
RESEARCH Open Access

Generic SDE and GA-based workload
modeling for cloud systems
Cédric St-Onge1* , Souhila Benmakrelouf1, Nadjia Kara1, Hanine Tout1, Claes Edstrom2 and Rafi Rabipour2

Abstract

Workload models are typically built based on user and application behavior in a system, limiting them to specific
domains. Undoubtedly, such a practice creates a dilemma in a cloud computing (cloud) environment, where a wide
range of heterogeneous applications are running and many users have access to these resources. The workload model
in such an infrastructure must adapt to the evolution of the system configuration parameters, such as job load
fluctuation. The aim of this work is to propose an approach that generates generic workload models (1) which are
independent of user behavior and the applications running in the system, and can fit any workload domain and type,
(2) model sharp workload variations that are most likely to appear in cloud environments, and (3) with high degree of
fidelity with respect to observed data, within a short execution time. We propose two approaches for workload
estimation, the first being a Hull-White and Genetic Algorithm (GA) combination, while the second is a Support Vector
Regression (SVR) and Kalman-filter combination. Thorough experiments are conducted on real CPU and throughput
datasets from virtualized IP Multimedia Subsystem (IMS), Web and cloud environments to study the efficiency of both
propositions. The results show a higher accuracy for the Hull-White-GA approach with marginal overhead over the SVR-
Kalman-Filter combination.

Keywords: Cloud computing, Workload modeling, Workload estimation, Hull-white model, Genetic algorithm, Support
vector regression, Kalman filter

Introduction
W ITH the growing ubiquity of cloud computing tech-

nologies over the past decade, cloud providers and re-

searchers have strived to design tools for evaluating and

enhancing different Quality of Service (QoS) aspects of

their systems, mainly performance, availability, reliability

and power efficiency. Failing to optimize such aspects can

compromise service availability and lead to Service Level

Agreement (SLA) violations, and thus, incurring penalties

to cloud providers. The development of system manage-

ment policies that support QoS is therefore crucial. How-

ever, the latter is quite challenging, as it must rely on

evaluation tools which are capable of accurately represent-

ing the behavior of multiple attributes (e.g., CPU, RAM,

throughput, network traffic) of cloud systems [1]. It is also

complicated by the very essence of cloud systems, which

are built on heterogeneous physical infrastructures and

experience varying demand. These systems have different

physical resources and network configurations and differ-

ent software stacks. Further, reproducing conditions under

which system management policies are evaluated and con-

trolling evaluation conditions are challenging tasks [2].

In this context, workload modeling facilitates perform-

ance evaluation and simulation since we can generate at

will synthetic workload resource profiles by using a

“black box” system. Workload models allow cloud pro-

viders to evaluate and simulate resource management

policies aimed at enhancing their system QoS before

they are deployed in full-scale production environments.

For researchers, it provides a controlled input, allowing

workload adjustments to fit particular situations, as well

as the repetition of evaluation conditions and the inclu-

sion of additional features [1]. In other cases, researchers

skilled in the field of Deep Learning (DL) are ofter

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: cedric.st-onge.1@ens.etsmtl.ca
1ÉTS, University of Quebec, Montreal, Canada
Full list of author information is available at the end of the article

Journal of Cloud Computing:
Advances, Systems and Applications

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications

 (2021) 10:6

https://doi.org/10.1186/s13677-020-00223-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00223-5&domain=pdf
http://orcid.org/0000-0003-0759-4270
http://creativecommons.org/licenses/by/4.0/
mailto:cedric.st-onge.1@ens.etsmtl.ca

seeking large quantities of synthetic workload data to

train models that can enhance scaling and resource

adaptation of Virtual Machines (VMs) in cloud environ-

ments such as Network Function Virtualization Infra-

structures (NFVIs). Furthermore, workload simulation

based on realistic scenarios enables the generation of

tracelogs, which are scarce in cloud environments due to

commercial and confidentiality concerns. Workload

modeling and workload generation are challenging, espe-

cially in cloud systems, due to multiple factors: (i) work-

loads are composed of various tasks and events

submitted at any time, (ii) heterogeneous hardware in a

cloud infrastructure impacts task execution time and ar-

rival time, and (iii) the virtualization layer of the cloud

infrastructure incurs overhead due to additional I/O pro-

cessing and communications with the Virtual Machine

Monitor (VMM). These factors make it difficult to de-

sign such models and generators fitting different work-

load types and attributes. In the current state of the art,

effort is instead deployed to design specialized workload

modeling techniques focusing mainly on specific user

profiles and application types [1, 3–6].

To tackle the above issues, we propose in this work

a hybrid workload modeling and optimization ap-

proach to accurately estimate CPU and throughput

workload, applicable to different domains. The object-

ive is to develop realistic CPU and throughput work-

load profiles for different virtualized telecom and IT

systems, based on predictable workload data obtained

from real systems. These workload types differ signifi-

cantly from each other. For instance, IT (i.e., virtua-

lized Web server) CPU workloads show sharper

variations in short bursts while telecom (i.e., virtua-

lized IMS infrastructure) workloads, on the other

hand, show flatter, continuous loads under normal

customer demand. This is due to the way the CPUs

handle the different jobs and tasks from each work-

load domain, as Web service CPU loads involve dis-

tributed computing, while IMS CPU loads generally

comprise individual call setup activity. Under critical,

unexpected customer demand, however, IMS CPU

loads will have dramatic variations, and can impact

the whole system as customer calls may be dropped.

Hence, our proposition consists first in modeling

CPU and throughput workload data sets by using dif-

ferent Hull-White modeling processes, and then de-

termining an optimal estimated workload solution

based on a custom Genetic Algorithm (GA) [7].

In this work, we also propose a Kalman filter [8]

and support vector regression (SVR) [9] combination

to estimate CPU and throughput workloads. First,

IMS CPU and throughput observed workloads are

used for modeling purposes. They include two CPU

load profiles, where CPU workload is generated by

stressing a virtualized IMS environment with varying

amounts of calls per second, thus producing sharp in-

creases and decreases in CPU workload over long

time periods. An IMS throughput load profile is also

provided, where throughput variations follow a more

steady pattern. Next, the IT workload type includes

two different profiles. The Google CPU workload

under evaluation, for example, is composed of sharp

spikes of CPU workload variations over short periods

of time. By contrast, another CPU workload, namely

BitBrains, is characterized by very narrow spikes.

These datasets therefore display unique trends and

behaviors, which provide interesting scenarios to

evaluate the efficiency of the workload modeling and

workload generation techniques that we are proposing

in this paper. The evaluation of the mean absolute

percentage error (MAPE) of the best estimated data

provided by the proposed Hull-White-based approach

against the observed data shows significant improve-

ment in the accuracy level, as compared to other

workload modeling approaches, such as the SVR and

the SVR with a Kalman filter.

The main contributions of this work consist of:

� Proposing a generic CPU workload modeling

approach fitting different workload domains (e.g.,

telecom, IT).

� Providing an automated workload-generating tool

capable of generating an estimated workload with

minimal user input.

� Generating workload models without requiring

knowledge of the inner behaviors of the modeled

systems.

� Generating workload profile data while limiting

dependence on external organizations for providing

such data.

To achieve the main objective of this work, we use

workload modeling for a special case of performance

evaluation, namely, capacity planning. In a sense, cap-

acity planning is performance evaluation in reverse. In

other words, instead of deriving the performance of a

given system configuration, we seek the configuration

that will provide the desired performance [10].

Background

With the rise of cloud computing over the past dec-

ade, there has been an increasing amount of research

conducted to help cloud providers improve their sys-

tem performance, through metrics such as energy effi-

ciency and QoS. To achieve this goal, a common

practice is to evaluate a system’s workload. While

some approaches already exist to tackle online non-

predictable workload [11–13], ours focuses on offline

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 2 of 16

predictable workload estimation. The notion of pre-

dictable workload denotes a “normal” and continuous

usage of system resources. A non-predictable work-

load, on the other hand, is one which is triggered by

a short, unexpected and extreme event. For example,

this could be a surge in calls being processed by an

IMS system during an earthquake. In the context of

cloud computing, this is an important factor to con-

sider since it has an impact on how to handle re-

source allocation. In [14], the authors propose

different methodologies and allocation decisions based

on both workload types. In the presence of a predict-

able workload, for example, their algorithm is de-

signed to invoke a virtual machine (VM) migration

only if a fixed threshold is violated for a sustained

period of time. In the presence of a non-predictable

workload, on the other hand, VM migration may take

place when utilization is above a fixed threshold value

or, for the case of public clouds for instance, VM

scaling may not be automatic; instead, it is common

to horizontally scale an application across multiple

VMs and perform load balancing. VM migration and

vertical scaling may be a manual process initiated by

the user. The use of predictable workload data is

therefore preferred for building offline workload

models where a user wishes to forecast future load,

while non-predictable workload data is preferred for

building online workload models in which there are

variations such as sharp, critical spikes in the load,

which might impact the system.

Motivation

Precisely predicting CPU, memory, network and I/O

resource utilization helps cloud providers to meet

QoS requirements without breaching SLAs to their

customers or their own service level objectives (SLO)

by anticipating potential resource provisioning de-

mand in their infrastructure. For instance, the authors

in [15, 16] propose novel algorithms to increase

power efficiency in datacenter infrastructures while

satisfying QoS requirements in intra and inter data-

center networks.

However, authentic industrial-grade workload data is

sparse and often incomplete. Also, actual workload

models are limited to very specific domains, and are not

flexible enough, to build a generalized representation for

different domains, such as IT (i.e., Web servers) and

telecom (i.e., IMS architecture) virtualized cloud envi-

ronments. Further, the workload model must adapt to

evolution in the system configuration parameters (e.g.,

load, switched off CPU core). In this context, our pro-

posed approach differs from other existing solutions in

various aspects:

� Combining Hull-White processes with a Genetic Al-

gorithm (GA) automates the selection of segmented

potential solutions through different models.

� GA reinforces the Hull-White process, and opti-

mizes the workload models by selecting the fittest

solutions through many generations.

� Significant improvement in execution time

compared to other types of workload estimation

models (e.g. auto-regression, moving average).

� Accommodation of on-demand workload profile

changes in a simulation thanks to adaptable and

continuous spline functions.

To summarize, the Hull-White-GA approach was

designed to generate large quantities of synthetic

workload data with specific load profiles in mind

(aimed at predicting optimal scaling/migration accur-

acy, efficiency in NFVIs). This data was in turn used

as input training data for novel deep learning ap-

proaches yet to be published by our team. In this

regards, focusing on specific metrics for specific Vir-

tualized Network Functions (VNFs) was our main ob-

jective and Hull-White-GA successfully filled this

objective.

Problem illustration

One of the many challenges that arise for researchers

attempting to evaluate cloud system policies is the

ability to get reliable data and tracelogs from organi-

zations hosting cloud environments. Since getting

workload data requires access to an expensive, full-

scale deployment of a cloud infrastructure, researchers

rely on the willingness of organizations to provide,

somewhat reluctantly, such data and tracelogs. To cir-

cumvent this challenge, workload modeling is intro-

duced as a good alternative, enabling research teams

to generate large amounts of workload profile data

for use in the course of their work, while limiting de-

pendence on external organizations to provide such

data. Another aspect not covered by existing ap-

proaches is to give the ability to researchers to

quickly get access to massive quantities of synthetic

workload data with specific load profiles. This chal-

lenge is especially dire of consequence in areas

attempting to leverage DL models for cloud resource

adaptation and allocation, where access to input train-

ing data is scarce, limiting the efficiency or the de-

signed approaches.

Moreover, current workload modeling solutions rely

on probability distribution functions and statistical

analysis to model the impact of jobs, tasks and/or ap-

plications on a system’s resource utilization. For our

part however, the present paper aims to build deter-

ministic prediction models based on a stochastic

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 3 of 16

differential equation (SDE) known as the Hull-White

process. This approach differs from others currently

found in the literature, as it aims to model the behav-

ior of a system’s resource usage over time, stressed by

a known number of tasks and/or jobs, thus creating

load profiles. It also enables our models to adapt to

the evolution in system configuration parameters (e.g.,

booting up a new VM or enabling new CPU cores to

handle excessive levels of resource loads). The result-

ing estimated workload values can then be processed

through an optimization algorithm, known as a GA,

to improve the fidelity of the estimated values as

compared to the observed values.

This novel approach thus answers the need not cur-

rently filled by other approaches to get a general pur-

pose, generic modeling algorithm that can fit not only

different types of workloads, such as virtualized tele-

com and IT systems’ CPU utilization with a high de-

gree of fidelity to the observed workload, but also

generate workload patterns and seasonality commonly

found in heterogeneous cloud infrastructures that run

distributed applications across multiple VMs and

servers. Moreover, this workload-modeling algorithm

allows researchers to generate workload traffic and re-

source usage models:

1. without having to know the specifics of user

behavior and the deployed applications;

2. with a high degree of fidelity with respect to the

observed data;

3. capable of efficiently estimating rapid workload

variations and sudden/unpredictable changes.

Related work
In this section, we review existing works relevant to

workload modeling in order to set the perspective for

our contributions. The present review emphasizes, but is

not limited to, virtualized cloud environments, such as

Google real traces and Open IMS datasets. This over-

view aims to present a broader picture of general types

of workloads and workload modeling techniques that

have been previously addressed by the research

community.

Workload domains

Workload domain characterization (i.e.: an heteroge-

neous cloud infrastructure, a network-heavy IMS tele-

com infrastructure, a cluster of Web servers, etc.) is

the first element that should be considered when

planning performance evaluation. It has a major im-

pact on the type of workload to be considered. Do-

mains vary in shape and scope, depending on the size

and purpose of the environment; one can go from the

performance evaluation of a single application on a

workstation, to a full-scale performance evaluation of

a multi-tenant, heterogeneous cloud environment

(e.g., Amazon EC2). Google clusters and virtualized

IMS cloud environments, both subjects of this work,

are considered as workload domains belonging to the

field of cloud computing. Different relevant works

have been cited in this context.

Moreno et al. [3] provide a reusable approach for char-

acterizing cloud workloads through large-scale analysis

of real-world cloud data and tracelogs from Google clus-

ters. In the present work, we address workload estima-

tion for the same workload domain. There are, however,

differences in their approach, starting with the dynamic

behavior of their workload, in contrast with the static

behavior of ours. For instance, the evaluation of static

versus dynamic workloads will depend on the objective

to be achieved. Since jobs from a static workload are

processed by a “clean” system, there is usually an implied

need to evaluate a system’s behavior over a short time

span. Jobs processed in a dynamic manner, on the other

hand, require the evaluation of a system’s behavior over

a longer time span (several hours, days), since the same

job sets are being processed by a system that is continu-

ally processing other jobs.

Static workload evaluation [4, 5] usually involves

the analysis of a smaller number of workload types

and attributes, which increases the complexity of the

process. Since job execution times are not considered,

this evaluation incurs a “drift” in variation in the rate

of usage resources, since the system keeps processing

jobs stacked in its queue while new jobs arrive. Dy-

namic workload evaluation such as in [1, 6] over-

comes this issue by adding a probabilistic and/or

distributed (e.g., normal distribution, exponential dis-

tribution) approach to job arrivals and execution

times, which provides a more accurate representation

of the impact of workload types and attributes on the

system resources.

MapReduce and Hadoop performance optimization

[3–5] is also an interesting avenue for study because

of the nature of the data-intensive computing taking

place in such environments, and because this frame-

work is at the core of most of the leading tech com-

pany datacenters worldwide, such as Google, Yahoo

and Facebook. This type of optimization, on the other

hand, focuses on long-term analysis of predictable

workloads and scheduled tasks, rather than on quick

bursts in demand for a specific application in a non-

predictable manner. The performance evaluation of

Web and cloud applications ([1, 5, 6]) is another

popular domain worthy of consideration. Among

other things, this domain usually involves the evalu-

ation of user behavior, which is less prevalent in

other domains. However, the domain is typically

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 4 of 16

application-centric and rarely considers the workload

characteristics of the whole cloud environment.

Workload types

To narrow down our search space further, the next step

when planning performance evaluation is to define the

workload types to investigate. Feitelson [2] gives a good

description of the constitution of a workload type. For

instance, the basic level of detail of a workload is consid-

ered an instruction, and many of them compose a

process or a task. A set of processes or tasks can in turn

be initiated by a job sent by a user, an application, the

operating system, or a mix thereof.

In the field of cloud computing, performance evalu-

ation aims mainly to optimize hardware resource

utilization. Workloads typically originate from a mix of

user, application and task workload types. For instance,

the workloads studied by Magalhaes et al. [1] and Bahga

et al. [6] are spawned from the behavioral patterns of

specific user profiles using selected Web applications. A

similar work by Moreno et al. [3] uses a similar ap-

proach, but focuses on the workload processed within a

cloud datacenter driven by users and tasks. Studying

these workload types can be useful in evaluating our

own datasets, since the latter also depend on user behav-

ior. In fact, user behavior is the prime factor in workload

generation for our performance evaluations. Another ap-

proach proposed by An et al. [5] consists in viewing the

user, the application and the service workload types as

three layers of granularity. The users launch a varying

amount of application-layer jobs, which in turn execute

a varying number of service-layer tasks. This method is

effective in the context of predictable, dynamic work-

loads. In some cases, only one workload type will be in-

vestigated, such as parallel processes and jobs under a

specific cloud environment [4].

To summarize, work in this context aims to observe

very specific benchmarks from selected applications. In

the case of this paper, for instance, we have specifically

chosen workload traces from the telecom, web and

cloud domains because the workload types greatly vary

from one another. Telecom workload types rely on SIP

register and invite requests to establish a media session

throughout a service function chain. This implies that

each VM running specific functions, jobs and tasks are

more homogeneously distributed (core infrastructure,

edge infrastructure, user devices) across the infrastruc-

ture than those of a public cloud infrastructure such as a

Google datacenter.

Workload attributes

Finally, consideration of workload attributes is the last

step when planning the performance evaluation of a sys-

tem. Attributes are what characterize workload types,

and directly influence the system’s hardware resources.

For instance, I/O (disk and memory usage, network

communications, etc.) attributes include the distribution

of I/O sizes, file access patterns and the use of read and/

or write operations [2].

In the present work, only the scheduling of the CPU is

of interest. Hence, the relevant attributes are each job’s

arrival and running times [2]. CPU scheduling is a com-

mon interest in performance evaluation, and most stud-

ies analyze many workload attributes related to this

resource. In An et al.’s work [5], the system CPU rate,

threads, Java Virtual Machine (JVM) memory usage and

system memory usage are analyzed. Similar attributes

are considered in Magalhaes et al.’s work [1], where the

system CPU rate, memory rate and users’ transactions

per second are evaluated. Other works are much more

thorough in their analysis [3], where attributes are subdi-

vided into user patterns (submission rate, CPU estima-

tion, memory estimation) and task patterns (length, CPU

utilization, memory utilization). Setting aside the differ-

ences in workload domains, such as IMS and Google

performance evaluation, we can safely assume that the

system CPU behavior remains the same in both these

cloud environments.

Workload modeling

Workload modeling aims to create workloads that can

be used in performance evaluations. Of course, the ob-

jective is to get a workload model as close as possible to

the real workload [2] It always starts with measured

workload data, and is a common alternative to using the

traced workload directly to drive simulations.

The most common approach found in the literature to

create a workload model is to create a statistical summary

of an observed workload. Approaches in [3, 6] amd [1]

apply this summarization to all the workload attributes

(e.g., CPU, memory usage, I/O, etc.), and then fit distribu-

tions to the observed values of the different parameters. In

one case, for example, a statistical analysis of user requests

is performed to identify the right distributions that can be

used to model the workload attributes such as the inter-

session interval, the think time and the session length [6].

Four candidate distributions are then considered for each

workload attribute based on efficiency: exponential distri-

bution for inter-session arrival, hyper-exponential distri-

bution for modeling think times and inter-session

intervals, and Weibull distribution and Pareto distribution

to model session lengths.

Some approaches use more sophisticated techniques

for online prediction. For instance, the work in [12] pro-

poses an online incremental learning approach to predict

the runtime of tasks in scientific workflows in clouds.

Their approach harnesses fine-grained resources moni-

toring data in order to improve the performance of the

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 5 of 16

predictions. This technique is particularly useful in real-

time, non predictable workload environments since it

has the ability to capture sudden changes in the cloud’s

performance. Next, the approach in [13] proposes an on-

line method that first estimates task runtime, disk space

and peak memory consumption based on the size of the

task’s input data. It then looks for correlations between

the parameters of a dataset to generate task estimates to

finally estimate workflow task requirements based on a

MAPE-K (Monitoring, Analysis, Planning, Execution,

Knowledge) loop. While these techniques are efficient at

predicting online task runtime and requirements, they

do not solve the problem of generating “normal” and

continuous usage of system resources in order to create

generic load profiles. These load profiles are particularly

useful for Cloud Service Providers (CSPs) and Telecom

Service Providers (TSPs) alike to anticipate resource pro-

visioning demand in their respective environment.

Other approaches applied to entirely different fields

can also be of great interest. For instance, Tahmasbi and

Hashemi [17] propose a model for forecasting urban

traffic volume by using, among other things, the Hull-

White model. This model is almost exclusively used in

the finance sector to predict fluctuations in stock prices

over a short period of time. In the case of short-term

urban volume, the Hull-White model has provided inter-

esting results, and we expect it will do the same for our

needs. Also noteworthy is the use of quadratic splines

with irregular intervals as statistical summaries, and the

use of the Weiner process as a distribution fit.

Other existing works have proposed workload predic-

tion using linear regression [18], Neural Networks [19],

a Kalman filter [20, 21] and SVR [22]. An optimal strat-

egy for resource management should allow dynamic on-

demand adjustment and provisioning of resources. This

can be greatly facilitated if the workload can be pre-

dicted accurately. In this context, Hu et al. [23] proposed

to address CPU usage estimation based on time series.

Their approach is based on support vector regression

and Kalman filter, particularly smooth Kalman filter, in

order to remove the noise in the data, and reduce the

prediction error rate. Higher weights are assigned to the

latest data in the training set as such data provide more

recent information on the behavior of the system. This

idea was developed previously by Cao et al. [24] in their

study of SVR with adaptive parameters in the prediction

of time series in the financial domain. These approaches

have outperformed prediction algorithms which are

based on linear regression and neural networks, and

even SVR.

Methodology
In this section, we present an overview of the proposed

scheme for our proposed approaches as well as a thor-

ough description of the numerous algorithms and equa-

tions involved.

Workload generator architecture

For the sake of clarity, we summarize the different steps

involved in the Hull-White GA workload generator in

Fig. 1, which can be used as reference. The novelty of

our approach lies in the relationship between (1) the

Hull-White workload modeling process and (2) a custom

GA involved in a workload generation and optimization

process. For Hull-White modeling, we first estimate the

mean and the standard deviation of an observed work-

load data set in chronological order. To get smooth and

continuous mean and standard deviation functions, our

Fig. 1 Proposed Workload Generator Scheme

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 6 of 16

workload generator employs uniform and non-uniform

quadratic spline curves. Next, fixed and variable θ values

(θ, a Hull-White parameter) will be estimated. The full

Hull-White modeling process is explained in sub-section

III.B. The breakdown of segments for non-uniform

splines, as well as for variable θ values, are evaluated in

an entirely automated process by the workload gener-

ator. The latter sets boundaries in which large variations

exist in the values of the mean and/or standard deviation

over a short period of time. We thus obtain four differ-

ent Hull-White models from which to generate our

workload data, namely: (1) uniform splines and fixed θ,

(2) uniform splines and variable θ, (3) non-uniform

splines and fixed θ and (4) non-uniform splines with

variable θ.

On its own, the Hull-White modeling process

proves to be an efficient algorithm for estimating

workload data. However, by enhancing the Hull-

White modeling with a custom GA optimization, our

experiments demonstrate that the MAPE of the esti-

mated data generated by our approach is significantly

improved, with minimal impact on the execution

time. That proves to be especially true when pairing

the benefits of the GA with the four aforementioned

Hull-White models, each providing different levels of

fidelity, and excelling in different areas.

To briefly summarize the steps needed to obtain esti-

mated workload data through this workload modeling

approach: (1) we provide discrete observed workload

data as an input to the workload generator, (2) this

workload data is processed and four Hull-White work-

load models are automatically generated and saved

under a workload profile, (3) a workload profile is used

in all or in a part of a workload generation process, and

(4) the custom GA generates estimated workload data

from many instances of the corresponding workload

profile(s) and proposes the fittest solutions.

Hull-white workload modeling

In this sub-section, we present the formulation of the

workload modeling problem and its underlying pro-

cesses. The main objective of this process is to develop

realistic workload profiles for different virtualized tele-

com and IT systems, based on data obtained from real

systems, without requiring knowledge of their inner

working processes (Black-box approach).

Stochastic differential equations (SDEs)

From each consecutive sample of the real data, we gen-

erate mean and standard deviation values. SDEs consti-

tute an excellent choice to model the time evolution of

dynamic systems subject to random changes.

dX t ¼ μ tð Þdt þ σ tð ÞdW t ; t≥0 ð1Þ

where:

Xt : Observed workload.

μ(t): Mean value of observed workload at time t.

σ(t): Variance value of observed workload at time t.

Wt : Weiner process.

Splines

Next, we generate splines for curve-fitting continuous

mean μ(t) and continuous standard deviation σ(t)

values as outlined in Fig. 2. Splines are used to esti-

mate the mean μ(t) and standard deviation σ(t) of a

set of workload data in order to achieve smooth and

continuous functions. We use both uniform and non-

uniform splines. The first one uses knots (aka “anchor

points”) set at regular time intervals (e.g., one knot

every 20 s), while non-uniform splines use knots set

at irregular time intervals.

f̂ X t tð Þð Þ ¼
ait

2
i − 1 þ biti − 1 þ ci − 1 ¼ f̂ X i − 1ð Þ

ait
2
i þ biti þ ci ¼ f̂ X ið Þ

ait
2
iþ1 þ bitiþ1 þ ciþ1 ¼ 0

8
<

: i

¼ 1;…; n

ð2Þ

where:

a1 = 0 : (first linear spline).

f̂ ðX tðtÞÞ ¼ μðtÞ : Continuous mean.

or

f̂ ðX tðtÞÞ ¼ σðtÞ : Continuous standard deviation.

Hull-white process

The following describes the main properties of the Hull-

White model, which is a popular SDE choice in the fi-

nance sector for modeling future interest rates. Note

that Fig. 2 depicts how uniform and non-uniform splines

are generated from the sample of an observed IMS CPU

workload, thus providing μ(t) and σ(t) for our Hull-

White models.

dX t ¼ μ tð Þ − θX tð Þdt þ σ tð ÞdW t ; t≥0 ð3Þ

where:

Xt : Observed workload.

μ(t): Mean spline value of observed workload at time t.

σ(t): Standard deviation spline value of observed work-

load at time t.

θ : Estimated parameter.

Wt : Weiner process.

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 7 of 16

Estimation of θ

The parameter θ is a key feature of the Hull-White

process. It is an estimated value that provides a drift (an

upwards/downwards motion) to the estimated workload.

In the present work, we generate models with both fixed

and variable θ values. For fixed θ, we take the whole data

of size T and calculate one θ value for the dataset. As

for variable θ, we use time windows whose size T de-

pend on variations in the data.

Lt θð Þ ¼ exp −

ZT

0

û t;XTð ÞdXT −

1

2

ZT

0

û2 t;XTð Þdt

0
@

1
A

ð4Þ

where:

û t;XTð Þ ¼
μ tð Þ − θXT

σ tð Þ
ð5Þ

Therefore, the Maximum Likelihood Estimation

(MLE) is defined as

cθT ¼ arg max LT θð Þ ð6Þ

GA workload estimation

A GA is a metaheuristic inspired by the natural selection

process. It belongs to the larger class of evolutionary al-

gorithms (EAs), and is commonly used in computer sci-

ence to generate optimized solutions to complex search

problems. To this end, a GA relies on bio-inspired

operators such as mutation, crossover and selection to

simulate the propagation of the fittest individuals over

consecutive generations.

Individuals

In GA, a population is a set of n individuals that form

potential solutions. For workload estimation, we define

each individual/chromosome as a set of decimal values.

Each chromosome is an estimated workload value for

the current workload attribute of the workload profile

under evaluation. For instance, if we evaluate the CPU

attributes of an IMS workload profile, each individual

would be composed of chronologically and randomly es-

timated CPU workload values provided by any of the de-

fined Hull-White models.

Segments

An individual is divided into smaller segments, or genes,

to allow it to proceed further in an evolution process of

crossover and mutation operations. Each segment is of

varying size and represents a portion of the individual.

For instance, an individual of length L = 100 can be di-

vided into 4 even parts, hence creating 4 segments, with

segment 1 containing genes 1 through 25; segment 2,

genes 26 through 50, etc.

Fitness function

In GA, a fitness function is required to rank individuals

in the current population. The score of an individual de-

pends on how close its estimated values are to the ob-

served values of a workload profile. In the problem at

Fig. 2 IMS1 Hull-White sampled splines: Observed data, μ(t), σ(t)

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 8 of 16

hand, we evaluate the fitness of an individual by its

MAPE score:

MAPE ¼
100

n

Xn

t¼1

X t − X̂ t

X t

����
���� ð7Þ

where:

Xt : Observed value.

X̂ t : Estimated value.

Selection

During each successive generation, individuals of the

current population are selected to breed a new popula-

tion (hence the term “generation”). For the purpose of

our workload-modeling problem, we proceed by tourna-

ment selection. To this end, we pick one candidate with

the fittest solution amongst x randomly selected individ-

uals. The process is then repeated to select a second

candidate. Both candidates become parents to generate a

new offspring in the crossover operator.

Crossover operator

The crossover operator generates a next-generation

population of solutions from those chosen through tour-

nament selection. Segments are chosen randomly, based

on a uniform rate of ρc (probability of selecting segments

from one parent over the other), from both parents I1
and I2 to generate a new offspring.

Mutation operator

The mutation operator generates new estimated values

from a randomly selected Hull-White model for randomly

selected segments of an individual. It is based on a muta-

tion rate (probability of mutating a segment) of ρm.

Algorithm

Algorithm 1 describes the proposed process for work-

load modeling with GA. It starts by generating a random

population “P” of “N = 52” candidate workload values, or

individuals (Line 4), and then evaluates the fitness func-

tion, being the MAPE for each individual (Line 5 to 11).

Next, a range of “T = 5” random candidates is selected

among population P, and the candidate with the best

MAPE is chosen through a tournament selection process

(Lines 15 and 16). Afterwards, the two newly selected

candidates, or parents, go into the evolution crossover

process, with the offspring being a random composition

of candidate1’s genes (ρc) and candidate2’s genes (1- ρc),

with ρc = 0.5 (Line 17), to generate a new individual, or

offspring for the next generation. After a new population

of “N” individuals is.

generated in this manner, the whole population goes

through a mutation process (Line 20). This mutation

process evaluates a randomly generated number, for

each segment of each individual, with a mutation rate

“ρm= 0.015”. If the segment’s rate is lower than.

the mutation rate, it is replaced by a new segment gen-

erated with one of the randomly selected Hull-White

models. Next, the fitness of these individuals forming

the new population is calculated (Line 22 to 28). The

process is repeated until the maximum number of gen-

erations “G = 60” is reached. Finally, the algorithm

returns the fittest individual having the lowest MAPE

found in the last generation (Line 31).

SVR-Kalman workload estimation

Beside the Hull-White-GA, we also propose and study a

Kalman filter [8] and SVR [9] combination for workload

estimation. The Kalman filter is a well-known model for

estimating a hidden state x of the system indirectly from

measured data, and it can integrate data from as many

measurements as are available [8]. The Kalman filter

model is defined as follows:

xk ¼ Axk − 1 þ Buk − 1 þ wk − 1 ð8Þ

With a measurement z,

zk ¼ Hxk þ vk ð9Þ

where:

A : Transition matrix from time k − 1 to k.

B : Control matrix

uk − 1 : Known vector

H : Matrix showing the relationship between zk and xk
wk − 1 and vk : Process and measurement noise,

respectively

After filtering observed workloads with the Kalman fil-

ter to remove the noise and hence minimize the predic-

tion error, we use SVR to estimate workloads. In SVR,

input data are separated into training data classes using

linear hyperplanes. If they cannot be linearly separated,

then input vectors (observed data) are mapped onto a

high-dimensional feature space using a non-linear map-

ping function (kernel function). SVR identifies the opti-

mal hyperplane that maximizes the margin between the

vectors of the considered classes. This optimal hyper-

plane is defined as a linear decision function (find opti-

mal parameters w and b):

f xð Þ ¼ wK xð Þ þ b ð10Þ

where:

x : Input data, w is the weight vector and b is the bias

parameter

K(x) : Kernel function (e.g., linear, Radial Basis Func-

tion (RBF))

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 9 of 16

Algorithm 2 shows the proposed Expectation Maximization

Algorithm (EM) EM-KalmanFilter-SVR. The algorithm starts

by initializing SVR parameters (Line 1). The Kernel function

model can be Radial Basis Function (RBF), linear, or polyno-

mial. The parameter C trades off misclassification of training

examples against simplicity of the decision surface, while

Gamma can be defined as the inverse of the radius of influ-

ence of samples selected by the model as support vectors

[25]. Then, another initialization phase is conducted for the

data samples of the Kalman filter. Next, the initial state mean

is set to 0 while n_dim_obs, the size of the observation space,

is set to 1 (Line 3). The estimated state is calculated using

EM (Lines 4 and 5). EM is a meta-algorithm for learning pa-

rameters in probabilistic models. It aims to find parameters

that maximize the expected likelihood of the observed vari-

ables. The EM algorithm is used in the present work to esti-

mate model parameters with the Kalman filter. The

algorithm estimates the state with the Kalman filter (Line 4),

and then estimates it with filtering and smoothing (Line 5).

Afterwards, both the estimated state and the smoothed state

are used in SVR for filter prediction and smooth filter predic-

tion, respectively (Lines 7 and 8). Finally, the algorithm

returns the filtered estimated data and the smooth filtered es-

timated data (Line 9).

Experimental results
In this section, we present the results of our experiments.

Use cases

In our experiments, we used CPU workload from two

different domains: IT and telecom. Another scenario use

telecom throughput workload to validate the genericity

of our approaches. We selected these workloads because

they differ significantly from each other, and we wanted

to evaluate the performance of our approach under dif-

ferent load behaviors while also assessing its general effi-

ciency under various situations. Hence, to cover as many

scenarios as possible, we used 5 different datasets: 2

CPU workload scenarios and 1 throughput scenario

from the telecom domain (IMS1, IMS2, ThrpIMS) with

a similar configuration, but with slight variations in the

amount of customer calls per second (CPS) generated,

and 2 from the IT domain (Google, BitBrains). The

Google dataset was taken from a single server in a Goo-

gle cloud environment, and showed a standard CPU

workload behavior under normal utilization in a cloud

environment. The BitBrains dataset was a business-

critical CPU workload trace from a single VM, collected

from a distributed cloud hosting datacenter graciously

provided by BitBrains IT Services Inc. These traces are

freely available through the public Grid Workloads

Archive [26].1 Lastly, the last dataset (ThrpIMS) is in-

coming throughput workload traveling through a virtual

Interrogating Call Session/Control Function (I-CSCF)

server from a virtualized IMS infrastructure.

Configuration

To demonstrate the proposed hybrid workload modeling

approach, we created workload models based on ob-

served CPU workloads of virtualized IMS, Google and

BitBrains clusters as well as throughput from a virtua-

lized IMS infrastructure. The workload modeling experi-

ments were performed on a server with a 2.6 GHz Intel

Core i7 6-core processor, 16 GB of RAM, and using

Matlab R2018a. The following describes the configura-

tions and scenarios used in this paper.

IMS1 configuration

The IMS1 dataset is a collection of CPU workload data

obtained by stressing an IMS virtualized server with call

setups. Table 1 describes the amount of calls generated

in a given time frame, for the first cycle.

The next 5 cycles are variations of the first cycle, as

shown in Table 2, with different CPS rates and durations.

IMS2 configuration

The IMS2 dataset is another collection of CPU workload

data obtained by stressing an IMS virtualized server with

call setups. Table 3 describes the amount of calls gener-

ated in a given time length, for the first cycle.

1These traces can be accessed at http://gwa.ewi.tudelft.nl/datasets/
BitBrains

Table 1 IMS1, Cycle 1 Configuration

Phase Starting CPS Variation Duration

1 150 + 50 CPS/10 s. 50 s.

2 400 – 100 s.

3 600 – 300 s.

4 200 −50 CPS/50 s. 150 s.

Table 2 IMS1, Configuration Variations, Cycles 2–6

Cycle Variation from 1st cycle

2 + 50 CPS

3 −50 CPS

4 −100 CPS

5 −25 CPS

6 + 300 CPS

Table 3 IMS2, Cycle 1 Configuration

Phase Starting CPS Variation Duration

1 150 + 50 CPS/50 s. 150 s.

2 500 + 50 CPS/50 s. 100 s.

3 900 + 50 CPS/50 s. 150 s.

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 10 of 16

http://gwa.ewi.tudelft.nl/datasets/BitBrains
http://gwa.ewi.tudelft.nl/datasets/BitBrains

The next 5 cycles are variations of the first cycle, as

shown in Table 4, with different CPS rates and

durations.

Google configuration

CPU load collected every 300 s of a single machine in a

cluster captured and made available by Google.

BitBrains configuration

CPU load collected every 300 milliseconds from a virtual

machine hosting business-critical applications.

ThrpIMS configuration

Incoming throughput, in megabytes per second (Mbps)

collected every 5 s from a virtual I-CSCF.

Results

In the first set of experiments, we have generated work-

load data from a single Hull-White model combined

with GA as follows:

� Model 1: uniform μ(t) and σ(t) splines, fixed θ

� Model 2: non-uniform μ(t) and σ(t) splines, fixed θ

� Model 3: uniform μ(t) and σ(t) splines, variable θ

� Model 4: non-uniform μ(t) and σ(t) splines, variable

θ

In the second set of experiments, we combined each

of the four Hull-White models with GA, with the former

used to model workloads and the latter to generate opti-

mized workload estimates. Further, we compared all

these models with SVR and SVR-Kalman models. SVR

allows data approximation based on statistical learning

theory. In this SVR model, the prediction of future re-

source usage was based on observed data, which we di-

vided into training and prediction sets to generate the

estimated workloads. As for the SVR-Kalman model, we

filtered observed data through the Kalman filter, and

then we made predictions using SVR. For SVR, we used

four observations to train the model and two observa-

tions to estimate the next two values. The kernel func-

tion was set to RBF since it is more appropriate to use

on nonlinear datasets, while C and Gamma values were

fixed at 0.1. These parameters were set through exten-

sive tests performed in order to find the configuration

minimizing the estimation error. As for the Kalman fil-

ter, we considered the transition as an identity matrix,

we assumed a vector of zero control input, and the noise

measurement was of the state directly. Therefore, we set

A = 1, u = 0, and H = 1 in Eqs. 8 and 9, which we define

as follows:

xk ¼ xk − 1 þ wk − 1 ð11Þ

zk ¼ xk þ vk ð12Þ

Figures 3a 4, 5, 6, 7a depict the results of the Hull-

White-GA, SVR and SVR-Kalman estimated workloads

Table 4 IMS2, Configuration Variations, Cycles 2–6

Cycle Variation from 1st cycle

2 −100 CPS

3 + 275 CPS

4 −25 CPS

5 + 400 CPS

6 + 25 CPS

Fig. 3 IMS1 Observed and Estimated data: a Complete dataset, b Zoom-in

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 11 of 16

for each dataset, while Figs. 3b, 4, 5. 6, 7b show zoomed-

in workload estimations of each dataset.

In Figs. 3 and 4, results show that the Hull-White-GA

telecom estimated CPU workloads faithfully match the

observed CPU workloads’ behavior and that the ampli-

tude in estimated workload variations, enhanced by a

drift effect from the θ values from the Hull-White

models, provide more realistic, unsteady workload fluc-

tuations. SVR and SVR-Kalman estimated workloads, on

the other hand, show steadier workload fluctuations

which is helpful in predicting future.

CPU wokload usage, but doesn’t quite represent the

nature of the workloads’ behavior.

Similar observations can be made from IT CPU work-

loads depicted in Figs. 5 and 6, with the difference that

areas with sharper variations in the observed workload

cause the standard deviation of the Hull-White models

to increase significantly, thus generating estimated

Fig. 4 IMS2 Observed and Estimated Data: a Complete dataset, b Zoom-in

Fig. 5 Google Observed and Estimated data: a Complete dataset, b Zoom-in

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 12 of 16

workload data with larger variance in some intervals.

While these areas still show a similar behavior to the ob-

served workload, the overall accuracy of the Hull-White-

GA approach tends to diminish by a small margin.

Figure 7 shows steadier telecom throughput observed

workload. In this case, SVR and more particularly SVR-

Kalman outmatch Hull-White-GA. In this scenario, the

drift effect incurred by Hull-White’s θ values hinders the

Hull-White-GA approach by infusing unwanted, un-

steady throughput variations in the estimated workload.

Next, Table 5 gives the average standard deviation

of the MAPE of the estimated workload, based on all

Hull-White and Hull-White-GA scenarios, and finally,

Table 6 gives the average execution time of each ap-

proach, based on 10 simulations. In Table 6, we

observe that the execution times of the SVR and

SVR-Kalman approaches are significantly faster than

that of Hull-White-GA. This is explained by the fact

that both SVR and SVR-Kalman are machine

learning-based approaches based on statistical learning

Fig. 6 BitBrains Observed and Estimated data: a Complete dataset, b Zoom-in

Fig. 7 IMS Throughput Observed and Estimated data: a Complete dataset, b Zoom-in

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 13 of 16

theory. They estimate workload based on past work-

load usage in a short time window. Hull-White-GA,

on the other hand, applies a segmentation process of

the entire dataset and runs through multiple genera-

tions to generate potential candidates. This consumes

a lot of processing power which lengthens consider-

ably the runtime of the workload generation process.

We may also add that the runtime for Hull-White

models 1, 2, 3 and 4 are not listed since they get

marginally better results than those based on the full

GA-Hull-White approach. This is explainable due to

the fact that all of these approaches get through the

same GA process with the same number of iterations

and all other hyperparameters (tournament selection,

mutation rate, etc.) are the same.

Lastly, Table 7 illustrates the MAPE of the considered

models. The best result for each scenario is depicted in

bold. In Table 7, for instance, we observe that MAPE

from Hull-White-GA is generally much better than

those of each individual Hull-White model 1–4 but also

very close to the SVR and SVR-Kalman results based on

telecom (better) and IT (worse) CPU workloads. In sce-

narios involving telecom throughput, however, SVR-

Kalman significantly outmatches other approaches.

The results show that Hull-White combined with GA

maintains a MAPE in the 5 to 10% range for both tele-

com and IT CPU estimated workloads, while also main-

taining by far the highest fidelity to the observed

workload for all tested datasets. Moreover, Figs. 3b, 4b,

5b, 6b and 7b show that the Hull-White-GA estimated

workload fits the observed workload, with the exception

of some areas where there are sharp CPU variations. It is

not the case, however, for SVR and SVR-Kalman

estimates, following a flatter pattern which does not

faithfully represent the observed workload behavior.

To summarize, these experiments show that Hull-

White combined with GA is able to provide high accur-

acy for workload modeling and estimation, with the

highest fidelity to the workload behavior, but with higher

overhead in terms of execution time as compared to

SVR-Kalman. Yet, the latter loses efficiency proportion-

ally to the segment size, and is more sensitive to large

variations and peaks in the observed workload data.

Overall, both approaches provide distinct advantages

and tradeoffs: Hull-White-GA has a much higher run-

time and is only effective in offline environment, for

cases when we look for estimated data with the highest

fidelity to the observed workload. SVR-Kalman, on the

other hand, outperforms Hull-White-GA and is a good

candidate for online predicgtion. Its fidelity to the ob-

served workload is, however, extremely low.

Conclusion and future work
For dynamic on-demand adjustment and provisioning of

resource needs in the cloud environment, an accurate pre-

diction of the system behavior is needed. The assessment

of system behavior requires large amounts of workload

data. To address the need for real workload data, some-

thing that is hard to obtain, we proposed in this article

two novel paradigms for workload emulation, namely, a

Hull-White model combined with a custom GA and a

support vector regression model optimized with a Kalman

filter. We evaluated both techniques on different datasets

of IMS, Google and BitBrains CPU and throughput work-

loads. The results show the advantage of the Hull-White

GA model over SVR and SVR-Kalman, manifesting higher

fidelity for IMS, Google and BitBrains CPU and through-

put datasets. As for the Google and BitBrains CPU as well

as the IMS throughput workload data, SVR-Kalman shows

better results in terms of the least MAPE. However, for all

datasets, SVR-Kalman outperformed both the SVR and

Hull-White GA with negligible execution time, showing

that this approach is a good candidate for online predic-

tion. Such promising results pave the way for a valuable

track to examine the proposed hybrid workload modeling

approaches on other workload attributes, such as RAM,

disk I/O and network traffic.

Table 6 Average execution time (seconds) based on 10
simulations, 60 generations for GA

Dataset GA-Hull White SVR SVR-Kalman

IMS1 6.15 0.0481 0.0464

IMS2 4.03 0.0286 0.0278

Google 2.32 0.0094 0.0091

BitBrains 3.84 0.0228 0.0219

ThrpIMS 6.89 0.060.8 0.0603

Table 5 Average std. of MAPE based on 10 simulations

Dataset GA-Hull White H-W Model 1 H-W Model 2 H-W Model 3 H-W Model 4

IMS1 0.204 0.839 0.808 0.529 0.784

IMS2 0.284 1.593 0.897 0.995 1.050

Google 0.317 1.036 0.982 0.875 1.377

BitBrains 0.071 0.289 0.262 0.281 0.374

ThrpIMS 1.847 158.737 1.290 1.655 1.457

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 14 of 16

Abbreviations

Cloud: cloud computing; CSP: Cloud service provider; CPU: Central
processing unit; DL: Deep learning; EA: Evolutionary algorithm;
EM: Expectation maximization algorithm; GA: Genetic algorithm; IMS: IP
Multimedia subsystem; IT: Information technologies; I/O: Input and output;
JVM: Java virtual machine; MAPE: Mean absolute percentage error;
NFVI: Network function virtualization infrastructure; QoS: Quality of service;
RAM: Random access memory; RBF: Radial basis function; SDE: Stochastic
differential equation; SLA: Service level agreement; SLO: Service level ojective;
SVR: Support vector regression; Telecom: telecommunications; TSP: Telecom
service provider; VM: Virtual machine; VMM: Virtual machine monitor

Acknowledgements

No further acknowledgments to provide than those already listed in the
authors’ section.

About the authors

Cédric St-Onge is a Ph.D. candidate in the Department of Software and IT
Engineering at École de technologie supérieure (ETS), Montreal, Canada, and
holds M.A.Sc. and B. Eng. Degrees, both in IT Engineering from ETS, Montreal,
Canada. His research interests include workload modeling, pattern detection,
cloud computing, machine learning, recurrent neural networks, network
function virtualization, dynamic VNF resource adaptation and service
function chaining.
Souhila Benmakrelouf holds a Master’s degree in Software Engineering from
École de technologie supérieure (ETS), University of Quebec (Canada) and
Bachelor degree in Computer engineering from university of Houari
Boumadienne, Algies (Algéria). Currently, she is PhD student in ETS. Her main
research interests include Cloud computing, resource management, machine
learning techniques.
Nadjia Kara Holds a Ph.D. in Electrical and Computer Engineering from Ecole
Polytechnique of Montreal (Canada), a Master’s degree in Electrical and
Computer Engineering from Ecole Polytechnique of Algiers (Algeria). She has
several years of experience in research and development. She worked in
industry for more than ten years. From 2005 to 2015, she held adjunct
professor positions at INRS-EMT (Canada), University of Sherbrooke (Canada),
and Concordia University (Canada). Since 2009, she is a professor at the de-
partment of software engineering and IT, School of Superior Technology
(ETS), University of Quebec (Canada). Her Research interests include service
and network engineering for communication networks, resource manage-
ment in next generation networks, ambient intelligence, autonomous net-
works, multimedia applications and services, and machine learning. The
application areas are: network virtualization, cloud, grid and autonomic com-
puting, and Internet of Things..
Hanine Tout received the Ph.D. degree in software engineering from École
de Technologie Supérieure (ÉTS), University of Quebec, Montreal, Canada
and the MSc degree in computer science from the Lebanese American
University, Beirut, Lebanon. She is currently a Postdoctoral Fellow at Ericsson,
Montreal, Canada. Her research interests include 5G, IoT, machine learning,
mobile cloud computing, mobile virtualization, optimization, Web services,
security and formal verification. She is serving as TPC member for IMCET’16,
NTMS 2016 and SSCC-2018 and a reviewer in IEEE Communications Letters,
Computers & Security journal, IEEE Transactions on Cloud Computing and
several international conferences. She is a student member of the IEEE.
Rafi Rabipour has been engaged in research and development at Bell-
Northern Research, Nortel Networks, and Ericsson. His work at Bell-Northern
Research and Nortel Networks was mainly focused on the development of
digital signal processing algorithms aimed at improving the performance of

wireless and VoIP products. At Ericsson he participated in research in the do-
main of Cloud Computing, on topics such as non-linear performance charac-
teristics of virtualized applications, specific facets of the Internet-of-Things, as
well as approaches to resource management. He holds a Master’s degree in
Electrical Engineering from McGill University in Montreal.
Claes Edstrom is Senior Specialist Cloud Computing and is based in
Montreal. He is responsible for initiating and executing exploratory projects
in the areas of NFV and Cloud technologies. His research interests include
application transformation, resource management and automation in cloud
computing environments. Before joining Ericsson Canada in 2007, Edstrom
spent + 15 years working for the company in Sweden and Denmark in
various technology roles. He has been working with system studies for
WCDMA, tender support for initial 3G/UMTS offerings roll out and system
upgrades for 2G/3G networks in the Nordic region and development of
AMPS/D-AMPS networks in North America.

Authors’ contributions

The first author realized research on the Hull-White GA approach and has
written the largest share of this paper. The second author contributed by
sharing results of the Kalman Filter and Kalman Filter-SVR approaches. The
third author is the research advisor who has financed and supervised this re-
search project. The fourth author contributed by writing a small share of this
paper. Fifth and sixth authors are industrial partners who have supervised
this research project and shared precious insights throughout the course of
this research project. The author(s) read and approved the final manuscript.

Funding

This work has been supported by Ericsson Canada and the Natural Sciences
and Engineering Research Council of Canada (NSERC).

Availability of data and materials

Data is available upon request to the corresponding author.

Competing interests

We formally declare that there are no know financial or non-financial com-
peting interests in the realization of this research.

Author details
1ÉTS, University of Quebec, Montreal, Canada. 2Ericsson Canada, Montreal,
Canada.

Received: 28 May 2020 Accepted: 16 December 2020

References

1. Magalhães D, Calheiros RN, Buyya R, Gomes DG (2015) Workload modeling
for resource usage analysis and simulation in cloud computing. Comput
Electrical Eng. 47:69–81

2. Feitelson DG (2015) Workload modeling for computer systems performance
evaluation. Cambridge University Press https://doi.org/10.1017/
CBO9781139939690

3. Moreno IS, Garraghan P, Townend P, Xu J (2013) An approach for
characterizing workloads in google cloud to derive realistic resource
utilization models. In: Service Oriented System Engineering (SOSE), 2013
IEEE 7th International Symposium on. IEEE, pp 49–60 https://doi.org/10.
1109/SOSE.2013.24

4. Yang H, Luan Z, Li W, Qian D (2012) Mapreduce workload modeling with
statistical approach. J Grid Comput 10(2):279–310

Table 7 Average MAPE of solutions based on 10 simulations

Dataset GA-Hull
White

Hull-White Model
1

Hull-White Model
2

Hull-White Model
3

Hull-White Model
4

SVR SVR-
Kalman

Num
samples

IMS 1 6.668 12.734 15.728 12.352 14.641 14.30 10.72 724

IMS 2 9.300 21.903 27.345 21.736 26.196 26.02 16.66 448

Google 7.275 18.454 20.715 17.713 21.105 19.19 5.82 138

BitBrains 3.7024 7.378 8.197 7.472 7.737 6.78 1.31 351

ThrpIMS 63.864 650.605 70.031 62.016 72.416 165.70 0.68 550

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 15 of 16

https://doi.org/10.1017/CBO9781139939690
https://doi.org/10.1017/CBO9781139939690
https://doi.org/10.1109/SOSE.2013.24
https://doi.org/10.1109/SOSE.2013.24

5. An C, Zhou J, Liu S, Geihs K (2016) A multi-tenant hierarchical modeling for
cloud computing workload. Intell Automation Soft Comput 22(4):579–586

6. Bahga A, Madisetti VK (2011) Synthetic workload generation for cloud
computing applications. J Software Eng Appl 4(07):396

7. Melanie M (1996) An introduction to genetic algorithms by Melanie
Mitchell. MIT Press, Cambridge, p 205 Comput. Math. with Appl

8. Hu R, Jiang J, Liu G, Wang L (2014) Efficient resources provisioning based on load
forecasting in cloud. Sci World J 2014 https://doi.org/10.1155/2014/321231

9. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
10. Menasce DA, Almeida VA, Dowdy LW, Dowdy L (2004) Performance by

design: computer capacity planning by example. Prentice Hall Professional
ISBN-13: 978-0130906731

11. Benmakrelouf S, St-Onge C, Kara N, Tout H, Edstrom C, Lemieux Y (2020)
Abnormal behavior detection using resource level to service level metrics
mapping in virtualized systems. Futur Gener Comput Syst 102:680–700
https://doi.org/10.1016/j.future.2019.07.051

12. Hafizhuddin Hilman M, Rodriguez MA, Buyya R (2019, 2018) Task runtime
prediction in scientific workflows using an online incremental learning
approach, Proceedings - 11th IEEE/ACM international conference on utility and
cloud computing. UCC, pp 93–102 https://doi.org/10.1109/UCC.2018.00018

13. Da Silva RF, Juve G, Rynge M, Deelman E, Livny M (2015) Online task
resource consumption prediction for scientific workflows. Parallel Process
Lett 25(3) https://doi.org/10.1142/S0129626415410030

14. Shaw SB, Singh AK (2015) Use of proactive and reactive hotspot detection
technique to reduce the number of virtual machine migration and energy
consumption in cloud data center. Comput Electrical Eng 47:241–254

15. Guo Z, Duan Z, Xu Y, Chao HJ (2014) JET: electricity cost-aware dynamic
workload management in geographically distributed datacenters. Comput
Commun 50:162–174

16. Guo Z, Hui S, Xu Y, Chao HJ (2016) Dynamic flow scheduling for Power-
efficient Data Center Networks, 2016 IEEE/ACM 24th Int. Symp Qual Serv
IWQoS 2016:1–10

17. Tahmasbi R, Hashemi SM (2014) Modeling and forecasting the urban
volume using stochastic differential equations. IEEE Trans Intell Transp Syst
15(1):250–259

18. Lloyd W, Pallickara S, David O, Lyon J, Arabi M, Rojas K (2013) Performance
implications of multi-tier application deployments on infrastructure-as-a-
service clouds: towards performance modeling. Futur Gener Comput Syst
29(5):1254–1264

19. Islam S, Keung J, Lee K, Liu A (2012) Empirical prediction models for
adaptive resource provisioning in the cloud. Futur Gener Comput Syst 28(1):
155–162

20. Zhang-Jian D-J, Lee C-N, Hwang R-H (2014) An energy-saving algorithm for
cloud resource management using a kalman filter. Int J Commun Syst
27(12):4078–4091

21. Wang W, Huang X, Qin X, Zhang W, Wei J, Zhong H (2012) Application-level
cpu consumption estimation: Towards performance isolation of multi-
tenancy web applications. In: Cloud computing (cloud), 2012 ieee 5th
international conference on. IEEE, pp 439–446 https://doi.org/10.1109/
CLOUD.2012.81

22. Wei Z, Tao T, ZhuoShu D, Zio E (2013) A dynamic particle filter-support
vector regression method for reliability prediction. Reliability Eng Syst Saf
119:109–116

23. Hu R, Jiang J, Liu G, Wang L (2013) Cpu load prediction using support
vector regression and kalman smoother for cloud. In: Distributed
Computing Systems Workshops (ICDCSW), 2013 IEEE 33rd International
Conference on. IEEE, pp 88–92 https://doi.org/10.1109/ICDCSW.2013.60

24. Cao L-J, Tay FEH (2003) Support vector machine with adaptive parameters
in financial time series forecasting. IEEE Trans Neural Netw 14(6):1506–1518

25. RBF SVM parameters. 2020. https://scikit-learn.org/stable/auto_examples/
svm/plot_rbf_parameters.html examples/svm/plot rbf parameters.html.
Accessed 16 Oct 2017

26. Shen S, Van Beek V, Iosup A (2015) Statistical characterization of business-
critical workloads hosted in cloud datacenters, Proceedings - 2015 IEEE/
ACM 15th International Symposium on Cluster, Cloud, and Grid Computing,
CCGrid, pp 465–474 https://doi.org/10.1109/CCGrid.2015.60

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

St-Onge et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:6 Page 16 of 16

https://doi.org/10.1155/2014/321231
https://doi.org/10.1016/j.future.2019.07.051
https://doi.org/10.1109/UCC.2018.00018
https://doi.org/10.1142/S0129626415410030
https://doi.org/10.1109/CLOUD.2012.81
https://doi.org/10.1109/CLOUD.2012.81
https://doi.org/10.1109/ICDCSW.2013.60
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html%20examples/svm/plot%20rbf%20parameters.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html%20examples/svm/plot%20rbf%20parameters.html
https://doi.org/10.1109/CCGrid.2015.60

	Abstract
	Introduction
	Background
	Motivation
	Problem illustration

	Related work
	Workload domains
	Workload types
	Workload attributes
	Workload modeling

	Methodology
	Workload generator architecture
	Hull-white workload modeling
	Stochastic differential equations (SDEs)
	Splines
	Hull-white process
	Estimation of θ

	GA workload estimation
	Individuals
	Segments
	Fitness function
	Selection
	Crossover operator
	Mutation operator
	Algorithm

	SVR-Kalman workload estimation

	Experimental results
	Use cases
	Configuration
	IMS1 configuration
	IMS2 configuration
	Google configuration
	BitBrains configuration
	ThrpIMS configuration

	Results

	Conclusion and future work
	Abbreviations
	Acknowledgements
	About the authors
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

