Generic Policy Management for Open
Service Markets

M.T. Tu, F. Griffel, M. Merz, W. Lamersdorf

Distributed Systems Group, Computer Science Department, University of
Hamburg

Vogt—Kolln-Str. 30, D-22527 Hamburg, Germany
[tulgriffel|merz|lamersd]@informatik.uni-hamburg.de

Abstract
The dynamic and evolutionary character of open electronic service markets with re-
spect to both the application and the system infrastructure level requires appropriate
system support mechanisms in order to dynamically configure business transactions
and provide the required support services in flexible and individual ways.

This paper proposes the use of policy management mechanisms to support flexible
cooperation of applications and dynamic configuration of support services in elec-
tronic service markets. It argues that various such policy management mechanisms
can be efficiently supported generically by a respective common policy management
service. Accordingly, the paper presents a generic approach to both policy model-
ing and policy processing aspects of an open system support platform for electronic
service markets.

Keywords
Policy Management, Interoperability, Dynamic Configuration, Electronic Markets

1 INTRODUCTION

Open electronic service markets (EM) implemented on top of a heterogeneous medi-
um such as the Internet have to be able to support a wide and constantly changing va-
riety of on-line services offered by providers in many different business fields (Merz
1996). System support needed to perform electronic business transactions effectively
as well as safely might range, for example, from authentication and notary to billing,
payment, trading and negotiation services. Such “third party” services themselves
can be offered by several providers with a variety of prices and qualities, using po-
tentially different protocols, e.g. Ecash vs. NetBill. Thus, a system infrastructure,

©IFIP 1997. Published by Chapman & Hall

2 Generic Policy Management for Open Service Markets

which allows different and also not yet existing third party service providers to be
able to participate (and compete) in the EM, cannot “hard-wire” such services into
it, but rather has to integrate them flexibly as “plug-in”” components into the overall
EM architecture.

In this architecture, the set of support services for electronic market transactions
is determined and integrated dynamically according to the requirements specified by
customer and supplier - called transaction parties - just at the time they decide to
carry out the transaction. Possible realizations of such a flexibly configurable EM
architecture need not only dynamic invocation mechanisms to access arbitrary con-
forming support services at run-time, but also mechanisms to specify and match the
requirements of respective transaction parties.

Moreover, the requirements of transaction parties are not only restricted to the
specification of support services but can generally refer to any aspects of the im-
pending cooperation. In general, before the actual exchange between customer and
provider takes place, the overall setting of the transaction has to be determined and
activated. This setting is defined both by the integration of external components like
support services and by the specific behavior of the involved parties with respect to
this transaction. Therefore, dynamic generic mechanisms are needed to specify the
requirements and expected behavior of cooperating parties.

In several application fields and current standardization efforts, e.g. in the fields
of trading (OMG 1996b, I1SO 1995), security (ISO 1994a) and performance man-
agement (Meyer & Popien 1994), policy management is proposed as a mechanism
to describe and influence the behavior of distributed applications, where a policy is
a formal description specifying the requirements / expected behavior of an applica-
tion. The notion of policy management for distributed systems has originally been
used in the field of systems and network management in which the main concern is
enforcing a common policy for a set of objects - called a domain - whereas the main
focus of this contribution is on matching different policies of transaction parties to
enable a cooperation.

The rest of the paper is organized as follows: In section 2, the problem of model-
ing policies in an application independent way is discussed and a formal specification
format of policies is proposed. Section 3 focuses on generic methods to process poli-
cies, especially those to match and resolve conflicts between different policies. The
architecture of the ongoing prototype implementation of a generic policy manage-
ment component on a CORBA platform is described in section 4. The last section
gives an overview of some open questions.

2 MODELING POLICIES FOR DISTRIBUTED APPLICATIONS

Policy management has already been proposed and used for a wide range of dif-
ferent applications separately in order to influence or control various aspects of an
application. In order to do that more efficiently in advanced integrated open system
environments, however, there is clearly a need to model policies in a general, ap-

Modeling Policies for Distributed Applications 3

plication independent way. This section first examines general modeling concepts
associated with policies in distributed systems and their formalization.

2.1 Policy Composition

Although the need for applying policies has been identified in several standardization
activities and related work, there seems to be no clear conception yet on what a policy
really denotes and which components and attributes it consists of, as has been pointed
out by, e.g., (Wies 1995). Often, a policy is seen as a rule constraining the behavior
of an object, but neither the formal representation of such a rule nor that of the object
behavior is specified (ISO 1994b). In one of the most comprehensive conceptual
works on modeling policies, Moffett (Moffett 1994) identifies management policies
as objects with the following attributes:

® Modality: motivation or authorization. Motivation means that the policy is in-
tended to motivate actions to take place and authorization means that the policy
gives or denies power for actions to take place

® Policy Subjects: Those who are in charge of achieving the policy goals

Policy Target Objects: The set of objects at which the policy is directed

® Policy Goals: This attribute defines either high-level goals or actions (to achieve
some goal)

® Policy Constraints: This attribute defines constraints on the applicability of the
policy, e.g. the times of activation

On the whole, Moffett’s policy structure (and similar ones from the systems and
network management field) aims at managing a large number of network objects
classified into different domains, whereas the main goal of our approach is model-
ing and matching the dynamic external behavior of application objects cooperating
in an individual way to perform business transactions. Therefore, we propose the
following policy structure:

A policy consists of a goal, a role, and an action.

® Goals: A goal can be a constraint or a logical combination of constraints by the
operators AND, OR, NOT.

— Constraints: A constraint either states that a property exists or expresses a
relation on the value of a property. To reduce the complexity of the policy
processing algorithms (discussed below) we assume that this is a canonical
relation between the property value and a literal, e.g. total cost < 90.

— Properties: Properties are used to model the behavior of an object explicitly. A
property is a name-value pair, where name is a string and value can be of any
type and type safety is checked at run-time. The name of a property (i.e. its
semantics) has to be standardized if it is interpreted by more than one role. For

4 Generic Policy Management for Open Service Markets

example, if both customer and supplier can specify the payment protocol
property, they need to have a common understanding of the possible values.

® Roles: Roles are used to characterize the type of objects which want to enforce the
policy. This information is used by meta-policies to resolve conflicts as described
below. A role is represented by a string.

® Actions: An action can be any kind of procedure that can be activated by the
policy management component to achieve the goal if necessary (i.e. if the goal
has been evaluated to false). In case of a passive policy, the action field is empty.
An action is represented by a unique identifier.

2.2 Restrictions

In order to enable an effective, generic processing of policy specifications as pre-
sented in the next section, we impose some restrictions on the formal representation
of policies as presented above:

The first refers to the type of constraints in policy goals: Only relations between
a property value and a literal are considered. If relations between values of different
properties were also allowed, e.g. total_cost < 1/2*average_speed, then poli-
cies could indeed have richer goals, but this would enhance the complexity of the
processing algorithms considerably.

Secondly, the overall complexity can also be reduced by allowing only goals in
Disjunctive Normal Form (DNF). This is no semantical restriction, because there
are constructive methods to convert a formula of predicate logics into DNF. This
representation also provides a conceptual advantage because if a goal is represented
in DNF, then each conjunct can be seen as an alternative goal in comparison with
other conjuncts. Moreover, it is useful to exclude such goals that do not express real
alternatives, i.e. contain conjuncts that can be inferred from one another. Therefore,
we use a special form of DNF to represent goals, which is defined as follows:

Definition: A formula F is in lean DNF iff F is in DNF and for all conjuncts ki, kj
of F holds: —=(ki — kj)

Further, it is assumed that in general, different properties are semantically inde-
pendent, i.e. the value of a property can’t be inferred from the values of other ones.*

It should be noted that this policy structure does not model the set of policy ob-
jects or the policy domain (as introduced in (Moffett 1994)) explicitly. However, the
set of objects a policy is defined for can be modeled by the set of properties which
the respective objects have in common. For example, in order to classify mobile
agents into different security domains, following property sets could be defined and
appointed explicitly to the agents:

*Where such semantical relationships are relevant, an additional preprocessing should be applied, as
proposed in section 3.6.

Generic Processing of Policies 5

high_security: low _security: no_security:
encryption=RSA encryption=DES encryption=no_encryption
key_length=46 key_length=16 key_length=0

In this way, the security behavior of an agent could be adapted dynamically by
appointing a different property set to it at run-time. On the other hand, the behavior
of all agents sharing the same security property set can be modified at the same time
by modifying any property in the set, e.g. the key_length in “high_security”.

3 GENERIC PROCESSING OF POLICIES

If we want to commonly control and influence the behavior of many different dis-
tributed applications dynamically by means of formal policies as defined in the last
section, we need functions to process policies in a way that is independent of the
specific application being treated. Some of such generic functions are proposed and
presented in this section.

3.1 Evaluation

First, a generic function is needed to tell whether an arbitrary policy is satisfied at
some time, i.e. to evaluate the goal of that policy to frue or false. This is done by
evaluating the single constraints in the goal and subsequently combining the results
according to the semantics of the logical operators AND, OR, NOT.*

The evaluation function should also recognize inconsistent goals, for example
(cost > 20) A (cost < 10), which can never be achieved.

3.2 Unification

For a policy driven cooperation between two or more applications it is usually nec-
essary to match the policies of all the involved parties. It is intuitive that the result
of the matching process should satisfy each of the input policies. This process can
be understood as a negotiation of different requirements. For example, this is de-
scribed in the Security Architecture of the ISO Basic Reference Model (ISO 1994c)
as follows:

The provision of the security features during an instance of connection-oriented communi-
cation may require the negotiation of the security services that are required. The procedures
required for negotiating mechanisms and parameters can either be carried out as a separate
procedure or as an integral part of the normal connection establishment procedure. (p. 10)

*It should be noted that if the goal could be any formula of first-order predicate logics, then this problem
would be undecidable. Therefore, we have to restrict the expressiveness of goals as described in 2.2.

6 Generic Policy Management for Open Service Markets

Using the policy structure presented above, the semantics of such a “separate proce-
dure” - called unify - can be formalized by the following definition:
Definition:

For all policy goals G1, G2, R:

R = unify(G1, G2) iff

R — Gl and

R — G2 and

AR R ZRAR - GDAR - G2)AR =R

That means, the unification of two policies returns the weakest policy that logically
implies both inputs.
Examples:

Given

P1 = ((cost < 50) A (speed > 5)) V ((cost < 100) A (speed > 10))

P2 = ((cost < 90) A (speed > 20)) V (speed < 5)

P3 = ((cost < 90) A (speed > 20)) V ((cost < 60) A (speed > 5))

Then

unify(P1, P2) = (cost < 90) A (speed > 20)

unify(P1, P3) = ((cost < 90) A (speed > 20)) V ((cost < 50) A (speed > 5))

The unify-operation can be computed by the following algorithm:

- G1, G2 in lean DNF
- DG1 := Set of all disjuncts in G1
- DG2 := Set of all disjuncts in G2
-TMP =
For each di in DG
For each dj in DG2
If di — dj then TMP := TMP U {di}
If dj — di then TMP := TMP U {dj}
DG1 :=DGI1 \ TMP
DG2 :=DG2 \ TMP
For each di in DG
For each dj in DG2
If (di A dj) #Z FALSE then TMP := TMP U {di A dj}
unify(G1, G2) := Disjunction of all elements of TMP

3.3 Comparison

Besides unification as the main function to determine the common basis for a cooper-
ation between two parties directly, comparison functions which are based on logical
implication are necessary to decide if a certain policy is satisfied by another pol-
icy or by some “offer” formalized in terms of a policy. Especially, such comparison

Generic Processing of Policies 7

functions can serve as a decision basis to realize automatic negotiation which can be
considered a stepwise process of determining common cooperation parameters.

Using the policy structure presented in 2.2, the implication relation for two poli-
cies P1, P2 can be decided as follows:

(P1 — P2) iff
(Vpl|pl is a disjunct in P1): (3p2|(p2 is a disjunct in P2) A (p1 — p2))

(pl — p2)iff
(Vb|b is a conjunct in p2): (Ja|(a is a conjunct in p1) A (a — b))

To decide if the implication relation holds for two atomic expressions, a decision
matrix based on the mathematical properties of canonical relations such as ’<’ can
be used.

Based on the decision method for logical implication, similar comparison func-
tions as “equivalent” and “stronger” can be easily implemented:

(F1 equivalent F2) iff (F1 — F2) and (F2 — F1)

(F1 stronger F2) iff (F1 — F2) and —(F2 — F1)

Examples:

=((cost > 50) V (speed < 5)) equivalent (cost < 50) A (speed > 5)

=((cost > 50) V (speed < 5)) stronger (cost < 100)

3.4 Arbitration

The unify-operation returns the value false if there is no policy goal that can logi-
cally satisfy both inputs. This case can simply happen when, for example, one party
specifies that the value of the payment_protocol property is “Ecash”, while the
other requires that it be “NetBill”. In such cases, some additional means are required
to resolve the conflict if the cooperation should still come about. A suggestion that
has often been made by standardization activities is using arbitration policies in such
cases in order to influence the matching process. For example, in (ISO 1995) arbi-
tration for trader policies is described as follows:

An arbitration action template is a template for actions which combine a criteria argu-
ment (provided at an interface) with trader criteria and property values (available from the
trader’s own state). The action produces a resultant criteria which corresponds to the policy
(in enterprise terms) for performing a given operation.

The arbitration action represents some computational algorithm within the trader object. It
corresponds to the enterprise specification’s arbitration policy. (p. 38)

However, there is no description of the semantics of the arbitration action and
especially how conflicting policies can be resolved. In the following, we describe a
simple generic method of resolving policy conflicts and a formalization of arbitration
policies.

Whenever a conflict between policy goals exists, one or both of the goals can be
weakened by overwriting certain property values of one policy goal by the values of
the same properties of the other goal. Which properties can be overwritten during

8 Generic Policy Management for Open Service Markets

this process is determined by arbitration policies. An arbitration policy defines the
set of properties on which a role has priority. For example,

Al: (role = importer) — (priority = {max return card})
= —(role = importer) V (priority = {max return_card})

A2: (role = trader) — (priority = {max_search time})
= - (role = trader) V (priority = {max_search time})

means that the importer has priority on the property max_return_card and the
trader has priority on the property max_search time. Thus, arbitration policies,
which are used as meta-policies to influence the matching process, are formalized in
the same way as the policies being matched.

The overwriting of property values should be done stepwise, i.e. as few properties
as possible should be overwritten to produce a non-empty resultant policy. A great
advantage of this simple arbitration mechanism is its orthogonality, i.e. it works for
arbitrary property value types. However, this kind of arbitration may be too coarse-
granulated when dealing with numerical value types, for which a stepwise funing
of a property value might be much more appropriate than overwriting it. Therefore,
additional fine-granulated arbitration mechanisms should also be implemented to
deal with special value types.

3.5 Activation

In the last subsections, we have considered the processing of policies in a relatively
passive sense, i.e. restricted to questions of evaluating and unifying policy goals. The
concept of a policy also gains an active aspect if it is associated with some action
that can be performed to achieve the goal. In order to provide system support for
electronic business transactions, we are interested in generic action types that can be
performed automatically.

Moreover, it is usually supposed that an action is carried out if and only if a trig-
gering event has occurred and certain boundary conditions are satisfied. These con-
cepts can be modeled in a simple way by the formal representation presented in 2 as
follows:

Only a standardized property is needed to model events. When an event has oc-
curred, this property is set to a corresponding value (e.g. by an event monitor). Sim-
ilarly, a corresponding property is introduced for each boundary condition. Then,
the relationship between events, boundary conditions and policy actions can be ex-
pressed within the policy goal, e.g. by the following expression:

G: (event = import.request) A (trader_state = ready) —

(def_follow_link = always)
G is equivalent to
G’: —(event = import_request) V —(trader_state = ready) V
(def_follow link = always)

which is a well-formed policy goal according to section 2. The action associ-

ated with this policy will only be activated if both (event = import_request) and

Generic Processing of Policies 9

(trader_state = ready) are frue, i.e. the triggering event has occurred and boundary
conditions are satisfied. In order to cope with a potentially great number of poli-
cies arising in complex applications, policies should be organized in such a way that
when an event has occurred, only those relevant to the corresponding event type are
triggered. This can be done by grouping policies into different policy sets, each of
which corresponds to some event type (as shown in the GPM architecture below).

If parameters of procedures called by an application can be directly modeled by
corresponding properties, we can use a generic action type - called the SET operation
- that directly sets properties to values that satisfy a policy goal. Using this operation,
arelatively simple (re)configuration of applications at run-time can be implemented.

3.6 Matching Related Properties

In many practical application environments it often happens that properties are not
isolated, but closely related to one another. Thus, specifying a certain value for a
property may require specifying certain values for other properties. There are some
general problems resulting from this relationship, which have been identified in
the context of matching support services for business transactions in (Merz, Tu &
Lamersdorf 1996).

This paper shows that a support service can be specified by the properties support
service class (e.g. “payment”), support service protocol (e.g. “Ecash”) and support
service provider (e.g. “German Fed”). All three properties must be known to be able
to bind a specific support service instance into the business transaction at run-time.
However, in order to enable a flexible, natural specification of support service re-
quirements, it should be allowed that customers and suppliers specify only the prop-
erties they consider relevant for their respective transaction or even none of them.
For example, a customer who decides to pay by Ecash and is not interested in which
bank is involved in the transaction, only needs to specify the first two properties.
If this kind of flexibility is allowed, additional problems can arise for the matching
process:

1. How to treat a unilateral requirement (one party requires a payment service while
the other doesn’t even specify such a requirement)?

2. How to resolve different levels of specification? For example, the client only re-
quires any payment service, while the server specifies it at the provider level (e.g.,
“Bill’s Bank™)?

The solution of the first problem depends on how to interpret the fact that nothing
at all has been specified. Logically, this can be considered as equivalent with speci-
fying either the constant true or false. In the first case, the unify-operation defined
in 3.2 would return as resultant goal the goal of the party who has specified some
requirement, so this would mean that the non-specifying party implicitly accepts any
requirement specified by the other. As for the other case, the unify-operation would

10 Generic Policy Management for Open Service Markets

return false which means the non-specifying party implicitly denies any requirement
made by the other party. The first alternative is obviously more cooperative, but
which semantics is more meaningful could depend a lot on the type of application.

From the logical viewpoint, the answer to the second question is very simple: In
this case, the unify-operation just returns the conjunction of the two requirements
(SS-CLASS = “payment” A SS-PROVIDER = “Bill’s Bank”) because this is exactly
the weakest goal that can satisfy both inputs. But there is a more severe problem
due to the fact that the requirements are under-specified so that no definite support
service instance can be identified. A simple solution for this problem would be just
choosing any arbitrary instance (that is offered on the service market) to support
the transaction. However, since the number of instances matching an under-specified
requirement is potentially great, it is likely that the chosen instance is inappropriate,
i.e. does not provide support for the specific parties involved (for example, either
customer or supplier doesn’t have an account at the respective bank). Therefore, a
better solution is using an automatic mechanism to expand an under-specified goal
to a fully specified one before performing the matching process, which requires that
the related property values are stored in some database and can be retrieved by the
policy management component.

4 PROTOTYPE IMPLEMENTATION

The policy management mechanisms presented above are currently implemented as
part of the “Policy Management” project at University of Hamburg. The main goal
of this project is to develop a generic policy management component (GPM) that
can be used to support (simultaneously) several different distributed applications to
specify and enforce a specific behavior at run-time or to negotiate a specific behavior
for a cooperation between several parties.

The GPM prototype is implemented as a CORBA service and can be considered
a common facility. The CORBA framework (OMG 1996c¢) enables high-level, stan-
dardized object interoperability over multiple platforms. Especially, the CORBA DII
(Dynamic Invocation Interface) enables the invocation of arbitrary methods specified
in interfaces that are potentially unknown at the compilation time of an application
what is an essential requirement to invoke dynamically introduced actions that can
be performed to achieve policy goals.

The GPM consists of two main components: the Property Manager and the Policy
Manager (see fig. 1). The Property Manager is responsible for storing, updating and
retrieving properties of arbitrary applications and conforms to the Property Service
specified in the CORBA standard (OMG 1996a). The Policy Manager is responsible
for storing, retrieving, processing and activating policies. All properties and policies
can be stored persistently in corresponding repositories, within which different sets
can be created to group properties and policies according to different applications or
users. Appropriate access control mechanisms are imposed on property and policy
sets so that only authorized clients can insert, retrieve, modify or activate a property
or policy.

Summary and Outlook 11

Client Server
Application [® Application

A A

y y

(] GPM Interfaces N
PROPERTY POLICY
MANAGER MANAGER

-
N

Policy
IRepositor,

Property
i CORBA

Figure 1 GPM architecture

The general procedure for a client to make use of the GPM is as follows: Properties
representing the behavior of the application are to be registered with the Property
Manager. Policies defined in terms of those properties are registered with the Policy
Manager. At run-time, a policy of a client can be directly activated or can be unified
with the policy of another client to create a matching policy that is activated for both
clients. When a policy is activated, the Policy Manager first checks if the policy goal
is satisfied by evaluating the constraints imposed on the properties whose values are
retrieved from the Property Manager. If the goal is not already satisfied, then any
actions specified by the policy will be performed. Then, the policy goal is evaluated
again, and if it is still not satisfied, a policy exception will be raised.

A prototype implementation of the functionality presented in section 3 has been
finished and the automatic activation of policies using OrbixTalk (CORBA Event
Service implementation of IONA Technologies Ltd.) as the event monitor is cur-
rently under implementation. (See also http://vsys-www.informatik.uni-hamburg.de/
dynamics)

5 SUMMARY AND OUTLOOK

This paper presented a generic approach to both modeling and processing aspects
of a policy management component that can support a variety of applications in
the context of open service markets, especially those that require matching different
requirements of the involved parties. A formalization of policies based on a spe-
cial form of predicate logics was proposed and generic policy processing functions,
including evaluation, unification, comparison, arbitration and activation, and some
algorithms to implement them were presented. Finally, the design and current imple-
mentation state of a generic policy management component were described. Several
questions that are currently further examined include:

12 Generic Policy Management for Open Service Markets

® Which kinds of policy-driven application need more expressive goals than those
presented in section 2, and (if there are any) how to process them.

® How to optimize policies automatically by defining meta-policies, which either
influence the processing of policies (like arbitration policies described in section
3.4) or directly modify existing policies.

® How to implement evolving applications by defining and performing action types
that add new (or remove) functionality to an existing application at run-time.

Acknowledgements: This work has been supported, in part, by grantno. La1061/1-
1 from the German Research Council (Deutsche Forschungsgemeinschaft, DFG).

The authors would also like to acknowledge the cooperation and technical sup-
port provided by the GMD Research Institute for Open Communication Systems
(FOKUS) during the work leading to the results reported here.

REFERENCES

ISO (1994a), ‘ISO/IEC DIS 10181: Information Technology - Open Systems Interconnection
- Security Frameworks for Open Systems’, ISO/IEC.

ISO (1994b), ‘ISO/IEC DIS 10746’, ISO/IEC. Information Technology - Open Systems Inter-
connection - Data Management and Open Distributed Processing - Basic Reference
Model of Open Distributed Processing.

ISO (1994c¢), ‘ISO/IEC IS 7498-2: Information Processing Systems - Open Systems Intercon-
nection - Basic Reference Model, Part 2: Security Architecture’, ISO/IEC.

ISO (1995), ‘ISO/IEC DIS 13235: Information Technology - Open Systems Interconnection -
Data Management and Open Distributed Processing - Draft ODP Trading Function’,
ISO/IEC.

Merz, M. (1996), Electronic Service Markets, PhD thesis, University of Hamburg, Dept. of
Computer Science.

Merz, M., Tu, M. & Lamersdorf, W. (1996), Dynamic Support Service Selection for Busi-
ness Transactions in Electronic Service Markets, in O. Spaniol, C. Linnhoff-Popien
& B. Meyer, eds, ‘Proc. Aachen Workshop “Trends in Distributed Systems™’, Verlag
der Augustinus Buchhandlung, Aachener Beitrdge zur Informatik, pp. 183-195.

Meyer, B. & Popien, C. (1994), Defining policies for performance management in open dis-
tributed systems, in ‘Proceedings of the 5th IFIP/IEEE International Workshop on
Distributed Systems: Operation and Management’, Toulouse.

Moftett, J. (1994), Specification of Management Policies and Discretionary Access Control, in
M. Sloman, ed., ‘Network and Distributed Systems Management’, Addison-Wesley,
pp. 455-480.

OMBG (1996a), ‘CORBAservices: Common Object Services Specification. OMG Document,
updated July 15°.

OMG (1996b), ‘OMG RFPS5 Submission - Trading Object Service - OMG Document 96-05-
06 Version 1.0.0.

OMG (1996¢), ‘The Common Object Request Broker: Architecture and Specification. OMG
Document 96-03-04 Revision 2.0’.

Wies, R. (1995), Policies in Integrated Network and Systems Management, Verlag Shaker,
Aachen.

