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GENERIC PROPERTIES OF PARAMETRIZED VECTORFIELDS I

MiLAN MEDVED, Bratislava

(Received February 26, 1974)

This paper is concerned with vectorfields depending on a parameter. Similar
problems have been studied by P. BRunovsky [1], [2], whose works deal with one-
parameter families of diffeomorphisms. These problems for parametrized vectorfields
have been studied by V. I. ArRNoOLD [3], too.

The author expresses thanks to P. Brunovsky for suggesting the problem and
for his valuable advices.

1. INTRODUCTION

We shall refer to [4] for some basic definitions and notations. Let X be a C""!
manifold (r  0) and 7y : T(X) — X the C" vector bundle ([4, § 6]). Denote by
I'(ty) the set of C" sections of 74. Let A be a C"**' manifold (r = 0) and ¢ : 4 x
x X - T(X) a C" mapping. We say that ¢ is a parametrized C" vectorfield on X
(depending on a parameter in A) if for every a € 4, ¢, € (), where £,(x) = &(a, x)
for every xe X. Let ¢ : 4 x X x R —» X be a C" mapping. Then ¢ is called a C"
parametrized flow of & if ¢, is the flow of £, for every a € 4, where ¢, : X x R - X,
0x, 1) = ¢(a, x, 1) for (x,1)€ X x R. A point x € X will be called a critical point
of a vectorfield n € I"(ty) if n(x) = 0,, where O, denotes the zero of the space T,.X.
The point x will be called regular if it is not critical.

We assume that A is an 1-dimensional C"*! compact manifold and X is an
n-dimensional C"*! compact manifold (r = 0).

Let us denote by G'(4, X) the set of all parametrized C* vectorfields on 4 x X.
If ki, k,eR, &neG(A X), we can define (k& + kyn)(a, x) = k &a, x) +
+ kyn(a, x). Then G'(4, X) has linear structure. Let us define the mapping o :
1G4, X) = IM(t4xx)s 0(¢)(a,x) = (0, &a, x)) for £€G'(4,X), (a,x)e A x X,
where O, denotes the zero in T,A. The mapping w is a linear injection with closed
image. By [4, Theorem 12.2] I'(74.) is a second-countable Banach space. The C”
topology on G'(4, X) is the topology induced by the injection o(N < G'(4, X) is
an open set in G'(4, X) if and only if o(N) = I"(t4xx) is an open set in I"(t4xx))-
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2. CRITICAL POINTS AT WHICH THE LINEARIZATION
OF THE VECTORFIELD HAS AN EIGENVALUE 0

Let (TX), = {0, € T(X) | x € X}, where O, denotes the zero in T.X. (TX), is
a closed submanifold of T(X). Define the set Go(4, X) = {¢ e G’(4, X) | £ = (TX)o}.

Lemma 1. The set Gy(A, X) is open and dense in G'(4, X).

Proof. Define the mapping ¢:G'(4,X) -~ C'(4 x X, T(X)), o(¢) =¢ for
&€ G'(4, X). The mapping g is a C" representation [4, § 18]. 4 x X is a compact
manifold and (TX), is a closed submanifold of T(X), so by [4, Theorem 18.2] the
set Go(4, X) = {¢ € G'(4, X)| 0(¢) & (TX),} is an open set in G'(4, X). It remains
to prove the density. (TX), is diffeomorphic to X, hence codim (TX), = n. The con-
ditions (1), (2), (3) from [4, Theorem 19.1] are satisfied. We have to verify the con-
dition (4) of this theorem.

The mapping ev, : G'(4, X) x A x X - T(X) is such that e, (, a, x) = &(a, x)
for £ € G'(4, X), (a, x)€ A x X. We shall prove that for every ¢ € G'(4, X), a € 4,
xe X itis ev, N, (TX)o. We have to prove that if &(a, x) € (TX),, then

Tita00 TG (4, X) x T,A x T.X) ® Tya(TX)o = Titam T(X) -

It suffices to prove that for every y e T, (TX) there exist ne G'(4, X), ae T,A,
xeTX, % €T, (TX), such that T, .ev,(n, d, X} + X, = y. It suffices to put
a = 0,, where O, denotes the zero in T,4, X = O, and we can choose € G'(A, X)
such that n(a, x) = y — X, if %, is chosen arbitrarily. So all assumptions from
[4, Theorem 19.1] are satisfied. By this theorem the set Go(4, X) is dense in G'(4, X).
Define the set K(&,0) = {(a, x) € 4 x X | &a, x) e (TX),} for e G'(4, X).

Proposition 1. If & e Gy(4, X), then K(£,0) is a closed, 1-dimensional C" sub-
manifold of A x X.

Proof. The proposition follows immediately from [4, Theorem 17.2].

If £€ G'(4, X), (a, x) € K(£,0), then T, ¢ : T, A X T.X - T, T(X) = T, (TX), @
® T, (T.X). Since T, (T.X) is isomorphic to T,X, we can identify them. Let
Tyt T, ox(TX ) — T.X be the projection onto the second summand. We can define the
mapping &(a, x) : T,A x T,X — T,X by {(a, x) = 7, T, &

Proposition 2. Let e G'(4, X) and (a,x) € K(, 0). Then &R, x(TX), if and
only if the mapping &(a, x) is surjective.
Proof. If (a, x) € K(&, 0), then ¢, ,(TX), if and only if Tj, ,&(T,4 x T,.X) @

® T, (TX), = T,(TX) and since To(TX) = To(TX), ® T.X, the proposition
18 proved.
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If (a, x) € K(¢&, 0), then we can define the Hessian of &, at x by E(x):TX > TX
[4, §22], where ¢, eI(ty), £(y) = &(a, y) for yeX. Denote X,(¢) = {(a,x)e
€ K(¢, 0) | £,(x) is not surjective}.

Let M and N be C" manifolds and C’(M R N) the set of all C" differentiable mappings
from M into N. Let f e C'(M, N) and x € M. Denote by J*(f) (x) the k-jet from M
into N of the mapping f at the point x. JX(M, N) denotes the set of all k-jets from M
into N.

The mapping n, : J'(M,N) > M x N defined by =,(J'(f) (%)) = (x,/(x)) is
a C" vector bundle. If (U, «,) is a chart on M at x and (V, o) is a chart on N at f(x),
then (o, oty x B, U x V)isacharton J'(M, N)at J'(f) (x), where a: 27 '(U x V) —
= (ag x o) (U x V) x A(n, n), A(n, n) is the set of all n x n matrices. The set
JY(M,N) is a C"~' manifold of dimension m + n + mn, where m = dim M,
n = dim N.

If fe C'(M,N), k < r, then the mapping J*(f): M — JY(M, N) defined by x —
— Jf) (x) is called the k-prolongation of f.

Let Si(m, n) = A(m, n) be the set of all matrices with rank g — k, where q =
= min (m, n), 0 £ k £ q. By [5] Si(m, n) is a submanifold of A(m, n), where
A(m, n) denotes the set of all matrices with the differential structure induced by its
natural identification with R™.

q _ q—k
A(m, n) = _L_JOS,»(m, n), Sym,n)= '!}Skﬁ(m, n),

codim Sym,n)=(m —q + k)(n —q + k) for 0 £k < q.

Denote Sy(M,N) = {J'(f)(x)e J'(M,N) | D(Bofoa™")(y) e Sm, n)}, where
(U, a) is a chart on M at x, «(x) = y and (¥, f) is a chart on N at f(x). Obviously,
the definition of S,(M, N) is independent of the choice of charts. S,(M, N) is a sub-
manifold of J'(M,N) of codimension (m — g + k)(n — g + k), where g =
- =min(m,n), 0 £k < q.

q q—k
JY(M,N)=US{(M,N), S(M,N)=USps{M,N) for 0<k=gq.
i=0 i=0

If ¢e Gy(4, X), then by Proposition 1 the set K(¢,0) is an 1-dimensional C”
submanifold of 4 x X. Therefore, S,(K(,0), 4), k =0,1 are submanifolds of
JU(K(¢, 0), 4).

Let j =j, x jx:K(60)~> A x X be the imbedding of K(¢,0) into A x X.
Let J'(j4) : K(¢, 0) > JY(K(£, 0), A) be the 1-prolongation of the mapping j 4.

Proposition 3. If ¢ € G4(4, X), then

X1(8) = [J()]7" (S4(K(&, 0), 4).

Proof. Let (aq, xo) € X,(£). By Proposition 2 the mapping &(ao, x,) is surjective.
Let (U, o) be a chart on 4 x X at (a,, Xo), ®(ao, Xo) = (itg, ¥o) and (i, y) are co-
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ordinates of the point (a, x) € U. The local representation of the mapping &(a, xo)
with respect to the chart (U, @) is D&(to, Yo) = (Duultto> ¥o)s Dy&alitos ¥o)), where &,
is the principal part of the local representation of ¢ with respect to (U , oc) and D,
D, denote the derivatives with respect to y and y, respectively. D,¢, (110, ¥o) is the local
representation of the mapping &,,. Since (ag, x,) € X1(£), so &, is not a surjective
mapping and therefore rank [D,&(uos ¥o)] < n. Since ¢ e Gy(4,X), so rank
[ DE,(tt, ¥0)] = n. Therefore, the matrix DE(uo, yo) has n linearly independent
columns. Assume that the first n are linearly independent. Let yo = (»9, ..., y9).
Since &,(1to, ¥3, ---» ¥u) = 0, it follows by implicit function theorem that there is an
open neighborhood J of the point yJ in R and C" functions y;: J — R, i = 0, 1,...
..o — Lsuchthat Y(yg) = y?fori=1,2,....n — Lo(y?) = po and &,(Wo(y,)s - -
ces Ve 1(V)s ) = 0 for y, e J. Since det D&, (yo) = 050 (d/dy,) ¥o(ys) = 0, where
&,0(¥) = Euo, ). Therefore J'(j4) (a0, Xo) = Si(K(&, 0), A). It has been proved
that X,0) < [/ (5,(K(E 0) )

Assume (o, Xo) < [J'(j)]7* (S:(K(Z, 0), 4)). Let (ag, xo) ¢ X,(£). Then rank
[D,&(itos ¥o)] = n. From the implicit function theorem it follows that there is
an open neighborhood J of p, in R and C" functions ¢;, i = 1,2,...,n on J such
that @ (o) = y? for i = 1,2, ..., n and &, 9;(n), ..., 9,(1)) = 0 for pe J. There-
fore, there is a chart (W;, B;) on A at x, and a chart (W, f,) on X at x, such that

(B x B2) [(Wy x Wo) 0 K (&, 0)] = {(1 9) | (1, ) = (1, @4(0), -, 2uW))} -
Therefore rank [D(B; o j4 0 B~*) (1o» ¥o) F O and this contradicts the assumption.
Therefore (a, x,) € X((&) and so [J'(j)]™* (S«(K(& 0), 4)) = X,(2).

Lemma 2. Let ¢ € Gy(A, X), r = 2 and let K, = K(£, 0) be a compact set. Then
the set
V(&) = {fe C'(K(0), A) | J'(f) 5 S((K(& 0), 4) on Ko}

is open and dense in C'(K(¢, 0), A).
1-k

Proof. Since S(K(Z,0), 4) = U Si+:(K(&,0), 4), k = 0,1, so §,(K(, 0), 4) =
i=0

= 8,(K(¢, 0), 4). By [5, Theorem 1, IL. §7] the set {fe C'(K(& 0),4)| J'(f) &
A Sy(K(¢,0), A)} is dense in CT(K(¢ 0), 4) and so the set V(&) is dense in
C'(K(¢, 0), A). Since K, is compact, openness follows from [5, Lemma 1, II § 7].
For ¢ € Gj(4, X) denote by j = j,: X jx, the imbedding of K(&, 0) into 4 x X
and let
Ghi(4, X) = {¢ € Gy(4, X) | J'(jae) & Si(K(&,0), A)} .

Lemma 3. The set G ((4, X) (r 2 2) is open and dense in Gy(4, X).
To prove this lemma, we first prove the following lemma and a proposition.

Lemma 4. Let &€ Gy(4,X) (r = 2), (ag, xo) € K(E,0). Let (W, h) be a chart
on A x X at (ao, Xo) such that W= U x V, h = hy x hy, where (U, hy) is a chart
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on A at ao, (V, hy) is a chart on X at xo, h;(U) = B,(0), hy(V) = B,(5), 6,0 > 0,
h(ag, xo) = (0,0) (BJ(s) = {xe R*||x| <& &> 0, s is an integer and |.| is the
Euclidean norm in R°). Denote Wy = U; x V; = hy'[By(c . i[3) x hy'[B,(5 . i[3)],
i =1,2. Then, in any neighborhood of & there is a & € Gy(A, X) such that & = ¢
outside W, and J'(j1z) & S(K(E, 0), A) on the set K(E, 0) n W,.

Proof. By Lemma 2 there exists a g € C'(K(¢, 0), A) arbitrarily C™-close to j4,z
such that J'(g) & S,(K(¢, 0), 4) on the set K, = K(&, 0} W,. By [8, Theorem
7.2], there exists a tubular neighborhood of K, in A x X, i.e. there is an open subset
Z of A x X with a submersion 7 : Z — K, such that n is a C" vector bundle and
K = Z is the zero section of this vector bundle. Let Yy be a C" function on 4 x X
such that ¥ = 1 on W, and ¢ = 0 outside W,. Define

&(a, x) = &(hy Y(hy(a, x) + W(a, x) [hgn{a, x) — hyj4en(a, x)], x)

for (a, x) e W and &(a, x) = ¢(a, x) for (a; x)e A x X — W. Obviously, K(&, 0) n
AW=(g x ja)(K(0)n W) and K(,0) — K(§,0) n W= K(&0) — K(£,0)n
n W. .

Proposition 4. Let ¢ € Gyy(A4, X) and (ac, xo) € X,(&). Then there exists a chart
(W, hyon A x X at (ay, xo) such that h(K(&,0) W) = {(u, y1, .., y)e R | p =
= @o(Va), ¥i = @i(¥), ya€ J}, where ¢, € C" on J for i =0,1,..,n — 1, J is an
open interval, 0 € J and (d*@y[dyl) o + 0.

Proof. Since & € Goy(4, X), 50 I (J4.2) T (a0,x0yS1(K(, 0), 4). The proposition fol-
lows from the coordinate representation of the last transversality condition.

Proof of Lemma 3. Openness. Let & € Gp,(4, X). Since the set K(&,0) is compact,
we can cover it by a finite number of charts on 4 x X. We can choose a covering
(W b)s k= 1,2, .05, Wy = Uy x Vi, by = hyy X XMy, where (Uy, hy)is a chart
on A, (V, hy,) is a chart on X such that

h(Wi n K(E, 0)) =
= {(ﬂ! Yis oo yn) l "= (pg‘)(t), Vi = (pgk)(t)) [ = 17 o Ry te Jk}:»

where ¥ are C" functions on J, for i = 0, 1, ..., n. We can find the last charts by
using the implicit function theorem as in the proof of Proposition 3. If &, is the
principal part of the local representation of ¢ with respect to the chart (V4, #,), then
& 01, ..., @P(1) = 0 for te J,. If (a,x)e 4 x X is such that &,(x) is a sur-
jective mapping, then we can choose ¢((f) =t for te J,. @¥(f) =t for some
i+ 0 if {(x) is not surjective. If (a,, xo) ¢ X4(¢) and hyae, xo) = (@P(to), ...
oo @P(1t0)), then (dpG?/dr) (fo) % 0. If (aq, x,) € X((£), then by Proposition 4 we
can choose (W, ) such that d®e{9(10)/ds> + 0. Denote

O (ﬁ’%’j@)z , (@iﬁfﬂf@)z

dt?
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for te J,. Then nk A1) = 0 for every te Jy. If & is close enough to &, K(, 0) will

be contained in U W, and ) 0 for te J,. This follows from the implicit
k=1

function theorem and from [6, Theorem 3]. Consequently, K(E, 0) will satisfy the
transversality condition and the openness is proved. We have to prove the density
of the set G§,(4, X). Let & e Gy(4, X). We can cover the set K(¢, 0) by finite number
of charts (W, h), k = 1,...,5, whete W = Ug X Vi, hy = Iy X hyg, (Uy, 1) is
a chart on A, (V,, hy,) is a chart on X, hy; (Uy) = Bi(0y), ha(Vi) = Bu(8i), 04 i > 0.
We can choose (W, h), k=1,2,...,s such that W, n W, ,,; 0 for k=
=1,2..,5—=1, Wi nW, =0 for k=12..,5—2, where W, =
= h; '[B,(a\/3) x B (5k/3)] k =1,2,...,s. By Lemma 4 we can find an approxima-
tion &, of & such that J'(j,z) ™ SI(K(Q, 0), A) on the set W; , " K(&,, 0), choos-
mg fk for k > 1 close enough to &,_; so that J'(j,z) A Si(K(, 0), A) on the set

(U W, ;) 0 K(E,, 0). By such construction we can get a & e Gyy(A, X) arbitrarily

close to &.

Proposition 5. If & € G},(A, X), then the set X (&) is finite.

Proof. Since J'(j,.)  Si(K(£, 0), 4) and codim S,(K(¢, 0), 4) = 1, so X,(¢) =
= [J'(Ja)] " (Si(K(E, 0), A) is a submanifold of K(&, 0) of codimension 0. Since
the set K(&, 0) si compact, the set X, (£) is finite.

Let & € Gy,(4, X), (ag, Xo) € X (&) and Iet (W, ) be a chart on A x X at (ao, xo),
hag, xo) = (0,0, ...,0). Then the principal part &, of the local representation of &
has the form &(u, x;, ) = (o + Bxi + o(u, Xy, ), By + x(u, Xy, ), where B
is an (n— 1) x (n—1) matrix, y= (x5, X3,...,%,), @,xeC, x0,0,0)=0,
dy(0, 0, 0) = 0, (g, x,, 0) contains only u?, ux, and terms of orders higher than 2.
Let Gj,(4, X) be the subset of Gp,(4, X) such that for all & € G§,(A4, X) the matrix B
from the expression for &, has no eigenvalue with zero real part. This set is open and
dense in Gj,(4, X). The openness is obvious. To prove density we assume
¢ € Goy(4, X). We change ¢ into & by changing the term By in the local representation
&, of & into (B + Y(u, x4, y) E) y, where E is the unit matrix, ¥ is a C" bump
function vanishing outside h(W) and equal to 1 at (0, 0, 0) and 0 < § is a real number
such that B + SE has no eigenvalue with zero real part. By the choice of a sufficiently
small 8, & can be made sufficiently close to &.

We shall prove that f in the expression for &, is different from zero. Suppose
B = 0. Since (ay, xo) € X(&), there are C" functions ¢@(x,), i =0,2,...,n such
that o« @o(x1) + o(@o(x(), X1, @5(x1), .., @u(x1)) = 0 for x; € J, where J is an
open neighborhood of 0. Then

d2¢,(0) N d?@(0)
dx? dx?

=0,
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where @(x;) = @(@o(x;), ..., ¢,(x1)). By Proposition 4, d?¢,(0)/dx] = 0. This
implies that o« = 0, but this is impossible because rank (D&,(0,0, ..., 0)) = n.

Assume ¢ e Gj,(4, X) and (ay, xo) € X((€). Let (W, h) be a chart on 4 x X at
(a0, xo) such that h(ag, xo) = (0,0) and h(K(£,0)n W) = {(u, x1, ..., x,) | 1 =
= @o(x1), ¥; = @{x,), x; € J }, where J is an open interval in R, 0e J, ¢, : J = R
are C" functions on J for i = 0, 1, ..., n, p(0) = 0, dg,(0)/dx; = 0, d*¢,(0)/dx] +
% 0. It is possible to find such a chart using the implicit function theorem. By [4,
Appendix C] we can assume that the principal part of the local representation of &
with respect to the chart (W, k) has the form

éh(.u, X1s Vs Z) =
= (o + Bx + o(u, X1, y, 2), Ay + x(ts X1, , 2), Bz + 0(, xy, y, 7)) ,

where @, 1, 0€C', x(u, x4,0,2) =0, Oy, x;,y,0)=0, dw(0,0,0,0) =0,
dz(0,0,0,0) = 0, w(u, xy, 0, 0) contains only x?, ux; and terms of orders higher
than 2, 4 has only eigenvalues with real part <0 and B has only eigenvalues with
real part >0. If /o < 0, then d?¢o(0)/dx] > 0. The other case can be transformed
to the above one by a suitable change of coordinates. If ¢o(0) = 0, dgo(0)/dx, = 0,
dzqao(O)/dxf > 0, then there is no critical point for y < 0 and there are exactly two
critical points (i, x4(u), 0, 0), (1, x2(1), 0, 0) € H(K(Z, 0) » W) such that x,(u) > 0
and x,(u) < 0. Denote &(u, x;) = ap + px} + oy, x,0,0). Then

dé;i(l;, (8 _ 5 4 () + ofxi(w) > 0,
fo—;‘%’—’ci(@ = 26 x%,() + olx2()) < 0

for small p.

Theorem 1. Assume r = 3. Then there is a set G{)Z(A, X) open and dense in
G'(A, X) with the following properties:
(1) For &€ Ghy(A4, X), K(£,0) is a closed 1-dimensional submanifold of A x X.
(2) For fixed ae A, the set {xeX |(a, x)eK(& 0)} consists of isolated points.
(3) The set X (¢) is finite.

(4) For every (ag, xo) € K(£,0) — X,(&) there is a chart (W, h)on A x X at (aq, x,),
WW)=U x V, h{ao, xp) = (0,0) and a C" mapping ¢ : U -V such that
WK(E 0)n W) = {(, ¥)| ¥ = o(n), ne U}.

(5) For every (ao, xo) € X (&) thereis a chart (W, h)on A x X at(aq, xo), (g, Xo) =
= (0, 0) such that
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(a) WK 0)n W) = {(1t. y1, - ¥ | 0 = @o(y1), i = @i(ye)y i =2,3,....m,
peldy, where J is an open interval, 0e J, ¢o(0) = 0, doy(0)/dy, = 0,
d%¢.(0)/dy; > 0.

(b) If p > O then there are exactly two numbers y, > 0, z; < 0 such that
(ah xl) = hhl(ﬂ’ Vi 0, 0) GK(& O)y (als x2) = h_l()uy Zy, 09 O) GK(&, 0) and
the following is true: If s is the number of real eigenvalues of the mapping
&,.(xq) greater than 0, then the number of real eigenvalues of the mapping
£,.(x,) greater than 0 is s — 1.

(6) If (a, x) € X,(&), then the mapping &,(x) has exactly one eigenvalue equal to 0.

(7) W — K(¢, 0) contains no invariant set.

We say that a property G(¢) of parametrized vectorfield is generic in G'(4, X)
if the set H'(4, X) = {é € G'(4, X)| G(é)} contains a residual set in G"(4, X).
The properties (1)—(7) from Theorem 1 are generic in G'(4, X).

3. CRITICAL POINTS AT WHICH THE LINEARIZATION
OF THE VECTORFIELD HAS COMPLEX EIGENVALUE WITH ZERO REAL PART

Letne F’(rx) and let x € X be a critical point of . We say that x is a nonelementary
critical point of multiplicity k, if the mapping 7j(x) has a complex eigenvalue with zero
real part of multiplicity k.

Denote by G7,(4, X) the set of all £ e G'(4, X) such that if for a € 4 the vector-
field £, has a nonelementary critical point, then it has multiplicity 1.

Lemma 6. The set G,(4, X) (r 2 1) is open and dense in G'(4, X).

For the proof of this lemma we shall need another lemma. For this reason consider
Ay = {(B, Ay, ) € A(n, n) x R*| Ay =0, Py(Ay, A;) = Py(Ay, 4;) = Pi(Ay, 4p) =
= Py(1;, 4,) = 0}, where P(1) = P;(Re A, Im 2) + i Py(Re 4, Im A) is the charac-

ry
teristic polynomial of B and P} + i Py = 0P[d). By [7], A; = U Ay, where Ay,
i=1

j=1,2,...,,r are disjoint submanifolds of A(n, n) x R* of strictly decreasing
ri
dimensions and |J Ay, is a closed set for 0 < g, < ry.
J=e

Lemma 7. codim 4;; = 4 forj=1,2,...,r,.

The proof of this lemma is analogous to that of [2, Lemma 1].

Proof of Lemma 6. Let & 1€ G'(4, X), (ay, ), (a5, x,) € 4 x X and let (W, h)
be a chart on X. Let &;, 1, be the principal part of the local representation of &,,, #,,
respectively, with respect to the chart (W, k). We say that (£, ay, x,) is k-equivalent
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to (&, ay, x,) if and only if a, = a,, x; = x, and (& (k(x,)), ..., D*¢(h(x,))) =
= (n:(h(x2), ..., D*ny(h(x;))). Obviously, k-equivalence is an equivalence. Let
J*(a, x) denote the class of triples equivalent to the triple (¢, a, x). Denote by
J¥(ty, A) the set of all classes J*¢(a, x). The mapping n' : Ji(ty, 4) > 4 x X,
n'(j'é(a, x)) = (a, x) is a C" vector bundle. If (U x V, ay X Bo)isacharton 4 x X,
then (B, ay x fo, U x V)is a chart on J'(ty, A), where B : [2']~1 (U) = (ag % Bo)-
(U x V) x R" x A(n, n), B(j'&(a, x)) = (x(a), Bo(x), &€Ax), D &(x)), where &, is
the principal part of the local representation of &,. For e G'(A,X), define the
mapping ¢;: A x X — J'(1y, A), oda, x) = j'&(a, x) for (a,x)e A x X. Now,
define the mapping g;: A4 x X x R* - J'(1y, A) x R?, @ = g, x id, where id
is the identical mapping of R*> onto R?. The mapping ¢ : G'(4,X) » C"~'(4 x
x X x R? J'(ty, A) x R?), ¢(&) = g, for e G'(4,X) is a C"™' representation.
It is easy to prove that ev, ™ W for every submanifold W of J'(ty, 4) x R?. Let
(o 29 x Bo, U x V) be a natural chart on n'. Let W < J'(74, A) x R be the set
of (p, Ay, Ay) € J'(rx, A) x R? such that (o(p), A4, 4,) = (1, ¥, 0, B, Ay, 4,), peR,
y€R", (B, A, A;) € A;. It is easy to prove that this definition is independent of the

Fi

coordinates. Since A4, = \J W;, where the sets 4;; have the properties as before,

ry ji=1

W= \J W,, where W, are disjoint submanifolds of J'(zy, A) of strictly decreasing
Jj=1 ry

dimension, U W, is a closed set for 0 < @ < r;. Lemma 7 implies codim W; =

=n+4 for every j. Let € Gh4(4, X) and let (ﬁ, ay X o, U x V) be a natural
chart on 77! as in the definition of W. B(J*&(a, x)) = (xo(a), Bo(x), Ei(x), D Efx)).
There is a neighborhood N(&) of ¢ in G'(4, X) and a number g > 0 such that for
every e N(&), (a,x)€ A x X, every eigenvalue A1, a, x) of D n,(x) is such that
|4(n, a, x)| < q. where B(J'n(a, x)) = (ac(a), Bo(x), n:(x), D ny(x)). Therefore, for
neN(&), on) & Wif and only if Qo(r]) A W, where 04(n) = o(n)/A x X x [—gq, q].

Denote ¥, = {n e N(¢)| go(n) 7 ﬂ W} fori=1,2,...,r;. From [4, Theorem
j=ri—i+

18.2] it follows that the set ¢;, i = 1, 2 ..., F, are open in N(C). Since codim W; =
> n + 4 for all j, oo(n) ™ W means that g4(n) (4 x X x [—=¢,9])0 W =0 and
so the set G7,(4, X) is open in G'(4, X). Density: Let £ e G'(4, X) and let N(&) be
a neighborhood of ¢ as before. We shall prove that the sets ,, i = 1,2, ..., ry are
dense in N(&). Denote ; = {ne N(&)| o(n) & W,,}. By [4, Theorem 19.1] the set i/,
is dense in N(¢) and therefore the set i, is dense in N(&), too. Suppose the sets i,
i=1,2,...,k are dense in N(£). We shall prove that the set ¥, is dense, too.
The dssumptions together with the openness of /;, i = ] 2, ..., ry imply that the

set f = ﬂ Y, is open and dense in N(¢). Since W, _, < n W, - itis go(n) & W, _,

forne lﬁ 1f and only if go(y) ™ W,, _,. Denote by ¢’ the restrlctlon of ¢ on the set .
By [4, Theorem 19.1] the set 4y = {ne | ¢'(n) = W,,_,} is open and dense in
and so the sets y;, i = 1,2,...,r; are open and dense in N(). Therefore the set
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{'] W, is open and dense in N(&). The set ﬂ W; is a subset of the set {ne N(&)|ne

€ G'll(A X)} and therefore the set G7,(4, X) is dense in G'(4, X).
Consider the set A, = {(B, Ay, ;) € A(n, n) X R*| Py(y, 4;) = Py(A1, 4;) =
=1, =0}.By[7] 4, = C} A,;, where A,;,j = 1,2, ..., r, are disjoint submanifolds
j=1

J rz
of A(n, n) x R* of strictly decreasing dimensions and the set {J 4,; is closed for
i=e
0<gy =7,

Lemma 8. codim A,; = 3.
The proof of Lemma 8 is analogous to that of [2, Lemma 5].

Let 7' : J'(1y, A) > A x X be the mapping defined as before and let (o, oty % By,
U x V) be a natural chart on n'. Let W’ < J'(tx, 4) x R? be the set of (p, 4y, 4,) €
€ J'(ty, 4) x R*such that («(p), 41, 4;) = (1, ¥,0, B, A, 4,), ue R, ye R, (B, A1, 4;) €

€ A,. Since 4, = |J 4,;, where the sets 4,; have the same properties as before,
ra Jj=1

it is W = |y W/, where W] are disjoint submanifolds of J'(tx, A) x R? of strictly
J=1 r

decreasing dimensions, {J W is closed for 0 < ¢, £ r,. Lemma 8 implies

J=e
codim W] = n + 4 forj > 1 and codim Wy=n+3.Leto:G(4,X)> C (4 x
X X x R?, J'(tx, 4) x R?) be the mapping from the proof of Lemma 7. Let
Gy, = {¢e G4, X)| o(§) ® W’}. Analogously to the case of the set G',(4, X),
we can prove

Lemma 9, The set G},(A, X) is open and dense in G'(4, X).

Denote  G'4(4, X) = Gy(4, X) 0 G74(4, X) n G5(4, X). Let ¢&e Gl4(4, X),
(a0, xo) € K(¢,0) and let (¥, B) be a chart on 4 x X at (ao, Xo). Let & be the
principal part of the local representation of ¢. Denote F(f) = D, &y(t) for tel =
= B(V n K(¢,0)), where D,&; is the derivative of &4(u, y) with respect to y. Denote
T={(s,z)eR*|s = 0}.

Proposition 6. [2, Lemma 6]. Let A, be a simple eigenvalue of F(t,),where ty€l.
Then there is a neighborhood N of t, in I and a unique function A : N — C such
that XN1o) = Ao and At) is an eigenvalue of F(t) for t € N. Further, there is a non-
singular C" matrix C(t) on N such that C"*FC = B, where the first column of B
is the transpose of (A(1), 0, ..., 0).

Let A(t) = A4(t) + lxlz(t) Define the mapping 1 : N R%, (1) = (A4(1), A,(2)).
Obviously, Z € C'(N, R?). Similarly to [2, Proposition 3] we can prove

Proposition 7. Let the assumptions be the same as in Proposition 6 and let { e
€ Gy5(4, X). Then A= T.
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For ¢ e G'(A, X) denote by X,(¢) the set of points (a, x) € K(¢, 0) for which x
is a nonelementary critical point of ,.

Corollary of Proposition 7. If ¢ € G3(4, X), then the set X (&) is finite.

Let G(4, X) be the set of all £ € G'(4, X) such that

(1) e G4(4, X).
(2) I (a, x) € X,(&), then the mapping &,(x) has exactly one pair of conjugate complex
eigenvalues with zero part real.

Lemma 10. The set Gy(4, X) (r = 1) is open and dense in G'(4, X).

Proof. The openness of G}(4, X) is obvious. To prove the density of Gj(4, X),
it suffices to prove the density of G}(4, X) in G}3(4, X), because the set G};(4, X)
is dense in G"(4, X). Let £ € G3(4, X), (aq, xo) € X5(&), let (U x ¥V, & x ) be a chart
on 4 x X at (ao, xo) and &,xp the principal part of the local representation of &.
Assume that the chart is chosen so that the set (U x ¥) n K(¢, 0) is the graph of
a mapping ¢ : U — V. Let (1, ») be the coordinates in the chart. Then in the coordi-
nates (a, x) > (1, z), z = y — B ¢(a), & can be represented by &'(u, z) = A(u) z +
+ Y(u, z), where Y(u,0) = 0, d¥(y,0) = 0, A:o(U) - A(n, n) is a C" mapping
such that A(u,) (o = a(a,)) has complex eigenvalues with zero real part of multi-
plicity 1 while A(u) for p #+ p, has no complex eigenvalues with zero real part.
Assume that é” «p has the the same form as ¢'. Let A(po) have k pairs of conjugate
eigenvalues A9 i 19 9, j=1,2,..., k with zero real parts. Let o5 > 0 be a number
such that there are C" functlons Jpj=1,..., k defined on N = o(U) n [ty — otg,
to + o], where A,(1), p e N is an eigenvalue of A(n) and A(s,) = 9. Existence of
such functions follows from [2, Lemma 6]. There is a nonsingular C" matrix C(u)
on N such that C™"(u) A(x) C(1) = B(u) has the form

B(u) = diag {( A1(k) ’112(“)>, < Fa (k) '1"2(”)>, BI},

— Ay z(ﬂ) Ay 1,(#} - Akz(/«‘) Akt (ﬂ)

where A; = A;; + il;,. Choose an ¢ < ja, and 7;, j = 1,2, ..., k such that |z}] < ¢,
1, % t;fori # j;i,j =1,2,..., k. Let x : N — R be a C" function such that y(u) = 0
out51de K = a(U)n [pe — %;oco, Ho + 3] and x(p) = 1 forte K, = oc(U) Ao —
— oo, Ko + d0t] Define 1(w) = A + 7, 1(0) = Ay + idjay j=1,2,..,k,

B(1) = dia /111(,“) sz(ﬂ) 11:1(#) lkz(ﬂ)

B(H) =d g{<*21.2(ﬂ) 211(”)) C (‘zkz(ﬂ) zkl(”)) ’ Bl} ’
it fAW) for pé¢K

AW {C(ﬂ) B(p)C™'(n) for pek.

Let Wy, W, < «(U) x ﬁ(V) be open sets in R*** such that W; = W,, W, < «(U) x
x B(V), (o, 0) € Wy and let  : o(U) x B(V) — R be a C" function such that ¢ = 0
outside W, and y = 1 on W,. Define &"(y, z) = [A(n) + ¥(, z) (A(n) — A(W)] z +
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+ Y(u, z). Let & be a parametrized vectorfield, which is equal to ¢ outside
(« x B)~' (W,) and which has the principal part of the local representation on
(a x B)~' (W;)equal to &". If ¢ is chosen small enough, & will be arbitrarily close to .
Since G5(4, X) is open, so if ¢ is close enough to &, then & e G}5(4, X) and &€
€ G(4, X).

Let ¢ e Gy(4, X), (aq, xo) € X,(£). There is a chart (U x V, « x f) on 4 x X
at (ao, Xo) such that o{a,) = 0, f(x,) = 0 and the local representation &’ of ¢ has the
form

él(:ua X15 X2, Y, Z) = a(#) X1 + b(ﬂ) X2 + wl(“s X1, X2, Vs Z) ’
52(1‘1’ X1y X2, Y Z) = C(H) X1 + d(,ll) Xy + wZ(.u) X1s X2, Vs Z) )
Ex(ps X15 %0, y,2) = B) y + @3(i, X1, X3, 9, 2)
54(/1’ X1 X2, Y, Z) = C([L) z + a)4(u, X1 X25 Vs Z) s
where a(0) + d(0) = 0, a(0) d(0) — b(0) ¢(0) > 0, all eigenvalues of B(n) have real
parts <0 for every p, all eigenvalues of C(u) have real parts >0 for every u, w;e C",
i=1,2,34; a,b,c,deC. By [3, Appendix C] we may assume that oy, x,,
X5, ¥, 2) = o(ju| + |xi| + |xa] + |y + [2]) for i = 1,2, ws(u, xy, x5, 0,2) =0,
w4, X1, X3, 3, 0) = 0,dw(0,0,0,0) = 0fori = 1,2,3,4. Let ¢ = (¢y, 03, 03, )
be the parametrized flow of & If § & 0 or Z # 0, then ¢(f, X, X2, 7, Z, t) ¢ V' for
sufficiently large ¢, where ¥’ < Vis a neighborhood of 0. Therefore, if for p e «(U)
there exists an invariant set of ¢ in f(V), then it must be part of the manifold y = 0,
z = 0. We therefore consider the restriction of ¢ to the manifold y = 0, z = 0,
the representation of which is given by
(u) xy = alu) xy + b(p) x5 + e, x1, X2)
x’Z = C(N) Xy + d(ﬂ) X2 + XZ(”: X1, x2) s
where Xi(ﬂ>xl’ xz) = wi(.u: Xy, X5, 0, 0), i=1,2, 5, =Py +Ps +P% x, =0, +
+ Q3 + Q% where .
Py, x4, %) = azo() X3 + ayy(u) x1%2 + aga(p) X3 ,
Py, X1, X5) = aso(p) X7 + asy(w) X1x7 + ay(n) xix; + aos(w) x3,
Qapts X1, X2) = bao(p) x7 + byy(u) x1x;2 + boa(n) X3,
Qs(1, x4, %2) = bao(i) X7 + byy(p) x,x3 + by() xixz + bos(n) x3 ,
where ay, b, e C" for i,k =0,1,2,3, P* Q*e ", P¥0,0) =0, 0%0,0)=0.
Let d : [0, ry) - R be a function as in [6, IX] defined with respect to the critical

point (0, 0) of the system (u). d”(0) = 3! «3, where a; is expressed by the formula .
(76) from [6, IX]. From this formula it is easy to see that «; depends continuously
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on ¢ Let Gos(4, X) = G(4, X) be the set of ¢ e G7(4, X) such that if (a,, X;) €
€ X,(¢), then o3 =+ 0.

Lemma 11. The set Gj5(4, X) is open and dense in G;(4, X).

Proof. Openness is obvious. To prove the density, assume & € G(4, X), (aq, Xo) €
€ X,(¢) and the local representation of ¢ in the form (u). From the form of a; it
follows that there are C" functions dy, b, arbitrarily close to a; and by, respectively,
such that if we put d, b, instead of a;, by into the expression of as, then oy =+ 0.
Now, it is obvious that we can construct & € G"(4, X) arbitrarily close to &, for which
o3 =+ 0. Since XZ(E) is compact for & close enough to ¢, Lemma 11 have been proved.

As a corollary of the previous lemmas and [6, p. 274] we obtain

Theorem 2. There exists an open and dense set Gps(4, X) in G'(4, X) (r = 3)
such that for every £ € Gf,3(A, X) the following is true:
(I) The set X,(¢) is finite.
(1) If (aps xo) € X5(Z), then

(1) the mapping &,(xo) has exactly one pair of conjugate complex eigenvalues
with zero real part,;

(2) there is a chart (U x V, & x B) on A x X at (ag, x,) such that the point
(ag, xo) divides K(£,0) n (U x V) into two components K, and K,, where

(a) for (a, x) e K, there is no closed orbit of &,'in V,
(b) for(a, x) € K, there exists a closed orbitof &, in V.
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