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Abstract. A field extension L/F is called excellent, if for any quadratic
form ϕ over F the anisotropic part (ϕL)an of ϕ over L is defined over F ;
L/F is called universally excellent, if L · E/E is excellent for any field ex-
tension E/F . We study the excellence property for a generic splitting field
of a central simple F -algebra. In particular, we show that it is universally
excellent if and only if the Schur index of the algebra is not divisible by 4.
We begin by studying the torsion in the second Chow group of products
of Severi-Brauer varieties and its relationship with the relative Galois co-
homology group H3(L/F ) for a generic (common) splitting field L of the
corresponding central simple F -algebras.

Let F be a field and let A1, . . . , An be central simple F -algebras. A splitting
field of this collection of algebras is a field extension L of F such that all the

algebras (Ai)L
def
= Ai ⊗F L (i = 1, . . . , n) are split. A splitting field L/F of

A1, . . . , An is called generic (cf. [41, Def. C9]), if for any splitting field L′/F
of A1, . . . , An, there exists an F -place of L to L′.

Clearly, generic splitting field of A1, . . . , An is not unique, however it is
uniquely defined up to equivalence over F in the sense of [24, §3]. Therefore,
working on problems (Q1) and (Q2) discussed below, we may choose any par-
ticular generic splitting field L of the algebras A1, . . . , An (cf. [24, Prop. 3.1])
and we choose the function field of the product of the Severi-Brauer varieties
SB(A1)× · · · × SB(An).

Let A1, . . . , An be F -algebras and let L be their generic splitting field. Be-
haviour of different algebraic structures (algebras, quadratic forms, Brauer
group and Witt ring, cohomology groups, etc.) under the base change L/F
is a very critical question. Among basic results concerning algebras, we point
out the following two:

(A1) An algebra A splits over L if and only if the Brauer class of A be-
longs to the subgroup of Br(F ) generated by the classes of the algebras
A1, . . . , An. In other words, the relative Brauer group Br(L/F ) is gener-
ated by [A1], . . . , [An].
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(A2) For an arbitrary central simple F -algebra A, the division part of the
algebra AL is defined over F . In other words, there exists an F -algebra
D such that DL is a division algebra Brauer-equivalent to AL.

(these assertions are e.g. straight-forward consequences of the van den Bergh-
Schofield index reduction formula [45, Th. 3.1], see also [41, Th. on p. 268]).

This article concerns similar problems in the theory of quadratic forms:

(Q1) Which quadratic F -forms split over the field L? In other words, one likes
to determine the relative Witt group W (L/F ).

(Q2) Is it true that for any quadratic F -form ϕ, the anisotropic part of the
L-form ϕL is defined over F? In other words, does there always exist an
anisotropic F -form τ such that τL is anisotropic and Witt equivalent to
ϕL?

These questions are very significant both for the theory of central simple
algebras and for the theory of quadratic forms, especially in the case where
the algebras A1, . . . , An are of exponent 2.

The problem of computation of W (L/F ) seems to be very complicated. In
view of bijectivity of the generalized Arason invariants ei : I i(F )/I i+1(F ) →
H i(F ),1 a natural first step in study of the relative Witt group W (L/F ) is the
study of the relative cohomology groups H i(L/F ).

There is no problem in the case i = 2: since the group H2(L/F ) coin-
cides with the 2-torsion part of the relative Brauer group Br(L/F ), the group
H2(L/F ) can be described by means of assertion (A1).

The case i = 3 is much more complicated. Suppose that the algebras
A1, . . . , An are of exponent 2. Clearly, the group H3(L/F ) contains the sub-
group [A1]H

1(F ) + . . . [An]H
1(F ). One can ask if the equality H3(L/F ) =

[A1]H
1(F ) + . . . [An]H

1(F ) always holds. In [36] E. Peyre constructs a coun-
terexample to this question. He also constructs an injective homomorphism
of the quotient H3(L/F )/([A1]H

1(F )+ · · ·+ [An]H
1(F )) into the torsion part

of the Chow group CH2(SB(A1) × · · · × SB(An)). In Appendix A we show
that this homomorphism is bijective in the case n ≤ 2. Thus, computation of
H3(F (A1, . . . , An)/F ) is closely related to computation of the torsion part of
the group CH2(SB(A1)× · · · × SB(An)).

In Part I of this paper we study the group TorsCH2(SB(A1)×· · ·×SB(An))
for an arbitrary collection of algebras A1, . . . , An. It is a finite abelian group.
For any given indexes ind(A⊗i1

1 ⊗ . . . A⊗in
n ), we develop a machinery for getting

the precise upper bound for the group TorsCH2(SB(A1)× · · · × SB(An)).
In Part II we study question (Q2) in the case of one algebra (i.e. n = 1).

The answer is known to be positive for a quaternion algebra; assertion (A2)
also give a motivation to expect the positive answer to (Q2). It turns out,
however, that the answer is negative in general (see Theorem 3.9).

1Here we use the notation Hi(F ) for the group Hi
ét(F,Z/2Z). Bijectivity (and existence)

of ei for all i was recently proved by V. Voevodsky [46].
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For further introduction, we refer the reader to the beginnings of Parts I and
II. We like to mention that the results of Part I are obtained by the second-
named author, while the results of Part II are obtained by the first-named
author.
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Part I. Cohomology

In this Part, we study the Chow group of 2-codimensional cycles on products
of n Severi-Brauer varieties (n ≥ 2). We analyze more detailed

• the product of a biquaternion variety and a conic;
• the product of two Severi-Brauer surfaces.

0. Introduction

In [22], the Chow group CH2 for one Severi-Brauer variety is studied. Here,
the same group for a direct product of Severi-Brauer varieties is studied by
using the same methods. The motivation for doing this work is given by a
result of E. Peyre establishing a connection between CH2 and a 3-d Galois
cohomology group ([36, Th. 4.1], see also Theorem 1.4.1 of Part II). In fact, it
is the cohomology group we are interested in. The information on it obtained
here is then applied in Part II for investigation of the excellence property for
the function fields of Severi-Brauer varieties.

The main and general result of this Part is Theorem 4.5 (with Corollary
4.6). We apply it to products of two small-dimensional varieties (Theorems
5.1 and 6.1); this way we obtain, in particular, new examples of torsion in CH2

(an example of product of three conics with torsion in CH2 was obtained in
[36, Rem. 6.1]).

In this Part, we use the following terminology and notation. By saying “A
is an algebra”, we always mean that A is a central simple algebra (CS algebra
for short) over a field. For an algebra A over a field F , we denote by [A] its
class in the Brauer group Br(F ) of F ; expA stays for the exponent, degA for
the degree and indA for the index of A.

The Severi-Brauer variety of an algebra A is denoted by SB(A). A variety
is always a smooth projective algebraic variety over a field; a sheaf over X is
an OX-module. The Grothendieck ring of a variety X is denoted by K(X);

K(X) = Γ0K(X) ⊃ Γ1K(X) ⊃ . . . and K(X) = T0K(X) ⊃ T1K(X) ⊃ . . .

are respectively the gamma-filtration and the topological filtration on K(X);
we use the notation G∗ΓK(X) and G∗TK(X) for the adjoint graded rings of
these filtrations. There are certain relations between G∗ΓK(X), G∗TK(X),
and the Chow ring CH∗(X) we use here; they can be found in [22, §2].

1. Grothendieck group of product of Severi-Brauer varieties

Let A1, . . . , An be algebras over a field F , let X1, . . . , Xn be their Severi-
Brauer varieties, and X = X1 × · · · × Xn. Fix a separable closure F̄ of F
and put X̄i = (Xi)F̄ for each i. The varieties X̄i are (isomorphic to) projective
spaces; denote by ξi the class inK(X̄) of the tautological sheaf of the projective
space bundle

X̄ →
∏
j ̸=i

X̄j .
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The ring K(X̄) is generated by the elements ξ1, . . . , ξn subject to the relations

(ξ1 − 1)degA1 = · · · = (ξn − 1)degAn = 0 .

Consider the restriction K(X) → K(X̄) which is a ring homomorphism.

Theorem 1.1. The homomorphism K(X) → K(X̄) is injective; its image is
additively generated by the elements

ind(A⊗j1
1 ⊗ · · · ⊗ A⊗jn

n ) · ξj11 · · · ξjnn
with 0 ≤ j1 < degA1, . . . , 0 ≤ jn < degAn.

Proof. Use a generalized Peyre’s version [36, Prop. 3.1] of Quillen’s computa-
tion of K-theory for Severi-Brauer schemes [38, Th. 4.1 of §8] n times.

Corollary 1.2. For algebras A1, . . . , An of fixed degrees, the ring K(X) with
the gamma-filtration (and in particular the group TorsG2ΓK(X)) depend only
on the numbers ind(A⊗j1

1 ⊗ · · · ⊗ A⊗jn
n ).

Proof. By the theorem, the numbers determine K(X) completely as a subring
in K(X̄). The Chern classes with values in K ([22, Def. 2.1]) for X, which
determine the gamma-filtration ([22, Def. 2.6]), are the restrictions of the
Chern classes for X̄.

2. Disjoint varieties and disjoint algebras

Definition 2.1. Let X1, . . . , Xn be arbitrary varieties over a field. We say
that they are disjoint if the ring homomorphism

K(X1)⊗ · · · ⊗K(Xn) → K(X1 × · · · ×Xn) ,

induced by the pull-back homomorphisms

pr ∗i : K(Xi) → K(X1 × · · · ×Xn)

with respect to the projections pr i : X1 × · · · ×Xn → Xi, is an isomorphism.

Proposition 2.2. Let X1, . . . , Xn be disjoint varieties. The gamma-filtration
on K(X1 × · · · × Xn) coincides with the filtration induced by the gamma-
filtrations on K(X1), . . . , K(Xn).

Proof. Denote by X the product X1×· · ·×Xn and by Γ̃ the induced filtration,
where for each l ≥ 0, the term Γ̃lK(X) is going to be the subgroup of K(X)
generated by the products

pr ∗1 Γ
l1K(X1) · · · pr ∗n ΓlnK(Xn)

for all l1, . . . , ln ≥ 0 with l1 + · · · + ln ≥ l. Since a pull-back homomorphism
respects the gamma-filtration, one has an inclusion Γ̃lK(X) ⊂ ΓlK(X). Let
us prove the inverse inclusion. Since the gamma-filtration Γ on K(X) is the
smallest ring filtration having the properties Γ0K(X) = K(X) and cl(x) ∈



6 O. T. IZHBOLDIN AND N. A. KARPENKO

ΓlK(X) for all x ∈ K(X) and l ≥ 1, where cl is the l-th Chern class with
values in K ([22, Def. 2.1]), it suffices to show that

cl(x) ∈ Γ̃lK(X) .(∗)

Since the varieties X1, . . . , Xn are disjoint, the additive group of K(X) is
generated by the products

x = pr ∗1(x1) · · · pr ∗n(xn)(∗∗)

where xi ∈ K(Xi) is the class of a locally free sheaf. Therefore it suffices to
check the inclusion (∗) only for x of the form (∗∗). Since cl commutes with
pr ∗i , one has

cl
(
pr ∗i (xi)

)
∈ Γ̃lK(X) ,

and the last step of the proof is

Lemma 2.3. Let n,m, l ≥ 0. There exists a Z-polynomial fl
(
(σi), (τj)

)
, where

σ1, . . . , σn and τ1, . . . , τm are variables, having two following properties:

• if x, y ∈ K(X) are classes of locally free sheaves over a variety X, the
Chern class cl(x · y) is equal to fl

(
ci(x), cj(y)

)
;

• if one puts deg σi = i and deg τj = j, the degree of every monomial of fl
is at least l.

Proof. By the splitting principle ([31, Prop. 5.6]), it suffices to consider the
case where

x = ξ1 + · · ·+ ξn, y = η1 + · · ·+ ηm

with the classes of invertible sheaves ξi, ηj. For the total Chern class ct ([22,
Def. 2.1]), one has

ct(x) = ct(
n∑
i=1

ξi) =
n∏
i=1

(
1 + (ξi − 1)t

)
=

n∏
i=1

(1 + ait) where ai = ξi − 1;

ct(y) = ct(
m∑
j=1

ηj) =
m∏
j=1

(
1 + (ηj − 1)t

)
=

m∏
j=1

(1 + bjt) where bj = ηj − 1;

ct(xy) = ct(
∑
i,j

ξiηj) =
∏
i,j

(
1 + (ξiηj − 1)t

)
=
∏
i,j

(
1 + (aibj + ai + bj)t

)
.

The class cl(xy) is (by definition) the coefficient of tl in ct(xy). This coefficient
is evidently a polynomial in a1, . . . , an and b1, . . . , bm symmetric with respect
to the variables (ai) and also symmetric with respect to the variables (bj)
(notice that the degree of each monomial is at least l). Consequently, by
the main theorem on the symmetric polynomials, cl(xy) = fl

(
(σi), (τj)

)
for a

polynomial fl, where (σi)
n
i=1 are the standard symmetric polynomials for (ai)

(σi is a homogeneous polynomial of degree i) and (τj)
m
j=1 are the standard

symmetric polynomials for (bj). The assertion of the lemma concerning the
degree is evidently satisfied. Finally, note that σi = ci(x) and τj = cj(y).
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Corollary 2.4. Let X1, . . . , Xn be varieties with finitely generated Grothen-
dieck groups (for instance, Severi-Brauer varieties). If the varieties are disjoint
and the groups G∗ΓK(X1), . . . , G∗ΓK(Xn) are torsion-free, then the group
G∗ΓK(X1 × · · · ×Xn) is torsion-free as well.

Proof. According to the proposition, the natural homomorphism

G∗ΓK(X1)⊗ · · · ⊗G∗ΓK(Xn) → G∗ΓK(X1 × · · · ×Xn)

is surjective. By our assumption, the group on the left-hand side is finitely
generated and torsion-free; so, it is a free abelian group of finite rank. This
rank coincides with the rank of the group on the right-hand side, because the
varieties are disjoint.

No we are going to understand what the condition of being disjoint means
for Severi-Brauer varieties.

Definition 2.5. Let A1, . . . , An be algebras over a field. We say that they are
disjoint if

ind(A⊗j1
1 ⊗ · · · ⊗ A⊗jn

n ) = indA⊗j1
1 · · · indA⊗jn

n for all j1, . . . , jn ≥ 0.

Proposition 2.6. Algebras A1, . . . , An are disjoint if and only if their Severi-
Brauer varieties are disjoint.

Proof. Since, for an arbitrary algebra A, there is a canonical isomorphism
K(A) = indA ·Z, where K(A) denotes the Grothendieck group of the algebra,
the algebras are disjoint if and only if the maps

K(A⊗j1
1 )⊗ · · · ⊗K(A⊗jn

n ) → K(A⊗j1
1 ⊗ · · · ⊗ A⊗jn

n )

are isomorphisms for all 0 ≤ j1 < degA1, . . . , 0 ≤ jn < degAn. Taking the
direct sum over all j1, . . . , jn, we obtain the map(

degA1−1⨿
j1=0

K(A⊗j1
1 )

)
⊗ · · · ⊗

(
degAn−1⨿
jn=0

K(A⊗jn
n )

)
−→

−→
degA1−1⨿
j1=0

. . .
degAn−1⨿
jn=0

K(A⊗j1
1 ⊗ · · · ⊗ A⊗jn

n ) .

Identifying the factors of the product on the left-hand side with

K
(
SB(A1)

)
, . . . , K

(
SB(An)

)
and the direct sum on the right-hand side with

K
(
SB(A1)× · · · × SB(An)

)
by Theorem 1.1, one obtains on the place of the arrow the homomorphism of
Definition 2.1.
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3. “Generic” varieties

Definition 3.1. Let us say that a variety X is “generic”, if the gamma-
filtration on K(X) coincides with the topological filtration.

Lemma 3.2. If TorsG∗ΓK(X) = 0 (for an arbitrary variety X), then X is
“generic”.

Proof. To see that the filtrations coincide, it suffices to show that the homo-
morphism

α : G∗ΓK(X) → G∗TK(X) ,

induced by the inclusion of the filtrations, is injective. Since α⊗Q is bijective
([10, Prop. 5.5 of Chap. VI]), the kernel of α contains only elements of finite
order. Therefore, α is really injective if the group G∗ΓK(X) has no torsion.

Lemma 3.3. Let G → X be a grassmanian bundle. If X is “generic”, the
variety G is “generic” as well.

Proof. Since G is a grassmanian bundle over X, the CH∗(X)-algebra CH∗(G)
is generated by the Chern classes (with values in CH∗) (see [9, Prop. 14.6.5] or
[26, Th. 3.2]). Using the natural epimorphism CH∗ → G∗TK, one obtains the
same result for G∗TK: the G∗TK(X)-algebra G∗TK(G) is generated by the
Chern classes (with values in G∗TK). Since X is “generic”, the ring G∗TK(X)
itself is generated by the Chern classes ([22, Rem. 2.17]). Consequently,
G∗TK(G) is generated by the Chern classes not only as algebra but also as a
ring. That means G is “generic” ([22, Rem. 2.17]).

Lemma 3.4. Let X → Y be a smooth morphism of varieties and let X̃ be its
generic fiber. If X is “generic”, the variety X̃ (it is a variety over the function
field of Y ) is also “generic”.

Proof. The morphism (of schemes) X̃ → X induces a homomorphism of
Grothendieck groups K(X) → K(X̃), respecting the both filtrations, and a
homomorphism of Chow groups CH∗(X) → CH∗(X̃) which is surjective ([23,
Th. 3.1]). Consequently, the homomorphism

G∗TK(X) → G∗TK(X̃)

is also surjective, and therefore, for every l, the group TlK(X) is mapped
surjectively onto TlK(X̃). Since TlK(X) = ΓlK(X), it follows that TlK(X̃) ⊂
ΓlK(X̃). The inverse inclusion is always true.

Corollary 3.5. Let X and Y be varieties over a field F such that the projec-
tion X × Y → X is a grassmanian bundle. If X is “generic”, then XF (Y ) is
also “generic”.

Proof. The variety X × Y is “generic” according to Lemma 3.3; therefore the
variety XF (Y ) is “generic” by Lemma 3.4.



GENERIC SPLITTING FIELDS OF ALGEBRAS 9

4. “Generic” algebras

Proposition 4.1. Let A be a primary algebra (i.e. degA is a power of a
prime). Suppose that

• either indA = expA
• or indA = 2n and indA⊗2n−2

= 4 (n ≥ 2)

(an example of such A is a biquaternion algebra). Then the group G∗Γ
(
SB(A)

)
is torsion-free.

Proof. For algebras of the first type see [22, Prop. 3.3 and Cor. 3.6]; for the
second type see the proof of [22, Prop. 4.9].

Corollary 4.2. Let A1, . . . , An be disjoint algebras and suppose that each Ai
satisfies the condition of Proposition 4.1. Then for the product X of their
Severi-Brauer varieties, one has: TorsG∗ΓK(X) = 0; in particular,

TorsCH2(X) = 0 .

Proof. It is a straightforward consequence of the proposition with Corollary
2.4 and Proposition 2.6.

For an algebra B and an integer r ≥ 0, denote by SB(r,B) the general-
ized Severi-Brauer variety of rank r right ideals in B ([3, §2]). In particular,
SB(1, B) = SB(B).

Proposition 4.3. Let A1, . . . , An and B be algebras over a field, let X =
SB(A1)× · · · × SB(An) and let Y = SB(r, B) with certain r ≥ 0.

If the Brauer class [B] of the algebra B belongs to the group generated by
[A1], . . . , [An], then the projection X × Y → X is an r-grassmanian.

Proof. We may assume that

B ≃ A⊗j1
1 ⊗ · · · ⊗ A⊗jn

n

with some j1, . . . , jn ≥ 0. Consider the cartesian square

X × Y −−−→ T × Yy y
X −−−→ T

where T = SB(B) and where the morphism X → T is given by tensor product
of ideals. The arrow on the right-hand side (that is the projection T ×Y → T )
is an r-grassmanian by [22, Prop. 6.3]. Therefore, the projection X × Y → Y
(that is the left-hand side arrow) is an r-grassmanian as well.

Definition 4.4. We call a collection of algebras Ã1, . . . , Ãn “generic”, if it
can be obtained by the following procedure. One starts with disjoint algebras
A1, . . . , An over a field F such that each Ai satisfies the condition of Proposition
4.1. Then one takes F -algebras B1, . . . , Bm such that their classes in Br(F )
belong to the subgroup generated by [A1], . . . , [An]. Finally, one takes as Y a
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direct product of some generalized Severi-Brauer of algebras B1, . . . , Bm and
one puts Ãi = (Ai)F (Y ) for all i = 1, . . . , n.

Theorem 4.5. If a collection of algebras Ã1, . . . , Ãn is “generic”, then the
product X̃ of their Severi-Brauer varieties is a “generic” variety (Definition
3.1); in particular, the epimorphism

TorsG2ΓK(X̃) → TorsCH2(X̃)

is bijective in this case.

Proof. Let A1, . . . , An be algebras used in construction of our “generic” col-
lection (Definition 4.4). Put Xi = SB(Ai) for i = 1, . . . , n and let X =
X1×· · ·×Xn. According to Corollary 4.2, the group G∗ΓK(X) is torsion-free.
In particular, the variety X is “generic” (Lemma 3.2).

Now, let Y be the direct product of generalized Severi-Brauer varieties, used
in the construction of our generic collection. By Proposition 4.3, the projection
X × Y → X is a fiber product (over X) of grassmanians. Therefore, using
Corollary 3.5 m times, one proves that the variety X̃ = XF (Y ) is “generic”.

Corollary 4.6. Let A1, . . . , An be arbitrary algebras and let X be the product
of their Severi-Brauer varieties. Let Ã1, . . . , Ãn be a “generic” collection of
algebras such that deg Ãi = degAi and

ind(Ã⊗j1
1 ⊗ · · · ⊗ Ã⊗jn

n ) = ind(A⊗j1
1 ⊗ · · · ⊗ A⊗jn

n )

for all i and all j1, . . . , jn. Then the group TorsCH2(X) is isomorphic to a
factorgroup of TorsCH2(X̃).

Proof. By the theorem, there is an isomorphism

TorsCH2(X̃) ≃ TorsG2ΓK(X̃) ;

by Corollary 1.2, one has

TorsG2ΓK(X̃) ≃ TorsG2ΓK(X) ;

finally, we always have a surjection ([22, Cor. 2.15])

TorsG2ΓK(X) →→ TorsCH2(X) .

Proposition 4.7. Let A1, . . . , An and B1, . . . , Bm be algebras over a field F
such that the subgroups in Br(F ) generated by [A1], . . . , [An] and by [B1], . . . ,
[Bm] coincide. Then

TorsCH2
(
SB(A1)× · · · × SB(An)

)
≃ TorsCH2

(
SB(B1)× · · · × SB(Bm)

)
.

Proof. Set X = SB(A1)× · · · × SB(An), Y1 = SB(B1). It suffices to show that

TorsCH2(X) ≃ TorsCH2(X × Y1) .

Since X×Y1 → X is a projective space bundle (Proposition 4.3), one has ([12,
§2 of App. A])

CH2(X × Y1) ≃ CH2(X)⊕ · · · ⊕ CH2−dimY1(X) .
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The last observation is: for all i < 2, the group CHi(X) has no torsion (for
i = 1 see [42, Lemme 6.3(i)]).

Let p be a prime. For an algebra A as well as for an abelian group A, we
are going to denote by A{p} the p-primary part of A.

Proposition 4.8. Let A1, . . . , An be algebras over a field. One has

CH2
(
SB(A1)× · · ·× SB(An)

)
{p} ≃ TorsCH2

(
SB(A1{p})× · · ·× SB(An{p})

)
.

Proof. For n = 1, the assertion is proved in [22, Prop. 1.3]. The same proof
works for n > 1.

5. Biquaternion variety times conic

A Severi-Brauer variety of a biquaternion algebra is called biquaternion va-
riety here.

Theorem 5.1. Let X be a biquaternion variety, Y be a conic (over the same
field) and A,B be the corresponding algebras (B is a quaternion algebra).

1. The torsion in the group CH2(X × Y ) is either trivial, or of order 2.
2. If the torsion is non-trivial, then

indA = ind(A⊗B) = 4 and indB = 2 .(∗)
3. If the collection A,B is “generic” (Definition 4.4) and satisfies the con-

dition (∗), then the torsion is not trivial.

Proof. If indB ̸= 2, i.e. if B is split, then we know from Proposition 4.7 that
TorsCH2(X×Y ) ≃ CH2(X); hereby the latter group is torsion-free ([21, Cor.]).

If indA ̸= 4, than A is Brauer-equivalent to a quaternion algebra A′; denot-
ing by X ′ its Severi-Brauer variety, one gets (Proposition 4.7)

TorsCH2(X × Y ) ≃ TorsCH2(X ′ × Y ) .

Since dim(X ′ × Y ) = 2, the group

G2ΓK(X ′ × Y ) = Γ2K(X ′ × Y ) ⊂ K(X ′ × Y )

has no torsion. It follows that in this case TorsCH2(X × Y ) = 0 as well.
Let C be a division algebra Brauer-equivalent to the product A ⊗ B; T =

SB(C). Using Proposition 4.7 once again, we have

TorsCH2(X × Y ) ≃ TorsCH2(T × Y ) .

If ind(A ⊗ B) ≤ 2, then dimT × Y ≤ 2 and we are done in the same way as
above.

If ind(A ⊗ B) = 8, then the algebras A,B are disjoint and Corollary 4.2
shows that TorsCH2(X × Y ) = 0.

The rest is served by

Proposition 5.2. Suppose that a biquaternion algebra A and a quaternion
algebra B are division algebras and ind(A ⊗ B) = 4. For X,Y as above, one
has: TorsG2ΓK(X × Y ) ≃ Z/2.
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Proof. Put K = K(X × Y ), K̄ = K(X̄ × Ȳ ). The commutative ring K̄ is
generated by elements ξ, η subject to the relations (ξ− 1)4 = 0 = (η− 1)2 (see
§1). In particular, the additive group of K̄ is a free abelian group generated
by the elements ξiηj, i = 0, 1, 2, 3, j = 0, 1. We are also going to use another
system of generators: f igj, i = 0, 1, 2, 3, j = 0, 1, where f = ξ − 1, g = η − 1.

For each l, the l-th term ΓlK̄ of the gamma-filtration on K̄ is generated by
the products f igj with i+j ≥ l. In particular, GlΓK̄ is an abelian group freely
generated by the residue classes of the products f igj with i+ j = l.

Lemma 5.3. The subring K ⊂ K̄ is additively generated by the elements

1, 4ξ, ξ2, 4ξ3, 2η, 4ξη, 2ξ2η, 4ξ3η .

Proof. It is a particular case of Theorem 1.1.

Lemma 5.4. The following elements are also generators of the additive group
of K:

1, 2f − f 2, 2g, 2f 2, 4fg, 4f 3, 2f 2g , 4f 3g

(the singled out element is going to produce the torsion — see Corollary 5.9).

Proof. A straightforward verification.

Lemma 5.5. There are the following inclusions:

Γ1K ∋ 2f − f 2, 2g ;

Γ2K ∋ 2f 2, 4fg, 2f 2g ;

Γ3K ∋ 4f 3, 2 · 2f 2g ;

Γ4K ∋ 4f 3g .

Proof. The assertion on Γ1K is evident.
Since 2f 2, 4fg ∈ K ∩ Γ2K̄ and the restriction homomorphism G1ΓK →

G1ΓK̄ is injective ([42, Lemme 6.3(i)]), the assertion on Γ2K holds (a direct
verification (see the rest of the proof) is also easy).

Finally, one has:

ct(4ξ) = (1 + ft)4 ⇒ c3(4ξ) = 4f 3 ⇒ 4f 3 ∈ Γ3K ;

2f 2 ∈ Γ2K and 2g ∈ Γ1K ⇒ 4f 2g = (2f 2) · (2g) ∈ Γ3K ;

c4(4ξη) = (ξη − 1)4 =
(
(f + 1)(g + 1)− 1

)4
= 4f 3g ∈ Γ4K .

Corollary 5.6. Denote by α∗ the restriction homomorphism

G∗ΓK → G∗ΓK̄ .

For all i > 0, one has: Imαi ⊂ 2GiΓK̄.
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Proof. According to the lemma, the group G1ΓK is generated by the residue
classes of the elements 2f−f 2 and 2g; their images in G1ΓK̄ are really divisible
by 2. So,the assertion of the corollary for i = 1 is proved.

Since the elements of Γ2K, Γ3K and Γ4K, listed in the lemma, generate
Γ2K and are divisible by 2 in K̄, we obtain the assertion for i ≥ 2 (use the
absence of torsion in G∗ΓK̄).

Corollary 5.7. #(TorsG∗ΓK) ≤ 2.

Proof. Since the group G∗ΓK̄ is torsion-free, TorsG∗ΓK ⊂ Kerα∗. We are
going to show that #(Kerα∗) ≤ 2, using the following formula ([20, Prop.]):

#(Kerα∗) = #(Cokerα∗)/#(K̄/K) .

It is easy to calculate that #(K̄/K) = 210. According to the lemma,

#(Cokerα∗) ≤ 211 .

Lemma 5.8. 2f 2g ̸∈ Γ3K.

Proof. It suffices to show that Imα3 ⊂ 4G3ΓK̄.
The group Imα3 is generated by the subgroup Imα1 · Imα2 and by the

subset α3(c3K), where c3 is the 3d Chern class with values in G∗ΓK ([22, Def.
2.7]). Since Imαi ⊂ 2GiΓK̄ for i > 0 by Corollary 5.6, one has: Imα1 ·Imα2 ⊂
4G3ΓK̄. Therefore, it suffices to verify that α3

(
c3(S)

)
⊂ 4G3ΓK̄ for a system

S of generators of the additive group of K. The verification is trivial if we take
as S the system of generators of Lemma 5.3.

Corollary 5.9. The residue of 2f 2g in G2ΓK has order 2 and generates the
torsion subgroup.

Proof. The residue is of order 2 by Lemmas 5.8 and 5.5. It generates the whole
torsion subgroup (not only in G3ΓK but also in G∗ΓK) by Corollary 5.7.

The proofs of the theorem and of the proposition are complete.

Remark 5.10. In the condition of the theorem, denote the base field by F
and suppose that there exists a quadratic extension L/F (or, more generally,
an extension of degree not divisible by 4) such that the algebra AL is no more a
division algebra and the algebra BL is split. In this case, f 2g ∈ T3K(XL×YL);
using the norm map, we obtain: 2f 2g ∈ T3K(X×Y ), i.e. TorsCH2(X×Y ) = 0.

Therefore, if A,B are such that TorsCH2(X × Y ) ̸= 0 (for example, if A,B
form a “generic” collection (Theorem 5.1)), there are no extensions like that.
The first example of this phenomenon is constructed in [30].
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6. Product of two Severi-Brauer surfaces

A Severi-Brauer surface is a Severi-Brauer variety of dimension 2.

Theorem 6.1. Let X, Y be Severi-Brauer surfaces over a field and let A,B
be the corresponding algebras.

1. The torsion in the group CH2(X × Y ) is either trivial, or of order 3.
2. If the torsion is not trivial, then

indA = indB = ind(A⊗B) = ind(A⊗Bo) = 3(∗)

where Bo is the algebra opposite to B.
3. If the collection A,B is “generic” (Definition 4.4) and satisfies the con-

dition (∗), then the torsion is not trivial.

Proof. If at least one of the algebras A, B, A ⊗ B, A ⊗ Bo is split, then
there exists an algebra C of degree 3 such that its class [C] in the Brauer
group generates the same subgroup as [A] and [B] (together). According to
Proposition 4.7, in this case, the group TorsCH2(X × Y ) is isomorphic to the
group TorsCH2

(
SB(C)

)
which is trivial by [20, Cor.], or also by [17, Lemma

2.4].
If ind(A ⊗ B) = ind(A ⊗ Bo) = 9, then the algebras A,B are disjoint and

one can use Corollary 4.2.
Put Y o = SB(Bo). Since by Proposition 4.7

TorsCH2(X × Y ) ≃ TorsCH2(X × Y o) ,

it suffices to consider only one of the two following cases:

• ind(A⊗B) = 3 and ind(A⊗Bo) = 9;
• ind(A⊗B) = 9 and ind(A⊗Bo) = 3.

Lemma 6.2. If indA = indB = ind(A ⊗ B) = 3 and ind(A ⊗ Bo) = 9, then
TorsG2ΓK(X × Y ) = 0.

Proof. Put K = K(X × Y ), K̄ = K(X̄ × Ȳ ). The commutative ring K̄ is
generated by elements ξ, η subject to the relations (ξ− 1)3 = 0 = (η− 1)3 (see
§1). In particular, the additive group of K̄ is an abelian group freely generated
by the elements ξiηj , i, j = 0, 1, 2. We also are going to use another system
of generators: f igj, i, j = 0, 1, 2, where f = ξ − 1, g = η − 1.

For every l, the l-th term ΓlK̄ of the gamma-filtration on K̄ is generated by
the products f igj with i+ j ≥ l.

The condition of the lemma implies that

indA⊗2 = indB⊗2 = ind(A⊗2 ⊗B⊗2) = 3 and

ind(A⊗B⊗2) = ind(A⊗2 ⊗B) = 9 .

So, according to Theorem 1.1, the subring K ⊂ K̄ is additively generated by

1, 3ξ, 3ξ2, 3η, 3ξη, 9ξ2η, 3η2, 9ξη2, 3ξ2η2 .
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We are also going to use another system of generators:

1, 3f, 3g, 3f 2, 3fg, 3g2, 9f 2g, 3f 2g + 3fg2 + 6f 2g2, 9f 2g2 .

Now it is evident that the intersection K ∩ Γ3K̄ is generated by

9f 2g, 3f 2g + 3fg2 + 6f 2g2, and 9f 2g2 .

To prove that the group G2ΓK is torsion-free, it suffices to verify that these
three elements belong to Γ3K.

Since 3f 2, 3g2 ∈ Γ2K, and 3g ∈ Γ1K, one has:

9f 2g = (3f 2) · (3g) ∈ Γ3K, 9f 2g2 = (3f 2) · (3g2) ∈ Γ4K .

The last element coincides with a 3-d Chern class:

c3(3ξη) = (ξη − 1)3 =
(
(f + 1)(g + 1)− 1

)3
= (fg + f + g)3 =

3fg(f + g)2 + (f + g)3 = 6f 2g2 + 3f 2g + 3fg2 .

We finish the proof of the theorem by

Proposition 6.3. If indA = indB = ind(A ⊗ B) = ind(A ⊗ Bo) = 3, then
TorsG2ΓK(X × Y ) ≃ Z/3.

Proof. We use the notation introduced in the beginning of the proof of the last
lemma.

Lemma 6.4. The subring K ⊂ K̄ is now generated by 1 and 3K̄. Moreover,

Γ1K = 3Γ1K̄ ;

Γ2K = 3Γ2K̄ ;

Γ3K ∋ 3f 2g − 3fg2, 3f 2g + 3fg2 + 6f 2g2 ;

Γ4K ∋ 9f 2g2 .

Proof. The assertion about Γ1K is trivial. The assertion about Γ2K is caused
by injectivity of the restriction homomorphism G1ΓK → G1ΓK̄ ([42, Lemme
6.3(i)]); 9f 2g2 ∈ Γ4K because 3f 2, 3g2 ∈ Γ2K.

To prove the assertion about Γ3K, let us compute the 3d Chern class

c3(ξ2η) = (ξ2η − 1)3 =
(
(f + 1)2(g + 1)− 1

)3
= 27f 2g2 + 12f 2g + 6fg2 .

Since 9f 2g, 9fg2 ∈ Γ3K, we conclude that 3f 2g − 3fg2 ∈ Γ3K.
Finally, as we have already computed in the proof of Lemma 6.2,

3f 2g + 3fg2 + 6f 2g2 = c3(3ξη) ∈ Γ3K .

Corollary 6.5. #(TorsG∗ΓK) ≤ 3.
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Proof. Analogously to Corollary 5.7. Now one has (Lemma 6.4):

#(K̄/K) = 38 and #(Cokerα∗) ≤ 39 .

Lemma 6.6. 3f 2g2 ̸∈ Γ3K.

Proof. Let us define a homomorphism ϕ9 : K̄ → Z/9 as follows: write an
arbitrary element x ∈ K̄ as a linear combination

x =
2∑

i,j=0

aijf
igj with aij ∈ Z,

put ϕ(x) = a21 + a12 − a22 and define ϕ9(x) as the residue of ϕ(x) modulo 9.
Since ϕ9(3f

2g2) ̸= 0, it suffices to show that ϕ9(Γ
3K) = 0.

A priori, the group Γ3K is generated by Γ1K · Γ2K, c3(S) et c4(S) where

S = 1, 3ξ, 3ξ2, 3η, 3ξη, 3ξ2η, 3η2, 3ξη2, 3ξ2η2 .

Hereby, c4(s) = 0 for all s ∈ S; thus one can eliminate c4(S) from the list of
generators.

Since Γ1K · Γ2K ⊂ Γ1K · Γ1K ⊂ 9K̄ (Lemma 6.4), ϕ9(Γ
1K · Γ2K) = 0.

It remains c3(S). For s = 1, 3ξ, 3ξ2, 3η, and 3η2, the value ϕ(s) is already 0.
The following calculations show that ϕ9

(
c3(s)

)
= 0 for the other four elements

s ∈ S as well:

c3(3ξη) = (ξη − 1)3 =
(
(f + 1)(g + 1)− 1

)3
=
(
fg + (f + g)

)3
=

= 3fg(f + g)2 + (f + g)3 = 6f 2g2 + 3f 2g + 3fg2 ;

c3(3ξ2η2) = (ξ2η2 − 1)3 =

=
(
(f + 1)2(g + 1)2 − 1

)3
=
(
(f 2 + 4fg + g2) + 2(f + g)

)3
=

= 12(f 2 + 4fg + g2)(f + g)2 + 8(f + g)3 = 120f 2g2 + 24f 2g + 24fg2 ;

c3(3ξ2η) = (ξ2η − 1)3 =
(
(f + 1)2(g + 1)− 1

)3
=
(
f(f + 2g) + (2f + g)

)3
=

= 3f(f + 2g)(2f + g)2 + (2f + g)3 = 27f 2g2 + 12f 2g + 6fg2 ;

c3(3ξη2) = 27f 2g2 + 6f 2g + 12fg2 .

According to Lemma 6.4, we have 3f 2g2 ∈ Γ2K. The residue class of the
element 3f 2g2 in G2ΓK has order 3 by Lemmas 6.4 and 6.6. Therefore, by
Corollary 6.5, it generates the whole torsion subgroup of G2ΓK. So, the proof
of Proposition 6.3 is complete.

Proposition 6.3 completes the proof of Theorem 6.1.
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Part II. Non-excellence

Let F be a field of characteristic different from 2. A field extension L/F is
called excellent if for any quadratic form ϕ over F the anisotropic part (ϕL)an
of ϕ over L is defined over F . In this Part, we study the excellence property
for the function fields of Severi-Brauer varieties.

0. Introduction

Let F be a field of characteristic different from 2 and let ϕ be a non-
degenerate quadratic form over F . It is an important problem to study the
behavior of the anisotropic part of forms over F under a field extension L/F .
A field extension L/F is called excellent if for any quadratic form ϕ over F the
anisotropic part (ϕL)an of ϕ over L is defined over F (this means that there
exists a form ξ over F such that (ϕL)an ∼= ξL).

Any quadratic extension is excellent. Since any anisotropic quadratic form
ψ over F is still anisotropic over the field of rational functions F (t), every
purely transcendental field extension is excellent.

Let F (X) be the field of rational functions on a geometrically integral variety
X. One of the important problems is to find conditions on X so that the field
extension F (X)/F is excellent. We say that F (X)/F is universally excellent
if for any extension K/F the extension K(X)/K is excellent. The following
varieties are most important in the algebraic theory of quadratic forms: quadric
hypersurfaces, Severi-Brauer varieties, varieties of totally isotropic flags, and
products of such varieties.

If X is rational (or unirational) then F (X)/F is purely transcendental (re-
spectively, unirational), and it follows from Springer’s theorem that F (X)/F
is excellent and moreover that it is universally excellent.

In the case of a hypersurface X = Xq defined by the equation q = 0 where q
is a non-degenerate quadratic form, the following results are known: 1) if q is
isotropic, then F (Xq)/F is universally excellent (because Xq is rational in this
case); 2) if the field extension F (Xq)/F is excellent and q is anisotropic, then
q is a Pfister neighbor (see [24]); 3) if dim q ≤ 3 (or dim q = 4 and det q = 1),
then Xq is universally excellent (see [2] or [40], [29]); 4) if q is anisotropic,
then F (Xq)/F is universally excellent if and only if q is a Pfister neighbor of
dimension ≤ 4 (see [16] or [14]). Thus, the problem whether the field extension
F (X)/F is universally excellent is completely solved in the case where X is a
quadric surface Xq.

In this paper we study the function field of a Severi-Brauer variety X =
SB(A). If X is the Severi-Brauer variety of a quaternion algebra A = (a, b),
the field extension F (X)/F is excellent. Indeed, in this case the variety X
coincides with the quadric hypersurface Xϕ, where ϕ = ⟨1,−a,−b⟩.

The next interesting case is the case of a biquaternion division algebra A.
In Section 3 we prove that the field extension F (SB(A))/F is not universally
excellent for any biquaternion division F -algebra A. Moreover, we construct
an unirational field extension E/F such that E(SB(A))/E is not excellent (see
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Theorem 3.2). Applying this result, we find a condition on a central simple
algebra A under which F (SB(A))/F is universally excellent. Theorem 3.9
asserts that F (SB(A))/F is universally excellent only in the following two
cases: 1) the index of A is odd; 2) the algebra A has the form Q⊗F D, where
Q is a quaternion algebra and D is of odd index. In addition, we show that
the field extension F (SB(A))/F is not excellent for an arbitrary algebra A of
index 8 and exponent 2 (see Theorem 3.10).

In our proof of the main result of Section 3 we apply a deep result of E. Peyre
concerning the groups

ker
(
H3(F,Z/2Z) → H3(F (X),Z/2Z)

)
and Tors2CH

2(X),

where X is a product of Severi-Brauer varieties of algebras of exponent 2 (see
[36]). In Section 2 and Appendix A we prove some results concerning Chow
groups and Galois cohomology. In particular, in Appendix A we prove the
following

Theorem. Let A and B be central simple algebras of exponent 2 over F . Let
X = SB(A)× SB(B). Then the homomorphism

ker (H3(F ) → H3(F (X)))

[A] ∪H1(F ) + [B] ∪H1(F )

ε̄2→ Tors2CH
2(X).

is an isomorphism. Here H∗(F ) = H∗(F,Z/2Z) and the homomorphism ε̄2 is
induced by the homomorphism ε : H3(F (X)/F,Q/Z(2)) → CH2(X) defined in
[44].

This theorem plays an important part of the proof that the function fields of
the Severi-Brauer varieties of biquaternion division algebras are not universally
excellent.

In Section 4 we prove the following statement: for any central simple F -
algebra A, the field extension F (SB(A))/F is 5-excellent (this means that if
dimϕ ≤ 5 then (ϕF (SB(A)))an is defined over F ). In Section 5 we construct
explicit examples of a biquaternion division algebra A such that the field ex-
tension F (SB(A))/F is not excellent. 2 In particular, we prove that the
biquaternion algebra A = (a, b) ⊗ (c, d) over the field of rational functions in
4 variables F (a, b, c, d) yields such an example (see Proposition 5.10). In Ap-
pendix B we study the excellence property for generic (partial) splitting fields
of quadratic forms. In particular, we find a criterion of universal excellence
for the function fields of integral varieties of totally isotropic subspaces (see
Theorem B.21).

1. Main notation and facts

1.1. Quadratic forms and central simple algebras. By ϕ ⊥ ψ, ϕ ∼= ψ,
and [ϕ] we denote respectively orthogonal sum of forms, isometry of forms,
and the class of ϕ in the Witt ring W (F ) of the field F (sometimes the Witt

2Another example (a little more complicated than ours) was independently constructed
by A. Sivatskij.
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class of ϕ is denoted simply ny ϕ). The maximal ideal of W (F ) generated by
the classes of even-dimensional forms is denoted by I(F ). We say that ϕ is
similar to ψ (and write ϕ ∼ ψ) if there exists k ∈ F ∗ such that kϕ ∼= ψ. The
anisotropic part of ϕ is denoted by ϕan and iW (ϕ) denotes the Witt index of
ϕ. We denote by ⟨⟨a1, . . . , an⟩⟩ the n-fold Pfister form ⟨1,−a1⟩ ⊗ · · · ⊗ ⟨1,−an⟩
and by Pn(F ) the set of all n-fold Pfister forms. The set of all forms similar to
n-fold Pfister forms is denoted by GPn(F ). The fundamental Arason-Pfister
Hauptsatz (APH for short) states that if ϕ ∈ In(F ) and dimϕ < 2n then
[ϕ] = 0; if ϕ ∈ In(F ) and dimϕ = 2n then ϕ ∈ GPn(F ). For any field
extension L/F we put ϕL = ϕ ⊗ L, W (L/F ) = ker(W (F ) → W (L)), and
In(L/F ) = ker(In(F ) → In(L)).

Let ϕ be a quadratic form such that dimϕ ≥ 2 and ϕ ̸∼= H. The function
field F (ϕ) of the form ϕ over F is the function field of the projective variety

Xϕ given by equation ϕ = 0. If dimϕ ≤ 1 or ϕ ∼= H, we set F (ϕ)
def
= F .

In this Part, notations and conventions concerning F -algebras are the same
in Part I.

We recall that two field extensions E/F and K/F are stably isomorphic if
and only if there exist indeterminates x1, . . . , xs, y1, . . . , yr and an isomorphism

E(x1, . . . , xr) ∼= K(y1, . . . , ys) over F . We will write E/F
st∼ K/F if E/F is

stably isomorphic to K/F . If [A] = [A′] in Br(F ) then the field extensions
F (SB(A))/F and F (SB(A′))/F are stably isomorphic.

Let ϕ be a quadratic form. We denote by C(ϕ) the Clifford algebra of ϕ. If
ϕ ∈ I2(F ) then C(ϕ) is a CS algebra. Hence, we get a well defined element
[C(ϕ)] of Br2(F ) which we will denote by c(ϕ).

1.2. Cohomology groups. Let F be a field of characteristic ̸= 2. By H∗(F )
we denote the graded ring of Galois cohomology H∗(Gal(Fsep/F ),Z/2Z). We
use the standard canonical isomorphisms H0(F ) = Z/2Z, H1(F ) = F ∗/F ∗2,
and H2(F ) = Br2(F ). Thus, any element a ∈ F ∗ determines an element of
H1(F ) which is denoted by (a). The cup product (a1) ∪ · · · ∪ (an) is denoted
by (a1, . . . , an). For any CS algebra A of exponent 2 we get an element [A] of
the group H2(F ) = Br2(F ).

Let L/F be a field extension. The relative Galois cohomology group

ker(H∗(F ) → H∗(L))

is sometimes also denoted by H∗(L/F ).
For n = 0, 1, 2 there is a homomorphism en : In(F ) → Hn(F ) defined as

follows: e0(ϕ) = dimϕ (mod 2), e1(ϕ) = det± ϕ, and e
2(ϕ) = c(ϕ). Moreover,

there exists a homomorphism e3 : I3(F ) → H3(F ) which is uniquely deter-
mined by the condition e3(⟨⟨a1, a2, a3⟩⟩) = (a1, a2, a3) (see [1]). The homomor-
phism en is surjective and ker en = In+1(F ) for n = 0, 1, 2, 3 (see [32], [35], and
[39]). Thus, for n = 0, 1, 2, 3 we have isomorphism ēn : In(F )/In+1(F ) →
Hn(F ) which is uniquely determined by the condition en(⟨⟨a1, . . . , an⟩⟩) =
(a1, . . . , an).
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1.3. The group Γ(F ;A1, . . . , Ak). Let A1, . . . , Ak be CS algebras of exponent
2 over F . We define the group Γ(F ;A1, . . . , Ak) by the following formula

Γ(F ;A1, . . . , Ak) =
ker (H3(F ) → H3(F (SB(A1)× · · · × SB(Ak))))

[A1]H1(F ) + · · ·+ [Ak]H1(F )
.

The group Γ(F ;A1, . . . , Ak) depends only on the subgroup ⟨[A1], . . . , [Ak]⟩ of
Br2(F ) generated by [A1], . . . , [Ak]. In particular, for any algebras A1, A2, and
B with [A1] + [A2] + [B] = 0, we have

Γ(F ;A1, A2, B) = Γ(F ;A1, A2) = Γ(F ;A1, B) = Γ(F ;A2, B).(1.3.1)

Theorem 1.3.2 (see [1], [36]). If ind(A) ≤ 4 and exp(A) = 2, then the group
Γ(F ;A) is trivial. In other words, ker (H3(F ) → H3(F (SB(A)))) = [A]H1(F ).

Applying this theorem and the injectivity of the homomorphism ē3, we get
the following

Corollary 1.3.3. Let A be a biquaternion algebra and let q be a corresponding
Albert form. Then I3(F (SB(A))/F ) ⊂ [q]I(F ) + I4(F ).

1.4. Chow groups. For any smooth projective variety X, a homomorphism
εX of the group ker (H3(F,Q/Z(2)) → H3(F (X),Q/Z(2))) into CH2(X) was
constructed in [44, §23]. We need the following

Theorem 1.4.1 (see [36, Th. 4.1]). Let A1, . . . , Ak be CS algebras over F .
Let X = SB(A1)× · · · × SB(Ak).

1) The homomorphism ε induces an isomorphism

ker (H3(F,Q/Z(2)) → H3(F (X),Q/Z(2)))
[A1]H1(F,Q/Z) + · · ·+ [Ak]H1(F,Q/Z)

∼→ TorsCH2(X),

which we will denote by ε̄X or ε̄.
2) If all the algebras A1, . . . , Ak have exponent 2 then the homomorphism ε

induces a monomorphism

ker (H3(F ) → H3(F (X)))

[A1]H1(F ) + · · ·+ [Ak]H1(F )
→ Tors2CH

2(X),

which we will denote by ε̄X,2 or ε̄2.

Thus Theorem 1.4.1 shows that for any collection A1, . . . , Ak of algebras of
exponent 2, there exists a natural monomorphism

ε̄2 : Γ(F ;A1, . . . , Ak) ↪→ Tors2CH
2(SB(A1)× · · · × SB(Ak)).

The group TorsCH2(SB(A1)×· · ·×SB(Ak)) was investigated in Part I. In this
Part we need the following obvious consequence of Proposition 4.7 of Part I:

Lemma 1.4.2. Let A1, A2, and B be CS algebras such that [A1]+[A2]+[B] =
0. Then

Tors2CH
2(SB(A1)× SB(A2)× SB(B)) ∼= Tors2CH

2(SB(A1)× SB(B)).
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1.5. The group Γ(F ; q1, . . . , qk). Let q1, . . . , qk ∈ I2(F ). Let us define the
group Γ(F ; q1, . . . , qk) by the formula Γ(F ; q1, . . . , qk) = Γ(F ;C(q1), . . . , C(qk)).
By equation (1.3.1), for any q1, q2, q3 ∈ I2(F ) satisfying q1 ⊥ q2 ⊥ q3 ∈ I3(F ),
we have

Γ(F ; q1, q2, q3) = Γ(F ; q1, q2) = Γ(F ; q1, q3) = Γ(F ; q2, q3).(1.5.1)

Let X = SB(C(q1))×· · ·×SB(C(qk)). We have a well-defined homomorphism

I3(F (X)/F )
e3→ ker

(
H3(F ) → H3(F (X))

)
� Γ(F ; q1, . . . , qk)

We denote this composition by ẽ3. Thus, for any ϕ ∈ I3(F (X)/F ) we get an
element ẽ3(ϕ) ∈ Γ(F ; q1, . . . , qk).

Lemma 1.5.2. Let X = SB(C(q1)× · · · × SB(C(qk))) and ϕ ∈ I3(F (X)/F ).
The following assertions are equivalent:

1) ẽ3(ϕ) = 0 in Γ(F ; q1, . . . , qk).
2) ϕ ∈ [q1]I(F ) + · · ·+ [qk]I(F ) + I4(F ).

Proof. The isomorphism ē3 : I3(F )/I4(F ) → H3(F ) induces an isomorphism

I3(F )

[q1]I(F ) + · · ·+ [qk]I(F ) + I4(F )
→ H3(F )

[C(q1)]H1(F ) + · · ·+ [C(qk)]H1(F )
.

Lemma 1.5.3. Let q1, . . . , qk ∈ I2(F ) satisfy the following conditions:

a) dim(q1), . . . , dim(qk) ≤ 6,
b) q1 ⊥ · · · ⊥ qk ∈ I3(F ).

Let X = SB(C(q1))×· · ·×SB(C(qk)). Then e
3(q1 ⊥ · · · ⊥ qk) ∈ H3(F (X)/F ).

In particular, we get a well-defined element

ẽ3(q1 ⊥ · · · ⊥ qk) ∈ Γ(F ; q1, . . . , qk).

Proof. Obviously, (q1)F (X), . . . , (qk)F (X) ∈ I3(F (X)). The assumption

dim(qi) ≤ 6 (i = 1, . . . , k)

and APH imply that [(q1)F (X)] = · · · = [(qk)F (X)] = 0. Hence q1 ⊥ · · · ⊥
qk ∈ W (F (X)/F ). Since q1 ⊥ · · · ⊥ qk ∈ I3(F ), we have q1 ⊥ · · · ⊥ qk ∈
I3(F (X)/F ). Therefore, e3(q1 ⊥ · · · ⊥ qk) ∈ H3(F (X)/F ).

2. Special triples

Definition 2.1. Let F be a field of characteristic ̸= 2.

1) We say that a triple (q1, q2, π) of quadratic forms over F is special if the
following conditions hold:
a) q1 and q2 are Albert forms and π is a 2-fold Pfister form;
b) q1 ⊥ q2 ⊥ π ∈ I3(F ).

2) We say that a triple (A1, A2, B) of F -algebras is special if the following
conditions hold:
a) A1 and A2 are biquaternion F -algebras and B is a quaternion algebra;
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b) [A1] + [A1] + [B] = 0 ∈ Br2(F ).
3) We say that a triple (q1, q2, π) is anisotropic if all the forms q1, q2, and π

are anisotropic. We say that a special triple of forms (q1, q2, π) corresponds
to a special triple of algebras (A1, A1, B) if c(q1) = [A1], c(q2) = [A2] and
c(π) = [B].

It is clear that for any special triple of forms (q1, q2, π) there exists a unique
(up to an isomorphism) special triple of algebras (A1, A2, B) which corre-
sponds to (q1, q2, π). Conversely, for any special triple of algebras (A1, A2, B)
there exists a special triple of forms (q1, q2, π), which corresponds to the triple
(A1, A2, B). In the latter case, the quadratic forms q1, q2, and π are uniquely
defined up to similarity.

In view of Lemma 1.5.3 we have a well-defined element

ẽ3(q1 ⊥ q2 ⊥ π) ∈ Γ(F ; q1, q2, π).

Lemma 2.2 (cf. [28]). Let A be a biquaternion algebra and let B be a quater-
nion algebra over F such that ind(A⊗B) = 4. Then

H3(F (SB(A)× SB(B))/F ) = [A]H1(F ) + [B]H1(F ) + e3(ϕ)H0(F ),

where the quadratic form ϕ is defined as follows: ϕ = q ⊥ q′ ⊥ π, where q and
q′ are Albert forms corresponding to the algebras A and A ⊗F B, and π is a
2-fold Pfister form corresponding to B.

In other words, the element e3(ϕ) generates the group Γ(F ;A,B).

Proof. Let X = SB(A), Y = SB(B) and L = F (Y ) = F (SB(B)). Since
ind(A) ≤ 4 and ind(B) ≤ 2, Theorem 1.3.2 implies that

ker
(
H3(L) → H3(L(X))

)
= [AL]H

1(L),

ker
(
H3(F ) → H3(F (Y ))

)
= [B]H1(F ).

Let u ∈ ker (H3(F ) → H3(F (X × Y ))). We need to prove that u ∈ [A]H1(F )+
[B]H1(F ) + e3(ϕ)H0(F ). We have

uL ∈ ker
(
H3(L) → H3(L(X))

)
= [AL]H

1(L).

Hence, there is f ∈ L∗ such that uL = [AL] ∪ (f) = e3(qL ⟨⟨f⟩⟩), where q is
an Albert form corresponding to A. Since the homomorphism e3 is surjective,
there exists ϕ ∈ I3(F ) such that e3(ϕ) = u. We have

e3(ϕL) = uL = [AL] ∪ (f) = e3(qL ⟨⟨f⟩⟩) = e3(qL ⊥ −f · qL).

Hence ϕL− qL+ f · qL ∈ ker(I3(L)
e3→ H3(L)) = I4(L). Let τ = f · qF (Y ). Since

L = F (Y ), we have τ = f · qF (Y ) ≡ (q ⊥ −ϕ)F (Y ) (mod I4(F (Y ))). Hence
for any 0-dimensional point y ∈ Y we have ∂2y(τ) ≡ 0 (mod I3(F (y))). Since

dim τ = 6 < 8, it follows from APH that ∂2y(τ) = 0. Since ∂2y(τ) = 0 for each
0-dimensional point y on the projective conic Y , it follows from [4, Lemma
3.1] that the form τ is defined over the field F (see also [11]). This means that
there exists a 6-dimensional form q̃ over F such that q̃L = τ = f ·qL. Therefore
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c(q̃)L = c(q)L = [AL]. Hence c(q̃) − [A] ∈ Br2(L/F ) = Br2(F (SB(B))/F ) =
{0, [B]}. Therefore c(q̃) ∈ {[A], [A⊗B]}.

Consider the case c(q̃) = [A]. Since [A] = c(q), we have c(q̃) = c(q). Thus
q̃ ∼ q. Let k ∈ F ∗ be such that q̃ = kq. Then f · qL = q̃L = kqL. We have

uL = e3(qL ⊥ −f · qL) = e3(qL ⊥ −kqL) = (e3(q ⟨⟨k⟩⟩))L = ([A] ∪ (k))L.

Hence u − [A] ∪ (k) ∈ ker (H3(F ) → H3(F (Y ))) = [B]H1(F ). Therefore,
u ∈ [A]H1(F ) + [B]H1(F ).

Suppose now that c(q̃) = [A ⊗F B]. By the assumption of the lemma,
c(q′) = [A ⊗F B]. We have c(q̃) = c(q′). Hence q̃ ∼ q′. Choose k ∈ F ∗ such
that q̃ = kq′. Then fqL = q̃L = kq′L. Since [πL] = 0, we have

uL = e3(qL ⊥ −fqL) = e3(qL ⊥ −kq′L) = e3((q + q′ + π)− q′ ⟨⟨k⟩⟩))L
= (e3(ϕ)− [c(q′)] ∪ (k))L = (e3(ϕ)− [A] ∪ (k)− [B] ∪ (k))L.

Thus u+[A]∪ (k)+[B]∪ (k)−e3(ϕ) ∈ ker (H3(F ) → H3(F (Y ))) = [B]H1(F ).
Therefore u ∈ [A]H1(F ) + [B]H1(F ) + e3(ϕ)H0(F ).

Proposition 2.3. Let (q1, q2, π) be a special triple. Then

1) Γ(F ; q1, q2, π) = Γ(F ; q1, q2) = Γ(F ; q1, π) = Γ(F ; q2, π),
2) the group Γ(F ; q1, q2, π) is either 0 or Z/2Z,
3) the element e3(q1 ⊥ q2 ⊥ π) generates the group Γ(F ; q1, q2, π),
4) the homomorphism

ε̄2 : Γ(F ; q1, q2, π) → Tors2CH
2(SB(C(q1))× SB(C(q2))× SB(C(π)))

is an isomorphism.

Proof. Assertion 1) is a particular case of equation (1.5.1). Assertion 3) follows
immediately from Lemma 2.2 since Γ(F ; q1, q2, π) = Γ(F ; q1, π). Obviously 3)
implies 2). Assertion 4) is proved in Appendix A (see Corollary A.9).

Lemma 2.4. Let (q1, q2, π) be a special anisotropic triple over F and let
(A1, A2, B) be the corresponding triple of algebras. Let E = F (SB(A1)). Then

1) (q2)E is isotropic and dim((q2)E)an = 4,
2) for any s ∈ DE(((q2)E)an) we have ((q2)E)an ∼= s · πE,
3) if ((q2)E)an is defined over F , then there exists s ∈ F ∗ such that

((q2)E)an ∼= s · πE.
Proof. 1). Since [A1] + [A2] = [B] ∈ Br2(F ) and [(A1)E] = 0 ∈ Br2(E), we
have [(A2)E] = [BE]. Therefore, (A2)E is not a division algebra. Hence, its
Albert form (q2)E is isotropic and dim((q2)E)an ≤ 4.

We claim that dim((q2)E)an = 4 (and hence ((q2)E)an ∈ GP2(E)). Otherwise
we would have [(q2)E] = 0, and hence [(A2)E] = 0. Then [A2] ∈ Br2(E/F ) =
Br2(F (SB(A1))/F ) = {0, [A1]}. Therefore, either [A2] = 0, or [B] = [A1] +
[A2] = 0, a contradiction.

2). Since c(q2)E = [(A2)E] = [BE] = c(π)E, it follows that the form ((q2)E)an
is similar to the 2-fold Pfister form πE. Since s ∈ DE(((q2)E)an), we have
((q2)E)an ∼= s · πE.
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3). If ((q2)E)an is defined over F , we can choose s in DE(((q2)E)an)∩F ∗.

Proposition 2.5. Let (q1, q2, π) be a special anisotropic triple over F and let
(A1, A2, B) be the corresponding triple of algebras. The following conditions
are equivalent:

1) ((q2)F (SB(A1)))an is defined over F ,
2) ((q1)F (SB(A2)))an is defined over F ,
3) q1 ⊥ q2 ⊥ π ∈ [q1]I(F ) + [q2]I(F ) + [π]I(F ) + I4(F ),
4) there exist k1, k2 ∈ F ∗ such that

k1q1 ⊥ k2q2 ⊥ π ∈ I4(F ),

5) the group Γ(F ; q1, q2, π) is trivial,
6) the group Tors2CH

2(SB(A1)× SB(A2)× SB(B)) is trivial.

Proof. It suffices to prove that 1) ⇒ 3) ⇒ 4) ⇒ 1) and 3) ⇐⇒ 5) ⇐⇒ 6).
1) ⇒ 3). Let E = SB(A1). It follows from Lemma 2.4 that there exists

s ∈ F ∗ such that [(q2)E] = [sπE]. Hence (q2 ⊥ −sπ) ∈ W (E/F ). Since
q1 ∈ W (E/F ), we have (q1 ⊥ q2 ⊥ −sπ) ∈ W (E/F ). Therefore (q1 ⊥
q2 ⊥ π) ∈ W (E/F ) + [π]I(F ). Since ϕ = q1 ⊥ q2 ⊥ π ∈ I3(F ), we have
ϕ ∈ I3(E/F ) + [π]I(F ). It follows from Corollary 1.3.3 that I3(E/F ) ⊂
[q1]I(F ) + I4(F ). Hence

ϕ ∈ [q1]I(F ) + [π]I(F ) + I4(F ) ⊂ [q1]I(F ) + [q2]I(F ) + [π]I(F ) + I4(F ).

3) ⇒ 4). Since ϕ ∈ [q1]I(F ) + [q2]I(F ) + [π]I(F ) + I4(F ), there exist
µ1, µ2, µ3 ∈ I(F ) such that [ϕ]−[q1µ1]−[q2µ2]−[πµ3] ∈ I4(F ). Let ri = det± µi
(i = 1, 2, 3). Clearly µi ≡ ⟨⟨ri⟩⟩ (mod I2(F )). Therefore [ϕ] − [q1 ⟨⟨r1⟩⟩] −
[q2 ⟨⟨r2⟩⟩]−[π ⟨⟨r3⟩⟩] ∈ I4(F ). Since [ϕ] = [q1]+[q2]+[π], we have [r1q1]+[r2q2]+
[r3π] ∈ I4(F ). Setting k1 = r1/r3 and k2 = r2/r3, we have [k1q1]+[k2q2]+[π] ∈
I4(F ).

4) ⇒ 1). Let E = SB(A1). Then (k1q1 ⊥ k2q2 ⊥ π)E ∈ I4(E) and [(q1)E] =
0. Using APH, we have [(k1q1)E] + [πE] = 0. Hence ((q1)E)an = −k1πE is
defined over F .

3) ⇐⇒ 5). Obvious in view of Lemma 1.5.2 and Proposition 2.3.
5) ⇐⇒ 6). See Proposition 2.3.

3. A criterion of universal excellence for the function fields
of Severi-Brauer varieties

In this Section for any biquaternion division algebra A over F we construct
a field extension E/F such that the field extension E(SB(A))/E is not ex-
cellent. The construction is based on the following obvious consequence of
Propositions 2.3 and 2.5, and Lemma 1.4.2:

Lemma 3.1. Let (q1, q2, π) be an anisotropic special triple over E and let
(A1, A2, B) be the corresponding triple of E-algebras. The following conditions
are equivalent:

1) For any k1, k2 ∈ F ∗ we have k1q1 ⊥ k2q2 ⊥ π /∈ I4(E),
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2) the group Γ(E; q1, q2, π) = Γ(E;A1, A2, B) is not trivial,
3) Γ(E; q1, q2, π) = Γ(E;A1, A2, B) ∼= Z/2Z,
4) the group Tors2CH

2(SB(A1)× SB(B)) is not trivial.

If these conditions hold then the field extension E(SB(A1))/E is not excellent.

Theorem 3.2. Let A be a biquaternion division F -algebra. Then there exists
an unirational field extension E/F such that the field extension E(SB(A))/E
is not excellent.

Proof. Let K = F (x, y) be the field of rational functions in 2 variables. Let
B be the quaternion algebra (x, y) over K. Clearly, ind(AK ⊗K B) = 8.
Let E be the function field K(Y ) of the generalized Severi-Brauer variety
Y = SB(AK⊗KB, 4). By Theorem 5.1 of Part I, we have Tors2CH

2(SB(AE)×E

SB(BE)) ∼= Z/2Z.
It follows from the properties of the generalized Severi-Brauer varieties [3]

that the algebra AE ⊗E BE has the form M2(A
′) where A′ is a biquaternion

E-algebra. Obviously [AE] + [A′] + [BE] = 0 ∈ Br2(E). Hence the triple
(AE, A

′, BE) is special. By Lemma 3.1, the extension E(SB(A))/E is not
excellent.

Now we need to verify that the field extension E/F is unirational. Let
K̃ = K(

√
x). Since [BK̃ ] = (x, y)K(

√
x) = 0, we see that ind((AK ⊗K B)K̃) =

ind(AK̃) ≤ 4. Hence the variety YK̃ = SB((AK ⊗K B)K̃ , 4) is rational. There-

fore the field extension K̃E/K̃ = K̃(Y )/K̃ is purely transcendental. Obvi-
ously K̃/F is purely transcendental. Hence K̃E/F is purely transcendental
too. Therefore the field extension E/F is unirational.

Definition 3.3. We say that the field extensions E1/F and E2/F are q-

equivalent (and write E1/F
q∼ E2/F ) if the following conditions hold:

1) For any quadratic form ϕ over F , the form ϕE1 is isotropic if and only if
ϕE2 is isotropic.

2) W (E1/F ) = W (E2/F ).

We have the following examples of q-equivalent field extensions.

Lemma 3.4. Field extensions E1/F and E2/F are q-equivalent in the follow-
ing cases:

(1) if E1 ⊂ E2 and E2/E1 is a finite odd extension;
(2) if E1 ⊂ E2 and E2/E1 is a purely transcendental field extension;
(3) if E1/F and E2/F are stably isomorphic.

Proof. (1). Obvious in view of Springer’s theorem [27, Th. 2.3 of Chap. VII].
(2). Follows from [27, Lemma 1.1 of Chap. IX].
(3). Since E1/F and E2/F are stably isomorphic, there is a field K such

that K/E1 and K/E2 are purely transcendental. By (2) we have E1/F
q∼

K/F
q∼ E2/F .
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Lemma 3.5 (see [7, Lemma 2.6]). Let E1/F and E2/F be some field exten-

sions such that E1/F
q∼ E2/F . Then E1/F is excellent if and only if E2/F is

excellent.

Lemma 3.6. Let A1 and A2 be CS algebras such that ind(A1 ⊗F A
op
2 ) is odd,

where Aop
2 is the opposite to A2 algebra. Then

1) the field extensions F (SB(A1))/F and F (SB(A2))/F are q-equivalent,
2) the field extension F (SB(A1))/F is excellent if and only if F (SB(A2))/F

is excellent.

Proof. 1) Let X1 = F (SB(A1)) and X2 = F (SB(A2)). Since ind(A1 ⊗F A
op
2 ) is

odd, there is an odd field extension K/F such that [(A1 ⊗F A
op
2 )K ] = 0. Then

[(A1)K ] = [(A2)K ]. Hence the field extensions K(X1)/K and K(X2)/K are
stably isomorphic. Therefore K(X1)/F and K(X2)/F are stably isomorphic

too. By Lemma 3.4, we have K(X1)/F
q∼ K(X2)/F . Since [K(X1) : F (X1)] =

[K(X2) : F (X2)] = [K : F ] is odd, it follows from Lemma 3.4 that F (X1)/F
q∼

K(X1)/F
q∼ K(X2)/F

q∼ F (X2)/F .
2) Obvious in view of Lemma 3.5.

Corollary 3.7. Let A and B be CS algebras over F such that [A] = [B]
in Br(F ). Then the field extension F (SB(A))/F is excellent if and only if
F (SB(B))/F is excellent.

Corollary 3.8. Let A be a CS algebra over F and let A{2} denote the 2-
primary component of A. Then the following conditions are equivalent:

1) the field extension F (SB(A))/F is excellent,
2) the field extension F (SB(A{2}))/F is excellent.

Theorem 3.9. Let A be a CS algebra over F . Let X = SB(A). The following
conditions are equivalent:

1) F (X)/F is universally excellent,
2) ind(A) is not divisible by 4.

In other words, the field extension F (SB(A))/F is universally excellent only
in the following two cases: 1) index of A is odd; 2) algebra A has the form
Q⊗F D, where Q is a quaternion algebra and the index of D is odd.

Proof. 1) ⇒ 2). Suppose that ind(A) has the form ind(A) = 4k. Let Y =
SB(A, 4) × SB(A⊗2) and K = F (Y ). Obviously ind(AK) ≤ 4 and 2[AK ] =
0. By Blanchet’s index reduction formula (see [3]), we have ind(AK) = 4.
Hence there is a biquaternion division algebra Ã over K such that [AK ] = [Ã].
It follows from Theorem 3.2, that there is a field extension E/K such that
E(SB(Ã))/E is not excellent. By Corollary 3.7 the field extension E(SB(A))/E
is not excellent too.

2) ⇒ 1). In view of Corollary 3.8, we can suppose that A is a division
algebra and degA = 2n. Since ind(A) is not divisible by 4, we see that A is a
quaternion algebra or A = F . Hence F (SB(A))/F is universally excellent.
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For algebras of index 8 we have the following

Theorem 3.10. Let A be a CS algebra of index 8 and exponent 2. Then the
field extension F (SB(A))/F is not excellent.

Since any algebra of index 8 and exponent 2 is Brauer equivalent to a 4-
quaternion algebra, it suffices to prove the following lemma. 3

Lemma 3.11. Let A = (a1, b1) ⊗F (a2, b2) ⊗F (a3, b3) ⊗F (a4, b4) be a 4-
quaternion algebra over F such that indA ≥ 8. Then the field extension
F (SB(A))/F is not excellent.

In the proof of this lemma we will use the following

Theorem 3.12 (see [8, Cor. 9.3] or [18, Cor. 0.3]). Let ϕ be a quadratic form
over F such that indC(ϕ) ≥ 8. Let K = F (SB(C(ϕ))). Then ϕK /∈ I4(K)
(and hence [ϕF (SB(C(ϕ)))] ̸= 0).

Proof of Lemma 3.11. Let E = F (SB(A)) and q ∈ I2(F ) be an arbitrary 10-
dimensional quadratic form such that c(q) = [A]. Since qE ∈ I3(E) and
dim qE = 10, the form qE is isotropic (see [37]). Hence there is γ ∈ GP3(E)
such that [qE] = [γ] ∈ W (E). Suppose at the moment that the field extension
E/F is excellent. Then γ is defined over F . It follows from Lemma 3.13 below
that there is α ∈ GP3(F ) such that γ = αE. We have [qE] = [γ] = [αE]. Let
ϕ = q ⊥ −α. Then [ϕE] = 0. Since α ∈ I3(F ), it follows that c(ϕ) = c(q) =
[A]. Therefore the field extension F (SB(C(ϕ)))/F is equivalent to E/F . Hence
it follows from [ϕE] = 0 that [ϕF (SB(C(ϕ)))] = 0, what provides a contradiction
to Theorem 3.12.

Lemma 3.13. Let E/F be an excellent field extension and γ ∈ GPn(E) be a
form defined over F . Then there is α ∈ GPn(F ) such that γ = αE.

Proof. Since γ is defined over F , there is c ∈ DE(γ) ∩ F ∗. Then the form
ϕ = cγ is an n-fold E-Pfister form which is defined over F . By [7, Prop. 2.10]
there is an n-fold F -Pfister form β such that ϕ = βE. Setting α = cβ, we have
γ = αE, α ∈ GPn(E).

4. Five-excellence of F (SB(A))/F

Let n be a positive integer. We say that a field extension L/F is n-excellent
if for any quadratic form ϕ over F of dimension ≤ n the quadratic form (ϕL)an
is defined over F .

Lemma 4.1. Let ϕ be an anisotropic 5-dimensional quadratic form and A be
a CS algebra over F . Than (ϕF (SB(A)))an is defined over F

3We adduce here the proof suggested by D. Hoffmann which is essentially shorter than
original author’s proof.
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Proof. Let E = F (SB(A)). We can suppose that ϕE is isotropic. Let s =
− detϕ and q = ϕ ⊥ ⟨s⟩. If q is isotropic, then ϕ is a 5-dimensional Pfister
neighbor. In this case ϕ is an excellent form (see [25]). Thus (ϕE)an is defined
over F . So, we can suppose that q is an anisotropic Albert form. Hence
ind(C(q)) = 4. Since qE is isotropic, ind(C(q)E) ≤ 2. By the Schofield-van
den Bergh-Blanchet index reduction formula (see [3] or [45]), there exists an
algebra B over F such that [BE] = [C(q)E] and indB = indC(q)E. Thus
indB ≤ 2. Hence there exist a, b ∈ F ∗ such that [B] = (a, b). Let τ =
s ⟨−a,−b, ab⟩. We claim that (ϕE)an = (τE)an. Indeed, since (ϕE)an and (τE)an
are odd-dimensional forms of dimension ≤ 3, it is sufficient to verify that
det± ϕE = det± τE and [C0(ϕE)] = [C0(τE)]. Both equations are obvious by
the definition of τ . Since dim τ ≤ 3, it follows that τ is an excellent form.
Hence (ϕE)an = (τE)an is defined over F .

Theorem 4.2. The field extension F (SB(A))/F is 5-excellent for any CS al-
gebra A over F .

Proof. Let E = F (SB(A)) and τ be a quadratic form of dimension ≤ 5 over
F . We need to verify that τE is defined over F . In view of Lemma 4.1, we
can assume that dim τ ≤ 4. Since all forms of dimension < 4 are excellent, we
can suppose that dim τ = 4. Let ϕ = τF (t) ⊥ ⟨t⟩, where t is an indeterminate,
and let ξ = (τE)an. We have ξE(t) ⊥ ⟨t⟩ = (τE(t))an ⊥ ⟨t⟩ ∼= (ϕE(t))an =
(ϕF (t)(SB(A)))an. By Lemma 4.1, (ϕF (t)(SB(A)))an is defined over F (t). Hence
ξE(t) ⊥ ⟨t⟩ is defined over F (t). It follows from Lemma 4.3 below that ξ =
(τE)an is defined over F .

Lemma 4.3. Let E/F be a field extension and ξ be an anisotropic form over
E. Suppose that ξE(t) ⊥ ⟨t⟩ is defined over F (t). Then ξ is defined over F .

Proof. Let γ be a quadratic form over F (t) such that ξE(t) ⊥ ⟨t⟩ ∼= γE(t). We
can write γF ((t)) in the form γF ((t))

∼= λF ((t)) ⊥ tλ′F ((t)) where λ and λ′ are

quadratic forms over F . Obviously ξE((t)) ⊥ t ⟨1⟩ ∼= λE((t)) ⊥ tλ′E((t)). Since

ξ and ⟨1⟩ are anisotropic, we have ξ = λE, ⟨1⟩ = λ′E. Hence ξ is defined
over F .

Proposition 4.4. Let A be a biquaternion division algebra over F . Then
there is a field extension E/F such that AE is a division algebra and the field
extension E(SB(A))/E is excellent.

Proof. Let q be an Albert form corresponding to A. By [33] there is a field
extension E/F such that: 1) u(E) = 6; 2) AE is a division algebra; 3) all
6-dimensional anisotropic quadratic E-forms are similar to qE.

Let ϕ be an anisotropic quadratic form over E. We need to prove that
(ϕE(SB(A)))an is defined over E. Since u(E) = 6, we have dimϕ ≤ 6. By
Theorem 4.2, we can assume that dimϕ = 6. It follows from property 3) of
the field E that ϕ ∼ qE. Therefore [ϕE(SB(A))] = 0.

Corollary 4.5. There exist a field F and a biquaternion division algebra A
over F such that the field extension F (SB(A))/F is excellent.
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5. Examples of non-excellent field extensions F (SB(A))/F

In this Section we give some explicit examples of non-excellent field ex-
tensions F (SB(A))/F . The main tool for constructing these examples is the
following assertion.

Lemma 5.1. Let µ1, µ2, µ3, µ
′
1, µ

′
2, µ

′
3 be anisotropic 2-dimensional quadratic

forms over a field K. Let π ∈ GP2(K). Suppose that πK(µi) is anisotropic for

all i = 1, 2, 3. Let K̂ = K((x))((y)), where x, y are indeterminates, and let

k, k′ ∈ K̂∗. Then

k(µ1 ⊥ xµ2 ⊥ yµ3) ⊥ k′(µ′
1 ⊥ xµ′

2 ⊥ yµ′
3) ⊥ πK̂ /∈ I4(K̂).

Proof. In view of Springer’s theorem we can identify W (K̂) with the direct
sum W (K) ⊕ xW (K) ⊕ yW (K) ⊕ xyW (K). Moreover we can regard W (K)

as a subring of W (K̂). Let ϕ = k(µ1 ⊥ xµ2 ⊥ yµ3) ⊥ k′(µ′
1 ⊥ xµ′

2 ⊥ yµ′
3).

Suppose at the moment that ϕ ⊥ πK̂ ∈ I4(K̂). Then ϕ ⊥ πK̂ ∈ GP4(K̂).
Since (ϕ ⊥ πK̂)K̂(π) is isotropic, it is hyperbolic. Hence ϕK̂(π) is hyperbolic.

Therefore ϕ ∈ [πK̂ ]W (K̂).

Let us write [ϕ] ∈ W (K̂) in the form [ϕ] = [τ1] +x[τ2] + y[τ3] +xy[τ4], where
τi (i = 1, 2, 3, 4) are defined over K. Since all the forms µi, µ

′
i (i = 1, 2, 3) have

dimension 2, we have dim τi ≤ 4 (i = 1, . . . , 4). Since

[ϕ] ∈ [πK̂ ]W (K̂) ∼= [π]W (K)⊕ x[π]W (K)⊕ y[π]W (K)⊕ xy[π]W (K),

we have τ1, τ2, τ3, τ4 ∈ [π]W (K).
Suppose that there exists j such that [τj] ̸= 0. Since dim τj ≤ 4 and τj ∈

[π]W (K), we see that τj ∼ π. By the definition of ϕ, there exists i (1 ≤ i ≤ 3)
such that µi is similar to a subform in τj. Therefore µi is similar to a subform
in π and hence the form πK(µi) is isotropic; this yields a contradiction (see the
assumptions of the lemma).

Therefore [τi] = 0 for all i = 1, 2, 3, 4. Then [ϕ] = 0. It follows from

ϕ ⊥ πK̂ ∈ I4(K̂) that [πK̂ ] ∈ I4(K̂). Hence [π] ∈ I4(K). By APH the form π
is isotropic, a contradiction.

Corollary 5.2. Let r, s, u, v ∈ K∗, and π ∈ P2(K) satisfy the conditions:

1) c(π) = (r, u) + (s, v),
2) π is anisotropic over the fields K(

√
u), K(

√
v), and K(

√
uv).

Let q1 = ⟨⟨uv⟩⟩ ⊥ −x ⟨⟨u⟩⟩ ⊥ −y ⟨⟨v⟩⟩ and q2 = ⟨⟨uv⟩⟩ ⊥ −xr ⟨⟨u⟩⟩ ⊥ −ys ⟨⟨v⟩⟩ be
quadratic forms over K̃ = K(x, y). Then (q1, q2, πK̃) is a special triple over K̃

and Γ(K̃; q1, q2, π) ∼= Z/2Z.

Proof. Obviously q1 and q2 are Albert forms. Since c(q1 ⊥ q2 ⊥ π) = c(−q1 ⊥
q2 ⊥ π) = c(x ⟨⟨u, r⟩⟩ ⊥ y ⟨⟨s, v⟩⟩ ⊥ π) = (u, r) + (s, v) + c(π) = 0, the triple
(q1, q2, πK̃) is special. The quadratic forms µ1 = ⟨⟨uv⟩⟩, µ2 = −⟨⟨u⟩⟩, µ3 =
−⟨⟨v⟩⟩, µ′

1 = ⟨⟨uv⟩⟩, µ′
2 = −s ⟨⟨u⟩⟩, µ′

3 = −r ⟨⟨v⟩⟩, and π satisfy the conditions

of Lemma 5.1. Hence for any k1, k2 ∈ K̂ = K((x))((y)) we have k1(q1)K̂ ⊥
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k2(q2)K̂ ⊥ πK̂ /∈ I4(K̂). Therefore for any k1, k2 ∈ K̃ = K(x, y) we have

k1q1 ⊥ k2q2 ⊥ πK̃ /∈ I4(K̃). It follows from Lemma 3.1, that Γ(K̃; q1, q2, πK̃) =
Z/2Z.

Lemma 5.3. Let w1, w2 ∈ F ∗ be such that w1, w2, w1w2 /∈ F ∗2. Let K = F (t)
be the field of rational functions in one variable t. Let

r = −tw1, s = −tw2, u = t+ w1, v = t+ w2, and π = ⟨⟨t, w1w2⟩⟩ .
Then r, s, u, v ∈ K∗, and π ∈ P2(K) satisfy the conditions of Corollary 5.2.

Proof. 1) We have (r, u) + (s, v) = (−tw1, t+w1) + (−tw2, t+ w2) = (t, w1) +
(t, w2) = (t, w1w2) = c(π).

2) Let p(t) be equal to one of the polynomials u = t + w1, v = t + w2, or
uv = t2 + (w1 + w2)t + w1w2. We need to verify that π is anisotropic over

the field K(
√
p(t)). Suppose that π

K(
√
p(t))

is isotropic. Then p(t) ∈ DF (−π′)

where π′ = ⟨−t,−w1w2, tw1w2⟩ is the pure subform of π (see [43, Th. 5.4(ii) of
Chap. 4]). Therefore p(t) ∈ DF (t)(⟨t, w1w2,−tw1w2⟩). By the Cassels-Pfister
theorem 4 there are polynomials p1(t), p2(t), p3(t) ∈ F [t] such that

p(t) = tp21(t) + w1w2p
2
2(t)− tw1w2p

2
3(t)(5.4)

= t(p21(t)− w1w2p
2
3(t)) + w1w2p

2
2(t).

If p(t) = t + w1, we have w1 = p(0) = w1w2p
2
2(0) ∈ w1w2F

∗2. Therefore
w2 ∈ F ∗2, a contradiction. If p(t) = t + w2, then w2 = p(0) = w1w2p

2
2(0) ∈

w1w2F
∗2. Then w2 ∈ F ∗2, a contradiction.

Let now p(t) = t2 + (w1 + w2)t + w1w2. Since w1w2 /∈ F ∗2, it follows that
deg(t(p21(t) − w1w2p

2
3(t))) is odd and deg(p(t) − w1w2p

2
2(t)) is even. We get a

contradiction to the equation (5.4).

Corollary 5.5. Let w1, w2 ∈ F ∗ and assume that w1, w2, w1w2 /∈ F ∗2. Let
E = F (t, x, y) be the field of rational functions in 3 variables. Consider the
quadratic forms

q1 = ⟨⟨(t+ w1)(t+ w2)⟩⟩ ⊥ −x ⟨⟨t+ w1⟩⟩ ⊥ −y ⟨⟨t+ w2⟩⟩ ,
q1 = ⟨⟨(t+ w1)(t+ w2)⟩⟩ ⊥ xtw1 ⟨⟨t+ w1⟩⟩ ⊥ ytw2 ⟨⟨t+ w2⟩⟩ ,
π = ⟨⟨t, w1w2⟩⟩

over E. Then (q1, q2, π) is a special triple and Γ(E; q1, q2, π) ∼= Z/2Z.

Proposition 5.6. Let w1, w2 ∈ F ∗ and assume that w1, w2, w2w2 /∈ F ∗2. Let
E = F (t, x, y) be the field of rational functions in 3 variables. Let A = (x, y)⊗
(x(t+ w2), y(t+ w1)). Then the field extension E(SB(A))/E is not excellent.

Proof. Let (q1, q2, π) be the special triple constructed in Corollary 5.5. Clearly
c(q1) = (x, y) + (x(t + w2), y(t + w1)) = [A]. Since Γ(E; q1, q2, π) ∼= Z/2Z, it
follows from Lemma 3.1 that E(SB(A))/E is not excellent.

4Note that a strong version of the Cassels-Pfister theorem assumes that the coefficients
in a diagonalization of the quadratic form are polynomials of degree ≤ 1.
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Corollary 5.7. Let F be a field such that |F ∗/F ∗2| ≥ 4. Let E = F (x, y, t)
be the field of rational functions in 3 variables. Then there is a biquaternion
algebra A over E such that the field extension E(SB(A))/E is not excellent.

Lemma 5.8. Suppose that a field F satisfies the following condition: there
exists w ∈ F ∗ such that w,w + 1, w(w + 1) /∈ F ∗2. Let E = F (a, b, c) be the
field of rational functions in 3 variables and define a biquaternion algebra A
over E as A = (a, b)⊗ (a+ 1, c). Then the field extension E(SB(A))/E is not
excellent.

Proof. Let E ′ = F (t, x, y) be the field of rational functions in 3 variables. Let
w1 = w, w2 = w+1 and A′ = (x, y)⊗(x(t+w1), y(t+w2)). By Proposition 5.6,
the field extension E ′(SB(A′))/E ′ is not excellent. Let us identify the fields
E ′ = F (t, x, y) and E = F (a, b, c) by means of the isomorphism t 7→ (a − w),
x 7→ ac, y 7→ b. We have

[A′] =(x, y) + (x(t+ w), y(t+ w + 1)) 7→
7→ (ac, b) + (ac(a− w + w), b(a− w + w + 1)) =

= (ac, b) + (c, b(a+ 1)) = (a, b) + (a+ 1, c) = [A].

Since the algebra A′ maps to A, it follows that E(SB(A))/E is not excellent.

Example 5.9. Let E = Q(a, b, c) be the field of rational function in 3 variables
over Q. Let A = (a, b) ⊗ (a + 1, c). Then the field extension E(SB(A))/E is
not excellent.

Proof. It is sufficient to set w = 2 in Lemma 5.8.

Proposition 5.10. Let E = F (a, b, c, d) be the field of rational functions in
4 variables and A be the biquaternion algebra (a, b)⊗ (c, d) over E. The field
extension E(SB(A))/E is not excellent.

Proof. Let F ′ = F (z) and E ′ = F (x, y, t, z) be fields of rational functions in
1 and 4 variables respectively. Let w1 = 1 − z and w2 = 1 + z. Obviously
w1, w2, w1w2 /∈ (F ′)∗2. Let A′ = (x, y)⊗(x(t+1+z), y(t+1−z)). It follows from
Proposition 5.6 that the field extension E ′(SB(A′))/E ′ is not excellent. Now
it is sufficient to identify the fields E = F (a, b, c, d) and E ′ = F (x, y, t, z) by
means of F -isomorphism: a 7→ x, b 7→ y, c 7→ x(t+1+z), d 7→ y(t+1−z).

Appendix A. Surjectivity of ε2 : H
3(F (X)/F ) → Tors2CH

2(X) for
certain homogeneous varieties

The main purpose of this Appendix is to prove the following theorem.

Theorem A.1. Let A and B be CS algebras of exponent 2 over a field F of
characteristic ̸= 2. Let X = SB(A)× SB(B). Then the homomorphism ε̄2

ker (H3(F ) → H3(F (X)))

[A]H1(F ) + [B]H1(F )
→ Tors2CH

2(X)

is an isomorphism. Moreover, TorsCH2(X) = Tors2CH
2(X).
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In this Appendix we will use the following notation and agreements.

• We identify the group H3(F ) with the 2-torsion subgroup of the group
H3(F,Q/Z(2)).

• For any field extension E/F we set

H i(E/F,Q/Z(j)) = ker(H i(F,Q/Z(j)) → H i(E,Q/Z(j)))
and H i(E/F ) = ker(H i(F ) → H i(E)).

Lemma A.2. Let q be a quadratic form over F . Then

2H3(F (q)/F,Q/Z(2)) = 0.

In other words, H3(F (q)/F,Q/Z(2)) = H3(F (q)/F ).

Proof. Take a field extension L/F of degree ≤ 2 such that qL is isotropic.
Obviously, H3(F (q)/F,Q/Z(2)) ⊂ H3(L/F,Q/Z(2)). Since

[L : F ]H3(L/F,Q/Z(2)) = 0,

we are done.

Corollary A.3. Let q be an Albert form over F . Then

H3(F (q)/F,Q/Z(2)) = 0.

Proof. By Arason’s Theorem (see [1]), we have H3(F (q)/F ) = 0. Applying
Lemma A.2, we get H3(F (q)/F,Q/Z(2)) = 0.

We recall that a field F is said to be linked (see [5], [6]) if the following
equivalent conditions hold:

(a) all F -algebras of exponent 2 have index ≤ 2,
(b) all Albert forms over F are isotropic.

Lemma A.4. For any field F there exists a field extension E/F such that E is
linked and the homomorphism H3(F,Q/Z(2)) → H3(E,Q/Z(2)) is injective.

Proof. Let us define the fields F0 = F , F1, F2, . . . recursively as follows. We
set Fi to be the free composite of all the fields of the form Fi−1(q) where q runs
over all Albert forms over Fi−1. Further we set E = ∪∞

i=1Fi. By Corollary A.3,
the homomorphism H3(F,Q/Z(2)) → H3(E,Q/Z(2)) is injective. By the
construction, all Albert forms over E are isotropic. Hence the field E is linked.

Lemma A.5 (cf. [36, Lemma 5.3]). Let A1, A2 be CS F -algebras of index ≤ 2
and let X = SB(A1)× SB(A2). Then

H3(F (X)/F,Q/Z(2)) = [A1]H
1(F,Q/Z(1)) + [A2]H

1(F,Q/Z(1)).

Proof. We can suppose that A1 and A2 are quaternion algebras. By [36, Cor.
3.9], the group TorsCH2(X) is trivial. Now it is sufficient to apply Theo-
rem 1.4.1.

Corollary A.6. Let A1, A2 be F -algebras of index ≤ 2 and let X = SB(A1)×
SB(A2). Then 2H3(F (X)/F,Q/Z(2)) = 0.
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Lemma A.7. Let A1 and A2 be CS F -algebras of exponent 2 and let X =
SB(A1)× SB(A2). Then 2H3(F (X)/F,Q/Z(2)) = 0.

Proof. Let E/F be the field extension constructed in Lemma A.4. Since the
homomorphism H3(F,Q/Z(2)) → H3(E,Q/Z(2)) is injective, the homomor-
phism H3(F (X)/F,Q/Z(2)) → H3(E(X)/E,Q/Z(2)) is injective too. There-
fore it is sufficient to prove that 2H3(E(X)/E,Q/Z(2)) = 0. This assertion
follows immediately from Corollary A.6 since any algebra of exponent 2 over
a linked field has index ≤ 2.

Proof of Theorem A.1. By Theorem 1.4.1 it is sufficient to verify surjectivity
of the homomorphism ε2 : H3(F (X)/F ) → TorsCH2(X). By Lemma A.7,
we have H3(F (X)/F,Q/Z(2)) = Tors2H

3(F (X)/F,Q/Z(2)) = H3(F (X)/F ).
By Theorem 1.4.1, the homomorphism

ε : H3(F (X)/F,Q/Z(2)) → TorsCH2(F )

is surjective. Hence the homomorphism ε2 is surjective as well.

Corollary A.8. For any CS F -algebra A of exponent 2 the homomorphism
ε̄2

ker (H3(F ) → H3(F (SB(A))))

[A]H1(F )
→ Tors2CH

2(SB(A))

is an isomorphism

Theorem A.1, Lemma 1.4.2, and equation (1.3.1) imply the following

Corollary A.9. Let A1, A2 and B be CS F -algebras of exponent 2 such that
[A1] + [A2] + [B] = 0 ∈ Br2(F ). Let X = SB(A1) × SB(A2) × SB(B). Then
the homomorphism ε̄2

ker (H3(F ) → H3(F (X)))

[A1]H1(F ) + [A2]H1(F ) + [B]H1(F )
→ Tors2CH

2(X)

is an isomorphism.

Remark A.10. Let A1, . . . , Ak be CS F -algebras of exponent 2. Let

X = SB(A1)× · · · × SB(Ak).

It is not true (in general) that the homomorphism

ker (H3(F ) → H3(F (X)))

[A1]H1(F ) + · · ·+ [Ak]H1(F )

ε̄2→Tors2CH
2(X).

is bijective. A counterexample for the case k = 3 was constructed by E. Peyre
(see [36, Rem. 4.1 and Prop. 6.3]).
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Appendix B. A criterion of universal excellence for generic
splitting fields of quadratic forms

Definition B.1. Let E/F be a finitely generated field extension. We say
that E/F is universally excellent if for any field extension K/F and any free
composite EK of E and K over F the field extension EK/K is excellent.

Remarks. 1) By a free composite of K and E over F we mean the field of
fractions of the factor ring (K ⊗F E)/P , where P is a minimal prime ideal in
K ⊗F E.
2) If X is a geometrically integral variety over F and E = F (X), a free
composite EK is uniquely defined and coincides with K(X).

Let ϕ be a non-hyperbolic quadratic form over F . Put F0 = F and ϕ0 = ϕan.
For i ≥ 1 let Fi = Fi−1(ϕi−1) and ϕi = ((ϕi−1)Fi)an. The smallest h such that
dimϕh ≤ 1 is called the height of ϕ. The tower of fields F0, F1, . . . , Fh is called
the generic splitting tower of ϕ. The degree of ϕ is defined to be zero if dimϕ
is odd. If dimϕ is even then there is m such that ϕh−1 ∈ GPm(Fh−1). In this
case we set deg ϕ = m.

The main purpose of Appendix B is to prove the following

Theorem B.2. Let ϕ be an anisotropic quadratic form over F and let

F0, F1, . . . , Fh

be the generic splitting tower of ϕ. Let s be a positive integer such that s ≤ h.
Then

1) if the field extension Fs/F is universally excellent then s = h,
2) the field extension Fh/F is universally excellent if and only if one of the

following conditions holds:
(a) ϕ has the form ⟨⟨a, b⟩⟩ γ, where γ is an odd-dimensional quadratic

form,
(b) ϕ ⊥ ⟨− det± ϕ⟩ has the form ⟨⟨a, b⟩⟩ γ, where γ is an odd-dimensional

quadratic form,
(c) ϕ has the form ⟨⟨a⟩⟩ γ where γ is an odd-dimensional quadratic form,
(d) there exist d /∈ F ∗2, π ∈ P2(F ) and two odd-dimensional quadratic

forms γ1 and γ2 such that πF (
√
d) is anisotropic, the field extension

F (π,
√
d)/F is universally excellent, and [ϕ] = [πγ1] + [⟨⟨d⟩⟩ γ2] (in

this case dimϕ is even and det± ϕ = d /∈ F ∗2).

Remark B.3. We do not know whether there exist d and π (and hence ϕ) as
in item (d) of Theorem B.2.

Definition B.4. Let q be a quadratic form and k ≥ 0. We say that a field
extension E/F is generic in the class of the field extensions over which the Witt
index of ϕ is greater or equal to k (for short (ϕ, k)-generic), if the following
conditions hold:

1) iW (ϕE) ≥ k,
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2) for any field extensionK/F with iW (ϕK)an ≥ k and for any free composite
EK of the fields E and K over F , the field extension KE/K is purely
transcendental.

Lemma B.5. Let q be a quadratic form and k be a positive integer. Let E1/F

and E2/F be (ϕ, k)-generic field extensions. Then E1/F
st∼ E2/F .

Proof. By Definition B.4, E1E2/E1 and E1E2/E2 are purely transcendental.

Hence E1/F
st∼ E2/F .

Proposition B.6 (see [24, Cor. 3.9 and Prop. 5.13]). Let

F0, F1, . . . , Fh

be the generic splitting tower of a quadratic form ϕ. Let ks = iW (ϕFs) (0 ≤
s ≤ h). Then the field extension Fs/F is (ϕ, ks)-generic.

Theorem B.7 (see [16, Th. 1.1]). Let ϕ be an anisotropic form over F . The
field extension F (ϕ)/F is universally excellent if and only if dimϕ ≤ 3 or
ϕ ∈ GP2(F ).

Lemma B.8. Let ϕ be a non-hyperbolic quadratic form over F and let

F0, F1, . . . , Fh

be the generic splitting tower of ϕ. Let r be an integer such that 0 < r ≤ h.
Suppose that the field extension Fr/F is universally excellent. Then

1) for any s with 0 ≤ s ≤ r, the field extension Fr/Fs is universally excellent;
2) r = h and deg ϕ ≤ 2.

Proof. 1). Let k = iW (ϕFr). By Proposition B.6, both field extensions FrFs/Fs
and Fr/Fs are (ϕFs , k)-generic, where FrFs denotes a free composite of Fr and

Fs over F . By Lemma B.5, we have FrFs/Fs
st∼ Fr/Fs.

Since Fr/F is universally excellent it follows that FrFs/Fs is universally

excellent as well. Since FrFs/Fs
st∼ Fr/Fs, it follows that Fr/Fs is universally

excellent.
2). Since Fr/F is universally excellent, it follows that Fr/Fr−1 is universally

excellent. Let ϕr−1 = (ϕFr−1)an. We see that Fr−1(ϕr−1)/Fr−1 is universally
excellent. It follows from Theorem B.7, that either dimϕr−1 ≤ 3 or ϕr−1 ∈
GP2(Fr−1). In both cases dimϕr ≤ 1. Hence, r = h. Since dimϕh−1 =
dimϕr−1 ≤ 4, it follows that deg ϕ ≤ 2.

Definition B.9. Let ϕ be a quadratic form over F and F0, F1, . . . , Fh be the
generic splitting tower of ϕ. We denote by Fϕ the field Fh. For any field

extension E/F , we set Eϕ
def
= EϕE .

Lemma B.10. Let ϕ be a quadratic form over F and E/F be a field extension.

Then EFϕ/E
st∼ Eϕ/E.

Proof. Let k = [dimϕ/2]. The field extensions EFϕ/E and Eϕ/E are (ϕE, k)-
generic. Lemma B.5 completes the proof.
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Corollary B.11. Let ϕ be a quadratic form over F and E/F be a field ex-
tension. Suppose that the field extension Fϕ/F is universally excellent. Then
Eϕ/E is universally excellent.

Corollary B.12. Let ϕ ∈ I3(F ) be a quadratic form such that the field exten-
sion Fϕ/F is universally excellent. Then ϕ is hyperbolic.

Proof. Suppose that ϕ is not hyperbolic. Since ϕ ∈ I3(F ), we have deg(ϕ) ≥ 3.
This contradicts to Lemma B.8.

Corollary B.13. Let ϕ be a quadratic form over F such that Fϕ/F is univer-
sally excellent. Then for any field extension E/F the condition ϕE ∈ I3(E)
implies that ϕE is hyperbolic.

Lemma B.14. Let ϕ and ψ be quadratic forms over F . The following condi-

tions are equivalent: 1) Fϕ
st∼ Fψ; 2) dim(ϕFψ)an ≤ 1 and dim(ψFϕ)an ≤ 1.

Proof. 1)⇒2). Obvious.
2)⇒1). It follows from Proposition B.6 and Definition B.4 that the field

extensions FϕFψ/Fψ and FϕFψ/Fϕ are purely transcendental. Hence Fϕ
st∼

Fψ.

Examples B.15. 1). Let ϕ be an odd-dimensional quadratic form. Let ψ =

ϕ ⊥ ⟨− det± ϕ⟩. Then Fϕ/F
st∼ Fψ/F .

2). For i = 1, . . . , n, let πi be anisotropic mi-fold Pfister forms with m1 <
m2 < · · · < mn. Let γ1, . . . , γn be anisotropic odd-dimensional quadratic
forms. Let ϕ be a quadratic form such that [ϕ] = [π1γ1] + · · · + [πnγn]. Then

Fϕ/F
st∼ F (π1, . . . , πn)/F .

3). Let π ∈ GPn(F ) and let γ be an odd-dimensional quadratic form. Let

ϕ = πγ. Then Fϕ/F
st∼ Fπ/F .

Proof. 1). Since ψ ∈ I(F ), it follows that ψFψ is hyperbolic. Consequently
dim(ϕFψ)an = 1. Since dim(ϕFϕ)an = 1, we have dim(ψFϕ)an ≤ 2. It follows

from ψ ∈ I2(F ) that dim(ψFϕ)an = 0. By Lemma B.14, we have Fϕ/F
st∼ Fψ/F .

2). Obviously ϕF (π1,...,πn) is hyperbolic. Let E = Fϕ. It is sufficient to
verify that (π1)E, . . . , (πn)E are hyperbolic. Suppose that there is i such that
[(πi)E] ̸= 0. Let i be the minimal integer such that [(πi)E] ̸= 0. Obviously,
[(πiγi)E] ≡ [ϕE] ≡ 0 (mod Imi+1(F )). Since dim γ is odd, we have [(πi)E] ≡
[(πiγi)E] ≡ 0 (mod Imi+1(F )). By APH, we have [(πi)E] = 0, a contradiction.

3). It is sufficient to set n = 1 in the previous example.

The following lemma is a consequence of the index reduction formula [34].

Lemma B.16 (see [15, Th. 1.6] or [13, Prop. 2.1]). Let ϕ ∈ I2(F ) be a qua-
dratic form with ind(C(ϕ)) ≥ 2r. Then there is s (0 ≤ s ≤ h(ϕ)) such that
dimϕs = 2r + 2 and indC(ϕs) = 2r.

Lemma B.17. Let ϕ ∈ I2(F ) be a non-hyperbolic quadratic form such that
the field Fϕ is universally excellent. Then indC(ϕ) = 2.
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Proof. By Corollary B.12, we have ϕ /∈ I3(F ). Hence indC(ϕ) ≥ 2. Suppose
that indC(ϕ) ≥ 4. By Lemma B.16, there is s such that dimϕs = 6. Therefore
ϕs is an anisotropic Albert form. By Lemma B.8, the field extension Fh/Fs is
universally excellent. Replacing F and ϕ by Fs and ϕs, we can suppose that ϕ

is an anisotropic Albert form. Let A = C(ϕ). Clearly Fϕ/F
st∼ F (SB(A))/F .

By Theorem 3.2, the field extension F (SB(A))/F is not universally excellent,
a contradiction.

Proposition B.18. Let ϕ ∈ I2(F ) be an anisotropic quadratic form. Then
the following conditions are equivalent:

1) the field extension Fϕ/F is universally excellent,
2) ϕ has the form ⟨⟨a, b⟩⟩µ, where µ is an odd-dimensional form.

Proof. 1)⇒2). Suppose that the field extension Fϕ/F is universally excellent.
By Lemma B.17, we have indC(ϕ) = 2. Therefore there exists an anisotropic
2-fold Pfister form π = ⟨⟨a, b⟩⟩ such that [c(ϕ)] = [c(π)]. Let E = F (π).
Obviously ϕE ∈ I3(E). By Corollary B.13, ϕE is hyperbolic. Hence there is γ
such that ϕ = ⟨⟨a, b⟩⟩ γ. Since ϕ /∈ I3(F ), dim γ is odd.

2)⇒1). Suppose that ϕ = ⟨⟨a, b⟩⟩ γ, where γ is an odd-dimensional quadratic

form. Let π = ⟨⟨a, b⟩⟩. By Example B.15, we have Fϕ/F
st∼ Fπ/F . By Arason’s

theorem, the field extension Fπ/F is universally excellent. Hence Fϕ/F is
universally excellent.

Proposition B.19. Let ϕ be an odd-dimensional anisotropic quadratic form.
Then the following conditions are equivalent:

1) the field extension Fϕ/F is universally excellent,
2) ϕ ⊥ ⟨− det± ϕ⟩ has the form ⟨⟨a, b⟩⟩µ, where µ is an odd-dimensional

form.

Proof. Obvious by virtue of Proposition B.18 and Example B.15.

Proposition B.20. Let ϕ be an even-dimensional anisotropic quadratic form
with d = det±(ϕ) ̸= 1 ∈ F ∗/F ∗2. Then the following conditions are equivalent:

1) the field extension Fϕ/F is universally excellent,
2) there exist π ∈ GP2(F ) and odd-dimensional quadratic forms γ1, γ2 such

that [ϕ] = [πγ1] + [⟨⟨d⟩⟩ γ2] and the field extension F (π,
√
d)/F is univer-

sally excellent.

Proof. 1)⇒2). Let L = F (
√
d). Since Fϕ/F is universally excellent, it follows

that Lϕ/L is universally excellent. If ϕL is hyperbolic, we set π = 2H, what
completes the proof. Suppose now that ϕL is not hyperbolic. By Lemma B.17,
ind(C(ϕL)) = 2. Since C(ϕL) is defined over F , it follows that there is π ∈
GP2(F ) such that C(ϕL) = C(πL). Let E = L(π) = F (π,

√
d). Since Fϕ/F

is universally excellent, it follows that Eϕ/E is universally excellent. We have
C(ϕE) = C(πE) = 0. Hence ϕE ∈ I3(E). It follows from Corollary B.13 that
ϕE is hyperbolic. Therefore, [ϕ] ∈ W (E/F ) = [π]W (F )+ [⟨⟨d⟩⟩]W (F ). Choose
γ1 and γ2 such that [ϕ] = [πγ1] + [⟨⟨d⟩⟩ γ2]. Since ϕ /∈ I2(F ), the dimension of
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γ2 is odd. Since indC(ϕL) = 2, the dimension of γ1 is odd. By Example B.15,

we have Fϕ/F
st∼ E/F . Therefore, the field extension E/F = F (π,

√
d)/F is

universally excellent.
2)⇒1). Obvious in view of Example B.15.

Theorem B.2 is now an obvious consequence of Lemma B.8 and Proposi-
tions B.18, B.19, and B.20.

Let ϕ be a non-degenerate quadratic form on an F -vector space V and k
be a positive integer such that k ≤ 1

2
dimV = 1

2
dimϕ. Let X(ϕ, k) be the

variety of totally isotropic subspaces in V of dimension k. It is well-known
that X(ϕ, k) is geometrically integral if and only if k ̸= 1

2
dimϕ.

Suppose now that k < 1
2
dimϕ. Clearly, the field extension F (X(ϕ, k))/F is

(ϕ, k)-generic. Therefore there exists r (0 ≤ r ≤ h = h(ϕ)) such that the field
extension F (X(ϕ, k))/F is stably isomorphic to Fr/F . Obviously, r = 0 if and
only if k ≤ iW (ϕ). In the case where k > iW (ϕ), the integer r is defined by the
condition dimϕr−1 − 2 ≥ dimϕ− 2k ≥ dimϕr.

Theorem B.21. Let ϕ be a quadratic form over F and X(ϕ, k) be the variety
of totally isotropic subspaces of dimension k (k < 1

2
dimϕ). The field extension

F (X(ϕ, k))/F is universally excellent if and only if at least one of the following
conditions holds:

1) k ≤ iW (ϕ),
2) k = 1

2
dimϕ − 1 and ϕan has the form ⟨⟨a, b⟩⟩ γ, where γ is an odd-

dimensional quadratic form,
3) k = 1

2
(dimϕ− 1) and ϕan ⊥ ⟨− det± ϕ⟩ has the form ⟨⟨a, b⟩⟩ γ, where γ is

an odd-dimensional quadratic form.

Proof. Let r be such an integer that F (X(ϕ, k))
st∼ Fr/F . If r = 0 then

k ≤ iW (ϕ) and the proof is complete. Suppose now that r > 0. By Lemma B.8,
we have r = h = h(ϕ) and deg(ϕ) ≤ 2. Therefore, dimϕ−2k ≤ dimϕh−1−2 ≤
2deg ϕ − 2 ≤ 2. By the assumption of the theorem, we have dimϕ − 2k > 0.
Therefore, k = 1

2
dimϕ−1 or k = 1

2
(dimϕ−1). Since dimϕh−1 ≥ 2+(dimϕ−

2k) ≥ 3, it follows that either ϕ ∈ I2(F ), or dimϕ is odd. To complete the
proof it is sufficient to apply Theorem B.2.
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