MHF Preprint Series

Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with High Functionality

Generic sextic polynomial related to the subfield problem of a cubic polynomial

T. Komatsu

MHF 2006-9
(Received March 9, 2006)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

Generic sextic polynomial related to the subfield problem of a cubic polynomial

Toru KOMATSU

§ 1. Introduction

In this paper we solve the subfield problem of a generic cubic polynomial $g(t, Y)$ for the symmetric group \mathfrak{S}_{3} of degree 3 by using a certain sextic polynomial $P(\mathfrak{t}, Z)$ which is generic for the direct product $\left(\mathfrak{S}_{3}\right)^{2}$ of the two groups \mathfrak{S}_{3}. We also study the descent genericity of the polynomial $P(t, Z)$ explicitly. See § 2 for the notion about the genericity of a polynomial and the subfield problem of the polynomial.

Let k be a field with $\operatorname{char}(k) \neq 2,3$ and $k(t)$ the rational function field over k in one variable t. Let $g(t, Y)$ be a cubic polynomial over $k(t)$ of the form

$$
g(t, Y)=Y^{3}-t Y-t=Y^{3}-t(Y+1) .
$$

Let $k(\mathfrak{t})$ be the rational function field over k with two variables t_{1} and t_{2} where $\mathfrak{t}=\left(t_{1}, t_{2}\right)$. We define a sextic polynomial $P(\mathfrak{t}, Z) \in k(\mathfrak{t})[Z]$ over $k(\mathfrak{t})$ by

$$
P(t, Z)=Z^{6}-r_{1} Z^{4}+r_{1} Z^{3}+r_{0} Z^{2}-2 r_{0} Z+r_{0}
$$

where r_{1} and r_{0} are rational functions in $k(\mathfrak{t})$ such that

$$
r_{1}=\frac{t_{1} t_{2}\left(2\left(t_{1}+t_{2}\right)-27\right)}{\left(t_{1}-t_{2}\right)^{2}}, \quad r_{0}=\frac{t_{1}^{2} t_{2}^{2}}{\left(t_{1}-t_{2}\right)^{2}} .
$$

Let b_{1} and b_{2} be two elements in an extension K of k such that $b_{1} b_{2}\left(4 b_{1}-27\right)\left(4 b_{2}-\right.$ 27) $\left(4 b_{1} b_{2}-27\left(b_{1}+b_{2}\right)\right)\left(b_{1}-b_{2}\right) \neq 0$. Let M_{i} denote the minimal splitting fields of $g\left(b_{i}, Y\right)$ over K and put $n_{i}=\left[M_{i}: K\right]$, respectively. When a polynomial $F \in K[X]$ over K satisfies $F=\prod_{j=1}^{r} F_{j}$ for irreducible polynomials F_{j} over K of degree d_{j} with $1 \leq d_{1} \leq d_{2} \leq \cdots \leq d_{r}$, we say that the decomposition type $\mathcal{D} \mathcal{T}_{K} F$ of F over K is $\left[d_{1}, d_{2}, \ldots, d_{r}\right]$.

Theorem 1.1 (Proposition 3.2). We assume $n_{1} \leq n_{2}$.
(1) If $n_{1}=1$, then $M_{1} \subseteq M_{2}$ and $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left[n_{2}, n_{2}, \ldots, n_{2}\right]$.
(2) When $n_{1}=n_{2}=2$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[1,1,2,2]} & \text { if and only if } M_{1}=M_{2} \\
{[2,4]} & \text { if and only if } M_{1} \neq M_{2}
\end{array}\right.
$$

(3) If $n_{1}=2$ and $n_{2}=3$, then $M_{1} \cap M_{2}=K$ and $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$.
(4) When $n_{1}=2$ and $n_{2}=6$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[3,3]} & \text { if and only if } M_{1} \subset M_{2} \\
{[6]} & \text { if and only if } M_{1} \not \subset M_{2}
\end{array}\right.
$$

(5) When $n_{1}=n_{2}=3$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[1,1,1,3]} & \text { if and only if } M_{1}=M_{2} \\
{[3,3]} & \text { if and only if } M_{1} \neq M_{2}
\end{array}\right.
$$

(6) If $n_{1}=3$ and $n_{2}=6$, then $M_{1} \cap M_{2}=K$ and $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$.
(7) When $n_{1}=n_{2}=6$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[1,2,3]} & \text { if and only if } M_{1}=M_{2}, \\
{[3,3]} & \text { if and only if }\left[M_{1} \cap M_{2}: K\right]=2, \\
{[6]} & \text { if and only if } M_{1} \cap M_{2}=K
\end{array}\right.
$$

Corollary 1.2. With the same notation as in Theorem 1.1, the equation $M_{1}=$ M_{2} holds if and only if $P(\mathfrak{b}, Z)$ has a solution in K.

Proposition 1.3 (Corollary 2.7). The sextic polynomial $P(\mathfrak{t}, Z)$ is generic for $\left(\mathfrak{S}_{3}\right)^{2}$ over k.

The exceptional case that $b_{1} b_{2}\left(4 b_{1}-27\right)\left(4 b_{2}-27\right)\left(4 b_{1} b_{2}-27\left(b_{1}+b_{2}\right)\right)\left(b_{1}-b_{2}\right)=0$ is as follows.

Lemma 1.4 (Lemma 3.8). We have $M_{i}=K$ if $b_{i}\left(4 b_{i}-27\right)=0$. When $\left(4 b_{1} b_{2}-\right.$ $\left.27\left(b_{1}+b_{2}\right)\right)\left(b_{1}-b_{2}\right)=0$, it holds that $M_{1}=M_{2}$.

Remark 1.5. By using an other method with the representation of a cubic field embedding in the ring of 3×3 matrices over \mathbb{Q}, Miyake [6] gave a solution for the isomorphism problem of $g(t, Y)$ over \mathbb{Q}, that is, a condition so that $\operatorname{Spl}_{\mathbb{Q}} g\left(b_{1}, Y\right)=$ $\operatorname{Spl}_{\mathbb{Q}} g\left(b_{2}, Y\right)$ for $b_{1}, b_{2} \in \mathbb{Q}$. His result is one of the motivations of this paper.

In § 2 we recall the notion on the genericity of a regular polynomial and introduce the subfield problem of the polynomial. We show the genericity of $P(\mathfrak{t}, Z)$ for $\left(\mathfrak{S}_{3}\right)^{2}$ over k (Proposition 1.3). In $\S 3$ we study the specialization of $P(\mathfrak{t}, Z)$ and solve the subfield problem of $g(t, Y)$ (Theorem 1.1). In § 4 we exhibit the discriminants of the polynomials described in $\S 2$. In $\S 5$ we study the descent genericity of $P(\mathfrak{t}, Z)$ and present explicit generic polynomials $P_{H}(\mathfrak{c}, Z)$ for all subgroups H of $\left(\mathfrak{S}_{3}\right)^{2}$ as degenerations of $P(\mathfrak{t}, Z)$.
Acknowledgement. The author is supported by the 21st Century COE Program "Development of Dynamic Mathematics with High Functionality".

§2. Genericity of the sextic polynomial

We first recall the notion on the genericity of a regular polynomial (cf. Jensen-Ledet-Yui [3]) and introduce the subfield problem of the polynomial. Let k be a field and G a finite group. The rational function field $k\left(t_{1}, t_{2}, \ldots, t_{m}\right)$ over k with m variables $t_{1}, t_{2}, \ldots, t_{m}$ is denoted by $k(\mathfrak{t})$ where $\mathfrak{t}=\left(t_{1}, t_{2}, \ldots, t_{m}\right)$. For a polynomial $F(X) \in K[X]$ over a field K let us denote by $\operatorname{Spl}_{K} F(X)$ the minimal splitting field of $F(X)$ over K. We say a polynomial $F(\mathfrak{t}, X) \in k(\mathfrak{t})[X]$ is a k regular G-polynomial or a regular polynomial over k for G if $L=\operatorname{Spl}_{k(\mathfrak{t})} F(\mathfrak{t}, X)$ is a Galois extension with $\operatorname{Gal}(L / k(\mathfrak{t})) \simeq G$ and $L \cap \bar{k}=k$ where \bar{k} is an algebraic closure of k. For example, if n is a positive integer greater than 2 , then the Kummer polynomial $X^{n}-t \in \mathbb{Q}(t)[X]$ is a regular polynomial for the cyclic group \mathcal{C}_{n} of order n not over \mathbb{Q} but over $\mathbb{Q}\left(\zeta_{n}\right)$ where ζ_{n} is a primitive n-th root of unity in $\overline{\mathbb{Q}}$. A k-regular G-polynomial $F(\mathfrak{t}, X) \in k(\mathfrak{t})[X]$ is called to be generic over k if $F(t, X)$ yields all the Galois G-extensions containing k, that is, for every Galois extension L / K with $\operatorname{Gal}(L / K) \simeq G$ and $K \supseteq k$ there exists a K-specialization $\mathfrak{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right), a_{i} \in K$ so that $L=\operatorname{Spl}_{K} F(\mathfrak{a}, X)$. The subfield problem for a regular polynomial $F(\mathfrak{t}, X)$ is to determine in terms of $\mathfrak{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and $\mathfrak{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ whether $\operatorname{Spl}_{K} F(\mathfrak{a}, X) \subseteq \operatorname{Spl}_{K} F(\mathfrak{b}, X)$ or not.

In the following we construct the sextic polynomial $P(\mathfrak{t}, Z)$ and show the genericity of $P(\mathfrak{t}, Z)$. Let k be a field with $\operatorname{char}(k) \neq 2,3$ and $k(s)$ the rational function field over k in one variable s. Let $f(s, X)$ be a cubic polynomial over $k(s)$ of the
form

$$
f(s, X)=X^{3}-3 s X^{2}-(3 s+3) X-1=X^{3}-3 X-1-3 s\left(X^{2}+X\right)
$$

which is called the simplest cubic polynomial of Shanks type [10]. It is known that $f(s, X)$ is generic for \mathcal{C}_{3} over k (cf. [9]). Let $A_{2}(X)$ and $A_{3}(X)$ be linear fractionals over k such that $A_{2}(X)=-X-1$ and $A_{3}(X)=-(X+1) / X$. Then one has $A_{2}^{2}(X)=A_{3}^{3}(X)=X$. It is easy to check

Lemma 2.1. We have $f\left(A_{2}(s), X\right)=-f\left(s, A_{2}(X)\right)$. Every solution $x \in \overline{k(s)}$ of $f(s, X)=0$ satisfies that $f(s, X)=(X-x)\left(X-A_{3}(x)\right)\left(X-A_{3}^{2}(x)\right)$.

Let us recall a descent Kummer theory studied in a previous paper [5] (see also Morton [7], Chapman [1] and Ogawa [8]). Let $+_{T}$ be a composite law on $T=$ $\mathbb{P}^{1}-\left\{\zeta, \zeta^{-1}\right\}$ such that $a_{1}+{ }_{T} a_{2}=\left(a_{1} a_{2}-1\right) /\left(a_{1}+a_{2}+1\right)$ for $a_{1}, a_{2} \in T$ where ζ is a primitive third root of unity in \bar{k}. Then T is an abelian group with $+_{T}$. In fact, T is an algebraic torus of dimension 1 with group isomorphism $\varphi: T \rightarrow \mathbb{G}_{m}, a \mapsto(a-$ $\zeta) /\left(a-\zeta^{-1}\right)$ over $k(\zeta)$. The composite law $+_{T}$ satisfies $a_{1}+_{T} a_{2}=\varphi^{-1}\left(\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)\right)$. The identity 0_{T} of T is $\infty=\varphi^{-1}(1)$. The inverse $-_{T} a$ of $a \in T$ is equal to $-a-1$. The 3 -torsion subgroup $T[3]=\operatorname{Ker}([3]: T \rightarrow T)$ of T is generated by $-1=\varphi^{-1}(\zeta)$ where $[n]$ is the multiplication by n map on T. For an $x \in \overline{k(s)}$ the equation $f(s, x)=0$ holds if and only if $[3](x)=s$. Thus the subfield problem of $f(s, X)$ can be solved by the cohomological argument related to the group T (see [5]). One can consider the functions $A_{2}(X)$ and $A_{3}(X)$ as $A_{2}(X)={ }_{T} X$ and $A_{3}(X)=X+_{T}(-1)$, respectively. Lemma 2.1 implies

Corollary 2.2. We have

$$
f(s, X) f\left(-{ }_{T} s, X\right)=\left(X^{2}+X+1\right)^{3}-9\left(s^{2}+s+1\right)\left(X^{2}+X\right)^{2},
$$

whose zero set is equal to

$$
\begin{aligned}
\mathcal{A}(x) & =\left\{x, A_{3}(x), A_{3}^{2}(x), A_{2}(x), A_{3} A_{2}(x), A_{3}^{2} A_{2}(x)\right\} \\
& =\left\{x,-\frac{x+1}{x},-\frac{1}{x+1},-x-1,-\frac{x}{x+1}, \frac{1}{x}\right\}
\end{aligned}
$$

for a solution $x \in \overline{k(s)}$ of $f(s, X)=0$.

Let $g(t, Y)$ be as in Introduction and $\delta \in \overline{k(t)}$ a square root of the discriminant of the polynomial $g(t, Y)$, that is,

$$
g(t, Y)=Y^{3}-t Y-t=Y^{3}-t(Y+1)
$$

and $\delta^{2}=4 t^{3}-27 t^{2}$. It is known that $g(t, Y)$ is generic for \mathfrak{S}_{3} over k (cf. [9]).
Lemma 2.3. If s and t have a relation $s=(9 t-\delta) /(2 \delta) \in k(t, \delta)$, then

$$
\operatorname{Spl}_{k(t)} g(t, Y)=\operatorname{Spl}_{k(t, \delta)} f(s, X)=k(t, x)
$$

for a solution $x \in \overline{k(t)}$ of $f(s, X)=0$. The Galois group $\operatorname{Gal}(k(t, x) / k(t))$ is equal to $\langle\sigma, \tau\rangle \simeq \mathfrak{S}_{3}$ where σ and $\tau \in \operatorname{Gal}(k(t, x) / k(t))$ satisfy $\sigma(x)=x+{ }_{T}(-1)$ and $\tau(x)=-{ }_{T} x$, respectively.

Proof. For $s=(9 t-\delta) /(2 \delta)$ and $\gamma=3 t / \delta \in k(t, \delta)$, one can see that $f(s, \gamma Y+s)=$ $\gamma^{3} g(t, Y)$. This means that $\operatorname{Spl}_{k(t, \delta)} g(t, Y)=\operatorname{Spl}_{k(t, \delta)} f(s, X)$. Note that $\delta= \pm\left(y_{1}-\right.$ $\left.y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right) \in \operatorname{Spl}_{k(t)} g(t, Y)$ where $g(t, Y)=\prod_{i=1}^{3}\left(Y-y_{i}\right)$ for $y_{i} \in \overline{k(t)}$. Thus we have $\operatorname{Spl}_{k(t)} g(t, Y)=\operatorname{Spl}_{k(t, \delta)} g(t, Y)=\operatorname{Spl}_{k(t, \delta)} f(s, X)$. Lemma 2.1 implies that $\operatorname{Spl}_{k(t, \delta)} f(s, X)=k(t, \delta, x)$. Since $s=[3] x \in k(x)$ and $\delta=9 t /(2 s+1) \in k(t, x)$, we have $k(t, \delta, x)=k(t, x)$. Here $g(t, Y)$ is a cubic Eisenstein polynomial at the prime divisor t and the discriminant δ^{2} of $g(t, Y)$ is not square in $k(t)$. Thus it holds that $[k(t, x): k(t)]=\left[\operatorname{Spl}_{k(t)} g(t, Y): k(t)\right]=6$. The element x is a zero of $f(s, X) f\left(-{ }_{T} s, X\right)=\left(X^{2}+X+1\right)^{3}-27 t\left(X^{2}+X\right)^{2} /(4 t-27)$ which is defined over $k(t)$. This means that $f(s, X) f\left(-{ }_{T} s, X\right)$ is the minimal polynomial of x over $k(t)$. Corollary 2.2 implies that there exist elements σ and τ in $\operatorname{Gal}(k(t, x) / k(t))$ such that $\sigma(x)=A_{3}(x)$ and $\tau(x)=A_{2}(x)$. Since the set $\left\{\sigma^{i} \tau^{j}(x) \mid i, j \in \mathbb{Z}\right\}=$ $\mathcal{A}(x)$ has order 6 , so does the subgroup $\langle\sigma, \tau\rangle$ of $\operatorname{Gal}(k(t, x) / k(t))$. Hence we have $\operatorname{Gal}(k(t, x) / k(t))=\langle\sigma, \tau\rangle \simeq \mathfrak{S}_{3}$.

Let $P(\mathfrak{t}, Z) \in k(\mathfrak{t})[Z]$ be the sextic polynomial as in Introduction, i.e.,

$$
P(t, Z)=Z^{6}-r_{1} Z^{4}+r_{1} Z^{3}+r_{0} Z^{2}-2 r_{0} Z+r_{0}
$$

where $r_{1}=t_{1} t_{2}\left(2\left(t_{1}+t_{2}\right)-27\right) /\left(t_{1}-t_{2}\right)^{2}$ and $r_{0}=t_{1}^{2} t_{2}^{2} /\left(t_{1}-t_{2}\right)^{2}$.
Proposition 2.4. We have $\operatorname{Spl}_{k(\mathfrak{t})} P(\mathfrak{t}, Z)=\operatorname{Spl}_{k(\mathfrak{t})} g\left(t_{1}, Y\right) \cdot \operatorname{Spl}_{k(\mathfrak{t})} g\left(t_{2}, Y\right)$.

For $i=1$ and 2 let δ_{i} be square roots of $4 t_{i}^{3}-27 t_{i}^{2}$ in $\overline{k(\mathfrak{t})}$ and put $s_{i}=\left(9 t_{i}-\delta_{i}\right) /\left(2 \delta_{i}\right)$, respectively. Let us define $s_{ \pm}=s_{1} \pm_{T} s_{2}$ and $u_{ \pm}=9\left(s_{ \pm}^{2}+s_{ \pm}+1\right)$, respectively.

Lemma 2.5. We have

$$
\begin{aligned}
& s_{ \pm}=\frac{27 t_{1} t_{2}-3\left(\delta_{1} t_{2} \pm \delta_{2} t_{1}\right) \mp \delta_{1} \delta_{2}}{6\left(\delta_{1} t_{2} \pm \delta_{2} t_{1}\right)} \\
& u_{ \pm}=\frac{t_{1} t_{2}\left(2\left(t_{1}+t_{2}\right)-27\right) \mp \delta_{1} \delta_{2}}{2\left(t_{1}-t_{2}\right)^{2}}
\end{aligned}
$$

$u_{+}+u_{-}=r_{1}$ and $u_{+} u_{-}=r_{0}$.

Proof. It follows from the definition that

$$
\begin{aligned}
s_{+} & =\frac{\left(\frac{9 t_{1}-\delta_{1}}{2 \delta_{1}}\right)\left(\frac{9 t_{2}-\delta_{2}}{2 \delta_{2}}\right)-1}{\frac{9 t_{1}-\delta_{1}}{2 \delta_{1}}+\frac{9 t_{2}-\delta_{2}}{2 \delta_{2}}+1} \\
& =\frac{\left(9 t_{1}-\delta_{1}\right)\left(9 t_{2}-\delta_{2}\right)-4 \delta_{1} \delta_{2}}{18\left(\delta_{1} t_{2}+\delta_{2} t_{1}\right)} \\
& =\frac{27 t_{1} t_{2}-3\left(\delta_{1} t_{2}+\delta_{2} t_{1}\right)-\delta_{1} \delta_{2}}{6\left(\delta_{1} t_{2}+\delta_{2} t_{1}\right)} .
\end{aligned}
$$

Then one has

$$
\begin{aligned}
u_{+} & =9\left(\left(s_{+}+1 / 2\right)^{2}+3 / 4\right) \\
& =\left(\frac{27 t_{1} t_{2}-\delta_{1} \delta_{2}}{2\left(\delta_{1} t_{2}+\delta_{2} t_{1}\right)}\right)^{2}+\frac{27}{4} \\
& =\frac{\left(27 t_{1} t_{2}-\delta_{1} \delta_{2}\right)^{2}+27\left(\delta_{1} t_{2}+\delta_{2} t_{1}\right)^{2}}{4\left(\delta_{1} t_{2}+\delta_{2} t_{1}\right)^{2}} \\
& =\frac{\left(27 t_{1}^{2}+\delta_{1}^{2}\right)\left(27 t_{2}^{2}+\delta_{2}^{2}\right)}{4\left(\delta_{1} t_{2}+\delta_{2} t_{1}\right)^{2}} \\
& =\frac{4 t_{1}^{3} t_{2}^{3}}{\left(\delta_{1} t_{2}+\delta_{2} t_{1}\right)^{2}} \\
& =\frac{4 t_{1}^{3} t_{2}^{3}\left(\delta_{1} t_{2}-\delta_{2} t_{1}\right)^{2}}{\left(\delta_{1}^{2} t_{2}^{2}-\delta_{2}^{2} t_{1}^{2}\right)^{2}} \\
& =\frac{4 t_{1}^{3} t_{2}^{3}\left(4 t_{1}^{3} t_{2}^{2}+4_{2}^{3} t_{1}^{2}-54 t_{1}^{2} t_{2}^{2}-2 \delta_{1} \delta_{2} t_{1} t_{2}\right)}{16\left(t_{1}^{3} t_{2}^{2}-t_{2}^{3} t_{1}^{2}\right)^{2}} \\
& =\frac{t_{1} t_{2}\left(2\left(t_{1}+t_{2}\right)-27\right)-\delta_{1} \delta_{2}}{2\left(t_{1}-t_{2}\right)^{2}} .
\end{aligned}
$$

Note that $-{ }_{T} s_{2}=-\left(9 t_{2}-\delta_{2}\right) /\left(2 \delta_{2}\right)-1=\left(9 t_{2}-\delta_{2}^{\prime}\right) /\left(2 \delta_{2}^{\prime}\right)$ where $\delta_{2}^{\prime}=-\delta_{2}$. This means that s_{-}and u_{-}are obtained from s_{+}and u_{+}with substituting $-\delta_{2}$ in δ_{2},
respectively. Here it holds that $u_{+}+u_{-}=r_{1}$. By the argument above we have

$$
\begin{aligned}
u_{+} u_{-} & =\frac{4 t_{1}^{3} t_{2}^{3}}{\left(\delta_{1} t_{2}+\delta_{2} t_{1}\right)^{2}} \frac{4 t_{1}^{3} t_{2}^{3}}{\left(\delta_{1} t_{2}-\delta_{2} t_{1}\right)^{2}} \\
& =\frac{16 t_{1}^{6} t_{2}^{6}}{16\left(t_{1}^{3} t_{2}^{2}-t_{2}^{3} t_{1}^{2}\right)^{2}} \\
& =\frac{t_{1}^{2} t_{2}^{2}}{\left(t_{1}-t_{2}\right)^{2}}
\end{aligned}
$$

Let x_{i} be solutions of $f\left(s_{i}, X\right)=0$ in $\overline{k(\mathfrak{t})}$, respectively. Let us denote the field $k\left(\mathfrak{t}, x_{1}, x_{2}\right)$ by L. We define an element $\xi\left(i_{1}, i_{2}, i\right) \in L$ by

$$
\xi\left(i_{1}, i_{2}, i\right)=\left[i_{1}\right] x_{1}+_{T}\left[i_{2}\right] x_{2}+_{T}[i](-1)
$$

for integers i_{1}, i_{2} and $i \in \mathbb{Z}$. Here -1 is a non-trivial 3 -torsion element in T. Let Λ be a finite set consisting of elements $\xi\left(i_{1}, i_{2}, i\right) \in L$ with $i_{1}, i_{2} \in\{ \pm 1\}$ and $i \in\{0,1,2\}$. We denote by $\beta(X)$ a rational function $\left(X^{2}+X+1\right) /\left(X^{2}+X\right) \in k(X)$. For $j=1,2, \ldots, 6$ let $z_{j} \in \beta(\Lambda)$ be elements in L defined by

$$
\begin{array}{lll}
z_{1}=\beta(\xi(1,1,0)), & z_{2}=\beta(\xi(1,1,1)), & z_{3}=\beta(\xi(1,1,2)) \\
z_{4}=\beta(\xi(1,-1,0)), & z_{5}=\beta(\xi(1,-1,1)), & z_{6}=\beta(\xi(1,-1,2)) .
\end{array}
$$

Lemma 2.6. We have $P(\mathfrak{t}, Z)=\prod_{j=1}^{6}\left(Z-z_{j}\right)$.
Proof. Let us assume that $\xi\left(i_{1}, i_{2}, i\right)=\xi\left(i_{1}^{\prime}, i_{2}^{\prime}, i^{\prime}\right)$ for integers $i_{1}, i_{2}, i, i_{1}^{\prime}, i_{2}^{\prime}$ and $i^{\prime} \in \mathbb{Z}$. Then it holds that $\left[i_{1}\right] s_{1}+_{T}\left[i_{2}\right] s_{2}=\left[i_{1}^{\prime}\right] s_{1}+{ }_{T}\left[i_{2}^{\prime}\right] s_{2}$ for $[3] \xi\left(i_{1}, i_{2}, i\right)=\left[i_{1}\right] s_{1}+{ }_{T}\left[i_{2}\right] s_{2}$. The elements s_{1} and s_{2} are linearly independent in the group $T\left(k\left(\mathfrak{t}, s_{1}, s_{2}\right)\right)$, which means that $\left(i_{1}, i_{2}\right)=\left(i_{1}^{\prime}, i_{2}^{\prime}\right)$. Since -1 is a non-trivial 3 -torsion, one has $i \equiv i^{\prime}$ $(\bmod 3)$. Thus the set Λ has 12 elements. The elements ξ_{1} and $\xi_{2} \in \Lambda$ satisfy $\beta\left(\xi_{1}\right)=\beta\left(\xi_{2}\right)$ if and only if ξ_{1} is equal to ξ_{2} or $-_{T} \xi_{2}$. This shows that z_{j} are distinct from each other. For $[3] \xi\left(i_{1}, i_{2}, i\right)=\left[i_{1}\right] s_{1}+{ }_{T}\left[i_{2}\right] s_{2}$ the element $\xi\left(i_{1}, i_{2}, i\right)$ is a solution of $f\left(\left[i_{1}\right] s_{1}+{ }_{T}\left[i_{2}\right] s_{2}, X\right)=0$. Thus one has

$$
\begin{aligned}
& \prod_{\xi \in \Lambda}(X-\xi) \\
= & f\left(s_{1}+{ }_{T} s_{2}, X\right) f\left(s_{1} T_{T} s_{2}, X\right) f\left(-{ }_{T} s_{1}+_{T} s_{2}, X\right) f\left(-_{T} s_{1}-_{T} s_{2}, X\right) \\
= & f\left(s_{+}, X\right) f\left(-{ }_{T} s_{+}, X\right) f\left(s_{-}, X\right) f\left(-{ }_{T} s_{-}, X\right) \\
= & \left(\left(X^{2}+X+1\right)^{3}-u_{+}\left(X^{2}+X\right)^{2}\right)\left(\left(X^{2}+X+1\right)^{3}-u_{-}\left(X^{2}+X\right)^{2}\right) \\
= & \left(X^{2}+X+1\right)^{6}-r_{1}\left(X^{2}+X+1\right)^{3}\left(X^{2}+X\right)^{2}+r_{0}\left(X^{2}+X\right)^{4},
\end{aligned}
$$

which is equal to $P(\mathfrak{t}, \beta(X))\left(X^{2}+X\right)^{6}$. This implies that z_{j} are solutions of $P(\mathfrak{t}, Z)=0$. Since z_{j} are distinct, we have $P(\mathfrak{t}, Z)=\prod_{j=1}^{6}\left(Z-z_{j}\right)$.

Proof of Proposition 2.4. Lemma 2.3 implies that $L=k\left(\mathfrak{t}, x_{1}, x_{2}\right)$ is equal to the composite field $\operatorname{Spl}_{k(\mathbf{t})} g\left(t_{1}, Y\right) \operatorname{Spl}_{k(\mathbf{t})} g\left(t_{2}, Y\right)$ of two extensions $\operatorname{Spl}_{k(\mathbf{t})} g\left(t_{1}, Y\right)$ and $\operatorname{Spl}_{k(\mathfrak{t})} g\left(t_{2}, Y\right)$ over $k(\mathfrak{t})$. Let G be the Galois group $\operatorname{Gal}(L / k(\mathfrak{t}))$. Lemma 2.3 means that there exist elements $\sigma_{1}, \tau_{1}, \sigma_{2}$ and τ_{2} in G such that

$$
\begin{array}{llll}
\sigma_{1}\left(x_{1}\right)=x_{1}+{ }_{T}(-1), & \tau_{1}\left(x_{1}\right)=-{ }_{T} x_{1}, & \sigma_{2}\left(x_{1}\right)=x_{1}, & \tau_{2}\left(x_{1}\right)=x_{1}, \\
\sigma_{1}\left(x_{2}\right)=x_{2}, & \tau_{1}\left(x_{2}\right)=x_{2}, & \sigma_{2}\left(x_{2}\right)=x_{2}+{ }_{T}(-1), & \tau_{2}\left(x_{2}\right)=-{ }_{T} x_{2} .
\end{array}
$$

Then it holds that $G=\left\langle\sigma_{1}, \tau_{1}, \sigma_{2}, \tau_{2}\right\rangle=\left\langle\sigma_{1}, \tau_{1}\right\rangle \times\left\langle\sigma_{2}, \tau_{2}\right\rangle \simeq\left(\mathfrak{S}_{3}\right)^{2}$. It follows from the definition that $z_{j} \in L$. One can calculate $\sigma_{1}\left(z_{1}\right)=\sigma_{1}(\beta(\xi(1,1,0)))=$ $\beta\left(\sigma_{1}(\xi(1,1,0))\right)=\beta(\xi(1,1,1))=z_{2}$. In the same way as above we see the actions on z_{j} of some elements in G as follows:

	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}
σ_{1}	z_{2}	z_{3}	z_{1}	z_{5}	z_{6}	z_{4}
τ_{1}	z_{4}	z_{6}	z_{5}	z_{1}	z_{3}	z_{2}
σ_{2}	z_{2}	z_{3}	z_{1}	z_{6}	z_{4}	z_{5}
τ_{2}	z_{4}	z_{5}	z_{6}	z_{1}	z_{2}	z_{3}

The elements $\rho\left(z_{j}\right)$ for $\rho \in G$ and $z_{j} \in L$ are denoted at the (ρ, z_{j})-components in the table above, respectively. Note that for each z_{j} there exists an element $\rho \in G$ such that $z_{j}=\rho\left(z_{1}\right)$. Let G_{j} be the stabilizer of z_{j} in G, that is, $G_{j}=$ $\left\{\rho \in G \mid \rho\left(z_{j}\right)=z_{j}\right\}$. Then it holds that $G_{1}=\left\langle\sigma_{1} \sigma_{2}^{2}, \tau_{1} \tau_{2}\right\rangle \simeq \mathfrak{S}_{3}$. It is seen that $G_{j}=\rho G_{1} \rho^{-1} \simeq G_{1}$ if $z_{j}=\rho\left(z_{1}\right)$ for $\rho \in G$. Here one has the sequence of the extension fields $L / L^{G_{j}} / k\left(\mathfrak{t}, z_{j}\right) / k(\mathfrak{t})$. By considering the orders of the Galois groups we have $[L: k(\mathfrak{t})]=36$ and $\left[L: L^{G_{j}}\right]=6$. Since z_{j} are conjugate to each other over $k(\mathfrak{t})$, the degrees $\left[k\left(\mathfrak{t}, z_{j}\right): k(\mathfrak{t})\right]$ are equal to 6 . This shows that $L^{G_{j}}=k\left(\mathfrak{t}, z_{j}\right)$ for every j. It satisfies that $G_{1} \cap G_{2}=\left\langle\sigma_{1} \sigma_{2}^{2}\right\rangle \simeq \mathcal{C}_{3}, G_{1} \cap G_{4}=\left\langle\tau_{1} \tau_{2}\right\rangle \simeq \mathcal{C}_{2}$ and $G_{1} \cap G_{2} \cap G_{4}=\{1\}$. This implies that $L=L^{G_{1} \cap G_{2} \cap G_{4}}=k\left(\mathfrak{t}, z_{1}, z_{2}, z_{4}\right)$. Hence we conclude $L=\operatorname{Spl}_{k(\mathfrak{t})} P(\mathfrak{t}, Z)$.
Proposition 2.4 and the genericity of $g(t, Y)$ imply
Corollary 2.7 (Proposition 1.3). The polynomial $P(\mathfrak{t}, Z)$ is generic for $\left(\mathfrak{S}_{3}\right)^{2}$ over k.

§ 3. Solution of the subfield problem on the generic cubic polynomial

In this section we solve the subfield problem of the cubic polynomial $g(t, Y)$ by using the sextic polynomial $P(\mathfrak{t}, Z)$.

Let $b \in K$ be an element in an extension K of k with $b(4 b-27) \neq 0$. Let δ be a square root of $4 b^{3}-27 b^{2}$ in \bar{K} and put $a=(9 b-\delta) /(2 \delta) \in K(\delta)$. Let $Q_{b}(K)$ be the set of solutions $w \in K$ of the quadratic equation $W^{2}=4 b^{3}-27 b^{2}$ and $C_{b}(K)$ that of the cubic one $g(b, Y)=0$.

Lemma 3.1. For a solution $x \in \bar{K}$ of $f(a, X)=0$, we have $\operatorname{Spl}_{K} g(b, Y)=K(x)$ and

$$
\operatorname{Gal}(K(x) / K)=\left\{\begin{array}{cll}
\langle\sigma, \tau\rangle \simeq \mathfrak{S}_{3} & \text { if } Q_{b}(K)=\emptyset \text { and } C_{b}(K)=\emptyset \\
\langle\sigma\rangle & \simeq \mathcal{C}_{3} & \text { if } Q_{b}(K) \neq \emptyset \text { and } C_{b}(K)=\emptyset, \\
\langle\iota\rangle & \mathcal{C}_{2} & \text { if } Q_{b}(K)=\emptyset \text { and } C_{b}(K) \neq \emptyset, \\
\{1\} & & \text { otherwise, }
\end{array}\right.
$$

where $\sigma(x)=A_{3}(x)=x+{ }_{T}(-1), \tau(x)=A_{2}(x)=-{ }_{T} x$ and $\iota(x)=A_{3}^{i} A_{2}(x)$ for an integer $i \in \mathbb{Z}$.

Proof. In the same way as in the proof of Lemma 2.3 one sees $\operatorname{Spl}_{K} g(b, Y)=K(x)$. Let G_{0} be the Galois group $\operatorname{Gal}(K(x) / K)$. Since $g(b, Y)$ is cubic, G_{0} is isomorphic to a subgroup of \mathfrak{S}_{3}. The sets $Q_{b}(K)$ (resp. $C_{b}(K)$) are empty if and only if G_{0} contains subgroups which are isomorphic to the cyclic groups \mathcal{C}_{2} (resp. \mathcal{C}_{3}). It determines the group structure of G_{0} completely. Let $G_{0}(x)$ be the orbit of x by G_{0}, that is, $G_{0}(x)=\left\{\rho(x) \mid \rho \in G_{0}\right\}$. Note that x is a solution of $f(a, X) f\left(-{ }_{T} a, X\right)=0$ which is a equation over K. Thus $G_{0}(x)$ has elements as those of $\mathcal{A}(x)$ at Corollary 2.2. If $G_{0} \simeq \mathfrak{S}_{3}$, then $G_{0}(x)$ is the same form as $\mathcal{A}(x)$, whose order is equal to 6. Thus one has $G_{0}=\langle\sigma, \tau\rangle$. When $G_{0} \simeq \mathcal{C}_{3}$, the set $G_{0}(x)$ has three elements. Note that $A_{2}(X), A_{3} A_{2}(X)$ and $A_{3}^{2} A_{2}(X)$ are linear fractionals of period 2. Thus we have $G_{0}(x)=\left\{x, A_{3}(x), A_{3}^{2}(x)\right\}$, which means that $G_{0}=\langle\sigma\rangle$. If $G_{0} \simeq \mathcal{C}_{2}$, then $G_{0}=\langle\iota\rangle$ where $\iota(x)=A_{3}^{i} A_{2}(x)$ for an integer $i \in \mathbb{Z}$. The integer i depends on the choice of the solution x. In fact, if x satisfies $\iota(x)=A_{3}^{i} A_{2}(x)$ for an integer $i \in \mathbb{Z}$, then $x^{\prime}=A_{3}^{i}(x)$ is a solution of $f(a, X)=0$ such that $\iota\left(x^{\prime}\right)=A_{2}\left(x^{\prime}\right)$. It is obvious for the case $G_{0}=\{1\}$.

Let $F \in K[X]$ be a polynomial over K and $d_{1} \leq d_{2} \leq \cdots \leq d_{r}$ positive integers. If there exist irreducible polynomials F_{j} over K of degree d_{j} such that $F=\prod_{j=1}^{r} F_{j}$, then we say that the decomposition type of F over K is $\left[d_{1}, d_{2}, \ldots, d_{r}\right]$ and denote it by $\mathcal{D} \mathcal{T}_{K} F$. Let b_{1} and b_{2} be two elements in K such that $b_{1} b_{2}\left(4 b_{1}-27\right)\left(4 b_{2}-\right.$
27) $\left(4 b_{1} b_{2}-27\left(b_{1}+b_{2}\right)\right)\left(b_{1}-b_{2}\right) \neq 0$. Now put $M_{i}=\operatorname{Spl}_{K} g\left(b_{i}, Y\right)$ and $n_{i}=\left[M_{i}: K\right]$, respectively. One can calculate the integers n_{i} by using Lemma 3.1. We obtain a criterion whether $M_{1} \subseteq M_{2}$ or not in terms of the decomposition type $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)$ of $P(\mathfrak{b}, Z)$ over K for $\mathfrak{b}=\left(b_{1}, b_{2}\right)$ as follows.

Proposition 3.2 (Theorem 1.1). We assume $n_{1} \leq n_{2}$.
(1) If $n_{1}=1$, then $M_{1} \subseteq M_{2}$ and $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left[n_{2}, n_{2}, \ldots, n_{2}\right]$.
(2) When $n_{1}=n_{2}=2$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[1,1,2,2]} & \text { if } M_{1}=M_{2} \\
{[2,4]} & \text { otherwise }
\end{array}\right.
$$

(3) If $n_{1}=2$ and $n_{2}=3$, then $M_{1} \cap M_{2}=K$ and $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$.
(4) When $n_{1}=2$ and $n_{2}=6$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[3,3]} & \text { if } M_{1} \subset M_{2} \\
{[6]} & \text { otherwise }
\end{array}\right.
$$

(5) When $n_{1}=n_{2}=3$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[1,1,1,3]} & \text { if } M_{1}=M_{2} \\
{[3,3]} & \text { otherwise }
\end{array}\right.
$$

(6) If $n_{1}=3$ and $n_{2}=6$, then $M_{1} \cap M_{2}=K$ and $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$.
(7) When $n_{1}=n_{2}=6$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[1,2,3]} & \text { if } M_{1}=M_{2} \\
{[3,3]} & \text { if }\left[M_{1} \cap M_{2}: K\right]=2 \\
{[6]} & \text { otherwise }
\end{array}\right.
$$

Let L be the composite field $M_{1} M_{2}$ and G the Galois group $\operatorname{Gal}(L / K)$. For $i=1$ and 2 let δ_{i} be square roots of $4 b_{i}^{3}-27 b_{i}^{2}$ in \bar{K} and put $a_{i}=\left(9 b_{i}-\delta_{i}\right) /\left(2 \delta_{i}\right)$, respectively. Let x_{i} be solutions of $f\left(a_{i}, X\right)=0$ in \bar{K}. In the same way as for the case of the function field $k(\mathfrak{t})$ described at the previous section, we define $z_{j} \in L$ for integers $j=1,2, \ldots, 6$. Since $\operatorname{disc}_{Z} P(\mathfrak{b}, Z)$ is not equal to 0 due to Lemma 4.2 below, the elements z_{j} are distinct from each other.

Lemma 3.3. If $n_{1}=1$, then $M_{1} \subseteq M_{2}$ and $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left[n_{2}, n_{2}, \ldots, n_{2}\right]$.
Proof. When $n_{1}=n_{2}=1$, we have $x_{1}, x_{2} \in K$ and $z_{j} \in K$. This means that $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[1,1,1,1,1,1]$. When $\left(n_{1}, n_{2}\right)=(1,2)$, we have $G=\left\langle\iota_{2}\right\rangle$ where $\iota_{2}\left(x_{1}\right)=x_{1}$ and $\iota_{2}\left(x_{2}\right)=A_{3}^{i} A_{2}\left(x_{2}\right)$ for an $i \in \mathbb{Z}$. If $\iota_{2}\left(x_{2}\right)=A_{2}\left(x_{2}\right)$, then

$$
\iota_{2}: z_{1} \mapsto z_{4} \mapsto z_{1}, \quad z_{2} \mapsto z_{5} \mapsto z_{2}, \quad z_{3} \mapsto z_{6} \mapsto z_{3},
$$

which means that $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[2,2,2]$. In the same way as above one sees $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[2,2,2]$ provided $\iota_{2}\left(x_{2}\right)=A_{3}^{i} A_{2}\left(x_{2}\right)$ for every $i \in \mathbb{Z}$. If $\left(n_{1}, n_{2}\right)=$ $(1,3)$, then $G=\left\langle\sigma_{2}\right\rangle$ with $\sigma_{2}\left(x_{1}\right)=x_{1}$ and $\sigma_{2}\left(x_{2}\right)=A_{3}\left(x_{2}\right)$. Then one has

$$
\sigma_{2}: z_{1} \mapsto z_{2} \mapsto z_{3} \mapsto z_{1}, \quad z_{4} \mapsto z_{6} \mapsto z_{5} \mapsto z_{4},
$$

which implies that $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[3,3]$. When $\left(n_{1}, n_{2}\right)=(1,6)$, we have $G=$ $\left\langle\sigma_{2}, \tau_{2}\right\rangle$ with $\sigma_{2}\left(x_{1}\right)=x_{1}, \tau_{2}\left(x_{1}\right)=x_{1}, \sigma_{2}\left(x_{2}\right)=A_{3}\left(x_{2}\right)$ and $\tau_{2}\left(x_{2}\right)=A_{2}\left(x_{2}\right)$. Then σ_{2} and τ_{2} satisfy $\sigma_{2}: z_{1} \mapsto z_{2} \mapsto z_{3}, z_{4} \mapsto z_{6} \mapsto z_{5}$ and $\tau_{2}\left(z_{1}\right)=z_{4}$, respectively. Thus we have $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$.

Lemma 3.4. Now assume $n_{1}=2$. When $n_{2}=2$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[1,1,2,2]} & \text { if } M_{1}=M_{2}, \\
{[2,4]} & \text { otherwise } .
\end{array}\right.
$$

If $n_{2}=3$, then $M_{1} \cap M_{2}=K$ and $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$. For the case of $n_{2}=6$ we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[3,3]} & \text { if } M_{1} \subset M_{2}, \\
{[6]} & \text { otherwise } .
\end{array}\right.
$$

Proof. Let us first consider the case that $n_{1}=n_{2}=2$ and $M_{1}=M_{2}$. Then it satisfies that $G=\langle\iota\rangle$ where $\iota\left(x_{1}\right)=A_{3}^{i_{1}} A_{2}\left(x_{1}\right)$ and $\iota\left(x_{2}\right)=A_{3}^{i_{2}} A_{2}\left(x_{2}\right)$ for integers $i_{1}, i_{2} \in \mathbb{Z}$. By replacing x_{1} and x_{2} by the solutions $x_{1}^{\prime}=A_{3}^{i_{1}}\left(x_{1}\right)$ and $x_{2}^{\prime}=A_{3}^{i_{2}}\left(x_{1}\right)$, one may have $\iota\left(x_{1}^{\prime}\right)=A_{2}\left(x_{1}^{\prime}\right)$ and $\iota\left(x_{2}^{\prime}\right)=A_{2}\left(x_{2}^{\prime}\right)$, respectively. The replacement of $\left(x_{1}, x_{2}\right)$ by $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ permutes the elements z_{j}, however, it does not change the polynomial $P(\mathfrak{b}, Z)$ and the decomposition type $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)$. So we may check only the case $i_{1}=i_{2}=0$. It holds that

$$
\iota: z_{1} \mapsto z_{1}, \quad z_{2} \mapsto z_{3} \mapsto z_{2}, \quad z_{4} \mapsto z_{4}, \quad z_{5} \mapsto z_{6} \mapsto z_{5},
$$

which means $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[1,1,2,2]$. If $n_{1}=n_{2}=2$ and $M_{1} \neq M_{2}$, then $G=$ $\left\langle\iota_{1}, \iota_{2}\right\rangle$ where $\iota_{1}\left(x_{1}\right)=A_{3}^{i_{1}} A_{2}\left(x_{1}\right), \iota_{1}\left(x_{2}\right)=x_{2}, \iota_{2}\left(x_{1}\right)=x_{1}$ and $\iota_{2}\left(x_{2}\right)=A_{3}^{i_{2}} A_{2}\left(x_{2}\right)$ for integers $i_{1}, i_{2} \in \mathbb{Z}$. When $i_{1}=i_{2}=0$, it satisfies

$$
\begin{array}{lll}
\iota_{1}: & z_{1} \mapsto z_{4} \mapsto z_{1}, & z_{2} \mapsto z_{6} \mapsto z_{2}, \quad z_{3} \mapsto z_{5} \mapsto z_{3}, \\
\iota_{2}: & z_{1} \mapsto z_{4} \mapsto z_{1}, & z_{2} \mapsto z_{5} \mapsto z_{2}, \\
z_{3} \mapsto z_{6} \mapsto z_{3} .
\end{array}
$$

This shows that $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[2,4]$. If $\left(n_{1}, n_{2}\right)=(2,3)$, then $G=\left\langle\iota_{1}, \sigma_{2}\right\rangle$ where $\iota_{1}\left(x_{1}\right)=A_{3}^{i_{1}} A_{2}\left(x_{1}\right), \iota_{1}\left(x_{2}\right)=x_{2}, \sigma_{2}\left(x_{1}\right)=x_{1}$ and $\sigma_{2}\left(x_{2}\right)=A_{3}\left(x_{2}\right)$ for an integer $i_{1} \in \mathbb{Z}$. In the case $i_{1}=0$ one has that $\iota_{1}\left(z_{1}\right)=z_{4}$ and $\sigma_{2}: z_{1} \mapsto z_{2} \mapsto z_{3}, z_{4} \mapsto$
$z_{6} \mapsto z_{5}$. Thus we have $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$. Let us assume $\left(n_{1}, n_{2}\right)=(2,6)$. If $M_{1} \subset M_{2}$, then $G=\left\langle\sigma_{2}, \tau\right\rangle$ where $\sigma_{2}\left(x_{1}\right)=x_{1}, \sigma_{2}\left(x_{2}\right)=A_{3}\left(x_{2}\right), \tau\left(x_{1}\right)=A_{3}^{i_{1}} A_{2}\left(x_{1}\right)$ and $\tau\left(x_{2}\right)=A_{2}\left(x_{2}\right)$ for an integer $i_{1} \in \mathbb{Z}$. Under the condition $i_{1}=0$ one has

$$
\begin{aligned}
\sigma_{2}: & z_{1} \mapsto z_{2} \mapsto z_{3} \mapsto z_{1}, \quad z_{4} \mapsto z_{6} \mapsto z_{5} \mapsto z_{4} \\
\tau: & z_{1} \mapsto z_{1}, \quad z_{2} \mapsto z_{3} \mapsto z_{2}, \quad z_{4} \mapsto z_{4}, \quad z_{5} \mapsto z_{6} \mapsto z_{5}
\end{aligned}
$$

which means that $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[3,3]$. If $M_{1} \not \subset M_{2}$, then $G=\left\langle\iota_{1}, \sigma_{2}, \tau_{2}\right\rangle$ where $\iota_{1}\left(x_{1}\right)=A_{3}^{i_{1}} A_{2}\left(x_{1}\right), \iota_{1}\left(x_{2}\right)=x_{2}, \sigma_{2}\left(x_{1}\right)=x_{1}, \sigma_{2}\left(x_{2}\right)=A_{3}\left(x_{2}\right), \tau_{2}\left(x_{1}\right)=x_{1}$ and $\tau_{2}\left(x_{2}\right)=A_{2}\left(x_{2}\right)$ for an integer $i_{1} \in \mathbb{Z}$. Then in the same way as in the case $\left(n_{1}, n_{2}\right)=(1,6)$, one has $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$.

Lemma 3.5. Assume $n_{1}=3$. When $n_{2}=3$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[1,1,1,3]} & \text { if } M_{1}=M_{2} \\
{[3,3]} & \text { otherwise } .
\end{array}\right.
$$

If $n_{2}=6$, then $M_{1} \cap M_{2}=K$ and $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$.

Proof. Let us assume that $n_{1}=n_{2}=3$ and $M_{1}=M_{2}$. Then it holds that $G=\langle\sigma\rangle$ where $\sigma\left(x_{1}\right)=A_{3}\left(x_{1}\right)$ and $\sigma\left(x_{2}\right)=A_{3}^{i}\left(x_{2}\right)$ for $i \in\{1,2\}$. Here one sees

$$
\sigma:\left\{\begin{array}{llll}
z_{1} \mapsto z_{3} \mapsto z_{2} \mapsto z_{1}, & z_{4} \mapsto z_{4}, & z_{5} \mapsto z_{5}, \quad z_{6} \mapsto z_{6} & \text { if } i=1 \\
z_{1} \mapsto z_{1}, & z_{2} \mapsto z_{2}, & z_{3} \mapsto z_{3}, & z_{4} \mapsto z_{6} \mapsto z_{5} \mapsto z_{4}
\end{array} \quad \text { if } i=2 .\right.
$$

This means that $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[1,1,1,3]$. When $n_{1}=n_{2}=3$ and $M_{1} \neq M_{2}$, we have $G=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ where $\sigma_{1}\left(x_{1}\right)=A_{3}\left(x_{1}\right), \sigma_{1}\left(x_{2}\right)=x_{2}, \sigma_{2}\left(x_{1}\right)=x_{1}$ and $\sigma_{2}\left(x_{2}\right)=A_{3}\left(x_{2}\right)$. Then

$$
\begin{array}{lll}
\sigma_{1}: & z_{1} \mapsto z_{2} \mapsto z_{3} \mapsto z_{1}, & z_{4} \mapsto z_{5} \mapsto z_{6} \mapsto z_{4} \\
\sigma_{2}: & z_{1} \mapsto z_{2} \mapsto z_{3} \mapsto z_{1}, & z_{4} \mapsto z_{6} \mapsto z_{5} \mapsto z_{4}
\end{array}
$$

which implies that $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[3,3]$. If $\left(n_{1}, n_{2}\right)=(3,6)$, then $M_{1} \cap M_{2}=K$ and $G=\left\langle\sigma_{1}, \sigma_{2}, \tau_{2}\right\rangle$ where $\sigma_{1}\left(x_{1}\right)=A_{3}\left(x_{1}\right), \sigma_{1}\left(x_{2}\right)=x_{2}, \sigma_{2}\left(x_{1}\right)=x_{1}, \sigma_{2}\left(x_{2}\right)=A_{3}\left(x_{2}\right)$, $\tau_{2}\left(x_{1}\right)=x_{1}$ and $\tau_{2}\left(x_{2}\right)=A_{2}\left(x_{2}\right)$. In the same way as in the case $\left(n_{1}, n_{2}\right)=(1,6)$, one has $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$.

Lemma 3.6. When $n_{1}=n_{2}=6$, we have

$$
\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=\left\{\begin{array}{cl}
{[1,2,3]} & \text { if } M_{1}=M_{2} \\
{[3,3]} & \text { if }\left[M_{1} \cap M_{2}: K\right]=2 \\
{[6]} & \text { otherwise. }
\end{array}\right.
$$

Proof. If $M_{1}=M_{2}$, then $G=\langle\sigma, \tau\rangle$ where $\sigma\left(x_{1}\right)=A_{3}\left(x_{1}\right), \sigma\left(x_{2}\right)=A_{3}^{i}\left(x_{2}\right)$ $\tau\left(x_{1}\right)=A_{2}\left(x_{1}\right)$ and $\tau\left(x_{2}\right)=A_{3}^{i_{2}} A_{2}\left(x_{2}\right)$ for integers $i \in\{1,2\}$ and $i_{2} \in \mathbb{Z}$. In the case $\left(i, i_{2}\right)=(1,0)$ we have

$$
\begin{array}{llll}
\sigma: & z_{1} \mapsto z_{3} \mapsto z_{2} \mapsto z_{1}, \quad z_{4} \mapsto z_{4}, \quad z_{5} \mapsto z_{5}, \quad z_{6} \mapsto z_{6} \\
\tau: & z_{1} \mapsto z_{1}, \quad z_{2} \mapsto z_{3} \mapsto z_{2}, \quad z_{4} \mapsto z_{4}, \quad z_{5} \mapsto z_{6} \mapsto z_{5}
\end{array}
$$

This shows that $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[1,2,3]$. When $\left[M_{1} \cap M_{2}: K\right]=2$, we have $G=\left\langle\sigma_{1}, \sigma_{2}, \tau\right\rangle$ where $\sigma_{1}\left(x_{1}\right)=A_{3}\left(x_{1}\right), \sigma_{1}\left(x_{2}\right)=x_{2}, \sigma_{2}\left(x_{1}\right)=x_{1}, \sigma_{2}\left(x_{2}\right)=A_{3}\left(x_{2}\right)$ $\tau\left(x_{1}\right)=A_{2}\left(x_{1}\right)$ and $\tau\left(x_{2}\right)=A_{3}^{i_{2}} A_{2}\left(x_{2}\right)$ for an integer $i_{2} \in \mathbb{Z}$. For the case $i_{2}=0$ one has

$$
\begin{aligned}
\sigma_{1}: & z_{1} \mapsto z_{2} \mapsto z_{3} \mapsto z_{1}, \quad z_{4} \mapsto z_{5} \mapsto z_{6} \mapsto z_{4} \\
\sigma_{2}: & z_{1} \mapsto z_{2} \mapsto z_{3} \mapsto z_{1}, \quad z_{4} \mapsto z_{6} \mapsto z_{5} \mapsto z_{4} \\
\tau: & z_{1} \mapsto z_{1}, \quad z_{2} \mapsto z_{3} \mapsto z_{2}, \quad z_{4} \mapsto z_{4}, \quad z_{5} \mapsto z_{6} \mapsto z_{5}
\end{aligned}
$$

Thus we have $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[3,3]$. If $M_{1} \cap M_{2}=K$, then $G=\left\langle\sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\right\rangle$ where $\sigma_{1}\left(x_{1}\right)=A_{3}\left(x_{1}\right), \sigma_{1}\left(x_{2}\right)=x_{2}, \sigma_{2}\left(x_{1}\right)=x_{1}, \sigma_{2}\left(x_{2}\right)=A_{3}\left(x_{2}\right), \tau_{1}\left(x_{1}\right)=A_{2}\left(x_{1}\right)$, $\tau_{1}\left(x_{2}\right)=x_{2}, \tau_{2}\left(x_{1}\right)=x_{1}$ and $\tau_{2}\left(x_{2}\right)=A_{2}\left(x_{2}\right)$. In the same way as in the case $\left(n_{1}, n_{2}\right)=(1,6)$, one has $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)=[6]$.

Remark 3.7. In the proofs of Lemmas 3.3 to 3.6 one may have $i_{1}=i_{2}=0$ by replacing the solutions x_{1} and x_{2} by others solutions of $f\left(a_{1}, Y\right)=0$ and $f\left(a_{2}, Y\right)=$ 0 , respectively. We may have $i=1$ by replacing the solutions x_{2} of $f\left(a_{2}, Y\right)=0$ by a solution $-{ }_{T} x_{2}$ of $f\left({ }_{T} a_{2}, Y\right)=0$. Such replacements do not change the extensions M_{1}, M_{2}, the polynomial $P(\mathfrak{b}, Z)$ and the decomposition type $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)$.

Lemmas 3.3 to 3.6 verify Proposition 3.2.
Proof of Theorem 1.1. For a fixed $\left(n_{1}, n_{2}\right)$, Proposition 3.2 means that the decomposition types $\mathcal{D} \mathcal{T}_{K} P(\mathfrak{b}, Z)$ are distinct if the relations between M_{1} and M_{2} are different, which implies that the converses are also true. This shows Theorem 1.1 completely.
For the exceptional case that $b_{1} b_{2}\left(4 b_{1}-27\right)\left(4 b_{2}-27\right)\left(4 b_{1} b_{2}-27\left(b_{1}+b_{2}\right)\right)\left(b_{1}-b_{2}\right)=0$ one sees

Lemma 3.8 (Lemma 1.4). We have $M_{i}=K$ provided $b_{i}\left(4 b_{i}-27\right)=0$. When $\left(4 b_{1} b_{2}-27\left(b_{1}+b_{2}\right)\right)\left(b_{1}-b_{2}\right)=0$, it holds that $M_{1}=M_{2}$.

Proof. Since $g(0, Y)=Y^{3}$ and $g(27 / 4, Y)=(Y-3)(Y+3 / 2)^{2}$, one has $M_{i}=K$ if $b_{i}\left(4 b_{i}-27\right)=0$. Now assume that $b_{i}\left(4 b_{i}-27\right) \neq 0$ and $4 b_{1} b_{2}-27\left(b_{1}+b_{2}\right)=0$. Then one has that $\delta_{1}^{2} \delta_{2}^{2}=27^{2} b_{1}^{2} b_{2}^{2}$ and $K\left(\delta_{1}, \delta_{2}\right)=K\left(\delta_{1}\right)=K\left(\delta_{2}\right)$. Lemma 2.5 shows that $a_{1}+{ }_{T} a_{2}=-1 / 2$ or $a_{1}-{ }_{T} a_{2}=-1 / 2$. Since $-1 / 2=[3](-1 / 2) \in[3] T(K)$, it holds that $\operatorname{Spl}_{K\left(\delta_{1}, \delta_{2}\right)} f\left(a_{1}, X\right)=\operatorname{Spl}_{K\left(\delta_{1}, \delta_{2}\right)} f\left(a_{2}, X\right)$. Lemma 2.3 implies that $M_{i}=\operatorname{Spl}_{K\left(\delta_{i}\right)} f\left(a_{i}, X\right)$, respectively. Hence we have $M_{1}=M_{2}$.

§4. Discriminants of the polynomials

Let us denote the discriminants of the polynomials $f(s, X)$ and $g(t, Y)$ by $\Delta_{f}(s)$ and by $\Delta_{g}(t)$, respectively.

Lemma 4.1. We have $\Delta_{f}(s)=3^{4}\left(s^{2}+s+1\right)^{2}$ and $\Delta_{g}(t)=t^{2}(4 t-27)$. Under the relations $s=(9 t-\delta) /(2 \delta)$ and $\delta^{2}=4 t^{3}-27 t^{2}$ one has $\Delta_{f}(s)=3^{6} t^{2} /(4 t-27)^{2}$ and $\Delta_{g}(t)=3^{10}\left(s^{2}+s+1\right)^{2} /(2 s+1)^{6}$.

Proof. The equations $s=(9 t-\delta) /(2 \delta)$ and $\delta^{2}=4 t^{3}-27 t^{2}$ imply that $t=3^{3}\left(s^{2}+\right.$ $s+1) /(2 s+1)^{2}$. This means that $s^{2}+s+1=3 t /(4 t-27)$.
Let $\Delta_{P}(\mathfrak{t})$ be the discriminant of the polynomial $P(\mathfrak{t}, Z)$.
Lemma 4.2. We have

$$
\Delta_{P}(\mathfrak{t})=\frac{t_{1}^{10} t_{2}^{10}\left(4 t_{1}-27\right)^{3}\left(4 t_{2}-27\right)^{3}\left(4 t_{1} t_{2}-27\left(t_{1}+t_{2}\right)\right)^{2}}{\left(t_{1}-t_{2}\right)^{18}}
$$

Proof. We first note that $P(\mathfrak{t},-Z)=g\left(u_{+}, Z\right) g\left(u_{-}, Z\right)$ whose discriminant is equal to that of $P(\mathfrak{t}, Z)$. Here the resultant $\operatorname{Res}_{Z}\left(g_{1}(Z), g_{2}(Z)\right)$ of two polynomials $g_{1}(Z)$ and $g_{2}(Z)$ satisfies an equation

$$
\operatorname{disc}_{Z}\left(g_{1}(Z) g_{2}(Z)\right)=\operatorname{disc}_{Z}\left(g_{1}(Z)\right) \operatorname{disc}_{Z}\left(g_{2}(Z)\right) \operatorname{Res}_{Z}\left(g_{1}(Z), g_{2}(Z)\right)^{2}
$$

(cf. [2] § 3.3). Lemma 2.5 implies that

$$
\begin{aligned}
& \operatorname{disc}_{Z} g\left(u_{+}, Z\right) \operatorname{disc}_{Z} g\left(u_{-}, Z\right) \\
= & \left(4 u_{+}^{3}-27 u_{+}^{2}\right)\left(4 u_{-}^{3}-27 u_{-}^{2}\right) \\
= & r_{0}^{2}\left(16 r_{0}-108 r_{1}+729\right) \\
= & t_{1}^{4} 2_{2}^{4}\left(4 t_{1} t_{2}-27\left(t_{1}+t_{2}\right)\right)^{2} /\left(t_{1}-t_{2}\right)^{6} .
\end{aligned}
$$

By the Sylvester's matrix method one can calculate that $\operatorname{Res}_{Z}\left(g\left(u_{+}, Z\right), g\left(u_{-}, Z\right)\right)$ is equal to $\left(u_{+}-u_{-}\right)^{3}$. It holds that $\left(u_{+}-u_{-}\right)^{2}=r_{1}^{2}-4 r_{0}=t_{1}^{2} t_{2}^{2}\left(4 t_{1}-27\right)\left(4 t_{2}-\right.$ $27) /\left(t_{1}-t_{2}\right)^{4}$. Hence the equation of the assertion follows.

§ 5. Descent genericity of the sextic polynomial

It is known due to Kemper [4] that a generic polynomial for a finite group G over a field k yieds not only all the Galois G-extensions containing k but also all the Galois H-extensions containing k for any subgroups H of G. In this section we give explicit generic polynomials $P_{H}(\mathfrak{c}, Z)$ for all subgroups H of $\left(\mathfrak{S}_{3}\right)^{2}$ by the degenerations of the sextic polynomial $P(\mathfrak{t}, Z)$.

Let $\lambda(c), \mu(c)$ and $\nu(c) \in k(c)$ be rational functions over k with one variable c such that

$$
\begin{aligned}
& \lambda(c)=\frac{3^{3}\left(c^{2}+c+1\right)}{(2 c+1)^{2}}, \quad \mu(c)=\frac{c^{3}}{3^{2}(c-9)^{2}}, \\
& \nu(s)=\lambda([3](c))=\mu(\lambda(c))=\frac{3^{3}\left(c^{2}+c+1\right)^{3}}{(c-1)^{2}(2 c+1)^{2}(c+2)^{2}},
\end{aligned}
$$

where [3] is the multiplication by 3 map of the group T, that is, $[3](c)=\left(c^{3}-3 c-\right.$ 1) $/\left(3 c^{2}+3 c\right)$. For subgroups $H=\{1\}, \mathcal{C}_{2}, \mathcal{C}_{3}$ and \mathfrak{S}_{3} of \mathfrak{S}_{3}, we define polynomials $g_{H}(c, Y) \in k(c)[Y]$ by

$$
g_{\{1\}}(c, Y)=g(\nu(c), Y), \quad g_{\mathcal{C}_{2}}(c, Y)=g(\mu(c), Y), \quad g_{\mathcal{C}_{3}}(c, Y)=g(\lambda(c), Y)
$$

and $g_{\mathfrak{S}_{3}}(c, Y)=g(c, Y)$, respectively. By the direct calculation one sees

Lemma 5.1. We have

$$
\begin{aligned}
& g_{\{1\}}(c, Y)=\left(Z-\frac{3\left(c^{2}+c+1\right)}{(c-1)(c+2)}\right)\left(Z+\frac{3\left(c^{2}+c+1\right)}{(c+2)(2 c+1)}\right)\left(Z+\frac{3\left(c^{2}+c+1\right)}{(c-1)(2 c+1)}\right), \\
& g_{\mathcal{C}_{2}}(c, Y)=\left(Z+\frac{c}{c-9}\right)\left(Z^{2}-\frac{c}{c-9} Z-\frac{c^{2}}{3^{2}(c-9)}\right), \\
& \operatorname{disc}_{Z}\left(g_{\{1\}}(c, Y)=\frac{3^{32} c^{2}(c+1)^{2}\left(c^{2}+c+1\right)^{6}}{(c-1)^{6}(2 c+1)^{6}(c+2)^{6}},\right. \\
& \operatorname{disc}_{Z}\left(g_{\mathcal{C}_{2}}(c, Y)\right)=\frac{c^{6}(c-27)^{2}(4 c-27)}{3^{6}(c-9)^{6}}, \quad \operatorname{disc}_{Z}\left(g_{\mathcal{C}_{3}}(c, Y)\right)=\frac{3^{10}\left(c^{2}+c+1\right)^{2}}{(2 c+1)^{6}} .
\end{aligned}
$$

Corollary 5.2. For each subgroup $H=\{1\}, \mathcal{C}_{2}, \mathcal{C}_{3}$ and \mathfrak{S}_{3} of \mathfrak{S}_{3}, the polynomial $g_{H}(c, Y)$ is generic for H over k.

Proof. Lemma 5.1 means that $\operatorname{Spl}_{k(c)}\left(g_{\{1\}}(c, Y)\right)=k(c)$ and $\operatorname{Spl}_{k(c)}\left(g_{\mathcal{C}_{2}}(c, Y)\right)=$ $k(c, \sqrt{4 c-27})$. Thus $\operatorname{Spl}_{k(c)}\left(g_{\{1\}}(c, Y)\right)$ and $\operatorname{Spl}_{k(c)}\left(g_{\mathcal{C}_{2}}(c, Y)\right)$ are generic. Lemma 2.3 implies that $\operatorname{Spl}_{k(c)}\left(g_{\mathcal{C}_{3}}(c, Y)\right)=\operatorname{Spl}_{k(c)} f(c, X)$ for $\operatorname{disc}_{Z}\left(g_{\mathcal{C}_{3}}(c, Y)\right) \in k(c)^{2}$. Since $f(c, X)$ is generic for \mathcal{C}_{3} over k, so is $g_{\mathcal{C}_{3}}(c, Y)$.

For subgroups H of $\left(\mathfrak{S}_{3}\right)^{2}$ we define polynomials $P_{H}(\mathfrak{c}, Z) \in k(\mathfrak{c})[Z], \mathfrak{c}=\left(c_{1}, c_{2}\right)$ by

$$
\begin{array}{ll}
P_{\{1\}}(\mathfrak{c}, Z)=P\left(\nu\left(c_{1}\right), \nu\left(c_{2}\right), Z\right), & P_{\mathfrak{S}_{3}}(\mathfrak{c}, Z)=P\left(\nu\left(c_{1}\right), c_{2}, Z\right), \\
P_{\mathcal{C}_{2}}(\mathfrak{c}, Z)=P\left(\nu\left(c_{1}\right), \mu\left(c_{2}\right), Z\right), & P_{\left(\mathcal{C}_{3}\right)^{2}}(\mathfrak{c}, Z)=P\left(\lambda\left(c_{1}\right), \lambda\left(c_{2}\right), Z\right), \\
P_{\mathcal{C}_{3}}(\mathfrak{c}, Z)=P\left(\nu\left(c_{1}\right), \lambda\left(c_{2}\right), Z\right), & P_{\mathcal{C}_{2} \times \mathfrak{S}_{3}}(\mathfrak{c}, Z)=P\left(\mu\left(c_{1}\right), c_{2}, Z\right), \\
P_{\left(\mathcal{C}_{2}\right)^{2}}(\mathfrak{c}, Z)=P\left(\mu\left(c_{1}\right), \mu\left(c_{2}\right), Z\right), & P_{\mathcal{C}_{3} \times \mathfrak{G}_{3}}(\mathfrak{c}, Z)=P\left(\lambda\left(c_{1}\right), c_{2}, Z\right), \\
P_{\mathcal{C}_{6}}(\mathfrak{c}, Z)=P\left(\mu\left(c_{1}\right), \lambda\left(c_{2}\right), Z\right), & P_{\left(\mathfrak{S}_{3}\right)^{2}}(\mathfrak{c}, Z)=P\left(c_{1}, c_{2}, Z\right) .
\end{array}
$$

Proposition 2.4 and Corollary 5.2 imply
Corollary 5.3. For every subgroup H of $\left(\mathfrak{S}_{3}\right)^{2}$ the polynomial $P_{H}(\mathfrak{c}, Z)$ is generic for H over k.

Remark 5.4. We omit the description of the discriminants $\operatorname{disc}_{Z} P_{H}(\mathfrak{c}, Z)$ of the polynomials $P_{H}(\mathfrak{c}, Z)=P\left(\varepsilon_{1}\left(c_{1}\right), \varepsilon_{2}\left(c_{2}\right), Z\right)$ since $\operatorname{disc}_{Z} P_{H}(\mathfrak{c}, Z)$ are equal to $\Delta_{P}\left(\varepsilon_{1}\left(c_{1}\right), \varepsilon_{2}\left(c_{2}\right)\right)$, respectively.

References

[1] R.J. Chapman, Automorphism polynomials in cyclic cubic extensions, J. Number Theory 61 (1996), no. 2, 283-291.
[2] H. Cohen, A course in computational algebraic number theory, Grad. Texts in Math. 138, 1993.
[3] C.U. Jensen, A. Ledet, N. Yui, Generic polynomials, Math. Sci. Res. Inst. Publ. 45, 2002.
[4] G. Kemper, Generic polynomials are descent-generic, Manuscripta Math. 105 (2001), no. 1, 139-141.
[5] T. Komatsu, Arithmetic of Rikuna's generic cyclic polynomial and generalization of Kummer theory, Manuscripta Math. 114 (2004), no. 3, 265-279.
[6] K. Miyake, a communication note.
[7] P. Morton, Characterizing cyclic cubic extensions by automorphism polynomials, J. Number Theory 49 (1994), no. 2, 183-208.
[8] H. Ogawa, Quadratic reduction of multiplicative group and its applications, (Japanese) Algebraic number theory and related topics (Japanese) (Kyoto, 2002). Surikaisekikenkyusho Kokyuroku 1324 (2003), 217-224.
[9] J.P. Serre, Topics in Galois theory, Res. Notes in Math. 1, 1992.
[10] D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137-1152.
(Toru KOMATSU) Faculty of Mathematics, Kyushu University, 6-10-1 Hakozaki Higashiku, Fukuoka, 812-8581 Japan

E-mail address: trkomatu@math.kyushu-u.ac.jp

List of MHF Preprint Series, Kyushu University
 21st Century COE Program
 Development of Dynamic Mathematics with High Functionality

MHF2003-1 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Yoshitaka WATANABE
A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems

MHF2003-2 Masahisa TABATA \& Daisuke TAGAMI
Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients

MHF2003-3 Tomohiro ANDO, Sadanori KONISHI \& Seiya IMOTO
Adaptive learning machines for nonlinear classification and Bayesian information criteria

MHF2003-4 Kazuhiro YOKOYAMA
On systems of algebraic equations with parametric exponents
MHF2003-5 Masao ISHIKAWA \& Masato WAKAYAMA
Applications of Minor Summation Formulas III, Plücker relations, Lattice paths and Pfaffian identities

MHF2003-6 Atsushi SUZUKI \& Masahisa TABATA
Finite element matrices in congruent subdomains and their effective use for large-scale computations

MHF2003-7 Setsuo TANIGUCHI
Stochastic oscillatory integrals - asymptotic and exact expressions for quadratic phase functions -

MHF2003-8 Shoki MIYAMOTO \& Atsushi YOSHIKAWA
Computable sequences in the Sobolev spaces
MHF2003-9 Toru FUJII \& Takashi YANAGAWA
Wavelet based estimate for non-linear and non-stationary auto-regressive model
MHF2003-10 Atsushi YOSHIKAWA
Maple and wave-front tracking - an experiment
MHF2003-11 Masanobu KANEKO
On the local factor of the zeta function of quadratic orders
MHF2003-12 Hidefumi KAWASAKI
Conjugate-set game for a nonlinear programming problem

MHF2004-1 Koji YONEMOTO \& Takashi YANAGAWA
Estimating the Lyapunov exponent from chaotic time series with dynamic noise

MHF2004-2 Rui YAMAGUCHI, Eiko TSUCHIYA \& Tomoyuki HIGUCHI
State space modeling approach to decompose daily sales of a restaurant into time-dependent multi-factors

MHF2004-3 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Cubic pencils and Painlevé Hamiltonians
MHF2004-4 Atsushi KAWAGUCHI, Koji YONEMOTO \& Takashi YANAGAWA
Estimating the correlation dimension from a chaotic system with dynamic noise

MHF2004-5 Atsushi KAWAGUCHI, Kentarou KITAMURA, Koji YONEMOTO, Takashi YANAGAWA \& Kiyofumi YUMOTO
Detection of auroral breakups using the correlation dimension
MHF2004-6 Ryo IKOTA, Masayasu MIMURA \& Tatsuyuki NAKAKI
A methodology for numerical simulations to a singular limit
MHF2004-7 Ryo IKOTA \& Eiji YANAGIDA
Stability of stationary interfaces of binary-tree type
MHF2004-8 Yuko ARAKI, Sadanori KONISHI \& Seiya IMOTO
Functional discriminant analysis for gene expression data via radial basis expansion

MHF2004-9 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Hypergeometric solutions to the $q \square$ Painlevé equations
MHF2004-10 Raimundas VIDŪNAS
Expressions for values of the gamma function
MHF2004-11 Raimundas VIDŪNAS
Transformations of Gauss hypergeometric functions
MHF2004-12 Koji NAKAGAWA \& Masakazu SUZUKI
Mathematical knowledge browser
MHF2004-13 Ken-ichi MARUNO, Wen-Xiu MA \& Masayuki OIKAWA
Generalized Casorati determinant and Positon-Negaton-Type solutions of the Toda lattice equation

MHF2004-14 Nalini JOSHI, Kenji KAJIWARA \& Marta MAZZOCCO
Generating function associated with the determinant formula for the solutions of the Painlevé II equation

MHF2004-15 Kouji HASHIMOTO, Ryohei ABE, Mitsuhiro T. NAKAO \& Yoshitaka WATANABE
Numerical verification methods of solutions for nonlinear singularly perturbed problem

MHF2004-16 Ken-ichi MARUNO \& Gino BIONDINI
Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions

MHF2004-17 Ryuei NISHII \& Shinto EGUCHI
Supervised image classification in Markov random field models with Jeffreys divergence

MHF2004-18 Kouji HASHIMOTO, Kenta KOBAYASHI \& Mitsuhiro T. NAKAO
Numerical verification methods of solutions for the free boundary problem
MHF2004-19 Hiroki MASUDA
Ergodicity and exponential β-mixing bounds for a strong solution of Lévydriven stochastic differential equations

MHF2004-20 Setsuo TANIGUCHI
The Brownian sheet and the reflectionless potentials
MHF2004-21 Ryuei NISHII \& Shinto EGUCHI
Supervised image classification based on AdaBoost with contextual weak classifiers

MHF2004-22 Hideki KOSAKI
On intersections of domains of unbounded positive operators
MHF2004-23 Masahisa TABATA \& Shoichi FUJIMA
Robustness of a characteristic finite element scheme of second order in time increment

MHF2004-24 Ken-ichi MARUNO, Adrian ANKIEWICZ \& Nail AKHMEDIEV
Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation

MHF2004-25 Raimundas VIDŪNAS
Degenerate Gauss hypergeometric functions
MHF2004-26 Ryo IKOTA
The boundedness of propagation speeds of disturbances for reaction-diffusion systems

MHF2004-27 Ryusuke KON
Convex dominates concave: an exclusion principle in discrete-time Kolmogorov systems

Multiple attractors in host-parasitoid interactions: coexistence and extinction
MHF2004-29 Kentaro IHARA, Masanobu KANEKO \& Don ZAGIER
Derivation and double shuffle relations for multiple zeta values
MHF2004-30 Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Generalized partitioned quantum cellular automata and quantization of classical CA

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle
MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI \& Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI \& Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions
MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Construction of hypergeometric solutions to the $q \square$ Painlevé equations
MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data:
I. ergodic cases

MHF2005-8 Hiroki MASUDA \& Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models
MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI \& Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI \& Masayuki UCHIDA
Estimation for a discretely observed small diffusion process with a linear drift

MHF2005-12 Masayuki UCHIDA \& Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations
MHF2005-13 Hiromichi GOTO \& Kenji KAJIWARA
Generating function related to the Okamoto polynomials for the Painlevé IV equation

MHF2005-14 Masato KIMURA \& Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift

MHF2005-15 Daisuke TAGAMI \& Masahisa TABATA
Numerical computations of a melting glass convection in the furnace
MHF2005-16 Raimundas VIDŪNAS
Normalized Leonard pairs and Askey-Wilson relations
MHF2005-17 Raimundas VIDŪNAS
Askey-Wilson relations and Leonard pairs
MHF2005-18 Kenji KAJIWARA \& Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation
MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields
MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets in \mathbb{R}^{d}

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani's extension of Yor's formula
MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA \& Mark YOR
Wiener integrals for centered powers of Bessel processes, I
MHF2005-23 Masahisa TABATA \& Satoshi KAIZU
Finite element schemes for two-fluids flow problems
MHF2005-24 Ken-ichi MARUNO \& Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation

MHF2005-25 Alexander V. KITAEV \& Raimundas VIDŪNAS
Quadratic transformations of the sixth Painlevé equation
MHF2005-26 Toru FUJII \& Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI \& Yasuo KAWAHARA
On reversible cellular automata with finite cell array
MHF2005-28 Toru KOMATSU
Cyclic cubic field with explicit Artin symbols
MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO \& Mitsuhiro T. NAKAO
Numerical verification of stationary solutions for Navier-Stokes problems
MHF2005-31 Hidefumi KAWASAKI
A duality theorem for a three-phase partition problem
MHF2005-32 Hidefumi KAWASAKI
A duality theorem based on triangles separating three convex sets
MHF2005-33 Takeaki FUCHIKAMI \& Hidefumi KAWASAKI
An explicit formula of the Shapley value for a cooperative game induced from the conjugate point

MHF2005-34 Hideki MURAKAWA
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem

MHF2006-1 Masahisa TABATA
Numerical simulation of Rayleigh-Taylor problems by an energy-stable finite element scheme

MHF2006-2 Ken-ichi MARUNO \& G R W QUISPEL
Construction of integrals of higher-order mappings
MHF2006-3 Setsuo TANIGUCHI
On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function

MHF2006-4 Kouji HASHIMOTO, Kaori NAGATOU \& Mitsuhiro T. NAKAO
A computational approach to constructive a priori error estimate for finite element approximations of bi-harmonic problems in nonconvex polygonal domains

MHF2006-5 Hidefumi KAWASAKI
A duality theory based on triangular cylinders separating three convex sets in R^{n}

MHF2006-6 Raimundas VIDŪNAS
Uniform convergence of hypergeometric series

MHF2006-7 Yuji KODAMA \& Ken-ichi MARUNO
N-Soliton solutions to the DKP equation and Weyl group actions
MHF2006-8 Toru KOMATSU
Potentially generic polynomial
MHF2006-9 Toru KOMATSU
Generic sextic polynomial related to the subfield problem of a cubic polynomial

