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§ 1. Introduction

In this paper we solve the subfield problem of a generic cubic polynomial g(¢,Y)
for the symmetric group &3 of degree 3 by using a certain sextic polynomial P(t, Z)
which is generic for the direct product (&3)? of the two groups G3. We also study
the descent genericity of the polynomial P(t, Z) explicitly. See § 2 for the notion
about the genericity of a polynomial and the subfield problem of the polynomial.

Let k be a field with char(k) # 2,3 and k(t) the rational function field over k
in one variable ¢. Let g(¢,Y") be a cubic polynomial over k(t) of the form

gt,Y)=Y?—tY —t=Y> —t(Y +1).

Let k(t) be the rational function field over k with two variables ¢; and ¢, where

t = (t1,t2). We define a sextic polynomial P(t, Z) € k(t)[Z] over k(t) by
Pt,2)=25—r\Z* + 1 2% + 10 2% — 2roZ + 1

where r; and 7 are rational functions in k(t) such that

t1t2(2(t; + t2) — 27) 22
— y Ty = .
(t1 — t2)? Ot — to)?

Let by and by be two elements in an extension K of k such that bybe(4b; —27)(4by —
27)(4b1by — 27(by + b2))(by — b2) # 0. Let M; denote the minimal splitting fields of
g(b;,Y) over K and put n; = [M,; : K|, respectively. When a polynomial ' € K[X]

™

over K satisfies ' = [[;_, Fj for irreducible polynomials F; over K of degree d;
with 1 < d; < dy <--- <d,, we say that the decomposition type DT g F of F over
K is [dl,dg, ceey dr]



Theorem 1.1 (Proposition 3.2). We assume ny < na.
(1) If ny = 1, then My C My and DT gk P(b,Z) = [ng,na, ..., na).
(2) When ny = ng = 2, we have

~J [1,1,2,2] if and only if My = M,
DTxP(b,2) = { 2,4] if and only if My # M.
(3) If ny = 2 and ny = 3, then My N My = K and DT xP(b, Z) = [6].
(4) When ny =2 and ny = 6, we have

[ [3,3] if and only if My C Ma,
DTxP(b,2) = { 6] if and only if My ¢ M.
(5) When ny = ny = 3, we have

~J [1,1,1,3] if and only if My = My,
DTxP(b,2) = { 3, 3] if and only if My # M.
(6) If ny =3 and ny = 6, then My N My = K and DT xP(b, Z) = [6].
(7) When ny = ny = 6, we have

[1,2,3] if and only if My = M,
[3,3] if and only if [M; N M, : K| =2,
6] if and only if My N My = K.

DT P(b,7) =

Corollary 1.2. With the same notation as in Theorem 1.1, the equation M, =
M, holds if and only if P(b,Z) has a solution in K.

Proposition 1.3 (Corollary 2.7). The sextic polynomial P(t,Z) is generic for
(&3)? over k.

The exceptional case that byby(4by — 27)(4by — 27)(4b1by — 27(by + bs)) (b1 — b2) =0

is as follows.

Lemma 1.4 (Lemma 3.8). We have M; = K if b;(4b; —27) = 0. When (4b1by —
27(61 + bg))(bl - bg) = O, it holds that M1 = MQ.

REMARK 1.5. By using an other method with the representation of a cubic field
embedding in the ring of 3 x 3 matrices over QQ, Miyake [6] gave a solution for the
isomorphism problem of g(¢,Y") over Q, that is, a condition so that Splgyg(by,Y) =
Splgg (b2, Y) for by, by € Q. His result is one of the motivations of this paper.
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In § 2 we recall the notion on the genericity of a regular polynomial and intro-
duce the subfield problem of the polynomial. We show the genericity of P(t, Z) for
(63)? over k (Proposition 1.3). In § 3 we study the specialization of P(t,Z) and
solve the subfield problem of g(¢,Y") (Theorem 1.1). In § 4 we exhibit the discrim-
inants of the polynomials described in § 2. In § 5 we study the descent genericity
of P(t, Z) and present explicit generic polynomials Py (¢, Z) for all subgroups H of
(&3)? as degenerations of P(t, Z).

Acknowledgement. The author is supported by the 21st Century COE Program
“Development of Dynamic Mathematics with High Functionality”.

8 2. Genericity of the sextic polynomial

We first recall the notion on the genericity of a regular polynomial (cf. Jensen-
Ledet-Yui [3]) and introduce the subfield problem of the polynomial. Let k be
a field and G a finite group. The rational function field k(t1,ts,...,t,) over k
with m variables tq,ts,...,t,, is denoted by k(t) where t = (¢,t2,...,t,). For a
polynomial F'(X) € K[X] over a field K let us denote by Sply F(X) the minimal
splitting field of F(X) over K. We say a polynomial F(t,X) € k(t)[X] is a k-
regular G-polynomial or a regular polynomial over k for G if L = Spl, F'(t, X) is
a Galois extension with Gal(L/k(t)) ~ G and L Nk = k where k is an algebraic
closure of k. For example, if n is a positive integer greater than 2, then the Kummer
polynomial X" — ¢ € Q(¢)[X] is a regular polynomial for the cyclic group C, of
order n not over Q but over Q({,) where (, is a primitive n-th root of unity in
Q. A k-regular G-polynomial F(t, X) € k(t)[X] is called to be generic over k if
F(t, X) yields all the Galois G-extensions containing k, that is, for every Galois
extension L/K with Gal(L/K) ~ G and K D k there exists a K-specialization
a = (ay,as,...,a,), a; € K so that L = SplF(a, X). The subfield problem for
a regular polynomial F'(t, X) is to determine in terms of a = (ay,as,...,a,) and
b = (b1,b,...,b,) whether Sply F(a, X) C Spl,F(b, X) or not.

In the following we construct the sextic polynomial P(t, Z) and show the gener-
icity of P(t,Z). Let k be a field with char(k) # 2,3 and k(s) the rational function

field over k in one variable s. Let f(s, X) be a cubic polynomial over k(s) of the
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form
f(5,X)=X>-3sX> - (3s+3)X —1=X>-3X —1-3s(X*+ X),

which is called the simplest cubic polynomial of Shanks type [10]. It is known that
f(s, X) is generic for C3 over k (cf. [9]). Let A2(X) and A3(X) be linear fractionals
over k such that A3(X) = —X — 1 and A3(X) = —(X 4+ 1)/X. Then one has
A2(X) = A3(X) = X. Tt is easy to check

Lemma 2.1. We have f(As(s), X) = —f(s, A2(X)). Every solution x € k(s)
of f(s,X) = 0 satisfies that f(s,X) = (X —x)(X — A3(2))(X — A3(x)).

Let us recall a descent Kummer theory studied in a previous paper [5] (see also
Morton [7], Chapman [1] and Ogawa [8]). Let +r be a composite law on 7" =
P! —{¢, ¢!} such that a;+ras = (a1a—1)/(a; +as+1) for ay, as € T where ( is a
primitive third root of unity in k. Then T is an abelian group with +. In fact, T
is an algebraic torus of dimension 1 with group isomorphism ¢ : ' — G,,, a — (a—
¢)/(a— 1) over k(¢). The composite law +r satisfies a1+ras = o~ (p(ar)p(az)).
The identity 07 of T is oo = ¢ *(1). The inverse —ra of a € T is equal to
—a — 1. The 3-torsion subgroup T'[3] = Ker([3] : T — T) of T is generated by
—1 = ¢ '(¢) where [n] is the multiplication by n map on T. For an z € k(s) the
equation f(s,z) = 0 holds if and only if [3](x) = s. Thus the subfield problem
of f(s,X) can be solved by the cohomological argument related to the group T'
(see [5]). One can consider the functions Ay(X) and A3(X) as As(X) = —¢r X and

As(X) = X+r(—1), respectively. Lemma 2.1 implies

Corollary 2.2. We have
f(8, X)f(=r8,X) = (X + X +1)° = 9(s* + s+ 1)(X* + X)?,

whose zero set is equal to

A(z) ={z, A3(x), A2(x), As(z), A3As(), A2 As(x)}
B z+1 1 T 1
T Sty

- - )

x x+1

for a solution x € k(s) of f(s,X) =0.



Let g(t,Y") be as in Introduction and § € k(t) a square root of the discriminant

of the polynomial g(¢,Y"), that is,
gt,Y)=Y?—tY —t=Y> - t(Y +1)

and 6% = 4¢3 — 27t%. Tt is known that g(¢,Y") is generic for &3 over k (cf. [9]).

Lemma 2.3. If s and t have a relation s = (9t — §)/(20) € k(t,9), then

Splk(t)g(t> Y) = Splk(t,é)f(s7 X) = k(ta .Z')

for a solution x € k(t) of f(s,X) =0. The Galois group Gal(k(t,x)/k(t)) is equal
to (o,7) ~ &3 where o and T € Gal(k(t,z)/k(t)) satisfy o(x) = x+7(—1) and

7(x) = —7x, respectively.

Proof. For s = (9t —6)/(20) and v = 3t/d € k(t, ), one can see that f(s,7Y +s) =
7?g(t,Y). This means that Sply, 59(t,Y) = Sply, 5.f(s, X). Note that § = +(y, —
Y2)(Y2 — y3)(ys — y1) € Splypyg(t,Y) where g(t,Y) = [T, (Y — ) for y; € k(t).
Thus we have Sply,)g(t,Y) = Sply.59(t,Y) = Sply 5 f(s, X). Lemma 2.1 implies
that Sply s f (s, X) = k(t,0,7). Since s = [3]z € k(x) and § = 9t/(2s+1) € k(t, x),
we have k(t,0,x) = k(t,z). Here g(t,Y) is a cubic Eisenstein polynomial at the
prime divisor ¢ and the discriminant 62 of g(¢,Y") is not square in k(t). Thus it
holds that [k(t,z) : k(t)] = [Splyyg(t,Y) : k(t)] = 6. The element x is a zero
of f(s,X)f(—7s,X)=(X?+ X +1)3 —27t(X? + X)?/(4t — 27) which is defined
over k(t). This means that f(s, X)f(—rs, X) is the minimal polynomial of  over
k(t). Corollary 2.2 implies that there exist elements o and 7 in Gal(k(t,z)/k(t))
such that o(z) = As(x) and 7(x) = As(z). Since the set {o'7/(x)|i,j € Z} =
A(z) has order 6, so does the subgroup (o, 7) of Gal(k(t,z)/k(t)). Hence we have
Gal(k(t,z)/k(t)) = (o,T) ~ G3. O
Let P(t,Z) € k(t)[Z] be the sextic polynomial as in Introduction, i.e.,

Pt,2)=2%—rZ* + 1 2% + 10 2% — 2r0Z + 1
where r = t1t2(2(t1 + tQ) - 27)/(t1 - t2>2 and To = t%t%/(tl — t2)2.
Proposition 2.4. We have Sply P(t, Z) = Splyyg(t1,Y) - Splyyg(t2,Y).

5



For i = 1 and 2 let §; be square roots of 4t3—27t2 in k(t) and put s; = (9¢,—d;)/(26;),

respectively. Let us define sy = s;+psy and us = 9(s2 + s1 + 1), respectively.

Lemma 2.5. We have

o 27t1t2 — 3(51t2 + 52t1) + (5152

6(51t2 + 52t1) ’
_ t1t2(2<t1 + tg) — 27) + (51(52

2(ty — t9)? ’

S+

U+

Uy +u_ =1y and uyu_ =ry.

Proof. 1t follows from the definition that

Oh—dyy O —by
o . 2 20,
Y9, — 6, 9ty — 0y

+1
251 )
<9t1 - 51)(9t2 — (52) — 4(51(52

18((51t2 + (52t1)
. 27t1t2 — 3((51t2 + (52151) — 51(52

6(51t2 + (52t1>

1

Then one has
uy =9((s4 +1/2)* + 3/4)
( 27t1t2 - (5152 )2 i
2((51t2 + 52t1) 4
(27t1ty — 8102)2 + 27(01ta + dat1)?
4(51t2 + (52t1)2
(27t3 + 63) (2713 + 03)
4(01t2 + Oat1)?
4t3t3
(01t + daty)?
Atdt3(01ty — daty)?
O - B
_ 4t§>t§1 (48313 + 4312 — BAtHE — 20,09t 1t3)
16(t713 — t511)*
. t1t2(2(t1 + tg) - 27) - 51(52
B 2(t) — ty)2 '

Note that —psy = —(9ty — d2)/(202) — 1 = (93 — 04)/(25,) where 65, = —do. This

means that s_ and u_ are obtained from s, and u, with substituting —d, in ds,
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respectively. Here it holds that u, +u_ = r;. By the argument above we have

4343 4383
Ut = 2 2
(012 + 0at1)? (01t — Oaty)
1655
T 16(8312 — 312
g; 1)?
(- t2) '

Let z; be solutions of f(s;, X) = 0 in k(t), respectively. Let us denote the field
k(t, 1, o) by L. We define an element £(iy,i9,7) € L by

§(ir, i2,4) = [ir|z1+r[ig]zatr[i](—1)

for integers 41,75 and ¢ € Z. Here —1 is a non-trivial 3-torsion element in T
Let A be a finite set consisting of elements £(iy,i2,7) € L with iy,is € {+1} and
i € {0,1,2}. We denote by 3(X) a rational function (X?+X+1)/(X?+X) € k(X).
For j =1,2,...,6 let z; € B(A) be elements in L defined by

1= 6(6(1a1>0))> ZQ ﬁ(f(l,l,l)), Z3 :ﬂ(5(17172))7
24 = ( ( 70)) (5(17_1’1))7 2616(5(17_172))'

Lemma 2.6. We have P(t,Z) = H] (Z — z5).

Proof. Let us assume that £(iq, 19, 1) = £(i, i5,1") for integers iy, iy, 4,4, 15 and i’ € Z.
Then it holds that [i;]s14r[ia]s2 = [i}]s1+r[ih]s2 for [3]€(i1,d2,1) = [i1]s1+7[ia]sa.
The elements s; and s, are linearly independent in the group T'(k(t, s1, $2)), which
means that (i1,i3) = (¢],45). Since —1 is a non-trivial 3-torsion, one has i = 7
(mod 3). Thus the set A has 12 elements. The elements & and & € A satisfy
B(&1) = B(&) if and only if & is equal to & or —p. This shows that z; are
distinct from each other. For [3]€(iy,2,1) = [i1]s1+7ia)s2 the element &(iy,dq,1) is

a solution of f([i1]s1+7[ia]s2, X) = 0. Thus one has

ngA(X - 5)
= f(s1+rs2, X) f(s1—182, X) f(—r51+152, X) f(—181—152, X)
:f(S-HX)f(_TS-HX)f(s—aX>f<_TS—7X)
= (X + X+ 1P —uyp (X2 + X)) (X2 + X +1)° —u(X* + X)?)
(X2 4+ X+ 10 —r (X2 + X +1)3( X2+ X)2 +1o( X2+ X)4,

which is equal to P(t,5(X))(X? + X)® This implies that z; are solutions of
P(t,Z) = 0. Since z; are distinct, we have P(t, Z) = [[°_,(Z — ;). O

7j=1
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Proof of Proposition 2.4. Lemma 2.3 implies that L = k(t,z1,x2) is equal to the
composite field Sply ) g(t1,Y)Splyg(te, V) of two extensions Splyg(t1,Y) and
Splyg(te,Y) over k(t). Let G be the Galois group Gal(L/k(t)). Lemma 2.3
means that there exist elements o1, 71,02 and 75 in G such that
o1(r1) = 1+r(=1), Ti(21) = —r21, 02(71) = 74, To(71) = 71,
o1(x2) = 22, Ti(x2) =22, 02(22) = Tatr(—1), T2(22)
Then it holds that G = (01, 71,09, T2) = {(01,71) X {02, 72) ~ (&3)% It follows
from the definition that z; € L. One can calculate 01(21) = 01(6(£(1,1,0))) =
Bo1(&(1,1,0))) = B(£(1,1,1)) = z9. In the same way as above we see the actions

on z; of some elements in G as follows:

‘ Rl R2 R3 24 R5 %6
01| %2 23 Z1 25 Z6 %4
TL |24 Z6 <5 21 <3 %2
O2 |22 23 Z1 26 %24 X5
Tog | 24 25 26 <1 <2 %3

The elements p(z;) for p € G and z; € L are denoted at the (p, z;)-components
in the table above, respectively. Note that for each z; there exists an element
p € G such that z; = p(z1). Let G, be the stabilizer of z; in G, that is, G; =
{p € Glp(zj;) = z;}. Then it holds that G; = (0103, 7172) ~ G3. It is seen
that G; = pGip~! ~ Gy if z; = p(21) for p € G. Here one has the sequence of the
extension fields L/L% [k(t, z;)/k(t). By considering the orders of the Galois groups
we have [L : k(t)] = 36 and [L : L%] = 6. Since z; are conjugate to each other
over k(t), the degrees [k(t,z;) : k(t)] are equal to 6. This shows that L% = k(t, z;)
for every j. It satisfies that Gy N Gy = (0103) ~ C3, Gy NGy = (1173) ~ Cy and
G1NGyN Gy = {1}. This implies that L = LE1N%20G = k(t, 21, 2y, 24). Hence we
conclude L = Spl, P(t, Z). O
Proposition 2.4 and the genericity of g(¢,Y") imply

Corollary 2.7 (Proposition 1.3). The polynomial P(t,Z) is generic for (&3)?

over k.

8 3. Solution of the subfield problem on the generic cubic polynomial
In this section we solve the subfield problem of the cubic polynomial g(¢,Y") by
using the sextic polynomial P(t, 7).



Let b € K be an element in an extension K of k with b(4b — 27) # 0. Let § be
a square root of 4b> — 276 in K and put a = (9b — ) /(26) € K(J). Let Qy(K) be
the set of solutions w € K of the quadratic equation W? = 4b* — 27b* and Cy(K)
that of the cubic one g(b,Y) = 0.

Lemma 3.1. For a solution x € K of f(a, X) = 0, we have Splgg(b,Y) = K(z)

and
(0,7) =63 if Qu(K) =0 and Cy(K) =0,
B o) ~C3 if Qu(K)#0 and Cp(K) =10,
Gal(K(z)/K) = (1)~ Cz if QZ(K =0 and CZ(K) # 0,
{1} otherwise,

where o(x) = Az(x) = z+7(—1), 7(x) = As(x) = —rx and o(z) = ALAs(x) for an

integer i € Z.

Proof. In the same way as in the proof of Lemma 2.3 one sees Spl,g(b,Y) = K(x).
Let Gy be the Galois group Gal(K (x)/K). Since g(b,Y) is cubic, Gy is isomorphic
to a subgroup of &3. The sets Qu(K) (resp. Cp(K)) are empty if and only if
G contains subgroups which are isomorphic to the cyclic groups Cs (resp. Cs). It
determines the group structure of Gy completely. Let Go(x) be the orbit of x by Gy,
that is, Go(x) = {p(z)|p € Go}. Note that x is a solution of f(a, X)f(—ra, X) =0
which is a equation over K. Thus Gy(x) has elements as those of A(x) at Corollary
2.2. If Gy ~ G3, then Gy(z) is the same form as A(z), whose order is equal to
6. Thus one has Gy = (0,7). When Gy ~ Cs, the set Go(x) has three elements.
Note that Ay(X), A3A5(X) and A2A,(X) are linear fractionals of period 2. Thus
we have Go(z) = {x, A3(z), A2(x)}, which means that Gy = (o). If Gy ~ Cy, then
Go = (1) where 1(x) = ALAy(x) for an integer i € Z. The integer ¢ depends on the
choice of the solution z. In fact, if x satisfies ¢(z) = AL Ay(x) for an integer i € Z,
then 2/ = A%(x) is a solution of f(a, X) = 0 such that ¢(2') = Ay(z’). It is obvious
for the case Gy = {1}. O

Let F' € K[X] be a polynomial over K and d; < dy < --- < d, positive integers.
If there exist irreducible polynomials F; over K of degree d; such that F' = H;Zl F;,
then we say that the decomposition type of F' over K is [dy,dy, ..., d,] and denote
it by DT g F. Let by and by be two elements in K such that byby(4by — 27)(4by —
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27)(4b1by —27(by+b2)) (by —b2) # 0. Now put M; = Splyg(b;,Y) and n; = [M; : K],
respectively. One can calculate the integers n; by using Lemma 3.1. We obtain a
criterion whether M; C M or not in terms of the decomposition type D7 x P(b, Z)
of P(b,Z) over K for b = (b1,bs) as follows.

Proposition 3.2 (Theorem 1.1). We assume ny < ns.
(1) If ny = 1, then My C My and DT gk P(b,Z) = [na, na, ..., na).
(2) When ny = ng = 2, we have

[17 17272] Zf M, = M27
2,4]  otherwise.

(3) If ny = 2 and ny = 3, then My N My = K and DT xP(b, Z) = [6].
(4) When ny = 2 and ny = 6, we have

DT xP(b,Z) = {

Zf M, C MQ,

_ | B3
DT P(b,Z) = { [6] otherwise.
(5) When ny = ny = 3, we have

[1717173] Zf]\41 :MQ;
[3,3]  otherwise.

(6) If ny = 3 and ny = 6, then My N My = K and DT xP(b, Z) = [6].
(7) When ny = ny = 6, we have

DT xP(b,7Z) = {

[17273] lfMl :MQ;
DTP(6,2) =4 [3.3] if[MinMs:K] =2,

[6] otherwise.
Let L be the composite field MM, and G the Galois group Gal(L/K). For i = 1
and 2 let §; be square roots of 4b? — 27b? in K and put a; = (9b; — &;)/(26;),
respectively. Let x; be solutions of f(a;, X) = 0 in K. In the same way as for the
case of the function field k(t) described at the previous section, we define z; € L
for integers j = 1,2,...,6. Since disczP(b, Z) is not equal to 0 due to Lemma 4.2

below, the elements z; are distinct from each other.
Lemma 3.3. Ifn; =1, then My C My and DT xP(b,Z) = [na,na, ..., nal.

Proof. When n; = ny = 1, we have 21,29 € K and z; € K. This means that
DT kP(b,7Z) = [1,1,1,1,1,1]. When (ny,ny) = (1,2), we have G = (1) where
to(z1) = z1 and 19(2y) = AL Ay(z5) for an i € Z. If 15(9) = Az(xy), then

log 121 — 24— 21, Rob=>25F> 22, 23+ 26> 23,
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which means that D7 xP(b,Z) = [2,2,2]. In the same way as above one sees
DT xP(b,Z) = [2,2,2] provided 15(z2) = AL Ay(z3) for every i € Z. If (ny,ny) =
(1,3), then G = (02) with o3(x1) = 21 and o2(x2) = As(x2). Then one has

which implies that DT xP(b,Z) = [3,3]. When (ny,n2) = (1,6), we have G =
<02,’7'2> with O'Q(.Clﬁl) = T, 7'2(1'1) =Ty, 0'2(.%‘2) = Ag(.iEg) and TQ(SEQ) = AQ(ZEQ). Then
o9 and 7y satisfy o9 1 21 — 29 = 23,24 — 26 — 25 and Tu(z1) = z4, respectively.

Thus we have DT xP(b, Z) = [6]. O

Lemma 3.4. Now assume nqy = 2. When ny = 2, we have

[1717272] ZfMl :M27
2,4]  otherwise.

If ng = 3, then My N My = K and DT xP(b,Z) = [6]. For the case of ny = 6 we

DT xP(b,7Z) = {

have
if My C Mo,
otherwise.

DT P(b, Z) = { 13, 3]

[6]

Proof. Let us first consider the case that ny = ny = 2 and M; = M,. Then it
satisfies that G' = (1) where t(2;) = AL Ay(x1) and o(xy) = A2 Ay(z5) for integers
i1,i9 € Z. By replacing x; and x5 by the solutions z} = A% (x,) and z}, = A2 (zy),
one may have ((z}) = As(x)) and «(z}) = As(a)), respectively. The replacement
of (z1,x2) by (2}, %) permutes the elements z;, however, it does not change the

polynomial P(b,Z) and the decomposition type DT x P(b, 7). So we may check
only the case iy =i, = 0. It holds that

LizZ1— 21, RZbr>2Z3t> 29, RZ4t> 24, Rpht=> 26t 2,

which means D7 xP(b,Z) = [1,1,2,2]. If ny = ny = 2 and M; # M,, then G =
(11,19) where 11 (1) = AL Ag(1), 11(22) = 29, ta(x1) = 21 and 1y(wy) = AP As(22)
for integers 41,19 € Z. When 1; = i5 = 0, it satisfies

L1 21> 2yt 2y, Zobt=> Zgbt=> Z9, Z3bt= Z5t— 23,
Lo 21> 2yt 21, Zobt=> Zybt=> 2o, Z3bt— Zgtk—> Z3.

This shows that DT P (b, Z) = [2,4]. If (ny,ns) = (2,3), then G = (11, 02) where
t(ry) = AL Ay(21), t1(x) = 39, 02(z1) = 21 and o9(xy) = As(zy) for an integer

iy € Z. In the case iy = 0 one has that ¢1(21) = z4 and 09 : 21 +— 25 > 23,24 —
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26 +— 25. Thus we have DT xP(b,Z) = [6]. Let us assume (ny,n2) = (2,6). If
M, C My, then G = (09, 7) where oo(x1) = 21, 02(22) = As(xs), 7(21) = AL Ay(1)
and 7(x3) = As(xs) for an integer 7; € Z. Under the condition i; = 0 one has

09 . le—>Z2l—)Zsl—>21, Z4l—>Z6'—>Z5I—>Z47
T . Zl’—)217 ZQD—)Z:))P—)ZQ, Z4l—>Z47 Z5'—>26|—)Z57

which means that DT xP(b, Z) = [3,3]. If My ¢ M,, then G = (i1, 02, 72) where
Ll(xl) = A?Ag(ml), Ll(l'Q) = X9, 0'2(33'1) = Iy, 0'2(33'2) = Ag(l’g), 7'2(371) = T and
To(x9) = Ag(xs) for an integer iy € Z. Then in the same way as in the case

(n1,n2) = (1,6), one has DT  P(b, Z) = [6]. O

Lemma 3.5. Assume ny = 3. When ny = 3, we have

1a 17 173] Zf Ml = M27

)
DT kP(b,Z) = { 3,3]  otherwise.

If ng = 6, then My N My = K and DT xP(b, Z) = [6].

Proof. Let us assume that n; = ny = 3 and M; = M,. Then it holds that G = (o)
where o(z1) = As(x1) and o(z2) = Aj(xo) for i € {1,2}. Here one sees

22y b 2y, 24t 2, A5 b 25, 26 2 i i=1,
o op -
21— 21, 29 k> 29, 23 — 23, 24 26 25 24 if 4 =2.

This means that D7 xP(b,Z) = [1,1,1,3]. When ny = ny = 3 and M; # Mo,
we have G = <O'1,0'2> where O'1<ZE1) = Ag(&fl), 01(.172) = T2, 0'2(131) = I and
UQ(ZEQ) = A3<l’2). Then

09 . le—>Z2l—>2’3'—)Zl7 Z4'—>Z6'—>Z5I—>Z4’

which implies that D7  P(b, Z) = [3, 3]. If (n1,n2) = (3,6), then MyNM; = K and
G = <01,0’2,7’2> Where 01(331) = Ag(ﬂ?l), 01(1‘2) = X9, 0'2(271) = T, 02(1‘2) = Ag(flfg),
To(x1) = x1 and To(x2) = As(zs). In the same way as in the case (n1,ng) = (1,6),

one has DT P(b, Z) = [6]. O

Lemma 3.6. When ny = ny = 6, we have

[1,2,3] ’Lf Ml - MQ,
DT xP(b,Z) =4 [3,3] if[MinMy:K]=2,
[6]

6 otherwise.
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Proof. It My = My, then G = (o,7) where o(z1) = As(z1), o(z2) = Al(x2)
7(x1) = Ay(xy) and 7(zy) = AR Ay(xy) for integers i € {1,2} and iy € Z. In the
case (i,19) = (1,0) we have

0. Z1r> 23— 20— 21, Z4F> 24, RZr> 25 2+ 26,
T 2125, b7 Z3beoZy, 24t 2y, 25 Zg b Zs.

This shows that DT g P(b,Z) = [1,2,3]. When [M; N M, : K] = 2, we have
G = (01,09, 7) where o1(x1) = Az(x1), 01(x2) = X2, 0o(11) = X1, 02(12) = As(x2)
7(x1) = As(z1) and 7(z2) = A?Az(wg) for an integer i, € Z. For the case is = 0
one has

01 . 21 > Z9 F— 23 — 217 zZ4 Z5 — Z6 — Z4’
09 . Z1 P> Z9 Z3 — 21, zZ4 = Z6 g Z5 > Z47
T . 21— 21, 29 k> 23 F— 29, Z4 b 2y, Z5 F— Zg > Z5.

Thus we have DT  P(b, Z) = [3,3]. If MiNMs = K, then G = (01, 09, 71, T2) where
01($1) = A3($1), 01($2) = X2, 02($1) = X1, 02(-732) = A3($2)7 71(1’1) = A2(IB1),
T1(22) = g, To(x1) = x1 and 7o(xg) = Az(xs). In the same way as in the case

(n1,n2) = (1,6), one has DT  P(b, Z) = [6]. O

REMARK 3.7. In the proofs of Lemmas 3.3 to 3.6 one may have i; =i, = 0 by
replacing the solutions x; and x5 by others solutions of f(a1,Y) = 0 and f(as,Y) =
0, respectively. We may have i = 1 by replacing the solutions x5 of f(as,Y) =0bya
solution —7z5 of f(—ras,Y) = 0. Such replacements do not change the extensions

M, M, the polynomial P(b,7) and the decomposition type DT g P(b, Z).

Lemmas 3.3 to 3.6 verify Proposition 3.2.

Proof of Theorem 1.1. For a fixed (ny,ny), Proposition 3.2 means that the decom-
position types D7 g P(b, Z) are distinct if the relations between M; and M, are
different, which implies that the converses are also true. This shows Theorem 1.1
completely. ]
For the exceptional case that bybe(4b; —27)(4by —27)(4b1by —27(by+b2)) (b1 —b2) = 0

one sees

Lemma 3.8 (Lemma 1.4). We have M; = K provided b;(4b; — 27) = 0. When
(4b1b2 — 27(b1 + b2))(b1 - b2) == 0, 1t holds that M1 == MQ.
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Proof. Since ¢(0,Y) = Y3 and ¢(27/4,Y) = (Y — 3)(Y + 3/2)?, one has M; = K if
b;(4b; —27) = 0. Now assume that b;(4b; —27) # 0 and 4b1by —27(by +by) = 0. Then
one has that 6205 = 2720203 and K (01,02) = K(0;) = K(02). Lemma 2.5 shows
that a;+ray = —1/2 or a;—ras = —1/2. Since —1/2 = [3](—1/2) € [3|T(K),
it holds that Splys, 4,)f(a1, X) = Splg, s,)f(a2, X). Lemma 2.3 implies that
M; = Sply s,y f(ai, X), respectively. Hence we have M, = M,. ]

§ 4. Discriminants of the polynomials
Let us denote the discriminants of the polynomials f(s, X) and g(¢,Y") by Af(s)
and by A,(t), respectively.

Lemma 4.1. We have As(s) = 3*(s> + s+ 1)% and Ay(t) = t*(4t — 27). Under
the relations s = (9t — 0)/(28) and 6% = 4t> — 27t* one has As(s) = 3%2/ (4t — 27)?
and A, (t) = 31%(s* + s+ 1)?/(2s + 1)°.

Proof. The equations s = (9t — §)/(20) and 6% = 4¢3 — 27t* imply that ¢t = 3%(s* +
s+ 1)/(2s + 1)%. This means that s*> + s+ 1 = 3t/(4t — 27). O
Let Ap(t) be the discriminant of the polynomial P(t, 7).

Lemma 4.2. We have
000 (4t — 27)%(dty — 27) (4tyty — 27(ty + t3))?
- (151 _ t2)18 )

Proof. We first note that P(t,—Z2) = g(u4, Z)g(u—, Z) whose discriminant is equal

Ap(t)

to that of P(t, Z). Here the resultant Resz(g1(Z), g2(Z)) of two polynomials ¢, (Z2)

and go(Z) satisfies an equation

discz(g1(2)g2(2)) = discz(g1(Z))discz(g2(Z))Resz(g1(Z), g2(Z))?

(cf. [2] § 3.3). Lemma 2.5 implies that

disczg(uy, Z)disczg(u—, Z)
= (4ud — 27u?)(4u® — 27u?)
—12(1675 — 10871 + 729)
=t1t3(4t1ty — 27(t + t2))?/(t1 — ta)".

By the Sylvester’s matrix method one can calculate that Resz(g(uy, Z), g(u_, Z))
is equal to (uy —u_)3. It holds that (uy —u_)* = r? — drg = 313 (4t; — 27)(4ty —
27)/(t1 — t2)*. Hence the equation of the assertion follows. O
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8 5. Descent genericity of the sextic polynomial

It is known due to Kemper [4] that a generic polynomial for a finite group G
over a field k yieds not only all the Galois G-extensions containing k but also all
the Galois H-extensions containing k for any subgroups H of G. In this section
we give explicit generic polynomials Py(¢, Z) for all subgroups H of (&3)? by the
degenerations of the sextic polynomial P(t, Z).

Let A(c¢), p(c) and v(c) € k(c) be rational functions over k with one variable ¢

such that
B +c+1) _ c
- 3%(c—9)2’
(P +e+1)
(e —=1)2(2c + 1)2(c +2)2’
where [3] is the multiplication by 3 map of the group T', that is, [3](c) = (¢* — 3¢ —
1)/(3¢® + 3c). For subgroups H = {1}, Cs, C3 and &3 of &3, we define polynomials

gu(c,Y) € k(c)[Y] by

936, Y) = g(v(0),Y),  ger(e,Y) = g(u(e),Y),  ges(e,Y) = g(Ae),Y)

and ge,(c,Y) = g(c,Y), respectively. By the direct calculation one sees

Lemma 5.1. We have

., 3@+t 3(c*+c+1) 3(ct+c+1)
smleY) =2 (c—1xc+mxz+xc+2g%+])XZ+(a-n@c+n”
9e,(0:Y) = (2 + )7 = =57 = 5—g5),

32 (c+ )3+ c+ 1)6
(c—1)f(2c + 1)o(c 1 28

(e —27)%(4c — 27) : B
35(c—0)0 , discz(ges(¢,Y)) =

discz(gq13(c,Y) =
39(c2 +c+1)2
(2c+1)8

discz(ge,(¢,Y)) =

Corollary 5.2. For each subgroup H = {1}, Co, C3 and S3 of &3, the polyno-

mial gg(c,Y) is generic for H over k.

Proof. Lemma 5.1 means that Sply . (g(1)(c,Y)) = k(c) and Sply,(ge,(c,Y)) =
k(c,v/4c—2T7). Thus Sply,(gq1y(c,Y)) and Sply,(ge,(c,Y)) are generic. Lemma
2.3 implies that Sply(ges(c,Y)) = Sply f(c, X) for discz(ge,(c,Y)) € k(c)*.
Since f(c, X) is generic for Cs over k, so is ge,(c, Y). O
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For subgroups H of (&3)? we define polynomials Py (c, Z) € k(¢)[Z], ¢ = (c1,¢2) by
v

P{l}(c> Z) ( Cl) ( ) ) PGs(C7 Z) = P(V(Cl)vc%z)v
Fey(¢,Z) = P(v(c1), (), Z), Py, Z) = P(Mar), Mea), Z),
PC3(c Z) (V(Cl)v ( ) ) PC2><63(C7 Z) = P(M<Cl> CQaZ)v
Pie,2(c, Z) = P(u(cr), plc2), Z),  Feyxes (€, Z) = P(Mer), €2, Z),
PC6(C7Z> ( ( ) ( ) ) P(Gs (CvZ) = P(Cl,CQ,Z).

Proposition 2.4 and Corollary 5.2 imply

Corollary 5.3. For every subgroup H of (&3)* the polynomial Py(c,Z) is

generic for H over k.

REMARK 5.4. We omit the description of the discriminants disczPy(¢, Z) of
the polynomials Py(c,Z) = P(e1(c1),e2(ca), Z) since disczPy(c, Z) are equal to
Ap(e1(cr),ea(ca)), respectively.
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