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1. Introduction.
1.1 In 1881 Poincaré began the study of polynomial vector fields in the plane,

E2, by means of central projection of the paths on a sphere, S2, tangent to the
plane at the origin [1]. Thus, he provided the means for studying the behavior of
the field in a neighborhood of infinity, which is represented by the equator, S1.

This small part of Poincaré's Mémoire has later on been included in several
texts [2], [3], [4], but always in a form similar to the original one. In §2 we begin
by clarifying it and writing it in modern terminology. More precisely, we consider
S2 as a differentiable manifold and obtain a field on S2 which is canonically
induced by the one in the plane, X, and which is analytic. We first obtain an induced
field in the upper and lower hemispheres by central projection, and then we attempt
to extend it to the equator, S1. But this induced field blows up as we approach S1
and the extension is not possible. However, if we multiply it by a certain factor
which depends only on the degree of the polynomials in X, the extension is now
possible. For the extended field, which we shall call the Poincaré field and denote
by tt(X), S1 is an invariant set, and the restriction of tt(X) to S1 is a polynomial
field multiplied by a nonvanishing analytic factor.

The underlying idea in Poincaré's work is to reduce the study of a field defined in
the noncompact manifold E2 to that of a field on the compact manifold S2. This
idea can be generalized to the ^-dimensional case, and this forms the contents of
the second part of §2. Now the set of points at infinity is represented by the sphere
S1*-1, which is also an invariant set. The restriction of the Poincaré field to Sk~1
will be denoted by ttx(X) and, as before, it is a polynomial field multiplied by a
nonvanishing analytic factor.

The factor which we use in the extension of the field to Sk~1 depends only on the
degrees of the polynomials in X. Then we identify the set of all polynomial vector
fields of a fixed degree with the Euclidean space of coefficients, 3C, and our general
goal is to look for properties of the field at infinity which are generic, that is, which
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are true for a subset of 3C which is open and dense. So our work is along the lines
of the "generic theory" of differential equations initiated by Peixoto [5], [6],
Kupka [7], and Smale [8], [9]. But here the fact that the space 9C is so small and
that every perturbation is global creates problems of a nature entirely different
from that of those found in the usual generic theory.

In §3 we begin the study of the two dimensional case. If we denote by ^ the set
of all fields in 3C for which Sl contains only hyperbolic singularities of n(X), or is
a limit cycle with stability index different from zero, we prove that & is open and
dense in 9C. In §4 we prove that there is an open and dense subset, S, of 3C such that,
for every IeS, -n(X) is structurally stable in some neighborhood, A, of S1 in S2.
The proof consists in showing that S = ^. It is interesting to note that we are able
to know much more about the behavior at infinity than is known at a finite distance.

In §5 we turn our attention to the A>dimensional case. If we begin with k = 3,
it is natural to investigate whether or not the set of all XeSC for which tt^X) is
structurally stable is open and dense. Since every perturbation in S£ is global, the
natural idea to break any possible connection between saddle points is by a rotation
of 17,0(1) on S2. However, we show that, in general, it is not possible to obtain a
rotation of tt00(A') by a perturbation of X in 9£.

For this reason we restrict ourselves to the study of gradient fields in ST. For
every such field, X, we prove that the nonwandering set, Cl, of irx(X) is composed of
singular points only. Moreover, in the set of all gradient vector fields in SC there is
an open and dense subset for which Q. is the union of a finite number of singular
points, all of them hyperbolic. In this case we say that -t^X) is gradient-like.

Next, in §6, we consider the simplest possible case for k = 3, that is, x = Ax with
A a constant matrix. Then, for the corresponding Poincaré fields on S3, we give a
decomposition of the space of coefficients into a finite number of algebraic sets,
each corresponding to a different qualitative behavior of -n-(X). Hopefully, such
analysis can be done for any k.

To sum up, in addition to its intrinsic interest, the investigation begun in this
paper may, since the space áT is finite dimensional, throw some light on the theory
of bifurcations.

2. Inducing a vector field on the sphere.
2.1 In k dimensional Euclidean space, F\ we shall consider differential equations

of the form xi(t) = Pi(x1(t),..., xk(t)), that is, vector fields of the form X(x) = (P^x),
..., Pk(x)), where the F¡ are polynomial functions in the variables xx to xk. The set
of all such vector fields for which the degree of any of the F¡ is « or less will be
denoted by at". Our purpose is the study of the behavior of the paths at infinity for
systems in 3C.

Xis a field defined in Ek, a noncompact manifold. In this section, we shall find
a field canonically induced by X on the sphere Sk, a compact manifold. This will
greatly simplify our work. The field on S" will be found to be analytic and its
restriction to the equator, S"'1, will behave essentially like a polynomial field.
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First, we shall present the case k = 2, for which our intuitive insight is greater
and the computational work reduced to a minimum. Then, we shall generalize our
results for arbitrary k.

2.2 The method that we propose for the obtaining of the induced field is essen-
tially due to Poincaré [1], and we shall present it here in modern terminology.

The idea is the following: we first consider E2 imbedded in E3 in such a way that,
if y = (yx,y2,y3) represents an arbitrary point in E3, then E2 = {yeE3 \y3=l}-
Then we consider the sphere S2={y e E3 | \\y\\ = 1}, which is tangent to E2 at the
north pole (0, 0, 1). Finally, we shall consider the projection of the paths in E2
into S2 by means of central projection, and find the field on S2 corresponding to
the projected paths. In this way, the points at infinity in £2—two for every direction
—are now in a one-to-one correspondence with the points in S1={y e S2 | y3 = 0},
as will be seen more clearly below. Our problem is thus reduced to the study of the
field induced on S2 in the vicinity of S1, which from now on will be called the
equator of S2.

There is an important reason for using central projection instead of stereographic
projection from the south pole, which would seem to be the most natural possibility,
which is that we will focus our attention on the set of points at infinity and we will
want this set to be as big as possible. Clearly, the equator S1 is bigger than the
south pole.

2.3 Let us go now into the analytical details. The sphere S2 will be considered as
a differentiable manifold. There will be six coordinate neighborhoods given by
Ul = {yeS2\yi>0,i=l,2,3} and V, = {y e S2 \ yt<0, i= 1, 2, 3}. The corre-
sponding coordinate maps <£¡: Ui -> E2 and i/jt: F¡ -> E2 are defined by:

(i)     <f>Ay) = (yi,yk)lyu  and  ^(y) = ü^jO/Fí.     UJ, k = 1,2,3; j < k.

We shall denote by z — (zx, z2) the value of </>Ay) or ^(j) for any /, so that z
represents different things according to the case under consideration.

We have an important reason for choosing these neighborhoods and maps
instead of using stereographic projection. The ones chosen will give us simpler
expressions for the components of the induced field.

Now, the central projection of E2 into S2 associates two points of S2 to every
x e E2. It is defined by the functions:

y = f(x) = (xx, x2, 1)1 A(x),
y =/'(*) = -(xi,x2, 1)/A(x),

where A(x)=(x21 + x| + l)1'2.
The induced field will be obtained as follows: first, to the vector X(x) at x e E2

we associate two vectors, dfx(X(x)) at y=f(x) and dfx(X(x)) at y=f'(x), where
dfx and df'x are the differentials of/and/' respectively at the point x. We might
expect that the two fields dfx(X(x)) and dfx(X(x)) could be extended to the equator ;
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but we shall see that this is not so, since they blow up as we approach S1. However,
we have:

Theorem 1. The field induced on the complement of the equator, S2 — S1, by
means of the differentials of fand f can be extended analytically to the whole of the
sphere after multiplication by the factor y\ ~1, and in such a way that the equator is
invariant.

Proof. We begin by computing the differential and finding the explicit expression
for the induced field for the case in which y e Ux. The other cases would be studied
in a similar way. We have, using (1) and (2):

(3) z = cp^y) = (y2, y3)lyi = (x2, l)/xx.

The differential of/is represented by the matrix (dfx)ij = dzi\dx¡ and, consequently,
if y=f(x), that is, if y is in the upper hemisphere:

(4) dfx = X2\X\      1 ¡Xx

l/*ï       0
Then

(5) dfx(X(x)) = (l/x1)2[.v1F2(x)-x2F1(x), -P¿x)].

We can write this in terms of the corresponding point on the sphere, y=f(x), and
get, from (3) :

w    «« - (g)'fe* (£*)-** (**). -*{*■*)]■
If y ef'(x), i.e., if y is the lower hemisphere, we would start by computing df'x

instead of dfx. It is easy to check that we arrive again at the same expression (6).
Therefore, we have induced a vector field on Ux which is defined and differenti-

able at all points except at S1 = { y e S2 \ y3=0} when «> 1. However, if we multiply
(6) by the factor y3 ~1 we obtain a new field which is now differentiable in the whole
of Uy. The factor y3~1 depends only on the degree « of the original system X, and
the trajectories and critical points are the same before and after the application of
the factor (except for a change in the direction of the arrows in the lower hemisphere
when n is even).

For analytical purposes it is convenient to express the obtained field in terms of
the variable z. From (1) and (3) we get yi\y3 = l\z2, y2\y3=zx\z2 and y\=z\\A(z)2.
Now, in Ux we have yx >0 and then from (1) we know that y3 is of the same sign
as z2. Thus y3=z2/A(z). Therefore, if we multiply (6) by j5_1 and change the nota-
tion as indicated, we arrive at the final expression for the field in Ux
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Straightforward modifications will take care of the cases yeU2 or y e Ua. We
get the expressions :

for U2, and for U3

(9) ^yrrr [Pi(zx, z2), P2(zx, z2)].

For the case in which y e Vt, i=l,2, 3, we obtain the same expressions (7) to (9)
except for the following fact : in Vx we have yx < 0 and then y3 and z2 are of different
sign. Thus y3= — z2/A(z) and (7) must be multiplied by (—l)""1 to obtain the
field in Vx. Also, it can be seen that (8) and (9) have to be multiplied by (-1)"_1.
The field which we have just obtained will be referred to as the Poincaré field and
will be denoted by -n(X).

An essential feature of this field is that the equator, S1, is always an invariant
set. This fact can be seen as follows: for any y e S1 we have y3 = 0, and since
z2=y3lyt, i'=l, 2, we get z2 = 0. Now, the tangent vector at y e S1 is given by (7)
or a similar expression, and we see that z2 = 0 implies that the second component of
the tangent vector is always zero. Therefore S1 is invariant. Moreover, the restric-
tion of tt(X) to S1 behaves essentially like a polynomial field except for the factor
l/(z2 + l)(n_1>/2, which is always positive. These two features will have fruitful
consequences in the remaining sections.

2.4 We conclude this part with two remarks. First, we have restricted our
attention to the set 3C of all polynomial vector fields of degree n. It should be noted
that these are not the only fields for which the construction of the Poincaré field
is possible. Actually, it can be obtained for all those fields whose rate of growth at
infinity is not bigger than that of systems in &.

In [10] Lefschetz suggests that Poincaré's method amounts to transforming the
differential equation in the plane into another in the projective plane. This is
correct if by differential equation we understand a line element field, but not
necessarily so if it means a vector field. In this connection, we notice that the
integral curves in S2 are always symmetric about the origin, but the Poincaré field
is not symmetric. For example, if n is even and x e E2 is a contracting node, we
obtain a contracting node in the upper hemisphere by means of central projection,
but in the lower hemisphere the factor y3'x is negative, and we have an expanding
node. This fact immediately suggests the kind of problems that we would find in
the use of the projective plane. Actually, it can be shown that, even if we use two
different factors, one for each hemisphere, no extension of the field is possible to
the projective plane for even n.

2.5 The general case, when k is arbitrary, is dealt with in exactly the same way.
The compact manifold on which we get the induced field is now Sk={y e Ek | || v||
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= 1}, the equator S" 1={yeSk | ^+1 = 0} and the 2(k+l) coordinate neighbor-
hoods are Ut = {yeSk \ y¡>0, i=l,. ..,k+l} and Vi = {yeSk \ yt<0, i=l,...,
k+1}. The coordinate maps <f>¡: £/¡ -> Ek and ip¡: Vt-> Ek are now defined by

(1)* My) = (ilyd(yi,...,%..., yk+i),
where the symbol ~ indicates that the ith element is deleted, and similarly for the
^i's. We now give the corresponding fc-dimensional versions of expressions (2) to
(7) and of Theorem 1 :

(2)
y = fix) = (llA(x))(xu ...,xk, 1),
y=f'(x)= -(llA(x))(Xl,...,xk,l),

with A(x)=(xl+ ■ ■ • +x2k + l)112;

(3)* z = <pi(y) = (1/Xf)(*i> ...,xh...,xk, 1).

Theorem 1*. The field induced on the complement of the equator, Sk — Sk~1, by
means of the differentials off and f can be extended analytically to the whole of the
sphere after multiplication by the factor yk + \, and in such a way that the equator is
invariant.

ith
~xilxi

(4)* dfx = -
Xi

0

0---0

xi-llxi

~xi+llxi

0

"o'"6

ith;

xklxi

and then, for y and / such that 1 ¿y'</, /<_/<&,

dfx(X(x)) = (llxd2[..., XiP^-X^x), ..., XiPl+1(X)
-xl+1Pi(x),..., -Pi(x)];

(5)

(6)*
dfx(X(x)) = (^fA2\. ..,-^Pi(y)--^-Pi(y), . -.,-^Pi(y)

-M±P0>,...i-P¿?)],
yk+i j

where y=(llyk+1)(yi,.. .,yk); and

(7)'

where

A(z)̂ j(.. „Pfâ-zflz),. ..,Pl+1(z)-ztPi(z),..., -zkPi(z)),

z = (llzk)(zl,---, l,...,Zfc-l)-
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As in the two-dimensional case, it is easy to see that the equator, Sk'1, is
always an invariant set. The restriction of the Poincaré field to S""1 will be denoted
by ttx(X). As before, it should be noted that -nœ(X) behaves essentially like a
polynomial field.

2.6 We shall illustrate our results with an example. For i=3 we consider the
system

Pi = -(x+y)(x2+y2-2z2),

(10) P2 = (x-v)(x2+/-2z2),

P3 = z(y2-z2).

To get the expression for ttx(X) we use (7)* and put z3=0. If we disregard the
factor, we obtain the following expressions which are valid in Ux, U2, and U3
respectively :

[(l+s2)(l+s2-2t2),t(s2-t2) + t(l+s)(l+s2-2t2)],

(11) [-(l+s2)(l+s2-2t2), t(l-t2) + t(l-s)(l+s2-2t2)],

[(s+t)(2-s2-t2) + s(l-t2),(t-s)(2-s2-t2) + t(l-t2)].

Since n is odd, the same expressions are valid in Vx, V2, and F3.
From the first and the second we learn that the set 1 = 0 is invariant and has no

zeros. In fact, it represents a closed orbit with stability index greater than zero,
as can be checked by direct computation. The only singularities are in U3 and V3,
and are: (0, 0), (1, 1), (1, -1), (-1, -1), and (-1, 1). After a local study of the
neighborhood of each of these points, we learn that the first is an expanding focus,
the second and fourth are contracting foci, and the third and fifth are saddle
points. This field is represented graphically in Figure 1, as seen from the origin of
U3.

In the next sections we shall study the behavior of the Poincaré field at infinity
in some particular cases.

3. Behavior of the induced field at infinity for the 2-dimensional case.
3.1 In this section, the study of the induced field at infinity will be done in two

parts. In the first one we shall investigate under what conditions there are singular
points or closed orbits at infinity, and of what types. In the second part we shall
look for properties of the behavior at infinity which are generic. In order to define
this genericity we need to assign a metric to the space ¡X of all polynomial vector
fields of degree n. This is done as follows: for every X e 9C the set of coefficients of
Px and P2 represents a point in Rin + 1)<n + 2). If we give this space Euclidean structure,
we can identify X and E{n + 1)(n + 2), and thus 3C becomes a complete metric space.
Then we have:

Definition 1. A generic property of systems XeSC is a property which is true
for a subset of 3C which is open and dense.

We turn now to the first part of our study.
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Figure 1

3.2 In the neighborhoods Ux, U2, Vx, and V2, which are the only ones containing
points at infinity, our field is given by expressions (7) and (8). In the following
discussion, we shall simplify the notation in order to avoid the use of the subscripts
1 and 2, and shall write X=(P, Q) instead of X=(PX,P2) and (s, t) instead of
(zx, z2).

With this convention in mind, we now recall that the equator, S1, is an invariant
set because the second component of (7) is zero for t=y3 A(z) = 0. Then, rr(X) will
have a singular point in S1 n (Ux u Vx) where the first component, Inß(l/I, s/t)
— stnP(\¡t, s¡t), is also zero for 1 = 0, or, in other words, where

(12) F(s)= Qn(l,s)-sPn(l,s) = 0.

Pn and Qn are the terms of degree n of P and Q. Likewise, from (8), we shall have
a zero of the field in S1 n (U2 u F2) if

(13) G(s) = Pn(s, l)-sQn(s, 1) = 0.

Since we are working with polynomials, three different cases can occur: (A)
F(s)=0, which implies xQn(x,y)-yPn(x,y)==0 and then G(s)=0; (B) Either F(s)
or G(s) or both have isolated real zeros; (C) Neither F(s) nor G(s) have real zeros.
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(14) J =

(15) J =

In case (A), every point on the equator is a singular point; in case (B), the real
zeros will give us singularities in S1 which are isolated for ttx(X); in case (C), the
equator is a closed orbit.

3.3 In the (s, t) coordinates, let (a, 0) be one of the singularities from case (B).
To analyze one such point we disregard the factor 1/A(z)n_1 in (7) and (8) and
expand these expressions in a Taylor series about (a, 0). The linear part in either
case is then given by the Jacobian matrix :

{d(F(s))lds}s = a Ôn-iO, <*)-aPn_x(l, a)]
0 -PnO,«*)

{d(G(s))lds}s = a Pn.x(a, l)-aQn_x(a
0 -Qn(a, 1)

if we are in either Ux or U2 respectively. For the F's multiply by (— l)tt_1. Since/
is a real triangular matrix its eigenvalues have nonzero real parts if and only if
det Z#0. If this is the case the singularities are nodes or saddle points according to
whether the quotient of the eigenvalues is positive or negative. Summarizing, we
have:

Proposition 1. Let X e 3C, then all the singularities of-n^X) in S1 will be hyper-
bolic except in the following cases:

(a) F(s) or G(s) or both have multiple real zeros,
(b) F(s) and G(s) have simple real zeros, but Pn(l, a)=Qn(l, a) = 0 or Pn(a, 1)

= Qn(a, l) = 0 for some real a.

3.4 In case (C) the equator is a closed orbit. Then n is odd. For suppose n is even,
then xQn(x, y)-yPn(x, y) is odd and will have a zero either for x=0 or for some
finite value of y\x. In both cases we would have a singularity at infinity, contrary
to the assumption.

Now, if S1 is a limit cycle it will never be semistable. This is due to the fact that
the field on S2 is induced by means of central projection. The application of the
factor jg"1 with n odd preserves the direction of the arrows in the lower hemisphere.
Neither can S1 be a composite limit cycle since, as our system is analytic, so is the
Poincaré transformation.

Proposition 2. S1 can be either a stable or unstable limit cycle or a closed orbit
belonging to a ring of periodic orbits. Otherwise it contains singularities.

3.5 We begin now the second part of §3.
We shall establish the following notation: the set of all systems X eSC having at

least one nonhyperbolic singularity in S1 will be denoted by 2P, and the set of all
X e HE such that S1 either belongs to a ring of closed orbits or is a limit cycle with
stability index equal to zero by 6. Then we write ^ = f-(^Ui)). Our goal is to
prove that the fact that X belongs to ^ is a generic property in the sense of
Definition 1. We have:

Theorem 2. <8 is open and dense in %.
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Proof. First we show that 9C — 8P is dense in 9H. Let X be arbitrary in 3C. Then
from Proposition 1 in 3.3 we know that case (a) is possible only if the discriminant
D(F) of F(s) is zero (note that D(F) = (DG) since both Fand G come from xQ—yP)
[11]. Case (b) is possible only if the resultant R(Pn, Qn) is zero (from the general
expression for the resultant of two polynomials it is easy to see that F(F„(1, a),
Qn(l,a)) = R(Pn(a, 1), Qn(a, 1))) [11]. Thus, a system Xe% will be in 0> only if it
belongs to the algebraic varieties D(F) = 0 and/or R(Pn, £?n) = 0, none of which
coincides with the whole space X. This proves that $£—& is dense in 3C.

We now prove that 3C — 0 is dense in J". Let X be arbitrary in$". If S1 belongs to
a ring of closed orbits of n(X), then a small rotation of X in the plane will turn S1
into a limit cycle. After the rotation, S1 is still a closed orbit because it is an
invariant set. However, all the other closed orbits in the ring are broken. Otherwise,
we would have a new ring of closed orbits transversal to the one before the rotation
is applied, which is clearly impossible. Now, let S1 he a limit cycle with stability
index equal to zero, and let s(t), í(t) he the parametric representation of the
trajectories in a given coordinate neighborhood. Denote by U¡(1) that portion of
S1 n t/j for which \s\ ¿ 1, and similarly for the V¡. Then the stability index of S1
is given by:

(16) «(S1)   =    T    f diV77(*)¿T + 2    f diV7T(A0¿T.
i     Jl.T!<l) i      JVt(l)

But « is odd, as we have seen before, and we have (— l)n_1= 1. Then, in V¡, tr(X) is
given by the same expression as in í/¡ and we get:

h(s') = 2y f    divtt(x)¿t = 2y f    \t+t\ dT
i   Jt/,(D j   Jü¡(i) yds   dtJs = S(T);i = o

-|[^!=l('ß.(*. !)+'"•••)]

f        f¿ F(s)    Fn(l,5)l
Jal(1, [¿^A-1      A-i  Js = s(t);í = 0flT

f    r¿ o(j)  g»(j, i)
I^dL&A-1      A-1

(17)

s = s(i);í = 0

+ 2
s = s(t);t = 0

It is now clear that if this integral is zero for a given system X=(P, Q) it will be
different from zero for the perturbed system ^=(F + ejcn, Q + exn~1y), for which
we obtain -2ej\1 [(1 +5n-1)/An-1]i = 0 ds. This proves that 3C-0 is dense in 3C.
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3C—3P and 3C—<S are also open because, if F(s) and G(s) have simple real zeros
which are not zeros of both Pn and Qn at the same time, then this situation will be
preserved under small perturbations of X. Also, if h(S1)=^0, a small perturbation
will not change this fact.

Therefore, 'S is the intersection of two open and dense sets and it is open and
dense itself. This ends the proof of the theorem.

From the proof of the theorem we know that as long as we are away from the
varieties D(F) = 0 and R(Pn, Qn) = 0 in 3C, we can be sure that the singularities in
S1, if any, are all hyperbolic. Also, if we consider those systems for which the
integral (17) is not zero, S1 cannot be a closed orbit of the type in (9. That is, given
a field X we have secured the means whereby to determine if it belongs to S.

4. Structural stability at infinity for the 2-dimensional case.
4.1 Roughly speaking, a vector field defined on a compact manifold Mm is said

to be structurally stable if a " small " perturbation of ^Vdoes not change topologically
the set of trajectories of X. This motivates the following definition:

Definition 2. X e 3C is structurally stable at infinity if and only if there exists
in S2 a neighborhood, A, of the equator, S1, and, for every e>0, a neighborhood,
fy, of X in 3C such that, whenever Ye*W, there exists an £-homeomorphism, n, of
A onto A transforming trajectories of tt(X) onto trajectories of 77(F), and with S1
an invariant set of n.

Our goal is twofold, to characterize the structurally stable systems, and to see
how the set of all such systems, 2, is imbedded in 3C. This is done in the Theorem 3.

4.2 Theorem 3. S = 'S, and therefore is open and dense in !X.

Proof. We have only to prove that ~L = S and the rest is a consequence of
Theorem 2.

We first show that Ec^, If x e 2, then from Theorem 2 we know that we can
find afef such that Ye 'S. Then, the existence of the homeomorphism n implies
that X is topologically conjugate to a system in 'S. We have to show that it actually
belongs to 'S. Suppose, for instance, that X$3C — 3P and let (a, 0) eUxbe a non-
hyperbolic singularity of ir(X). Then, consider X=(P + exn, Q + ea). It can be seen,
by using equations (12) and (14), that n(X) also has a singularity at (a, 0) which is
hyperbolic, but the dimension of the stable manifold changes with the sign of e.
This contradicts the existence of the homeomorphism n, thus implying that X
has to be in X — SP. Similarly, the perturbation given at the end of §3 shows that X
must be in X — 0. Therefore, X e 'S, and so 2<=^.

Now we show that 'S^lZ, that is, that X e 'S implies that J e 2. The proof will
be done in two steps and will follow very closely those of Theorems 1 to 4 in [6].
First, we shall prove that if Xe S we can find a neighborhood, A, of S1 in S2
satisfying the following conditions:

Cl. A u 8N contains no singularities or closed orbits other than those in S1.
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C2. -n(X) is transversal to dN. This means that n(X)^0 on dN, and that, in the
tangent bundle of the sphere, denoted by T(S2), the submanifolds tt(X)(S2) and
T(dN) intersect transversally.

C3. Each trajectory of tr(X) inside A which meets dN is tangent to it at most
once.

C4. No trajectory oftr(X) connecting S A to a saddle point in A is tangent to dN.
For such a region A, we then prove that for all Y e3C close enough to X we can

construct the desired homeomorphism.
We begin by choosing a neighborhood, Aj, of S1 so small that Cl is satisfied, but

otherwise arbitrary. From standard transversality arguments it follows that there
is a neighborhood, A2, with dN2 close to dNx and such that C2 is satisfied. The
manifold of contacts, T, is a O-dimensional submanifold of dN2.

Suppose now that F is a point of dN2 at which -n(X) is tangent from the inside,
and let y be the trajectory through F. Then, if y goes to a saddle point or has more
than one contact with dN2, we proceed as follows : let F be a small neighborhood
of F in S2 such that, except y, no other trajectory oftr(X) which is either tangent to
dN2 or goes to a saddle point meets D. Let A3 be a new neighborhood such that
dN3 coincides with dN2 outside D and is very close to it in the inside, but with the
contact at F removed. In the tangent bundle, the new manifold of contacts, V,
is still a O-dimensional submanifold of dN3 because the transversality is preserved
after the small perturbation, and T' is diffeomorphic to T. All the contacts are the
same as before except for the one at F, which disappears, and which is replaced by
a new contact in D. Because of the way in which D was chosen, this new contact
is such that the trajectory through it satisfies C3 and C4. We can repeat this
procedure as many times as is necessary to get a neighborhood, A, for which all
the conditions are satisfied.

Now we have to construct the e-homeomorphism. The construction in [6]
applies here mutatis mutandi. The differences are the following:

(i) Regarding Lemma 1 it is necessary to add that the singularity corresponding
to the perturbed system is in S1. Also, the new cycle of Lemma 2 is again S1.
This follows from the fact that 'S is open.

(ii) In Lemma 6 one of the a's or co's may now be a saddle point instead of being a
source ora sink. The lemma is still valid because S1 is invariant for every Xe 'S.

(iii) Canonical regions of types I, IV, and V are not possible now. The possible
types are II, III, and III' (see Figure 2).

The construction of the e-homeomorphism for this type is analogous to that for
the type V, with straightforward modifications. The mapping <f> will now be
(p: R* -» U where U is the rectangle 0¿h¿ 1, 0¿d¿3. This completes the proof
of Theorem 3.

It is seen from the proof that we can get a definition of structural stability
equivalent to Definition 2 if we suppress the requirement that the distance between
peNand h(p)e Nmust be less than e.
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Figure 2

5. Behavior of the induced field at infinity for arbitrary k.
5.1 Here we shall look for generic properties of the field trK(X). Thus, our goal

is more restrictive than in §3, when we studied the behavior of -n(X) in a neighbor-
hood of S1.

In what follows we shall need the explicit expression for irm(X) (remember that
Sk~1 is an invariant set). This is obtained from (7)* after putting zk = 0. For
example, for A; = 3, if we write (s, t) instead of (zx, z2) and P, Q, R instead of Px, P2,
P3, in order to simplify the notation, we obtain the following expressions for
■nx(X) which are valid in Ux, U2, U3 respectively:

w   ty..x (ß»(I, s, t)-sPn(l, s, t), Rn(l, s, t)-tPn(l, s, t)),

(18)       Ms\n-x (*»(», l> t)sQn(s, 1, 0, K(s, 1, t)-tQn(s, 1,1)),

A(s t)"-l(-Pn(-S' *' V-sR¿s' f' !)' Qris, t, l)-tRn(s, t, 1)).

Here Pn, Qn, and Rn are the terms of degree n of P, Q, and R respectively. To
obtain tt^(X) in the F¡ we have to multiply (18) by (— l)n_1, as indicated before in

§2.
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5.2 The number and types of singularities in Sk~1 will give us valuable informa-
tion about the modes of approach to infinity of our original vector field in Ek.
In this connection, it can be proved by standard methods that the set #f of all
systems XeSC such that the singular points of ttx(X) are hyperbolic, and hence
finite in number, is open and dense in 9C.

5.3 We now restrict our attention to a very particular case, that in which Xis a
gradient field. To illustrate the reason for this restriction we shall consider the case
in which k = 3. Here it is natural to investigate whether or not the set of all Xe3C
for which -nm(X) is structurally stable in S2 is open and dense. Since every perturba-
tion in 3£ is global, a natural idea to break any possible connection between saddle
points is to rotate -nx(X) in S2. However, we can show, by giving an example,
that, given an arbitrary X e 2£, it is not always possible to find a perturbation
X eSC such that the corresponding nœ(X) is a rotation of-rr^X).

Let our example be X=(P, Q, R) = (y2 + z2, y2, z2). Then, in Uu irx(X) =
(llA(s,t))(Q-sP,R-tP) = (llA(s,t))(s2-s3-st2,t2-t3-ts2). Now, for every
(s, t) e Uy, let the matrix

^ =  fa(s, t)   b(s, 01
"   c(s,t)    d(s,t)\

he such that it represents a rotation at (s, t). The rotated vector is

(1/A(5, t))[a(s, t)(s2-s3-st2) + b(s, t)(t2-13-ts2), c(s, t)(s2-s3-st2)

+ d(s,t)(t2-t3-ts2)].

The functions a, b, c, and d are assumed to be continuous. If this rotated vector
field comes from a system X e 3~, the two components inside the brackets must be
polynomials of degree at most three. This implies that ¿% must be a constant
matrix. Moreover, the first component, Q — sP, cannot have a term in t3, and the
second, R—tP, cannot have a term in s3. This implies that b(s, t)=c(s, t)=0.
Now, let k he the coefficient of the term in y2 of P. Then it is clear that it must be
a = k and d=k, that is, a = d. Thus, if the perturbation X belongs to X, then -njjl)
is not a rotation of nœ(X).

However, suppose A" is a gradient field. Then, since the nonwandering set of X
is composed of a finite number of hyperbolic singularities, it is natural to expect
that a similar situation holds for -n^X). We shall need the following definition:

Definition 3. Let X be a differentiable vector field on a differentiable manifold.
X is said to be gradient-like if and only if:

(a) X has a finite number of zeros, all of them hyperbolic, and
(b) The nonwandering set, Q(X), coincides with the set of zeros of X.
This definition differs from that of Smale in that we do not require stable and

unstable manifolds of hyperbolic singularities to be transversal.
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5.4 Theorem 4. Let f be a polynomial function of degree n+l f: Ek -*■ E1, and
let X=gradf Then Q^rr^X)) consists of singular points only. Moreover, in the set
of all gradient vector fields in 3C, there is an open and dense subset such that ttx(X)
is gradient-like1-2'.

Proof. The second part of the theorem is proved by the same methods as in
§5.2. To prove the first part we shall first find a function g: Sk~1 -*■ E1 such that
g is increasing along trajectories of trœ(X), and so no closed orbits can be found in
Sk~1. Also, the existence in Sk~1 of closed curves which are invariant and com-
posed of a finite number of trajectories of -n-m(X) is clearly impossible. We shall
carry out the proof for k = 3, but the same method is applicable for arbitrary k.

Now, in Ux u Vx we define g by

(19) g(s,t)=fin+x(l,s,t)IA(s,tr + \

where fn+x denotes the terms of the highest degree in/ Similar expressions hold
for the other neighborhoods.

Then, let s(r), t(r) be a trajectory or piece of trajectory in Ux u Vx, and let us
compute the derivative of g along this trajectory.

(20) dg\dr = (8g\8s)sH8g\8t)i.

But s and t are given by the two components of the first expression in (18).
Therefore

dg     A"+1(3/.+ i/gj) -(«+!)/»+1 JA" -1 Qn - sPn
dr A2n + 2 A""1

nu , ^ + 1(8fn+x¡8t)-(n+l)fn+xtA-^ Rn-tPn
\¿l) "+" £2n + 2 A"-1

= (l/A2-2)[(A2ö„-(n+ l)fn+xs)(Qn-sPn)

+ (A2Rn-(n + l)fn+xt)(Rn-tPn)].

(2) After this paper had been submitted for publication, Professor Jacob Palis suggested
that Theorem 4 can be improved by substituting its second half by the statement: "Moreover,
in the set of all gradient vector fields in X, there is an open and dense subset such that t„(J) is
Ci-stable"

The proof of this fact follows from the following modification of a result of Palis: "If V
is a gradient-like field and has the no cycle property on 0.(V), then V isQ-stable." [See J. Palis, On
Morse-Smale dynamical systems, to appear in Topology.]

We recall that if V is gradient-like and Cl(V)={a,i,..., <*,„} is its set of zeros, then V has
the no cycle property if there is no sequence atl,..., atk in ii(K) such that tVs(aif) n W"(a¡í + 1)
# 0 for all 1 gy¿¿- 1, ii = ik, and í'i#í'; for some j. Here Ws and W stand for the stable and
unstable manifolds respectively. For the definition of fl-stability see [9].

In our case, the fact that g is increasing along trajectories implies that tt^(X) has the no
cycle property.

I want to thank Professor Palis for communicating this note to me.
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Since / is homogeneous of degree «+1 we know that (n+l)fn+1 = x(dfn+1¡dx)
+.y(d/n+i/dv) + z(d/"n+1/dz). Then, in terms of s and t, we have («+l)/n+i=Fn
+ sQn + tRn, and inserting this into (21) we get

* =  äiü W+t2)Qn-sPn-StRn)(Qn-sPn)

(22) + ((l+52)Fn-/Fn-5/ßn)(Fn-iFn)]

=  53ÏÏ72 [(Qn-sPn)2 + (Rn-tPn)2 + (tQn-sRn)2].

We observe that this expression vanishes at the zeros of nm(X) and that these
are the only points at which it vanishes. Anywhere else it is positive.

The process is valid in the other neighborhoods. Thus, we conclude that dg¡dr>0
along every trajectory which is not a zero of irœ(X).

To complete the proof, let p = (s0, t0) be a nonwandering point which is not a
zero of nœ(X), and let •¡>l be the flow associated with this field. Then, for every
neighborhood, A, of p there exists a sequence {t¡} -> co such that (<f>n(N)) n A# 0.
Now let F=supï [g(<pi(p))—g(p)]. By the continuity of g we can choose the
neighborhood A so small that supQeAI [g(q)—g(p)] < F, a contradiction. This implies
that every nonwandering point of -nx(X) must be a singular point. The proof of
the theorem is thus complete.

6. Classification of the systems in ¡X for x = Ax and k = 3.
6.1 For fields of the form X(x) = Ax, with A a constant matrix, the coefficient

space is SC=E'è. The zeros of this field are located at infinity and at the origin. At
the origin the equation is linear and can be easily solved. Regarding the behavior
at infinity, we shall give a decomposition of 3C into eleven classes of equivalence,
such that X and F belong to the same class if and only if the flows corresponding
to irm(X) and rr^Y) are topologically equivalent. Each class of equivalence can be
shown to be an algebraic set in 3C.

A further study of the possible types of the singularity at the origin is also
included. Then, it is seen that we can have a nonhyperbolic singularity at the
origin while everything is hyperbolic at infinity, and vice versa.

6.2 For any two systems X, and F, in 3C, for which the real Jordan canonical
form of A is the same, ttx(X) and ttx(Y) are topologically equivalent.

There are four types of real Jordan form :
"AI TA    1

(23)

I

III

V

A    1
A    1

A

II

IV

-ß
a
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In Case I, ttx(X) is given by:

(24) [(¡X-X)s,(v-X)t],       [(\-r)s,(y-ùtl   and    [(A-v>, (>-*)*],

in Ux, U2, and U3 respectively, and the same for the F's. We observe that the zeros
of ttx(X) will be isolated if and only if the eigenvalues are distinct. If this is the
case, we shall have two contracting nodes, two expanding nodes and two saddle
points at infinity. If we denote by 'S the set of all systems X in 9C such that -nx(X)
is a Morse-Smale system, then, in Case I, X e 'S if and only if the eigenvalues of
the Jacobian matrix are distinct.

In Case II, rrx(X) is given by:

(25) [-s2,(i,-X)t-st],       [l,(p-X)t],   and   [(X-^)s+t, (A-,*)*].

The point (0, 0) e Ux is always a nonhyperbolic singularity. Then, no X is in 'S in
this case.

The same thing happens in Case III, since trx(X) is given by:

(26) (t-s2, -st),       (l-st,-t2),   and   (t, 1).

The only zeros are (0, 0) e Ux and (0, 0) e Vx, and they are never hyperbolic.
Notice that nm(X) does not depend on A.

In Case IV, TTm(X) is given by:

(27) [ß(l+s2),(X-a + ßs)t],       [-ß(l+s2),(X-a-ßs)t],       and

[(a-X)s-ßt,(a-X)t + ßs].

The only zeros are (0, 0) e U3 and (0, 0) e V3. In the other neighborhoods, the set
1 = 0 is invariant. It represents a closed orbit, C, with stability index given by:

h(C) = 2 Í       (2ßs+X-a + ßs)s=sM:t=0dr
Jt/iU)

(28) +2 f       (-2ßs + X-a-ßs)s=sM:t=0dr
Ju2a)

= 4  f (X-a)dr.
Jt/jU)

The behavior of ttx(X) depends only on ß and the difference A —a. ß is always
different from zero, and can be considered to be positive. Otherwise, make the
change xx -*• x2, x2 -*■ xx, x3 -> x3. C is hyperbolic if and only if A — «^0. This is
also the condition for the two zeros to be each a focus instead of a center. C is
contracting when A —a<0, and then the two foci are expanding; C is expanding
and the two foci are contracting when A — a>0. For A —a>0 the same picture, but
upside down and with the direction of the arrows reversed.

6.2 We have seen that there are three possible types of qualitative behavior at
infinity for systems in 'S:

Gl : A has real distinct eigenvalues.
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G2: A has one real eigenvalue, A, and two complex conjugate eigenvalues,
«±ßi, with A-a>0.

G3: The same as in G2, but with A—a<0.
Any two systems in the same Gi are topologically conjugate at infinity. The

construction of the homeomorphism is done as in [6].
Let A3 + aA2 + Z>A + c = 0 be the characteristic equation of A. We know that

a=— tr A and c=—detA. Also, from Cardano's solution to the third order
equation, we know that X is in G1 if and only if D = - 3(a2b2 - 4a3c - 4b3 +1 Sabe
- 21c2) < 0. X is in G2 if and only if D > 0 and « = - c/2 + ab¡6 - a3¡21 > 0, and X
is in G3 if and only if D > 0 and « < 0.

Thus, we have completely described the algebraic sets in 3C which correspond to
systems in 'S.

6.3 We can do the same thing for systems in SC—'S. There are eight possible
types of qualitative behavior at infinity :

NG1: Z>>0 and « = 0. Then A = a and, from (27), we get that (0, 0) e U3 and
(0, 0) e V3 are centers, and C belongs to a ring of closed orbits.

The rest of the cases correspond to D=0. If we also have «>0, then two and
only two of the eigenvalues of A are equal. There are two cases, which depend on
whether the Jordan form of A is of the type I, with A=/x, or of the type II. We have,
respectively :

NG2: From (24), we know that (0, 0) e U3 and (0, 0) £ F3 are the only zeros of
Ttœ(X). Since, in this case, h = 2(v—\)3¡21 we get that v> \ = p.. This means that the
two zeros are contracting nodes. In the other neighborhoods, all the points of the
form (s, 0) represent a circle, which is composed of zeros of -nx(X).

NG3: ttx(X) is given by (25) with p>\. The zeros are (0, 0) e Uu (0, 0) e Vu
(0, 0) e U3, and (0, 0) e V3. The first two are never hyperbolic, as is easily
seen after computing the Jacobian matrix. The others are degenerate nodes. In
this, and all the other cases as well, it is a simple matter to construct the corre-
sponding picture for tTœ(X).

When D = 0 and «<0, the situation is entirely similar:
NG4 : As in NG2, but the nodes are expanding.
NG5: nx(X) is topologically as in NG3, but with the direction of the arrows

reversed.
It remains to study the behavior of ira(X) when both D and « are zero. There

are three possibilities, depending on whether the Jordan form of A is of the type
I, II, or III, respectively:

NG6: 7ta(X)=0.
NG7: There is a circle, C, composed of zeros of nx(X), and all the other

trajectories approach C as / -> ± co.
NG8: ttx(X) is given by (26), which is independent of A. Thus, ttx(X) is unique

for all systems of this type. The only zeros, which are never hyperbolic, are
(0, 0) e Ü! and (0, 0)eV1.
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Again, in each one of these eight cases, the construction of the homeomorphism
is done as in [6], although new types of canonical regions arise.

Only the algebraic set corresponding to NG1 has been characterized. Further
distinctions have to be made in the other three groups. Since the characteristic
equation is the same within each of these groups, we shall now consider the minimal
polynomial, m(x). For NG2 and NG4, it is given by (x—X)(x — v); for NG3 and
NG5, by (x-X)2(x-)i); for NG6, by x-X; for NG7, by (x-X)2; and for NG8,
by (x—A)3. For NG6, the corresponding class of equivalence in 2£ is given by the
intersection of the algebraic variety D = 0, n = 0 with the one which corresponds
to all 3x3 matrices which are multiples of the identity. For NG2, we shall have
the intersection of D = 0, h>0 with the union of three algebraic varieties, corre-
sponding to all 3 x 3 matrices for which m(x) is of the second degree. For example,
if A = [au], one of these three varieties is : a22 = a33, aX2a23 = 0, a3xa23 = 0, aX3a2X = 0,
«21^32 = 0, axxa23-ax3a2X = a23a33, and axxa23-a12a3X =a32a33. This is obtained
from the condition that the elements of the adjoint of the characteristic matrix of
A have one common factor. It is easy to see that there are two other varieties for
which this is so, and the first equations of each one of these are: axx=a22, and
ûii = a33, respectively.

We can do the same for the other NG, thus completing the study of all classes
of equivalence in 3C for which we have a different qualitative behavior of nx(X).

6.4 For systems of the form X(x) = Ax, there is only one more zero of the
Poincaré field, and it is located at the origin of E3. For any one of the eleven cases
considered in 6.2 and 6.3, there will be several possibilities at the origin. For
instance, when D<0, A" is in Gl and A has distinct eigenvalues. Then, there are
seven subcases (the notation is selfexplanatory ; the small g in some of the subcases
indicates that the origin is hyperbolic):

Gl. lg: The eigenvalues are positive. Then the origin, 0, is an expanding node
of tr(X). If we recall the expression of the characteristic equation, this case corre-
sponds to the set D<0, c<0, a<0, and ab — c— — [(jj. + v))j.X — aX(jj, + v)]<0. We
observe that the last two conditions are the equivalent to the Routh-Hurwitz
conditions for a third order equation to have roots with positive real parts.

Gl. 2g: The eigenvalues are negative. Then 0 is a contracting node of tt(X).
The corresponding set is D<0, c>0, a>0, and ab — c>0.

Gl. 3g: One eigenvalue is positive and two negative. 0 is hyperbolic and the
stable manifold is 2-dimensional. The set is given by D<0, c<0, and either a^O
or else a<0 and ab — c>0.

Gl. 4g: One eigenvalue is negative and two positive. 0 is hyperbolic and the
stable manifold is 1-dimensional. The set is given by D<0, c>0, and either a^O
or else a > 0 and ab — c < 0.

Gl. 5: One eigenvalue is zero and two positive. 0 is not hyperbolic, but has a
2-dimensional unstable manifold (these manifolds are always planes or lines). The
set is D<0, c=0, a<0, and b>0.
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Gl. 6: One eigenvalue is zero and two negative. 0 is not hyperbolic, but has a
2-dimensional stable manifold. The set is F<0, c = 0, a>0, and b>0.

Gl. 7: One eigenvalue is zero and the other two of opposite sign. 0 is not
hyperbolic, but has 1-dimensional stable and unstable manifolds. The set is F<0,
c=0, and b<0.

We observe that all the sets are mutually exclusive, and their union is the set
D<0. We also notice that the origin can be hyperbolic or not, while the behavior
of Trœ(X) is always hyperbolic. We shall see that the opposite situation can actually
happen.

Let us now deal with the rest of the systems in 'S. They are in D > 0, hj^O. We
have:

G2. lg: A>a>0. 0 is expanding, and a focus in a 2-manifold. The set is F>0,
«>0, c<0, a<0, and ab-c=-2[a3 +aß2-aa\]<0.

G2. 2: A> a = 0. 0 is not hyperbolic, it is a center in a 2-manifold, and otherwise
expanding. The set is D>0, «>0, c<0, a<0, and ab — c = 0.

G2. 3g: A>0>a. 0 is a contracting focus in a 2-manifold, and otherwise ex-
panding. The set is D>0, «>0, c<0, and either o^Oor else a<0 and ab — c>0.

G2. 4: 0 = A > a. 0 is not hyperbolic, but is a contracting focus in a 2-manifold.
The set is D>0, «>0, c=0.

G2. 5g: 0>A>a. 0 is contracting, and a focus in a 2-manifold. The set is
F>0, «>0, c>0.

G3. lg: a>A>0. Oas in G2. lg. The set is F>0, «<0, c<0.
G3. 2: a> A = 0. 0 as in G2. 4 but with the arrows reversed. The set is D>0,

«<0, c = 0.
G3. 3g: a>0>A. 0 as in G2. 3g but with the arrows reversed. The set is D>0,

«<0, c>0, and either a¿0 or else a>0 and ab — c<0.
G3. 4: 0 = a> A. 0 as in G2. 2 but with the arrows reversed. The set is D>0,

«<0, c>0, a>0, and ab-c=0.
G3. 5g: 0>a>A.0asinGl. 5g.The set is D>0,h<0,c>0,a>0, and ab-c>0.
Again, we have found cases in which ttx(X) is hyperbolic but the origin is not.
There are no more systems in 'S. The other cases are as follows:
NG1. lg: A = a>0. 0 as in G2. lg. The set is D>0, h = 0, c<0.
NG1. 2: A = a = 0. 0 is a center in a 2-manifold and the other 1-manifold is

singular. The set is D > 0, « = 0, c = 0.
NG1. 3g: 0>A = a. 0 as in G2. 5g. The set is £>>0, « = 0, c>0.
The rest of the systems are in the algebraic variety D = 0. Since we already know

how to distinguish the different sets as far as the sign of « and the degree of the
minimal polynomial, we shall now indicate only the rest of the distinguishing
features. We have:

NG2. lg: v>A>0, where A is the repeated eigenvalue. 0 is an expanding node,
and the set is c<0, a<0, and ab — c=— 2(A3-aXv)<0.

NG2. 2g: \<v<0. 0 is a contracting node, and the set is c>0.
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NG2. 3g: A<0o. 0 is contracting in a 2-manifold and expanding in a 1-mani-
fold. The set is c<0, and either a^O or else a<0 and ab — c>0.

NG2. 4: v> A = 0. Ois expanding in a 1-manifold, and has a singular 2-manifold.
The set is c = 0, a<0.

NG2. 5 : A < v = 0. 0 is contracting in a 2-manifold, and has a singular 1 -manifold.
The set is c=0, a>0.

NG3. Ig: /x> A>0. 0 is an expanding node, degenerate in a 2-manifold. The set
is c<0, a<0, and ab — c= — 2(A3-aAju)<0.

NG3. 2: /x> A = 0. The degenerate node in NG3. lg is transformed in a singular
line, and the field is parallel to this line with opposite directions at its two sides.
The set is c=0, a<0.

NG3. 3g: p.>0>X. 0 is a degenerate contracting node in a 2-manifold, and
otherwise expanding. The set is c<0, and either aSO or else a<0 and ab — c>0.

NG3. 4: )i = 0> X. 0 is a degenerate contracting node in a 2-manifold, and has a
singular 1-manifold. The set is c = 0, a>0.

NG3. 5g: 0>|tt> A. Ois a contracting node, degenerate in a 2-manifold. The set is
c>0.

NG4. lg: X>v>0. 0 as in NG2. lg, and the set is c<0.
NG4. 2g: v<A<0. 0 as in NG2. 2g, and the set is c>0, a>0, and ab-c>0.
NG4. 3g: v<0< A. 0 as in NG2. 3g but with the arrows reversed. The set is c>0,

and either oáOor else a>0 and ab — c<0.
NG4. 4: v<A = 0. 0 as in NG2.4 but with the arrows reversed. The set is c = 0,

a>0.
NG4. 5: A > v = 0. 0 as in NG2. 5 but with the arrows reversed. The set is c = 0,

a<0.
NG5. lg: A>^>0. 0 as in NG3. lg. The set is c<0.
NG5. 2g: A>;t4 = 0. 0 as in NG3. 4 but with the arrows reversed. The set is c = 0,

a<0.
NG5. 3g: A > 0 > fx. 0 as in NG3. 3g. The set is c>0, and either a g0 or else a>0

and ab — c<0.
NG5. 4: 0 = A>/x. 0 as in NG3. 2 but with the arrows reversed. The set is c = 0,

a>0.
NG5. 5g: 0>X>p.. 0 as in NG3. 5g. The set is c>0, a>0, and ab-c>0.
NG6. lg: A>0. 0 is an expanding node, and the set is c<0.
NG6. 2g: A = 0. tt(X)=0, and the set is c=0.
NG6. 3g: A<0. 0 is a contracting node, and the set is c>0.
NG7. lg: A>0. 0 is an expanding node, degenerate in a 2-manifold. The set is

c<0.
NG7. 2: A = 0. Two axes are composed of zeros. In a plane containing one of

these axes the field is parallel to it, with opposite directions at both sides. The set is
c=0.

NG7. 3g: A < 0.0 is a contracting node, degenerate in a 2-manifold. The set is c> 0.
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NG8. Ig: A>0. 0 is an expanding node. The set is c<0.
NG8. 2: A = 0. 0 is nonhyperbolic. One axis is composed of zeros, and there is a

plane in which -n-(X) is parallel to this axis, with opposite directions at both sides.
The set is c = 0.

NG8. 3g: A<0. 0 is a contracting node. The set is c>0.
We see that, as remarked before, there are systems for which the origin is

hyperbolic, but not so all the elements of Q(7r00(A')), and vice versa. It is easy to
check that if X e 'S and also the origin is hyperbolic, then Q.(tt(X)) is composed of
only hyperbolic elements. The converse is also true.
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