
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Generic Programming, Partial Evaluation, and a New Programming

Paradigm

Christopher Landauer, Kirstie L. Bellman

Aerospace Integration Science Center, The Aerospace Corporation,

P.O. Box 92957, Los Angeles, California 90009-2957

E-mail: cal@aero.org, bellman@aero.org
Abstract

We describe in this paper a new approach to Generic

Programming that combines our integration results with

Partial Evaluation methods for adaptation. Our ap-

proach supports Partial Evaluation by providing much

more information than is usually available, including

explicit meta-knowledge about the program fragments

and their intended execution environments. We make

some ambitious claims here, so we provide some detail

about our methods, to justify our interest and expecta-

tions. We are not claiming to have solved the problem;

only that we think our methods circumvent some of the

known di�culties that were previously identi�ed or en-

countered in approaches to Generic Programming.

1 Introduction to the Problem

We describe in this paper a new approach to Generic

Programming that uses our integration results together

with recent progress in Partial Evaluation methods

for adaptation. Our approach to partial evaluation

provides an adaptation mechanism by having much

more information than usual, including explicit meta-

knowledge about the programs and their intended ex-

ecution environments.

Generic Programming is an attempt to get the right

level of abstraction in algorithms, so that the essential

parts of the algorithm are displayed, and the details

that make it conform to an execution environment are

added during pre-compile time by a kind of specializa-

tion. Of course, it has been a goal of computer pro-

gramming since the beginning to get the right level of

abstraction in algorithms. The long-anticipated result

would be that the program as written would contain all

and only the essential parts of the algorithm. All of the

characteristics of the execution environment that a�ect

the map from the algorithm to the program would then

have to be made explicit, but they could be deferred
0-7695-0001-3/99 $10
from program construction time to pre-compile time:

the algorithm would then instantiated or adapted to

make the program conform to the speci�c environmen-

tal characteristics before (or during) compilation. Even

after many years of progress in this direction, we still

have a distance to go [21].

We have a new approach to this problem that we

think is very promising.

Problem Posing is a new declarative programming

style that uni�es all major classes of programming.

Programs interpreted in this style do not \call func-

tions", \issue commands", \assert constraints", or

\send messages"; they \pose problems". Program

fragments are not de�ned as \functions", \modules",

\clauses", or \objects" that do things; they are written

as \resources" that can be \applied" to problems.

The Problem Posing Interpretation uses Knowledge-

Based Polymorphism to map from a problem speci�ca-

tion in the ambient context to the computational re-

sources that will provide or coordinate the solution.

Any programming language can be interpreted in this

new way.

This interpretation is particularly e�ective in combi-

nation with wrappings, our computationally reective

knowledge-based approach to integration infrastruc-

ture, since wrappings provide the Knowledge-Based

Polymorphism that mediates between the posed prob-

lems and the applicable resources.

Our approach to Generic Programming is to write

programs using wrex, the wrapping expression nota-

tion, since it explicitly leaves the posed problems in

the program, and relies on the selection of computa-

tional resources to address the problems. The ex-

ibility of run-time choices may be carried to as much

detail as desired, from large-scale \legacy" components

to individual arithmetic calculations. Finally, we use

Partial Evaluation to make early decisions when pos-

sible, in e�ect \compiling out" the constant decisions,

so that there is no run-time cost for decisions that will

be made in the same way every time. We describe this
.00 (c) 1999 IEEE 1

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
new approach to generic programming, especially our

integration technology that underlies and powers it.

2 Constructed Complex Systems

We have de�ned Constructed Complex Systems [16]

[17] to be computer-mediated systems that are too

complex for a single model to describe [19]. They

tend to be software and hardware systems that have

heterogeneous processing requirements or that have to

function in complex environments. We believe that de-

signing, building and managing such a system requires

explicit attention to the infrastructure, including ex-

plicit models of the system, its architecture, and the

environment in which it is expected to operate [2], and

suitably exible computer-based design support. De-

sign support systems for constructed complex systems

are complex themselves, since they must accommodate

many di�erent kinds of model and problem domain.

In general, global design management requires integra-

tion of multiple criteria, which means that multiplicity

is unavoidable because complex tradeo� calculations

must be made.

Our original motivation was very large space sys-

tems [4] [19], but the results have become much more

generally applicable: in our \Integration Science" [15],

we study better integration methods, which are both

more permissive, exible, and semantically powerful,

and more supportive of formality in the analyses of the

processes and products of integration.

We describe the organization of this paper as a cir-

cular journey through some interesting new research

areas in Computer Science. Actually, some of them are

not really new, but there is new hope that signi�cant

progress can be made.

In Sections 3 and 4, we introduce Generic Program-

ming and Partial Evaluation. In Section 5, we intro-

duce the Problem Posing interpretation, which is a new

interpretation of any programming language that uses

Knowledge-Based Polymorphism. Then in Section 6,

we describe the underlying wrapping theory. In Sec-

tion 7, we show how the Problem Posing interpretation

works with wrappings, and describe the corresponding

notation wrex. Finally, in Section 8, we describe our

conclusions and claims for Generic Programming, Par-

tial Evaluation, and Problem Posing.

3 Generic Programming

In the most general sense, generic programming is

about making programs more exible, often using more
0-7695-0001-3/99 $10
interesting kinds of polymorphism, more interesting

kinds of parameters (e.g., programs, types, construc-

tors, etc.), and more interesting kinds of program anal-

ysis than compilation. There have been gradual im-

provements over the last 50 years:

Machine language �! assemblers �! com-

pilers �! interpreters,

but we are still looking for more e�ective techniques,

since we still have some distance to go [21]. Partial

Evaluation, to be described next, looks like a good

way to go, because it makes explicit our choices about

when to evaluate expressions and when to instantiate

program fragments.

We see examples of generic programs in almost every

book that describes a computational technique. The

algorithms are often written descriptively for explana-

tion, using some kind of pseudo-code. We want those

descriptions to be the actual generic programs.

Generic genetic programming algorithm:

generate initial population

loop until done

compute o�spring

retain only the ones with best �tness

Generic simulated annealing algorithm:

set initial temperature and position

loop until done

generate potential new position

check movement criterion

reduce temperature

Generic k-means clustering algorithm:

generate initial cluster centers

loop until done

partition data into nearest-center clusters

recompute cluster centers

Note that each algorithm has a \loop until done" state-

ment, which means very di�erent things in di�erent

contexts.

The use of context to assist in the specialization

process is very important to our approach. For ex-

ample, \sanity checks" in computational design models

are constraints determined by context. In fact, context

provides and organizes all interpretation of symbols
.00 (c) 1999 IEEE 2

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
and symbol structures; we use it to collect and organize

the symbol structure interpreters. Context determines

what representations are important or useful, because

it determines what each symbolic expression means or

does. In addition, as we try to imbue our symbolic sys-

tems with more semantics, we bridge the gap by taking

semantics to be the interpretation of syntax, and the

interpreters to be provided by the context.

4 Partial Evaluation

The basic approach of Partial Evaluation is very

simple [22] [9]: if you know a program and some of

the parameters, then you can specialize the program,

and the resulting specialized program should be (and

often is) faster. This is another old dream of comput-

ing, from the original high-level languages through ex-

tensible languages, very high-level languages, domain-

speci�c languages, and executable speci�cation lan-

guages. We particularly want completely automatic

techniques, so that we can write our programs in the

generic languages and leave the details to the compi-

lation and execution environment. The problem has

been that it is very di�cult to make it work, though

there are some encouraging recent signs [5] [8] [10] [9].

Our wrappings contain much more semantic infor-

mation about the program components than is usually

provided with a program, and therefore much more

than can be extracted from a program by itself. It

is this extra information that we intend to use in our

partial evaluations.

There are also some methods originally developed

for use in optimizing compilers that are very useful

here, such as symbolic execution, unfolding function

calls, partly unrolling iterations and recursions, and

\program point specializations", which means replicat-

ing parts of the program with di�erent specializations,

de�nition creation, folding, and a kind of memoiza-

tion of function calls and other program fragments.

Replication particularly needs care to avoid exponen-

tial blowup.

As we describe some of the promise of partial eval-

uation, we will imagine a program \mix" that can do

partial evaluation (our notation takes [p] as an exe-

cutable form of the program p):

for all programs p, and all inputs in1 and in2,

[[mix] (p, in1)] in2 = [p] (in1, in2),

so mix specializes p to the inputs in1 (such programs do

exist for some languages [9]). Partial evaluation pro-

vides an adaptation mechanism for generic programs
0-7695-0001-3/99 $10
(we can easily imagine that in1 is the specialization

information for a particular execution environment).

We turn to some formal reasoning that lies at the

heart of the promise of partial evaluation: called the

Futamura Projections [9], these are ways to use partial

evaluation to produce compilers and compiler genera-

tors automatically.

We start with a de�nition: an interpreter is a pro-

gram interp for which:

for all inputs in, and all source programs s,

[interp] (s, in) = [s] in

We claim that a kind of \compilation target" t for

source program s can be computed:

t = [mix] (interp, s).

We call it a compilation target because it has the same

computational e�ect as the original program s, since

for any input in,

out = [s] in

= [interp] (s, in)

= [[mix] (interp, s)] in

= [t] in,

so mix specializes the interpreter via part of its input

(the source program s). This is the �rst Futamura pro-

jection.

Now

comp = [mix] (mix, interp)

turns out to be a compiler for the language interpreted

by interp:

for any source program s,

the compilation target t has

t = [mix] (interp, s)

= [[mix] (mix, interp)] s

= [comp] s.

This is the second Futamura projection.

So far,

t = [mix] (interp, s)

is a compiled form of s,

comp = [mix] (mix, interp)

is a compiler for the language interp interprets. Finally,
.00 (c) 1999 IEEE 3

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
cogen = [mix] (mix, mix)

is a compiler generator for the language interp is writ-

ten in:

for any interpreter interp,

source program s, and input in,

[s] in= [interp] (s, in)

= [[mix] (interp, s)] in

= [[[mix] (mix, interp)] s] in

= [[[[mix] (mix, mix)] interp] s] in,

= [[[cogen] interp] s] in,

so

[cogen] interp = [comp]

is a compiler for the language of s. This is the third

Futamura projection.

The use of these formal projections is intriguing, but

the performance of the programs is important. There

is good news here, too. We have shown two ways to

produce output with these notions:

out = [interp] (s, in)

= [s] in

t = [mix] (interp, s)

= [comp] s

comp= [mix] (mix, interp)

= [cogen] interp

cogen= [mix] (mix, mix)

= [cogen] mix

The second way is often something like 10 times faster

(this is well-known for the �rst pair above, in which

interpreters in general are slower than compilers). The

�rst way is usually much easier to write (once the pro-

gram mix is written). We want to use this fact to

write faster programs more easily. The hard part here,

pretty clearly, is writing the program mix in the �rst

place. In the next part of the paper, we describe our

knowledge-based integration infrastructure, which we

believe will lead to much better understanding of some

of the issues required for e�ective partial evaluation.

5 Problem Posing Programming

Paradigm

In this section, we very briey describe our Problem

Posing Programming Paradigm [13] [14] [15] [16] [17]
0-7695-0001-3/99 $10.
[18], which underlies our approach to generic program-

ming. We have de�ned Problem Posing as a new declar-

ative interpretation of programs that uni�es all major

classes of programming. It uses what we have called

Knowledge-Based Polymorphism to map from problem

speci�cations to the computational resources that will

provide or coordinate the solution. Any programming

language can be interpreted in this new way. Problem

Posing can therefore be viewed as a new programming

paradigm that changes the semantics, not the syntax,

of any programming language.

The basic expressive notion of this interpretation

is the \posed problem", and the basic computational

component is the \resource". They can be connected

by the \wrappings" as de�ned in the next section, or by

any other method that uses processes and associated

knowledge bases that convert a posed problem into co-

ordinated collections of resources that can address the

problem.

We have demonstrated the conceptual utility of

\problem posing" in our own descriptions of systems

[13] [16]. The \Problem posing" interpretation uni-

�es all major classes of programming. Programs in-

terpreted in this style do not \call functions", \is-

sue commands", \assert constraints", or \send mes-

sages"; they \pose problems" (these are information

service requests). Program fragments are not written

as \functions", \modules", \clauses", or \objects" that

do things; they are written as \resources" that can be

\applied" to problems (these are information service

providers). Any programming language can be inter-

preted in this new way.

6 Integration Infrastructure: rap-

ping

The ProblemPosing interpretation is particularly ef-

fective in combination with \wrappings", our compu-

tationally reective knowledge-based approach to in-

tegration infrastructure [14] [15] [17] (and references

therein). In this section, we give a brief overview of the

wrapping approach; many more details are elsewhere.

6.1 rapping Overview

The advantages of our knowledge-based integration

technology are (1) a simplifying uniformity of descrip-

tion, using the meta-knowledge organized into Wrap-

ping Knowledge Bases, and (2) a corresponding simpli-

fying uniformity of processing that meta-knowledge us-

ing algorithms called Problem anagers, which are ac-

tive integration processes that use the meta-knowledge
00 (c) 1999 IEEE 4

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
to organize the system's computational resources in

response to problems posed to it by users (who can

be either computing systems or humans). In particu-

lar, since the entire process is recursive [12], wrappings

provide a general way to allow specialized methods to

participate, in contexts for which they are appropriate.

The wrapping theory has four basic features.

1. ALL parts of a system architecture are resources

that provide an information service, including pro-

grams, data, user interfaces, architecture and in-

terconnection models, and everything else.

2. ALL activities in the system are problem study,

(i.e., all activities apply a resource to a posed prob-

lem), including user interactions, information re-

quests and announcements within the system, ser-

vice or processing requests, etc.. We therefore

speci�cally separate the problem to be studied

from the resources that might study it.

3. Wrapping Knowledge Bases contain wrappings,

which are explicit machine-processable descrip-

tions of all of the resources and how they can

be applied to problems to support what we have

called the Intelligent User Support (IUS) functions

[3]:

� Selection (which resources to apply to a prob-

lem),

� ssembly (how to let them work together),

� Integration (when and why they should work

together),

� daptation (how to adjust them to work on

the problem), and

� Explanation (why certain resources were or

will be used).

Wrappings contain much more than \how" to use

a resource. They also help decide \when" it is

appropriate, \why" you might want to use it, and

\whether" it can be used in this current problem

and context.

4. Problem anagers (P s), including the Study

anagers(S s) and the Coordination anager

(C), are algorithms that use the wrapping de-

scriptions to collect and select resources to apply

to problems. They use implicit invocation, both

context and problem dependent, to choose and or-

ganize resources. The PMs are also resources, and

they are also wrapped.
0-7695-0001-3/99 $10
The most important conceptual simpli�cations that the

wrapping approach brings to integration are the uni-

formities of the �rst two features: the uniformity of

treating everything in the system as resources, and the

uniformity of treating everything that happens in the

system as problem study. The most important algo-

rithmic simpli�cation is the Computational Reection

[1] [11] [14] provided by treating the PMs as resources

themselves: we explicitly make the entire system re-

ective by considering these programs that process the

wrappings to be resources also, and wrapping them,

so that all of our integration support processes apply

to themselves, too. It is this ability of the system to

analyze and modify its own behavior that provides the

power and exibility of resource use.

6.2 S and

The wrapping processes are active coordination pro-

cesses that use the wrappings for the Intelligent User

Support functions. They also provide overview via

perspective and navigation tools, context maintenance

functions, monitors, and other explicit infrastructure

activities.

The alternation between problem de�nition and

problem study is organized by the Coordination an-

ager (CM), which is a special resource that coordinates

the wrapping processes.

The CM runs a sequence of steps shown in Figure 1

(written in the wrex notation, which we describe in

Section 7), that manages the overall system behavior.

The basic problem study sequence is monitored by

a resource called the Study anager (SM). which or-

ganizes problem solving into a sequence of basic steps

that we believe represent a fundamental part of prob-

lem study and solution.

The SM is organized into a sequence of basic steps

that we believe represent a fundamental part of prob-

lem study and solution. The default SM step sequence

is shown in Figure 2 in the wrex notation.

6. . ecursion

The SM, as described thus far, is a (very) simple

planner. We make the system Computationally Reec-

tive by making the CM and SM recursive in a \meta-

direction", that is, every step in their de�nition is a

posed problem. The recursive use of the SM to pose

problems that are part of its own and the CM pro-

cessing prevents them from being just another general

planner or recursive problem solver. The basic steps

and their ordering in the CM and SM form a default

case that can be superseded by any more clever mech-

anisms for particular problem contexts.
.00 (c) 1999 IEEE 5

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
de�ne

CM [user]:

[

Find context [user],

for ever :

[

problem = Pose problem [user],

result = Study problem [user , problem , context],

Present results [user , result]

]

],

Figure 1: Coordination Manager (CM) Step Sequence, in wrex
de�ne

SM-simple [poser , probname , data , context]:

[

candidates = Match resources [probname , data , context],

if (candidates == empty): then return FAIL NO CANDS,

candidate applications = Resolve resources [candidates , probname , data , context],

if (candidate applications == empty): then return FAIL NO APPLS,

* choose one of the remaining candidate resources *

selection = Select resource [candidate applications],

resource application = Adapt resource [selection , probname , data , context],

resp = Advise poser [poser , resource application , probname , data , context],

if (not resp): then return FAIL NO APPLS,

result = Apply resource [poser , resource application , context],

success ag = Assess results [result , probname , data , context],

return result

],

Figure 2: Study Manager (SM) Step Sequence, in wrex
0-7695-0001-3/99 $10.00 (c) 1999 IEEE 6

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
In particular, the \study problem" step in the CM

means that the SM is chosen in the same way as any

other resource: resources that can address a \study

problem" problem are selected using the default SM.

That means that the SM we described above is only

a default that occurs at the bottom of the recursion:

there are other SMs that have slightly more interesting

algorithms. More advanced versions of matching, se-

lecting and so forth will be implemented by resources

that are chosen like any others, using the same recur-

sive steps.

Therefore, the posed problem approach makes ev-

erything a resource, as far down as one cares to go into

the implementation, and the WKBs help select whether

to further the meta-recursion by invoking the SM, or

to stop it by going to a specially coded resource.

We are going to make essential use of this reection

in our partial evaluations: since the system has ac-

cess to its own computational resources, it has a much

better chance to make appropriate simpli�cations and

specializations than if it had no knowledge of its own

structure.

rapping and Problem Posing

In this section, we show how the problem posing

interpretation works with wrappings, and describe the

wrex notation we can use to express problems.

The basic expressive notion of wrapping is the

\posed problem", and the basic computational compo-

nent is the \resource" (this research led directly to the

Problem Posing Interpretation). They are connected

by the \wrappings", which consist of processes and as-

sociated knowledge bases that convert a posed prob-

lem into coordinated collections of resources that can

address the problem. We have developed this notion

into the wrex notation, which extends the application

of wrapping all the way down to the data access and

expression evaluation level of detail. For example, the

CM and SM were written in wrex, in Figure 1 and Fig-

ure 2.

.1 e rapping pression otation

re

The wrapping expression notation wrex [13] is one

possible way to use the Problem Posing paradigm.

It is a \Problem Posing" notation intended both for

programming \in-the-large", i.e., as an architecture

description language for resources written in other

more ordinary programming languages, and for pro-

gramming \in-the-small", i.e., as a language in which
0-7695-0001-3/99 $10
to write some of the (perhaps less time-constrained

or more experimental) computational resources. We

think that both kinds of programming are necessary for

building reliable systems because they allow us to make

explicit the interconnection between architectural mod-

els and the component models [20].

The wrex notation extends the application of wrap-

ping all the way down to the data access and expression

evaluation level of detail. In this notation, a program

does not issue commands, impose constraints, assert

facts, invoke functions, or even send messages; it poses

problems. The CM and SM step sequences in Figure 1

and Figure 2 are written in wrex.

Object-oriented languages like Smalltalk [6] gain at

least part of their impressive conceptual simplicity and

power of expression from having implicit notations for

sending messages, and interpreting all expression evalu-

ation as sending messages of one kind or another. The

expression syntax of wrex reects the central role of

problem study even as the syntax for Smalltalk reects

the central role of message passing. We should not be

nearly as interested as programmers in the selected re-

source (the analogue of message destination) as in the

posed problem (the analogue of message type), since

many di�erent resources can satisfy an information ser-

vice request, and specifying otherwise is one of the ar-

chitectural rigidities that leads to reuse di�culties.

Since the fundamental activity of wrapping is \apply

resource to problem", and the Study Manager (SM) is

the resource usually applied to study a problem, we

make that operation implicit, and use explicit text in

the program for problem speci�cations and plans.

The analogue of message transmission in Smalltalk,

in which juxtaposition is the implicit operator for send-

ing messages, is the posing of problems (in some appro-

priate syntax):

posed problem ::= problem name

`[' problem speci�cation `]'

[`by' resource]

[`in' context]

(using resource = default SM if omitted, which

is usually, and context = poser context if omit-

ted, which is almost always), in which juxtaposition

is the implicit operator for studying problems. The

resource is the one expected to interpret the prob-

lem posed, not the one expected to apply to the prob-

lem. The problem data is part of the problem

speci�cation , and is usually considered to be the same

as the speci�cation. The di�erences are unimportant

for the purposes of this note. In general, we can pass

the values that specify the problem either as problem

data or in the context. The former is more useful in
.00 (c) 1999 IEEE 7

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
case the data is problem speci�c or transient, and the

latter when it might also be useful later on in the pro-

gram.

Every problem has some amount of problem data

(possibly empty). Every resource application has a suc-

cess or failure result (which is made available to other

problem speci�cations). All control issues are prob-

lem grouping and ordering issues. Control statements

in wrex look almost the same as they do in current

programming languages: sequencing with `,', grouping

with blocks and procedures, and even grouping with

loops and conditionals.

Nearer the low end in granularity, expression evalu-

ations are also posed problems. We can use any usual

syntax here, too, if we change the interpretation, so

that, for example,

a b

is the problem ` ', with data `a' and `b'. It is easy to

make compilers convert the in�x notation properly.

Finally, the innermost part of expression evaluation

is read-style data access, and the last part of assign-

ment evaluation is write-style data access. The basic

access mechanisms are reading and writing values, and

the only real question is what kinds of value structures

(i.e., data types) we want to allow. This question is

application speci�c, and not part of the generic nota-

tion.

.2 S nta o re

We describe the syntax of wrex briey in this subsec-

tion; most of the details should be clear from the exam-

ples. The syntactic items of wrex are ariables, Con-

stants, and three kinds of grouping structures. ari-

ables consist of multiple words, delimited by ` ' and

` '. Constants are words, other symbols (such as op-

erator symbols and delimiters), numbers (integers and

otherwise), or strings (both single and double quoted).

The three Constructors for grouping items into

structures are List, Set, and Group. A List contains

multiple items, separated by commas, and delimited

by `[' and `]'. A Set contains multiple items, separated

by commas, and delimited by ` ' and ` '. Finally, a

Group also contains multiple items, separated by com-

mas, and delimited by `(' and `)', but Groups not in

other Groups can omit the parentheses. Syntax recog-

nition of these structures is extremely easy.

To facilitate readability, we allow separated problem

names, such as

�nd [...] in [...] using [...],

. which has `�nd ... in ... using' as a problem name.

Programs are sequences of these syntactic items (i.e.,
0-7695-0001-3/99 $10
Groups without parentheses). The simple posed prob-

lem is a Group whose last element is a List.

We describe these syntactic items using the features

of the CM in Figure 1 on Page 6: The entire resource

is one group (with a comma at the end to separate it

from the following ones):

`de�ne' `CM' `[...]' `:' `[...]'.

`Find context'

is a separated problem name. So is

`de�ne' ... `:' `[...]'.

`for ever : [...]'

is a posed problem with wrex statements as data

` problem = Pose problem [user]'

is also a group without parentheses. It is also a posed

problem with problem name `='. Finally, `if' and `for'

expressions are de�ned concepts, not primitive. So is

`='.

. e ision i es and er or an e

Finally, we want to make a point about performance

issues, and claim that the exibility of wrex need not

cost too much. ere we rely on the fact that partial

evaluation has much more information to use than is

usually the case.

Decisions about program structure are made at

many di�erent times

� Language Design time

� Compiler Generation time

� Program Generation time

� Compile time

� Link time

� Load time (for operating systems, this is boot

time)

� Run time (for operating systems, this is multi-user

time)

Requiring too many decisions to be made at Run time

is as rigid as restricting them to any other times, and

it also costs greatly in performance. If it is provided, a

program can use knowledge of the execution environ-

ment with partial evaluation to reduce the time consid-

erably [11]. When it has available the context and col-

lection of available resources, it can reason about which
.00 (c) 1999 IEEE 8

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
resource selections are made. If it can deduce that a

posed problem is only addressed by one resource, it can

avoid the full search and the SM recursion entirely.

In particular, in considering the partial evaluation of

wrex, there are manymore kinds of input available than

for programs in most other programming languages:

� Program and input data (as usual),

� Wrappings and other semantic information as con-

text data, and

� Collection of available resources.

Much greater specialization will result, and we hope

much better programs: both faster AND more easily

changed.

Conclusions and other Claims

We have now come full circle, back to the implica-

tions of these results to Generic Programming. The

common theme of this paper has been to make the

times at which design decisions must be made more

exible, without costing too much in performance. For

Generic Programming, we can defer many decisions

from Program Generation, Compile, and even Link

time, to Run time. Actually, with Domain-Speci�c

Languages and Architectures [7], we can make those

decisions earlier as well as later. Because of Partial

Evaluation, we can defer many decisions from Lan-

guage Design and Compiler Generation time to Run

time.

Our main claim for this research is that the perennial

goal of programming, to make programs easier to write

and more reliable, will be easier to achieve this way

than others.

Using Partial Evaluation, the Problem Posing inter-

pretation can produce regular compiler code, instead

of leaving the decisions all to Run time. We don't

know how fast it will be, but we're very hopeful about

it. We want programs that are BOT easier to write

AND faster to run. Of course, before this can happen,

we need to write some partial evaluators like \mix" for

wrex, which we expect to be hard.

The Knowledge-Based Polymorphism with wrap-

pings that we get with Problem Posing has interesting

reuse and system re-engineering implications, such as

Reuse without modi�cation, and the Problem Posing

interpretation also provides a kind of interoperability

for systems written in (almost) any programming lan-

guage. To use wrex as a coordination language, the

various components need to be written in languages
0-7695-0001-3/99 $10.
that can accept unsolicited information from outside

the program, which is hard for some.

Finally, none of this solves the hard modeling prob-

lems in any particular domain (they are still hard).

owever, it does allow them to be solved more sepa-

rately, and the integration of even partial solutions to

be more automatic or at least better supported by the

system.

eferences

[1] arold Abelson, Gerald Sussman, with ulie

Sussman, he Structure and Interpretation of

Computer Programs, Bradford Books, now MIT

(1985)

[2] Kirstie L. Bellman, \The Modelling Issues In-

herent in Testing and Evaluating Knowledge-

based Systems", pp. 199-215 in Chris Culbert

(ed.), Special Issue: eri�cation and alida-

tion of Knowledge Based Systems, Expert Sys-

tems With pplications ournal, olume 1, No.

3 (1990)

[3] Kirstie L. Bellman, \An Approach to Integrat-

ing and Creating Flexible Software Environments

Supporting the Design of Complex Systems", pp.

1101-1105 in Proceedings of WSC' : he

Winter Simulation Conference, 8-11 December

1991, Phoenix, Arizona (1991); revised version

in Kirstie L. Bellman, Christopher Landauer,

\Flexible Software Environments Supporting the

Design of Complex Systems", Proceedings of the

rti�cial Intelligence in ogistics eeting, 8-10

March 1993, Williamsburg, a., American De-

fense Preparedness Association (1993)

[4] Kirstie L. Bellman, April Gillam, Christopher

Landauer, \Challenges for Conceptual Design

Environments: The E ICLES Experience",

Revue Internationale de CFAO et d'Infographie,

ermes, Paris (September 1993)

[5] C. Consel, O. Danvy, \Tutorial Notes on Partial

Evaluation", Proceedings th PoP : he

C Symposium on Principles of Programming

anguages, Charleston, SC (anuary 1993)

[6] Adele Goldberg and David Robson, Smalltalk- :

he anguage and its Implementation, Addison-

Wesley (1983)

[7] Barbara ayes-Roth, Karl Peger, Philippe La-

landa, Philippe Morignot, Marka Balabanovic,

\A Domain-Speci�c Software Architecture for

Adaptive Intelligent Systems", IEEE ransac-
00 (c) 1999 IEEE 9

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
tions on Software Engineering, olume SE-21,

No. 4, pp. 288-301 (April 1995)

[8] P. udak, N. D. ones (eds.), \Partial Eval-

uation and Semantics-Based Program Manipu-

lation", SIGP otices, olume 26, No. 9

(1991)

[9] N. D. ones, \Partial Evaluation", Computing

Surveys, olume 28, No. 3 (September 1996)

[10] N. D. ones, C. K. Gomard, P. Sestoft, Partial

Evaluation and utomatic Program Generation,

Prentice- all (1993)

[11] Gregor Kiczales, im des Rivieres, Daniel G. Bo-

brow, he rt of the eta-Object Protocol, MIT

Press (1991)

[12] Christopher Landauer, Kirstie L. Bellman, \The

Role of Self-Referential Logics in a Software Ar-

chitecture Using Wrappings", Proceedings of ISS

' : the rd Irvine Software Symposium, 30 April

1993, U. C. Irvine, California (1993)

[13] Christopher Landauer, Kirstie L. Bellman, \The

Organization and Active Processing of Meta-

Knowledge for Large-Scale Dynamic Integra-

tion", pp. 149-160 in Proceedings th IEEE In-

ternational Symposium on Intelligent Control,

Workshop on rchitectures for Semiotic od-

eling and Situation nalysis in arge Complex

Systems, 27-30 August 1995, Monterey (August

1995)

[14] Christopher Landauer, Kirstie L. Bellman,

\Knowledge-Based Integration Infrastructure for

Complex Systems", International ournal of In-

telligent Control and Systems, olume 1, No. 1,

pp. 133-153 (1996)

[15] Christopher Landauer, Kirstie L. Bellman, \In-

tegration Systems and Interaction Spaces", pp.

161-178 in Proceedings of the irst International

Workshop on rontiers of Combining Systems,

26-29 March 1995, Munich (March 1996)

[16] Christopher Landauer, Kirstie L. Bellman, \Con-

structed Complex Systems: Issues, Architec-

tures and Wrappings", pp. 233-238 in Proceed-

ings E CS : hirteenth European eeting

on Cybernetics and Systems esearch, Sympo-

sium on Complex Systems nalysis and esign,

9-12 April 1996, ienna (April 1996)

[17] Christopher Landauer, Kirstie L. Bellman,

\Wrappings for Software Development", pp. 420-

429 in st awaii Conference on System Sci-

ences, olume III: Emerging echnologies, 6-9

anuary 1998, Kona, awaii (1998)
0-7695-0001-3/99 $10.0
[18] Christopher Landauer, Kirstie L. Bellman,

\Problem Posing Interpretation of Programming

Languages", (to appear) in nd awaii Con-

ference on System Sciences, 5-8 anuary 1999,

Maui, awaii (1999)

[19] Christopher Landauer, Kirstie L. Bellman, April

Gillam, \Software Infrastructure for System

Engineering Support", Proceedings I '

Workshop on rti�cial Intelligence for Software

Engineering, 12 uly 1993, Washington, D.C.

(1993)

[20] Mary Shaw, David Garlan, Software rchitec-

ture: Perspectives on an Emerging iscipline,

Prentice- all (1996)

[21] Mary Shaw, William A. Wulf, \Tyrannical Lan-

guages still Preempt System Design", pp. 200-

211 in Proceedings ICC ' : he Interna-

tional Conference on Computer anguages, 20-

23 April 1992, Oakland, California (1992); in-

cludes and comments on Mary Shaw, William

A. Wulf, \Toward Relaxing Assumptions in Lan-

guages and their Implementations", C SIG-

P otices, olume 15, No. 3, pp. 45-51

(March 1980)

[22] Leon Sterling, Ehud Shapiro, he rt of Prolog,

MIT (1986)
0 (c) 1999 IEEE 10

