: Neural patterns extraction with location association. (a) A square region (224×
224) as the input for the deep neural network. (b) Feature maps generated by filters in the

fifth convolution layer, spatially organized according to their inherited 2-D locations. Each

map has 13× 13 neural patterns. (c) Feature vector generated for each feature point. A

bigger circle indicates a larger neural activation.

As shown in Figure 3(b), each convolution kernel produces a sheet of neural patterns. To

tailor dense neural patterns into a flexible feature set for object detectors, we compute the 2-

D location of each neural pattern and map it back to coordinates on the original image. As an

example, we show how to compute the location of the top-left neural pattern in Figure 3(b).

The horizontal location x of this top-left neural pattern feature is computed with Equation 1:

xi = xi−1 +(
Wi −1

2
−Pi)Si−1 (1)

where i > 1, x1 =
W1−1

2
, xi−1 is the top-left location of the previous layer, Wi is the window

size of a convolutional or pooling layer, Pi is the padding of the current layer, Si−1 is the

actual pixel stride of two adjacent neural patterns output by the previous layer which can be

computed with Equation 2

Si = Si−1 × si. (2)

Here si is the current stride using neural patterns output by previous layers as “pixels”. Given

equation 1 and equation 2, the pixel locations of neural patterns in different layers can be

computed recursively going up the hierarchy. Table 1 shows a range of geometric parameters,

including original pixel x coordinates of the top-left neural pattern and the pixel stride at each

layer. Since convolutions are homogeneous in x and y directions, the y coordinates can be

computed in a similar manner. Coordinates of the remaining neural patterns can be easily

computed by adding a multiple of the stride to the coordinates of the top-left feature point.

To obtain a feature vector for a specific spatial location (x,y), we concatenate neural patterns

located at (x,y) from all maps(neurons) as illustrated in Figure 3(c).

Now that a feature vector can be computed and localized, dense neural patterns can be

obtained by “network-convolution”. This process is shown in Figure 4. Producing dense

neural patterns to a high-resolution image could be trivial by shifting the deep CNN model

with 224×224 input over the larger image. However, deeper convolutional networks are

usually geometrically constrained. For instance, they require extra padding to ensure the
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Table 1: Compute the actual location xi of the top-left neural pattern and the actual pixel

distance Si between two adjacent neural patterns output by layer i, based on our deep CNN

structure.

i Layer Wi si Pi Si xi

1 conv1 11 4 1 4 6

2 pool1 3 2 0 8 10

3 conv2 5 1 2 8 10

4 pool2 3 2 0 16 18

5 conv3 3 1 1 16 18

6 conv4 3 1 1 16 18

7 conv5 3 1 1 16 18

8 pool3 3 2 0 32 34

map sizes and borders work with strides and pooling of the next layer. Therefore, the acti-

vation of a neuron on the fifth convolutional layer may have been calculated on zero padded

values. This creates the inhomogeneous problem among neural patterns, implying that the

same image patch may produce different activations. Although this might cause tolerable

inaccuracies for image classification, the problem could be detrimental to object detectors,

which is evaluated by localization accuracy. To rectify this concern, we only retain central

5×5 feature points of the feature map square.

The DNP feature representation has some desirable characteristics which make it sub-

stantially different from and complementary to traditional features used in object detection.

(a) Convolution with a stride 

of   × 16 pixels 

(b) Output the dense neural 

patterns 

Figure 4: Dense feature maps obtained by shifting the classification window and extract

neural patterns at center positions.

3.3 Regionlets with Local Histograms of Dense Neural Patterns

The Regionlets approach for object detection was recently proposed in [23]. Compared

to classical detection methodologies, which apply a object classifier on dense sliding win-

dows [3, 5], the approach employs candidate bounding boxes from Selective Search [20].

The Regionlets approach employs boosting classifier cascades as the window classifier.

The input to each weak classifier is a one-dimensional feature from an arbitrary region R. The

flexibility of this framework emerges from max-pooling features from several sub-regions

inside the region R. These sub-regions are named Regionlets. In the learning process, the

most discriminative features are selected by boosting from a large feature pool. It naturally

learns deformation handling, one of the challenges in generic object detection. The Re-
gionlets approach offers the powerful flexibility to handle different aspect ratios of objects.
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Figure 5: Regionlets object detection framework. It learns cascaded boosting classifiers to

detect objects of interest. The object searching space is defined using segmentation cues.

The algorithm is able to evaluate any rectangular bounding box. This is because it removes

constraints that come with fixed grid-based feature extraction.

The dense neural patterns introduced in 3.2 encode high-level features from a deep CNN

at specific coordinates on the detection image. This makes them a perfect set of features for

the Regionlets framework. The basic feature construction unit in the Regionlets detection

model, i.e. a regionlet, varies in scales and aspect ratios. At the same time, the deep neural

patterns from an image are extracted using a fixed stride which leads to evenly distributed

feature points in both horizontal and vertical directions. Thus a regionlet can cover multiple

feature points or no feature point. To obtain a fixed length visual representation for a re-

gionlet of arbitrary resolution, we build a local DNP histogram, or average pooling of DNPs,

inside each regionlet. Denote DNPs in a regionlet r as {xi|i ∈ (1, . . .Nr)}, where i indicates

the index of the feature point, Nr is the total number of feature points in regionlet r. The final

feature for r is computed as:

x =
1

Nr

Nr

∑
i=1

xi. (3)

Each dimension of the deep neural patterns corresponds to a histogram bin and their val-

ues from different spatial locations are accumulated inside a regionlet. The histograms are

normalized using L-0 norm. While most histogram features define a fixed spatial resolu-

tion for feature extraction, our definition allows for a histogram over a region of arbitrary

shape and size. Following [23], max-pooling is performed among regionlets to handle local

deformations.

To incorporate DNP into the Regionlets detector learning framework, in which the weak

learner is based on a 1-D feature, we uniformly sample the DNP×Regionlets configuration

space to construct the weak classifier pool. Each configuration specifies the spatial configu-

ration of Regionlets as well as the feature dimension of DNP. Because the representation is

1-D, the generated feature pool can be easily augmented to the pool of other features such as

HOG, LBP or Covariance.

Constructing DNP feature representations for other template-based detectors (similar as

HOG template) is fairly simple. Naturally we just need to concatenate all DNPs in the

detection window. The features can also be directly applied to the Deformable Part-based

Model by replacing the HOG features with the 256 dimensional neural patterns.
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Table 2: Detection results using traditional feature and Deep Neural Patterns on PASCAL

VOC 2007. The combination of traditional features and DNP shows significant improve-

ment.

Features Mean AP

DNP Layer 1 24.9

DNP Layer 2 33.5

LBP 33.5

Covariance 33.7

DNP Layer 3 34.5

HOG 35.1

DNP Layer 4 38.9

DNP Layer 5 40.2

HOG, LBP, Covariance 41.7

HOG, LBP, Covariance, DNP Layer 5 46.1

Table 3: Performance comparison between two feature combination strategies: 1) Combina-

tion of neural patterns from the fifth layer and neural patterns from a shallow layer(second

layer). 2) Combination of neural patterns from the fifth layer and hand-crafted low-level

features.

Features Mean AP

DNP Layer 5 40.2%

DNP Layer 5 + Layer 2 40.4%

DNP Layer 5 + HOG, LBP, Covariance 46.1%

4 Experiments

To validate our method, we conduct experiments on the PASCAL VOC 2007 and VOC

2010 object detection benchmark datasets. PASCAL VOC datasets contain 20 categories of

objects. The performance is measured by mean average precision (mAP) over all classes. In

the following paragraphs, we describe the experimental set-up, results and analysis.

We train a deep neural network with five convolutional layers and three fully connected

layers on 1.2 million images in ILSVRC 2010. All input images are center-cropped and

resized to 256×256 pixels. We augment the data with image distortions based on translations

and PCA on color channels. The deep CNN reached 59% top 1 accuracy on the ILSVRC

2010 test set. While our aim is to demonstrate the effectiveness of DNPs in object detection,

a deep CNN with better performance is likely to further improve the detection accuracy.

The original Regionlets [23] approach utilizes three different features, HOG, LBP and co-

variance. In our experiments, we add to the feature pool DNP features from different layers.

During cascade training, 100 million candidate weak classifiers are generated from which

we sample 20K weak classifiers. On each test image, we form proposed object hypothesis

as [20] and pass them along the cascaded classifiers to obtain final detection result.

4.1 Detection Performance

We firstly evaluate how the deep neural patterns alone perform with the Regionlets frame-

work, followed with evaluation of the combination of DNP and HOG, LBP, Covariance

features. Finally, we compare our method with other state-of-the-art approaches.

Table 2 summarizes the performance(sorted in ascending order) of traditional features,
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DNP and their combinations on PASCAL VOC 2007. It is interesting that DNPs from the

second layer and third layer have comparable performance with the well engineered features

such as HOG, LBP and Covariance features. DNPs from the fifth layer outperforms any

single features, and are comparable to the combination of all the other three features. The

most exciting fact is that DNPs and hand-designed features are highly complementary. Their

combination boosts the mean average precision to 46.1%, outperforming the original Regi-

nolets approach by 4.4%. Note that we did not apply any fine-tuning of the neural network

on the PASCAL dataset.

The combination of DNPs and hand-crafted low-level features significantly improves the

detection performance. To determine whether the same synergy can be obtained by combin-

ing low-level and high-level DNPs, we combine the DNPs from the fifth convolutional layer

and the second convolutional layer. The performance is shown in Table 3. However, the

combination only performs slightly better (0.2%) than using the fifth layer only. This may

be because the fifth layer features are learned from the lower level which makes these two

layer features less complementary.

Table 4: Detection results(mean AP%) on PASCAL VOC 2007 and VOC 2010 datasets.

VOC 2007 VOC2010

DPM [5] 33.7 29.6

SS_SPM [20] 33.8 34.1

Objectness [2] 27.4 N/A

BOW [21] 32.1 N/A

Regionlets [23] 41.7 39.7

R-CNN pool5 [7] 40.1 N/A

R-CNN FT fc7 [7] 48.0 43.5

DNP+Regionlets 46.1 44.1

Table 5: Speed comparison with directly extracting CNN features for object candidates [7] .

R-CNN pool5 Ours
Resize object candidate regions Yes No

Number of model convolutions ∼ 2213 ∼ 30

Feature extraction time per image 121.49s 1.64s

Table 4 shows detection performance comparison with other detection methods on PAS-

CAL VOC 2007 and VOC 2010 datasets. We achieved 46.1% and 44.1% mean average

precision on these two datasets which are comparable with or better than the current state of

the art by [7]. Here we compare to results with two different settings in [7]: features from the

fifth convolutional layer after pooling, features from the seventh fully connected layer with

fine-tuning on the PASCAL datasets. The first setting is similar to us except that features

are pooled. Our results are better(46.1% vs 40.1% on VOC 2007) than [7] on both datasets

in this setting. The approach in [7] requires resizing a candidate region and apply the deep

CNN thousands of times to extract features from all candidate regions in an image. The

complexity of our method is independent of the number of candidate regions which makes it

orders of magnitude faster. Table 5 shows the comparison with [7] in terms of speed using

the first setting.3 The experiment is performed by calculating the average time across pro-

cessing all images in the PASCAL VOC 2007 dataset. DNPs extraction takes 1.64 seconds

3The time cost of the second setting in [7] is higher because of the computation in fully connected layer.
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per image while [7] requires 2 minutes.

4.2 Visual Analysis

We devise a visualization techniques for the most important features used by the detector.

The learning process for boosting selects discriminative weak classifiers. The importance

of a feature dimension roughly corresponds to how frequently it is selected during training.

We count the occurrence of each dimension of the DNPs in the final weak classifier set and

determine the most frequent dimension. We retrieve image crops from the dataset which give

the highest responses to the corresponding neurons in the deep CNN.

Figure 6 shows the visualization. The left column describes the object category we

want to detect. Right columns show visual patches which give high responses to the most

frequently selected neural pattern dimension for the category. They are obviously quite

correlated. It indicates that the selected neural patterns encode part-level or object-level

visual features highly correlated with the object category.

Bicycle 

Dog 

Person 

Train 

Pottedplant 

Figure 6: Visualization of the high-level information encoded by neural patterns from the

fifth convolutional layer.

5 Conclusion

In this paper, we present a novel framework to incorporate a discriminatively trained deep

convolutional neural network into generic object detection. It is a fast effective way to en-

hance existing conventional detection approaches with the power of a deep CNN. Instantiated

with Regionlets detection framework, we demonstrated the effectiveness of the proposed ap-

proach on public benchmarks. We achieved comparable performance to state-of-the-art with

74 times faster speed on PASCAL VOC datasets. We also show that the DNPs are com-

plementary to traditional features used in object detection. Their combination significantly

boosts the performance of each individual feature.
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