
Int. J. Computational Biology and Drug Design, Vol. 7, Nos. 2/3, 2014 225

Generic strategies for chemical space exploration

Jakob L. Andersen

Department of Mathematics and Computer Science,

University of Southern Denmark,

Campusvej 55, DK-5230 Odense M, Denmark

and

Max Planck Institute for Mathematics in the Sciences,

Inselstraße 22 D-04103 Leipzig, Germany

E-mail: jlandersen@imada.sdu.dk

Christoph Flamm*

Institute for Theoretical Chemistry,

University of Vienna,

Währingerstraße 17, A-1090 Wien, Austria

E-mail: xtof@tbi.univie.ac.at

Daniel Merkle*

Department of Mathematics and Computer Science,

University of Southern Denmark,

Campusvej 55, DK-5230 Odense M, Denmark

E-mail: daniel@imada.sdu.dk

*Corresponding authors

Peter F. Stadler

Institute for Theoretical Chemistry,

University of Vienna,

Währingerstraße 17, A-1090 Wien, Austria

Bioinformatics Group, Department of Computer Science,

and Interdisciplinary Center for Bioinformatics,

Härtelstraße 16-18, D-04107, Leipzig, Germany

and

Max Planck Institute for Mathematics in the Sciences,

Inselstraße 22 D-04103 Leipzig, Germany

and

Fraunhofer Institute for Cell Therapy and Immunology,

Perlickstraße 1, D-04103 Leipzig, Germany

and

Copyright © 2014 Inderscience Enterprises Ltd.

226 J.L. Andersen et al.

Center for non-coding RNA in Technology and Health,

University of Copenhagen,

Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark

and

Santa Fe Institute,

1399 Hyde Park Rd, Santa Fe, NM 87501, USA

E-mail: studla@bioinf.uni-leipzig.de

Abstract: The chemical universe of molecules reachable from a set of start

compounds by iterative application of a finite number of reactions is usually

so vast, that sophisticated and efficient exploration strategies are required to

cope with the combinatorial complexity. A stringent analysis of (bio)chemical

reaction networks, as approximations of these complex chemical spaces, forms the

foundation for the understanding of functional relations in Chemistry and Biology.

Graphs and graph rewriting are natural models for molecules and reactions.

Borrowing the idea of partial evaluation from functional programming, we

introduce partial applications of rewrite rules. A framework for the specification

of exploration strategies in graph-rewriting systems is presented. Using key

examples of complex reaction networks from carbohydrate chemistry we

demonstrate the feasibility of this high-level strategy framework. While being

designed for chemical applications, the framework can also be used to emulate

higher-level transformation models such as illustrated in a small puzzle game.

Keywords: chemical spaces; generative chemistries; graph grammars; graph

transformation; double pushout approach; graph binding; partial rule application;

rule composition; borate stabilised Formose reaction.

Reference to this paper should be made as follows: Andersen, J.L., Flamm, C.,

Merkle, D. and Stadler, P.F. (2014) ‘Generic strategies for chemical space

exploration’, Int. J. Computational Biology and Drug Design, Vol. 7, Nos. 2/3,

pp.225–258.

Biographical notes: In 2011, Jakob L. Andersen received his Master’s degree

in Computer Science from the University of Southern Denmark. He is currently

aiming at a double PhD in Computer Science under supervision of Daniel Merkle,

University of Southern Denmark and Peter F. Stadler, Max Planck Institute for

Mathematics in the Sciences, Leipzig, Germany. His research interests include

cheminformatics, graph rewriting and in general graph algorithms.

Christoph Flamm received a Mag. rer. nat. (Organic Chemistry, focus area: natural

product synthesis) and a Dr. rer. nat. (Theoretical Chemistry, focus area: folding

kinetics of RNA molecules) from the University of Vienna. In Fall 2006, he was

conferred the ‘venia docendi’ and became Associated Professor in the Department

of Theoretical Chemistry at the University of Vienna. CF’s main expertise is the

development of theoretical models and methods for complex biological systems

and the implementation of software tools for their simulation and analysis. His

current research interests are computational models of the structure, dynamics,

and evolution of chemical reaction networks with special emphasis on metabolic

networks.

Generic strategies for chemical space exploration 227

Daniel Merkle is an Associate Professor at the Department of Mathematics

and Computer Science at the University of Southern Denmark since 04/2008.

He received his ‘Diplom in Computer Science’ in 1997 at the Department of

Computer Science of the University of Karlsruhe (TH). In 2002 he received

his PhD from the Institute of Applied Informatics and Formal Description

Methods (AIFB), University of Karlsruhe (TH). From October 2002 until April

2008 he has been Assistant Professor at the Parallel Computing and Complex

Systems Group, at the Department of Mathematics and Computer Science,

University of Leipzig. His research interests are Cheminformatic and Parallel

Computing.

Peter F. Stadler received his PhD in Chemistry from U. Vienna in 1990 and then

worked as Assistant and Associate Professor for Theoretical Chemistry at the

same School. In 2002 he moved to Leipzig as Full Professor for Bioinformatics.

Since 1994 he is External Professor at the Santa Fe Institute. He is an External

Scientific Member of the Max Planck Society since 2009 and an Corresponding

Member Abroad of the Austrian Academy of Sciences since 2010.

This paper is a revised and expanded version of a paper entitled ‘Generic

strategies for chemical space exploration’ presented at International Conference

on Intelligent Biology and Medicine (ICIBM), Nashville, TN, USA, August 11–13,

2013.

1 Introduction

The systematic computational exploration of chemical spaces have become topic of high

practical relevance e.g., in drug design (Eberhardt et al., 2011; Dow et al., 2012; Reymond

and Awale, 2012; Wong, 2012). Recent efforts to gain insights into the distribution of

properties in chemical spaces include the construction of large databases of hypothetical

compounds. The “chemical universe database GDB-17” (Ruddigkeit et al., 2012), for

instance comprises 166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens

covering the size and composition range of typical lead compounds. Beyond the diversity

of molecules and their properties, however, potential synthesis pathways leading to them

are a crucially important consideration in practice. This calls for methods to systematically

explore chemical spaces in terms of restricted types of chemical reactions. Here we

demonstrate how this can be achieved in a natural way by means of graph grammars in

conjunction with efficient exploration strategies.

The structural formula of a chemical compound is a graph that represents the

connectivity and mutual arrangements of its atoms. Atom types are given as vertex labels,

while edges represent bond types. At this level of modelling, chemical reactions are naturally

represented as graph transformations. Chemical reactions are explained and categorised in

terms of reaction mechanisms that encapsulate the local changes of chemical bonds. In the

formal framework of graph grammars, reaction mechanisms correspond to the productions

(rules). Because of this conceptual alignment between chemistry and graph grammars, a

variety of artificial chemistry models of different degree of chemical realism have been

228 J.L. Andersen et al.

devised on this basis (Dittrich et al., 2001). Of course, these purely combinatorial models

of chemistry have their limitations. Deliberately disregarding the spatial embedding of

molecules they cannot capture many aspects of stereochemistry and they are restricted to

(over)simplified models of reactions energies and reaction kinetics. Graph grammar models

are nevertheless of practical interest when the task is to explore large areas of chemical

spaces and they provide a means of analysing regularities in very large reaction networks.

Several graph rewriting tools have become available in the recent past, see Fernández

and Namet (2010) for an overview. Application areas beyond chemistry include model

checking and verification, proof representation, and modelling control flow of programs

among many others. A strategy language to control the application of graph rewriting rules

has been presented in Fernández et al. (2012) for PORGY (Andrei et al., 2011; Pinaud et al.,

2012). A strategy framework for exploring chemical spaces has very different design goals

from the properties desirable for applications within different areas of computer science. For

instance, chemical graph grammar rule frequently merge or split graphs, since connected

components correspond to individual molecules. Hence a chemically motivated component

handling is required. The theoretically reachable chemical spaces can be infinite, e.g., when

the rules and the starting material allow polymers to form. Exploration thus may not halt

except due an enforced resource (size) limitation. Decisions on how to expand the space are

usually heavily influenced by chemical properties or additional data sources. Furthermore,

the goal of an analysis might also be motivated by a chemical question such as the detection

of chemical subspaces or the need to find specific chemical transformation patterns.

In this paper different types of ‘chemistries’ will be used to demonstrate the different

aspects of the strategic construction framework for fractions of the chemical space. The

Diels-Alder reaction (Diels and Alder, 1928), a sigmatrope cycloaddition reaction between

a conjugated diene and an alkene will serve as an example for a combinatorial complex

chemical space emerging from a single reaction rule. The formose reaction (Butlerov, 1861),

which subsumes the formation of sugars from formaldehyde is used to explore the impact

of changes in ‘chemistry’ (i.e. the set of reaction rules) on the structure and complexity of

the chemical space. HCN chemistry is used to illustrate how construction of chemical space

can be biased with experimental data.

The outline of the paper is as follows. In Section 2 we will present the underlying

framework of graph transformation including the Double Pushout Approach. Secondly, in

Section 3, we describe a method for efficient calculation of rule application. Thirdly, general

strategies to explore chemical spaces will be introduced in Section 4. In Section 5 we will

apply our framework to several before-mentioned complex chemical settings. Finally a

puzzle game will be used to illustrate the generality of our approaches.

2 Formal framework

2.1 Chemical graph rewriting with the double pushout approach

Molecules are always represented by connected graphs. Chemical reactions, however, more

often than not, involve two or more interacting molecules as their ‘input’ (educts) and there

Generic strategies for chemical space exploration 229

is no guarantee that the ‘output’ (products) is connected. Thus we have to consider graph

transformations that operate on not necessarily connected graphs. More precisely, we regard

a graphG here as a multiset {g1, g2, . . . , g#G} of its#G connected components. All graphs

are simple, i.e., without loops and parallel edges. Double and triple bonds are viewed as

edge labels rather than multiple edges.

Several abstract formalisms for graph transformation have been explored in the

literature, see e.g., Rozenberg and Ehrig (1997) for a detailed introduction. We found that

the so-called Double Pushout (DPO) approach provides the most intuitive direct encoding

of chemical reactions and the closest connection to the language of chemistry. A DPO

transformation rule p = (L
l
←− K

r
−→ R) consists of three graphs L, R and K known as the

left, right and context graph, respectively, and two graph morphisms l and r that determine

how the context is embedded in the left and the right graph. The rule p can be applied to a

graphG if the left graphL can be found inG and some additional consistency conditions are

satisfied. This is modelled by the requirement that there is a matching morphismm : L→ G

that describe how L is contained in G. Intuitively, the copy of L is replaced within G by R

in such a way that the context K is left intact, resulting in the transformed graph H . This

operation, the derivation G
p,m
==⇒ H , is described in the framework of category theory by

the requirement that the following commutative diagram exists:

L
l
←−K

r
−→R

y

m

y

d

y

n

G ←−K −→H.

(1)

The derivation G
p,m
==⇒ H implicitly define the intermediary graph D and the result graph H

as well as morphismsd : K → D andn : R→ H that fix how the context and the right graph

of the rule are embedded in the intermediary and the result graph, respectively. In terms of

molecules (connected components) we can write {g1, g2, . . . , g#G} ⇒ {h1, h2, . . . , h#H}.

In applications to modelling chemistry, several additional requirements must be satisfied.

Conservation of mass and atom types dictates that the restrictions of r and l to the vertex sets

(atoms) are bijective. Furthermore,m (and by extensiond andn) are subgraph isomorphisms

and hence injective. We note in passing that this guarantees the existence of a bijection

a : V (G)→ V (H) known as the atom mapping. In the DPO formalism, furthermore, the

existence of an inverse production p−1 = (L
l
←− K

r
−→ R), corresponding to the reverse

chemical reaction, is guaranteed. Some more basic properties of chemical graph grammars

can be found in Andersen et al. (2013b). Figure 1 shows an example of a chemical derivation.

2.2 Proper derivations

Consider a valid derivation {g1, g2}
p,m
==⇒ {h1, h2} and an arbitrary graph g′. Clearly,

the derivation {g1, g2, g
′}

p,m
==⇒ {h1, h2, g

′} is also valid because the images of m and n

are contained in {g1, g2} and {h1, h2}, respectively. The graph g′ is irrelevant for the

transformation. We call a derivation G
p,m
==⇒ H proper if imgm ∩ gi ̸= ∅ for all gi ∈ G. It

is not hard to see that the inverse of a proper derivation is again proper. Throughout the

following sections we will assume every derivation to be proper, unless otherwise stated.

230 J.L. Andersen et al.

Figure 1 Example of a chemical derivation from cyclohexadiene and isoprene using a Diels-Alder

transformation. The edges changed by the transformation is shown in red and the vertices

from K are shown in green. Note that edges shown in parallel are in the underlying

graphs a single edge with a special label to encode a specific chemical bond (see online

version for colours)

C

H

H

C

H

C

H

C
H

C

H
C

H
H

C

H

H

C

C

H
H

H

C

H

C

H

H

G

C

H

H

C

C

H

H

C
H

C

H
C

H
H

C

C
H

H

C

C

H
H

H

C

H

H

H

D

C

H

H

C

C

H

H

C
H

C

H
C

H
H

C

C
H

H

C

C

H
H

H

C

H

H

H

H

C

C

C

C

C

C

L

C

C

C

C

C

C

K

C

C

C

C

C

C

R

2.3 Derivation graphs

Chemical reaction networks can be represented as directed (multi)hypergraphs whose

vertices are the molecules of the ‘chemical universe’ under consideration and whose

hyperedges represent chemical reactions (Zeigarnik, 2000). Here, it is important to

consider hyperedges as multisets to accommodate the stoichiometric coefficients, i.e., the

multiplicities in which molecules enter a chemical reaction such as 2H2 +O2 → 2H2O.

Such networks can be constructed from experimentally observed data. An example is

the network of organic chemistry (NOC) (Bishop et al., 2006; Fialkowski et al., 2005;

Grzybowski et al., 2009), which shows a non-trivial organisation concentrated around a

core region of about 300 synthetically important building blocks and industrial compounds.

Metabolic networks consist of the enzymatically catalysed reactions constituting the

chemical basis of modern life forms. They are available from dedicated databases, see

e.g., Karp and Caspi (2011).

In the framework of graph grammar models, an analogous derivation graph can be

defined. Its vertex set consists of the connected labeled graphs G that represent the

molecules. Directed hyperedges connect the multisets G ⊆ G and H ⊆ G only if there is

a proper derivation G
p,m
==⇒ H . The conventions for visualising hyperedges adhere to the

three examples in Figure 2.

Generic strategies for chemical space exploration 231

Figure 2 A bipartite graph notation for directed (multi-)hypergraphs, in which the production itself

is drawn as a special type of intermediate vertex, is used in most cases: (a) {g1, g2}
p
=⇒ g3.

We only make an exception for 1-to-1 transformations (isomerisation reactions); (b)

g4
p
=⇒ g5. Multiplicities are indicated by multiple arcs and (c) {g6, g6}

p
=⇒ g7

p

g1

g2

g3

(a)

g4 g5
p

(b)

pg6 g7

(c)

3 Transformation by partial rule application

The core strategy to expand the underlying derivation graph is the discovery of new graphs

by means of proper derivations implied by the direct application of rules. Given a rule

p = (L← K → R) and a set of graphs U, the task is to find all proper derivations G
p
=⇒

H,G ⊆ U where G and H are multisets of graphs. This can be done by a testing of all

k-multisubsets of U for all 1 ≤ k ≤ #L. Since nearly all chemical reactions are mono-

molecular or bi-molecular, we can restrict ourselves to #L ≤ 2, at least when elementary

reactions are of primary interest. Still, the number of multisets is O(|U|2). In the worst case,

all unique multisets may give successful transformations, often leading to a combinatorial

explosion that quickly becomes unmanageable. In the following section we show that a

more detailed control of the multisets that are considered for transformation is desirable.

The key concept is partial rule composition (Andersen et al., 2013b), i.e., the binding of

graphs to rules, resulting in partial rules that can be applied more efficiently in an exploration

strategy. The idea is analogous to partial evaluation of functions by binding some of the

variables. Full graph transformations are computed as repeated partial rule application in

this framework. For the sake of brevity, we only sketch the idea here and omit a complete

formal definition of partial rules.

A partial rule application of a rule p = (L
l
←− K

r
−→ R) with L = {l1, l2, . . . , l#L} to

a graph G, is a generalisation of a full transformation of G in which only some but not all

components of L do not match G. Thus L is partitioned into the matching part L ̸= ∅ and

the non-matching remainder L′. The restriction l of l : K → L to the pre-image K of L

defines the partial transformation rule p = (L
l
←− K

r
−→ R). Using the restricted matching

morphism m : L→ G it can be applied to G resulting in graph H . The remainder L′ of

L gives rise to a new rule pG = (L′ l′

←− K ′ r′

−→ RG) whose right graph consists of the

transformed version of G as well the original right graph R, i.e., it contains both H and R

as subgraphs. A formal, diagrammatic representation is given in Figure 3(c). An abstract

partial application is shown in Figure 3(a) and (b).

Given a not necessarily connected graph G and DPO transformation rule p = (L
l
←−

K
r
−→ R), our task is to construct all partial rules obtainable by binding G to p. These

partial rules can then be applied to further graphs, allowing for more efficient exploration

strategies. The following algorithm enumerates these partial rules:

232 J.L. Andersen et al.

1 For all li ∈ L find the set of all subgraph isomorphisms of li to G. That is, find

Mi = {m | m : li → G is a subgraph isomorphism} for 1 ≤ i ≤ #L.

2 For all nonempty subsets L of L, construct all partial matching morphisms, m, by

merging morphisms from each Mj , lj ∈ L. Note, that each m must be injective.

3 For each partial matching morphism, m, apply p to G with m to obtain a new rule

pG = (L′ l′

←− K ′ r′

−→ RG).

Figure 3 Partial application of some rule p = (L
l
←− K

r
−→ R) to a graph G, with L = {l1, l2, l3}

and R = {r1, r2}. The partial application is done through a partial matching morphism

m : L→ G with L = {l1, l2}. The application results in a new rule,

pG = (L′ l′

←− K′ r′

−→ RG) with L′ = {l3}, for which R is a subgraph of RG. The

transformed graph of G, called H , is also a subgraph of RG. Figure 3(c) is the diagram of

subgraph relations for a general partial rule application

G l1

l2

l3

p r1

r2

(a)

l3

L′

pG

RG

r1

r2

(b)

KL R
l r

KL R
l r

DG H

m

K ′L′ RG

l′ r′

(c)

The partial matching morphisms constructed from considering L = L are actually full

matching morphisms, and so the resulting rule has L′ = K ′ = ∅. In this case pG represents

the creation of RG from an empty graph, and G
p,m
==⇒ RG is a valid derivation. If G is

connected, the derivation will additionally be proper.

In the following section we will regard a rule p as a function on sets of graphs, defined

provisionally as:

p(U) = U ∪
∪

G
p

=⇒H
G⊆U

H.

That is, the result of applying p to a set of graphs, U, is U itself along with all graphs

derivable from U using p.

3.1 Complex graph states

Consider the problem of applying a rule p twice to a set of graphs U. That is, finding U2 =
p(U1) for U1 = p(U). By our definition of rule application we have U ⊆ U1, so when the

algorithm described above is used for evaluating p(U1) it will find not only new derivations

but also all derivations found when evaluating p(U). We therefore use a more complex state

than simply sets of graphs. A graph state F is defined as a pair of ordered sets of graphs

(U ,S) with S ⊆ U . The elements, U and S , will be referred to also as U(F) and S(F)
respectively, whereU andS are functions on the graph state. In the following we will denote

Generic strategies for chemical space exploration 233

U(F) as the universe of the graph state F and S(F) as the subset of the state. The order

of graphs in the subset and in the universe is independent and is arbitrary unless otherwise

stated.

We define the application of a rule p to a graph state F in the following manner. Let

H ′ be all connected graphs derivable from U(F) with p such that at least one graph from

S(U) is being transformed in each derivation:

H ′ = {h ∈ H | G
p
=⇒ H : G ⊆ U(F) ∧G ∩ S(F) ̸= ∅}. (2)

The result F ′ = p(F) is such that

U(F ′) = U(F) ∪H ′ (3)

S(F ′) = H ′\U(F). (4)

That is, the resulting universe contains the input universe and all derived graphs, and the

resulting subset contains all new graphs which was not known before. The removal of known

graphs from the output subset is motivated by the goal of exploring the underlying network

of derivations.

With the definition above we rewrite our initial example as; find F2 = p(F1) for

F1 = p(F) and S(F) = U(F) = U. The application p(F1) can now only discover

derivations with at least one graph from S(F1), which by definition contains only new

graphs. Therefore, only new derivations are found. Figure 4 contains a visualisation of the

example.

Figure 4 Illustration of the evaluation of F2 = p(F1) for F1 = p(F) and some set of graphs,

S(F) = U(F) = U. Each derivation must use at least one graph form the input subset.

Two abstract derivations are shown with the endpoints indicating in which sets the graphs

are

S(F) = U(F) U(F1)

S(F1)

U(F2)

S(F2)

p

p

The implementation utilises the algorithm for transformation by first partially applying the

rule to the subset of the input state, and then afterwards the full universe.

4 Strategies

The previous section described how a rule p is applied to a state F to calculate a new state

F ′, and motivated this by the example of composition of rule application, F ′ = p(p(F)).
Using the definition of a graph state, we generalise the interface for rule application into

general strategies. A strategy is simply any function Q from and to the set of graph states.

In the following we introduce core strategies defined in the framework. Most of the

strategies are parameterised, which we will note with brackets around these parameters.

The application of a strategy Q with some fixed parameter, n, to a graph state F is thus

denoted as Q[n](F).

234 J.L. Andersen et al.

4.1 Parallel

A parallel strategy is defined in terms of a set of substrategies, {Q1, Q2, . . . , Qn}. The

result of applying a parallel strategy is the union of the results from applying the individual

substrategies:

F ′ = parallel[{Q1, Q2, . . . , Qn}](F)

U(F ′) =
∪

1≤i≤n

U(Qi(F))

S(F ′) =
∪

1≤i≤n

S(Qi(F)).

A simple use of parallel strategies is to model the possibility of different reaction

mechanisms happening simultaneously. As example, consider modelling the formose

chemistry which consists of keto-enol tautomerism and aldol addition, both reversible

reactions (see Appendix A for the grammar details). Let r1 and r2 denote the corresponding

reactions from Appendix A, i.e., the enol-to-keto reaction pattern for the carbonyl group and

the pattern for aldol addition. The parallel strategy Q = parallel[{r1, r2}] thus models

that these two reactions can happen simultaneously as illustrated in Figure 5.

Figure 5 Application of a parallel strategy Q = parallel[{r1, r2}] to a graph state F , with r1
being the transformation rule for the enol to keto conversion and r2 being the

transformation rule for aldol addition (see Appendix A). (a) The reaction network with

the graph state F consisting of U(F) = {formaldehyde, 1,2-ethenediol} and

S(F) = {1,2-ethenediol}. (b) The reaction network after evaluation of Q(F), with two

new molecules; glycolaldehyde and glyceraldehyde. The resulting graph state F ′ has

U(F ′) = {formaldehyde, 1,2-ethenediol, glycolaldehyde, glyceraldehyde} and

S(F ′) = {glycolaldehyde, glyceraldehyde}. In both networks the subset of the graph

state is highlighted (see online version for colours)

CH2O

OHHO

(a)

CH2O

Formaldehyde

OHO

Glycolaldehyde

OHHO

1,2-ethenediol

OH

OH

O

Glyceraldehyde

r2

r1

(b)

Generic strategies for chemical space exploration 235

4.2 Sequence

A sequence strategy, Q, is a composition of a list of substrategies, Q1, Q2, . . . , Qn:

Q(F) = Qn(. . . (Q2(Q1(F)) . . .).

To increase left-to-right readability of sequence strategies, we will use the notation Q =
Q1 → Q2 → · · · → Qn. Additionally, if Q1 = Q2 = · · · = Qn = Q′, we may use the

normal notation for powers of functions, Q = Q′n, for the sequence.

An example of the application of a sequence strategy can be seen in Figure 6, in

which two sequential steps of the formose chemistry (parallel strategies) are derived

starting from a graph state F with U(F) = {formaldehyde, glycolaldehyde} and S(F) =
{glycolaldehyde}.

Figure 6 Application of the sequence strategy

Q = parallel[{r0, r1, r2, r3}]→ parallel[{r0, r1, r2, r3}] to the graph state F0,

with ri denoting the transformation rules for keto-enol tautomerism and reversible aldol

addition. (a) The initial reaction network with F0 in which

U(F0) = {formaldehyde, glycolaldehyde} and S(F0) = {glycolaldehyde}. (b) The

intermediary reaction network after evaluation of the first step of the strategy. The

difference in graph state is that 1,2-ethenediol is now added to the universe and subset,

while glycolaldehyde no longer is in the subset. (c) The reaction network after complete

evaluation of Q(F0). The final graph state F2 has all four molecules in the universe and

only glyceraldehyde in the subset. Note that in the last step of the strategy the reverse

keto-enol reaction is discovered, but glycolaldehyde is already in the universe so it will

not be added to the subset of F2. The subset of the graph state is highlighted in each

network (see online version for colours)

CH2O

OHO

(a)

CH2O

OHO OHHOr0

(b)

CH2O

OHO OHHO

OH

OH

O

r2

r0

r1

(c)

4.3 Repetition

The sequencing strategy only allows composition of a fixed number of strategies, whereas

the repetition strategy is used to compose a single strategy with itself many times.

236 J.L. Andersen et al.

A repetition strategy, Q, is parameterised by a non-negative integer, n, and an inner

strategy Q′. The inner strategy is composed with itself until the graph state reaches a fixed

point or its subset is empty, however at most n times:

Q = repeat[Q′, n] = Q′k

k = min{0, 1, . . . , n}, such that Q′k(F) = Q′k+1(F) ∨ S(Q′k+1(F)) = ∅ ∨ k = n.

This means that if the graph state reaches a fixed point then that graph state is returned, and

if the subset of the state becomes empty then the previous state is returned. We motivate

this condition of a non-empty subset of a produced graph state by our definition of rule

application, which requires at least one graph from the subset. By returning the last graph

state with non-empty subset the repetition strategy can be used as a precomputation in a

sequence to find a kind of closure under some inner strategy.

Note that if k = 0 the strategy becomes the identity strategy, i.e., the resulting graph

state is the same as the input graph state. If n is set large enough to not limit the repetition,

we call it unbounded repetition, and write it as Q = repeat[Q′].
In Figure 6 the strategy for deriving two steps of the formose network is shown. As a

generalisation the strategyQ = repeat[n,parallel[{r0, r1}]] can be used to derive (at

most) n steps of the network. Figure 7 shows another example using the repetition strategy,

where all isomers of glyceraldehyde 3-phosphate (G3P) are generated.

4.4 Revive

Consider the following high-level description of a strategy: Given a single graph g, try to

apply the rule p. If the application of p is successful, then let H denote all the produced

graphs and return H\{g} (all graphs not already known). If the application of p is not

successful, then intentionally {g} should be returned. The simple strategy Q = p applied

to F with S(F) = U(F) = {g} only partially achieves this, as illustrated in the following.

Let F ′ = Q(F) be the resulting graph state after evaluation of the strategy on F . Using the

definition of the rule application strategy, equations (2)–(4), we get

• S(F ′) = H\{g} and U(F ′) = H ∪ {g} if p is successfully applied

• S(F ′) = ∅ and U(F ′) = {g} if p can not be applied.

However, the desire was to have S(F ′) = {g} in the unsuccessful case. The intention of the

revive strategy is to provide a mechanism to model the desired behaviour. A rule application

strategy discovers a (possibly empty) set of derivations. We say that a graph g is consumed

in a rule application strategy if any of the discovered derivations G⇒ H have g ∈ G. In

the natural way we extend this and say that a graph g is consumed by a strategy if it is

consumed by any of its substrategies. A revive strategy, revive[Q′], is parameterised by

a single substrategy, Q′, and is defined as:

F ′ = revive[Q′](F)

U(F ′) = U(Q′(F))

S(F ′) = S(Q′(F)) ∪ {g ∈ S(F) | g ∈ U(F ′) ∧ g is not consumed in Q′.}

That is, any graph from the input subset which is still in the output universe and was not

consumed, will be added to the output subset. The high-level described example to illustrate

Generic strategies for chemical space exploration 237

the problem with a simple rule p can now be solved with the strategy Q = revive[p].
If the application of p is unsuccessful, then g is not consumed and will be added to the

resulting subset.

Figure 7 The strategy Q = repeat[parallel[{r0, r1}]] applied to the initial graph state F0

with U(F0) = S(F0) = {G3P} (shown in (a)). (b)–(d) The intermediary reaction

networks from evaluation of Q(F0). Each step discovers a new isomer which constitutes

the new subset. Additionally, the reaction to the previous isomer is discovered. However,

this molecule is already in the universe of the current graph state and is therefore not

added to the subset. (e) The final step in the repetition results in an empty subset as only

known molecules (those in the universe) are rediscovered. The graph state from (d) is

therefore the result. In all networks the subset of the current graph state is highlighted

(see online version for colours)

O

HO

O P

O

OH

OH

G3P

(a)

O

HO

O P

O

OH

OH
OH

HO O P

OH

OH

O

r0

(b)

O

HO

O P

O

OH

OH
OH

HO O P

OH

OH

O

HO O

P OH

OH

OO

r0

r1

r1

(c)

O

HO

O P

O

OH

OH
OH

HO O P

OH

OH

O

HO O

P OH

OH

OO

OH

HO O P

OH

OH

O

r0

r1

r1

r0

r0

(d)

O

HO

O P

O

OH

OH
OH

HO O P

OH

OH

O

HO O

P OH

OH

OO

OH

HO O P

OH

OH

O

r0

r1

r1

r0

r0

r1

(e)

As another example, consider the following problem. Two graphs, g1 and g2 and the

transformation rule p, as illustrated in Figure 8 are given. We wish to develop a strategy to

transform all edge labels using rule p, with the intend to use this strategy as a precomputation

for a subsequent strategy. That is, the subset of the graph state after evaluation of the strategy

238 J.L. Andersen et al.

must contain the completely transformed graphs in the subset. The strategyQ = repeat[p]
may seem like the most intuitive approach to model this process. However, the evaluation of

Q(F) with S(F) = U(F) = {g1, g2} does not give the intended result, which is illustrated

in Figure 9.

Figure 8 Graphs and transformation rule for the example of the semantics of revive strategies

a

a

b

(a) g1

a

a

a

b b

(b) g2

a

a

b

L

a

a

K

a

a

c

R

l r

(c) p = (L
l
←− K

r
−→ R)

Figure 9 Illustration of the application of repeat[p] to F with S(F) = U(F) = {g1, g2}. Only

the subset of the graph states are shown. The first application of p results in two new

graphs, g3 and g4, but as p can only be applied to g4 the final subset is only a single

graph, g5, instead of both g3 and g5

g1

a a
b

a

a

a

b b

g2

g3

a a
c

a

a

a

c b

g4

a a
b

a

a

a

c c

g5

p p

The problem is that the repetition strategy will continue as long as any new graph can be

discovered, and does not preserve the most derived graphs in the subset. Using the strategy

repeat[revive[p]] correctly solves the problem. A chemical example for the revive

strategy will be given in the results section.

4.5 Derivation predicates

For the purpose of precise modelling and the problems with combinatorial explosion it is

convenient to limit the possibilities of expansion. We define two variations of the concept

of derivation predicates, which both introduce extra constraints in equation (2) to prune

unwanted derivations. The strategy leftPredicate[P,Q′] is defined by the predicate

P on a multiset of graphs and a transformation rule, and by the substrategy Q′. A candidate

derivation from the graphs G with the rule p found by Q′, is only fully calculated and

accepted if P (G, p) is true. A right predicate strategy, rightPredicate[P,Q′] is also

defined by a predicate and a substrategy, though with the predicate P evaluating a complete

derivation. Thus, a derivation G
p
=⇒ H is only accepted if P (G

p
=⇒ H) is true.

Generic strategies for chemical space exploration 239

As example, given a strategyQ′ we wish to produce only graphs with at most 42 vertices

(atoms, in a chemical context). This requires a right predicate strategy as information about

the right side of the derivation (the products) are needed. This can be specified with the

following strategy:

Q = rightPredicate[P,Q′]

P (G
p
=⇒ H) ≡ ∀h ∈ H : |V (h)| ≤ 42.

Instead, we might want to restrict that some molecule g should not be an educt in any reaction

with the transformation rule being r. This constraint does not require the information of a

complete derivation, and may as such be formulated as a left predicate strategy:

Q = leftPredicate[P,Q′]

P (G, p) ≡ ¬(r = p ∧ g ∈ G)

with Q′ being an arbitrary strategy.

4.6 Filter, sort, take and add

To facilitate more elaborate use of strategies in a functional style we define several strategies

which correspond to functions on lists in other languages. As a graph state is composed of

both a universe and a subset, all of these strategies are defined in two variations.

A filter strategy is parameterised by a predicate on a graph and a graph state:

F
′ = filterSubset[P](F)

U(F ′) = U(F)

S(F ′) = {g ∈ S(F) | P (g, F)}

F
′ = filterUniverse[P](F)

U(F ′) = {g ∈ U(F) | P (g, F)}

S(F ′) = {g ∈ S(F) | P (g, F)}.

A sorting strategy is parameterised with a predicate on two graphs and a graph state, used

as a less-than predicate in a stable sort of a list of graphs:

F
′ = sortSubset[P](F)

U(F ′) = U(F)

S(F ′) = stableSort[P](S(F))

F
′ = sortUniverse[P](F)

U(F ′) = stableSort[P](U(F))

S(F ′) = S(F).

The choice that the sorting algorithm must be stable is motivated by the desire to allow

lexicographical sorting by sequencing several sorting strategies.

A take strategy is parameterised with a natural number:

F
′ = takeSubset[n](F)

k = min{n, |S(F)|}

U(F ′) = U(F)

S(F ′) = {S(F)1, S(F)2, . . . , S(F)k}

F
′ = takeUniverse[n](F)

k = min{n, |U(F)|}

U(F ′) = {U(F)1, U(F)2, . . . , U(F)k}

S(F ′) = S(F) ∩ U(F ′).

An addition strategy appends a given set of graphs to either the universe and optionally also

to the subset:

240 J.L. Andersen et al.

F
′ = addSubset[{g1, g2, . . . , gn}](F)

U(F ′) = U(F) ∪ {g1, g2, . . . , gn}

S(F ′) = S(F) ∪ {g1, g2, . . . , gn}

F
′ = addUniverse[{g1, g2, . . . , gn}](F)

U(F ′) = U(F) ∪ {g1, g2, . . . , gn}

S(F ′) = S(F).

An example usage of these strategies is the procedure of ranking graphs according to some

property, take the best n graphs for subsequence expansion, i.e.:

Q′ = sortSubset[P]→ takeSubset[n]

Note that the sorting predicate P can be based on any external data such as results from wet

lab experiments. As example we have used mass spectrometry data to bias the expansion

towards high intensity molecules (see the Results and Discussion section).

The addition strategies can be used both for injecting new graphs in the middle of a

strategy, but we also find them convenient simply for uniform left-to-right writing of a

strategy application. E.g., given a (large) strategy Q we wish to apply to the graph state F ,

we can write:

F ′ := addUniverse[U(F)]→ addSubset[S(F)]→ Q

with the interpretation F ′ = Q(F).

4.7 Implementation remarks

The strategies are implemented in C++ as part of a library, to allow easy extension at

the user level. Extensions can vary from simple graph state manipulating strategies to

complete replacement of the underlying transformation formalism. The library is aimed

at chemical graph transformation, with special optimisation for molecules (e.g., use of

canonical SMILES strings for graph isomorphism (Weininger, 1988; Weininger et al.,

1989)), but is not restricted to the domain of chemistry. The current implementation uses

VF2 (Cordella et al., 2004) to find subgraph isomorphisms, and as a fall-back algorithm for

isomorphism check for general graphs. Furthermore, the library utilises data structures and

procedures for molecule handling form the graph grammar library (GGL) (Benkö et al.,

2003). A Python module with bindings to the C++ library is also implemented to allow easy

development of expansion strategies.

5 Results

In this section we will apply our strategy framework to three different chemical systems

and present results on how to systematically explore complex chemical universes:

• for the Diels-Alder reaction system we will repeatedly merge molecules with

isoprene

• we will compare chemical universes of basic formose chemistry with and without

using borate as inhibitor motivated by a recent experiment by Ricardo et al. (2004)

Generic strategies for chemical space exploration 241

• we will present a strategy to explore the complex chemical spaces of hydrogen

cyanide polymerisation and hydrolysis product in order to show how to integrate

mass spectrometry results in our framework.

In order to easily illustrate subspaces that are also expected to exist in a chemical setting,

we will apply the strategy framework to a small puzzle game (Appendix C).

5.1 The Diels-Alder reaction

The Diels-Alder reaction is one of the most useful reactions in organic chemistry and has

heavily influenced total synthesis in the last decades (Nicolaou et al., 2002). The explosion

of the chemical space by applying this reaction several times will be biased by the strategy

framework. The reaction is shown in an example derivation in Figure 1, while the starting

molecules, isoprene and cyclohexadine, are shown in Figure 10. Let p = (L← K → R) be

the transformation rule modelling the Diels-Alder reaction. The intention of the rule is that

it is applied to two molecules, but this constraint is not encoded in the rule. We therefore

first wrap p with a derivation predicate:

Qp = leftPredicate[P, p] P (G, p′) ≡ #G = 2.

This means that all derivations G
p
=⇒ H must have |G| = 2.

Figure 10 The starting molecules, (a) isoprene and (b) cyclohexadine, for application of the

Diels-Alder reaction. The molecules are shown in two versions; one with all vertices

explicit and chemical interpretation of edge labels (left), and one version in standard

chemical visualisation

C

HH

C

C

H

H

H

C

H

C

H

H

(a) Isoprene

C

H

H

C

H

C

H

CH

C

H

C

H

H

(b) Cyclohexadine

A generic breadth-first exploration of the chemical space can be done with the following

strategy:

QBFS = addSubset[{isoprene, cyclohexadine}]→ repeat[Qp, n].

However, for n = 4 the strategy already discovers 825 new graphs through 1278

derivations.1 The number of subgraph isomorphism queries throughout the evaluation

is 74591. In Appendix B, Figure 14 the resulting derivation graph for just n = 2
is shown.

242 J.L. Andersen et al.

We now decide to only look at the subspace of molecules which are derived by repeatedly

merging molecules with isoprene, starting with cyclohexadine. The following strategy

implements this specification:

Qsubspace = addUniverse[{isoprene}]→ addSubset[{cyclohexadine}]

→ leftPredicate[Pinit, Qp]→ filterUniverse[Pfilter]

→ repeat[Qp, n] (5)

with

Pinit(G, p′) ≡ G = {isoprene, cyclohexadine}

Pfilter(g, F) ≡ g ̸= cyclohexadine.

This first computes all possible proper derivations {isoprene, cyclohexadine}
p
=⇒ H , then

removes cyclohexadine from the graph state to prevent further derivations. In the end it

uses breadth-first expansion for at most n steps. This strategy, with n = 3 (i.e., 4 expansion

steps including the very specific first step) discovers only 165 new graphs through 236

derivations,2 and uses 5524 subgraph isomorphism queries. The derivation graph withn = 2
is visualised in Figure 11.

5.2 Borate stabilised Formose reaction

Sugars, or more general carbohydrates, a broad class of organic compounds, can be viewed

as polymers of formaldehyde units. The reactivity of carbohydrates is dominated by their

carbonyl and their vicinal alcohol functional groups. In particular the enolised form of

a carbonyl group may attack another one (in keto form), resulting in the formation of a

new carbon-carbon bond. This reaction is known as aldol addition (see Figure 6(c)). If

the carbon atom adjacent to a carbonyl group carries an alcohol functionality, than the

enolisation reaction of the carbonyl group erases the ‘information’ at which carbon atom the

carbonyl functionality was located before the enolisation. This effect allows the carbonyl

group to ‘travel’ along the carbohydrate backbone (see Figure 7(e)). Both reactions are

responsible for the meta-stability of carbohydrates and result in complex carbohydrate

mixtures when repeated again and again as for instance under the conditions of the formose

reaction (Decker et al., 1982). The formose reaction has been extensively discussed as a

possible prebiotic route to higher carbohydrates in particular five-carbon sugars, such as

ribose, needed for the formation of nucleotides (the building blocks of RNA) (Benner et al.,

2012). Unfortunately, if the formose reaction is not stopped in time the reaction mixture

turns into black ‘tar’. Therefore, some stabilising mechanism compatible with prebiotic

environments, that prevent the destruction of interesting sugars, is indispensable to keep

the formose reaction as a plausible prebiotic scenario for higher carbohydrate formation.

The addition of borate, capable of binding vicinal diols, to the reaction mixture has been

identified as such a stabilising mechanism, that biases the outcome of the formose reaction

towards high yields of five-carbon sugars (Ricardo et al., 2004). In the following we illustrate

how expansion strategies can be exploited to carve out the differences between the formose

reaction networks with and without borate.

The basic formose reaction consists of two types of reversible reaction patterns, keto-

enol tautomerism and aldol reaction. As they are reversible they are modelled by two

transformation rules each. These are shown in Appendix A as transformation rule r0, . . . , r3,

Generic strategies for chemical space exploration 243

while the two initial molecules, formaldehyde and glycolaldehyde, are shown in Figure 12(a)

and (b) respectively. To keep the model simple we use a borate-like molecule, Figure 12(c),

with just two hydroxyl groups instead of a complete molecule. To enable the formation

of borate complexes we use the transformation rule shown in Figure 12(d). This reaction

pattern is described in Benner et al. (2010) as inhibiting keto-enol tatutomerism by making

the hydrogen atoms attached to the carbon atoms non-acidic. To approximate this behaviour

we relabel these vertices from H to D, thereby preventing the reaction pattern of enolisation

(r0 in Appendix A) from matching at these locations. The relabeling is done with the reaction

‘hToD’, Figure 12(e).

Figure 11 The derivation graph resulting from evaluating the expansion strategy Qsubspace,

equation (5). To minimise clutter, the vertex with isoprene and the corresponding edges

are not shown, although isoprene is involved in any reaction (the resulting chemical

reaction network is a hypergraph)

The formose chemistry contains an infinite number of molecules, so to limit the scope of

the exploration we prune any reaction which creates molecules with more than five carbon

atoms. This is formulated with a right predicate strategy around the application of the basic

formose reaction patterns:

rightPredicate[P#C ,parallel[{r0, r1, r2, r3}]]

P#C(G
p
=⇒ H) ≡ ∀h ∈ H : h has at most 5 carbon atoms.

244 J.L. Andersen et al.

As a reference, we generate the non-inhibited reaction network with the strategy QBFS:

QBFS =addUniverse[{formaldehyde}]

→addSubset[{glycolaldehyde}]

→repeat[

rightPredicate[P#C ,parallel[{r0, r1, r2, r3}]]

].

Figure 12 (a)–(c) The starting molecules of the borate inhibited formose reaction. The three

molecules are shown both as explicit graphs with all vertices and in standard chemical

visualisation. The borate molecule (c) is modelled with only two hydroxyl groups to

simplify the model. (d) The reaction pattern for forming borate complexes with

1,2-diols. This rule additionally has a matching constraint: none of the carbon atoms

may be an endpoint of a double bond. To approximate the subsequent non-reactivity of

the hydrogens on the carbon atoms we relabel them to D using the reaction ‘hToD’ (e).

This relabeling is in the context graph, K, represented with the annotation H | D

(see online version for colours)

C

H

H

O

(a) Formaldehyde

O

H

C

H

H

C

H

O

(b) Glycolaldehyde

B

O

O

R

H

H

(c) Borate

B

R

O

O

H

H

H

O

C

C

OH

L

B

R

O

O

H

H

H

O

C

C

OH

K

B

R

O

O

H

H

H

O

C

C

OH

R

(d) Borate + 1,2-diol reaction pattern, ‘addBorate’

H

C

O

B

L

H | D

C

O

B

K

D

C

O

B

R

Generic strategies for chemical space exploration 245

Not all molecules can actually bind with borate and must therefore be preserved while the

other molecules form complexes. This is modelled with a revive strategy around the actual

complex forming reaction pattern, ‘addBorate’. After the potential forming of a borate

complex, the relevant hydrogen atoms must be made inactive using the rule ‘hToD’. The

number of relevant hydrogens may not be the same for alle molecule and therefore the

relabeling strategy is embedded in both a repeat and revive strategy. This models the notion

of ‘as many times as possible’ on a collection of molecules. The reaction network with

borate inhibition can thus be calculated by the following strategy:

Qborate =addUniverse[{formaldehyde, borate}]

→addSubset[{glycolaldehyde}]

→repeat[

revive[addBorate]

→ repeat[revive[hToD]]

→ rightPredicate[P#C ,parallel[{r0, r1, r2, r3}]]

].

Let G denote the set of molecules used and generated by the evaluation of Qborate on

the empty graph state. This set of molecules contain both borate complexes and simple

carbohydrates without boron. To canonicalise the molecules we can use the strategy

Qcanon = addSubset[G]→ repeat[revive[dToH]]

→ repeat[revive[removeBorate]]

with ‘removeBorate’ being the inverse transformation rule of ‘addBorate’, and ‘dToH’ being

the inverse of ‘hToD’. Note that ‘removeBorate’ requires water molecules as educts, but if

‘addBorate’ was ever used in Qborate these molecules must be in G.

As a variant of the network, we also calculate the network with a an extra molecule,

dihydroxyacetone, in the subset:

Q+
borate =addUniverse[{formaldehyde, borate}]

→addSubset[{glycolaldehyde, dihydroxyacetone}]

→repeat[

revive[addBorate]

→ repeat[revive[hToD]]

→ rightPredicate[P#C ,parallel[{r0, r1, r2, r3}]]

].

In Figure 13 the reference reaction network created with QBFS is shown. Reactions

in black are active only in the basic formose reaction case with formaldehyde and

glycolaldehyde as set of input molecules. If borate is added to the input set of molecules,

the reactions highlighted in blue are active, while the rest of the network is inactive. Finally

if dihydroxyacetone is added to the input set of molecules the reactions highlighted in

green are activated in addition to the blue part of the network. The evaluation of Qborate

leaves only the blue reactions, which are selective pathways from glycolaldehyde (C2a) to

five-carbon sugars (C5b, C5l1, C5l2) active, while the rest of the network is shut down via

246 J.L. Andersen et al.

borate inhibition. These pathways rely on a constant replenishment of glycolaldehyde. Here

dihydroxyacetone (C3k) comes into play. C3k can only be formed from within the formose

network via retro-aldol reaction from higher carbohydrates. If added to the reaction network

an catalytic loop is activated (sub-network in green: C3k, C3e, C4k, C4e, C5b, retro-aldol

red dashed arrow to C3e and C2a) supporting the blue sub-network since C2a ends up as

some five-carbon sugars in the blue sub-network. C3e enters another round in the cycle to

construct another C2a. These computational results are in very good agreement with the

experimental results presented in Kim et al. (2011).

5.3 HCN polymerisation and hydrolysis biased by mass spectrometry results

Hydrogen cyanide (HCN) is a known prebiotic precursor of amino acids as well as many

other molecules relevant to present-day biology. It has been used to synthesise adenine

already in 1961 (Oró and P., 1961) amino acids (Ferris et al., 1974), as well as many other

molecules relevant to present-day biology (Ferris et al., 1974, 1978; Voet and Schwartz,

1983; Miyakawa et al., 2002; Saladino et al., 2004; Borquez et al., 2005; Matthews and

Minard, 2006), and it is also known to play a key role also in sugar synthesis (Ritson

and Sutherland, 2012). In Andersen et al. (2013a) graph grammar approaches and mass

spectrometry results were integrated in order to generate a chemical network with highly

likely polymerisation/hydrolysis products. In the first step of the wetlab experiments acid-

catalysed HCN polymers were created, in the second step the polymers were hydrolysed

under different conditions. The mass spectrometry results of the wetlab experiments were

used in order to bias the chemical space exploration performed with the strategy framework.

A detailed discussion of the results including a large variety of adenine pathways and

autocatalytic processes within the inferred chemical space can be found in Andersen et al.

(2013a). Here we focus on the description of the used strategies.

The model of the HCN chemistry is based on many transformation rules which are

shown in detail in the web supplement of Andersen et al. (2013a). For the purpose of a

concise strategy description we let R denote the set of needed transformation rules. The

expansion strategy is aimed at modelling the wetlab experiments and thus consist of the

sequencing of a strategy for polymerisation with a strategy for hydrolysis. As these two

strategies are quite similar we only state the hydrolysis strategy, Qhydrolysis.

Ideally, a simple breadth-first expansion strategy,repeat[R], can be used to expand the

network but due to the sheer combinatorial explosion only very few steps can be calculated.

Instead the following strategy can be used to prune the expansion:

Qhydrolysis =addSubset[{HCN,NH4,H2O,OH−}]

→repeat[

leftPredicate[P,parallel[R]]

→ filterUniverse[Pisomer]

→ sortUniverse[Pintensity]

→ takeUniverse[20]

→ addUniverse[Gsmall]

]

Generic strategies for chemical space exploration 247

Figure 13 The reaction network of the formose chemistry as calculated with the strategy QBFS.

The blue subnetwork correspond to the borate inhibited network calculated with Qborate.

The green and blue networks together with the red reaction (C5b to C3e) correspond the

network calculated with Q+
borate, i.e., with dihydroxyacetone as an input compound. Note

that this particular model does not include stereochemical properties, and that the

molecule depictions are made using Open Babel (O’Boyle et al., 2011), which for

instance means crossing double are used to indicate the unspecified stereo. Each

reaction is annotated with the reaction pattern, ri, used to realise the concrete reaction.

For the aldol reactions, r2 and r3, the secondary educt (+) or product (−) is additionally

shown. The addition of borate in Q+
borate is done with the strategy revive[addBorate],

meaning that at most 1 borate is added in each iteration. The red reaction is no longer

available if the addition is done with the strategy repeat[revive[addBorate]],
meaning “add as many as possible” (see online version for colours)

C4k

C4e

C5l1

C5b

Dihydroxyacetone, C3k

C3e

C3a
C5l2

C2e Glycolaldehyde, C2a

r2

r0

r1

+
r2

−

r3

r0

r1

r0

r1

+
r2

−

r3

r0

r1

r1

r0

r1

r0

+
r2

−

r3

+
r2

−

r3

+
r2

−

r3

+
r2

−

r3

+
r2

−

r3

+
r2

−

r3

r0

r1

r0 r1

r0

r1

r0

r1

+
r2

−

r3

r0

r1

+
r2

−

r3

r0

r1

where the predicates are defined as

P (G, p) ≡ at most 1 molecule of G has molar mass greater than 50

Pisomer(g, F) ≡ true iff the normalised Boltzmann factor of g is above

248 J.L. Andersen et al.

a certain threshold.

The factor is calculated based on the isomers of g in U(F)

Pintensity(g1, g2, F) ≡ intensity(g1) > intensity(g2)

The intensities are found in the mass spectrometry data

using the molar masses.

That is, the input graph state is augmented with basic food molecules. Then the main

hydrolysis step is repeated until no new molecules are found. The main step first expands

the network under the constraint that at least one small molecule is an educt in each reaction,

which limits the growth of the molecules to be linear as opposed to exponential. The

subsequent three steps prune the graph state of unlikely molecules, first by calculating

normalised Boltzmann factors within each class of isomers. Then the mass spectrometry data

from the wetlab experiments are used to select the 20 molecules with highest intensity for

the next expansion step. These pruning steps might have removed the basic food molecules,

and they are therefore reintroduced. Additionally the molecules immediately derivable from

the food molecules are added. The evaluation of the overall HCN strategy take considerably

longer (hours) to calculate than the previous examples. The bulk of the time is however spent

on calculating energy value used the Boltzmann factors. For further details see Andersen

et al. (2013a).

6 Conclusions

We have introduced here a generic framework to specify and execute strategies for the

systematic exploration of spaces of graphs. Our generative approaches use the Double

Pushout formalism to derive new graphs. Since this task is of immediate practical relevance

in chemistry, we designed our framework and implementation with the aim of high efficiency

in this particular domain of application. As performance was a particular focus of our

work, we use state-of-the-art subgraph isomorphism check methods and we heavily employ

hashing techniques in the checks for graph isomorphism; in order to infer proper derivations

of new molecules with full or partial rule application we do not use a straightforward

method to enumerate all possible left-hand-sides of derivations. Instead we employ partial

rule applications, a method that shows theoretically as well as empirically a much better

performance. The latter aspect will discussed in more detail elsewhere.

As showcase examples we have considered complex systems of chemical reactions. For

Diels-Alder reactions, which is plagued by a very rapid combinatorial explosion, we used

the strategy framework to guide the exploration to emphasise products of repeated isoprene

addition instead of unconstrained combinations of reactions products. This is of relevance

e.g., in terpene chemistry and biosynthesis. In the case of the formose reaction we show

how the strategies framework can be applied to explaining the effects of additional reactants

on a given reaction network. In particular, we can in rule based manner also determine

which reactions are effectly superseeded by new ones, so that additional reactants can lead

to a reduction of chemical network. The strategies framework thus serves not only as a

convenient tool for exploration but allows also a detailed modelling of contraints in chemical

networks.

Although the design was clearly chosen with systems chemistry and systems biology

applications in mind, the strategy framework introduced here is however by no means limited

Generic strategies for chemical space exploration 249

to chemical applications. Another promising application is the emulation of higher-level

rules. In the DPO graph grammar formalism, the size of a subgraph that is affected by a

transformation is by construction bounded by the left graph of the production that is to be

applied. Apparently simple operations on a graph, such as “contract a clique in G to a

single vertex”, however, do not have such a bound since the clique sizes depend only on the

input graph. Hence, such rules cannot be specified directly as productions in a DPO graph

grammar. In the Appendix 6 we use the well-known Catalan game (increpare games, 2013)

to show how our strategy framework can be applied to emulate this type of higher-level

rules.

In order to analyse chemical reaction networks as created by our strategy framework,

there exist several mathematical techniques that we plan to apply to our generated networks.

Two of the most prominent ones are Flux Balance Analysis (Kauffman et al., 2003) and

Elementary Mode Analysis (Klamt and Stelling, 2003). Note, that these methods are usually

not applied to dynamically created reaction networks as produced by our framework. We

aim at detecting new well-defined chemical reaction pattern. Furthermore, we expect to

identify highly connected subgraphs in chemical spaces, that are connected via a small

number of bridging reaction, similar to our observation for the Catalan game.

Acknowledgements

This work was supported in part by the Volkswagen Stiftung Proj. No. I/82719, the COST-

Action CM0703 ‘Systems Chemistry’, and the Danish Council for Independent Research,

Natural Sciences.

References

Andersen, J., Andersen, T., Flamm, C., Hanczyc, M., Merkle, D. and Stadler, P. (2013a) ‘Navigating

the chemical space of hcn polymerization and hydrolysis: guiding graph grammars by mass

spectrometry data’, Entropy, Vol. 15, No. 10, pp.4066–4083.

Andersen, J., Flamm, C., Merkle, D. and Stadler, P. (2013b) ‘Inferring chemical reaction patterns

using graph grammar rule composition’, J. Sys. Chem., Vol. 4, No. 1, p.4.

Andrei, O., Fernández, M., Kirchner, H., Melançon, G., Namet, O. and Pinaud, B. (2011) ‘PORGY:

strategy driven interactive transformation of graphs’, Proceedings of the 6th International

Workshop on Computing with Terms and Graphs (TERMGRAPH 2011), Vol. 48 of Electronic

Proceedings in Theoretical Computer Science, pp.54–68.

Benkö, G., Flamm, C. and Stadler, P.F. (2003) ‘A graph-based toy model of chemistry’, J. Chem. Inf.

Comput. Sci., Vol. 43, No. 4, pp.1085–1093.

Benner, S.A., Kim, H-J. and Carrigan, M.A. (2012) ‘Asphalt, water and the prebiotic synthesis of

ribose, ribonucleosides, and RNA’, Acc. Chem. Res., Vol. 45, No. 12, pp.2025–2034.

Benner, S.A., Kim, H-J., Kim, M-J. and Ricardo, A. (2010) ‘Planetary organic chemistry and the

origins of biomolecules’, Cold Spring Harb. Perspect. Biol., Vol. 2, pp.a003467.

Bishop, K., Klajn, R. and Grzybowski, B. (2006) ‘The core and most useful molecules in organic

chemistry’, Angew. Chem. Int. Ed., Vol. 45, pp.5348–5354.

Borquez, E., Cleaves, H.J., Lazcano, A. and Miller, S.L. (2005) ‘An investigation of prebiotic purine

synthesis from the hydrolysis of HCN polymers’, Orig. Life Evol. Biosph., Vol. 35, pp.79–90.

Butlerov, A.M. (1861) ‘Einiges über die chemische structur der körper’, Zeitschrift für Chemie, Vol. 4,

pp.549–560.

250 J.L. Andersen et al.

Cordella, L., Foggia, P., Sansone, C. and Vento, M. (2004) ‘A (sub) graph isomorphism algorithm

for matching large graphs’, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 26, No. 10, p.1367.

Decker, P., Schweer, H. and Pohlamnn, R. (1982) ‘Bioids : X. identification of formose sugars,

presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography-mas

spectrometry of n-butoxime trifluoroacetates on ov-225’, J Chromatogr A, Vol. 244, pp.281–291.

Diels, O.P.H. and Alder, K. (1928) ‘Synthesen in der hydroaromatischen reihe’, Justus Liebig’s

Annalen der Chemie, Vol. 460, pp.98–122.

Dittrich, P., Ziegler, J. and Banzhaf, W. (2001) ‘Artificial chemistries – a review’, Artificial life, Vol. 7,

No. 3, pp.225–275.

Dow, M., Fisher, M., James, T., Marchetti, F. and Nelson, A. (2012) ‘Towards the systematic

exploration of chemical space’, Org. Biomol. Chem., Vol. 10, pp.17–28.

Eberhardt, L., Kumar, K. and Waldmann, H. (2011) ‘Exploring and exploiting biologically relevant

chemical space’, Curr. Drug Targets, Vol. 12, pp.1531–1546.

Fernández, M. and Namet, O. (2010) ‘Strategic programming on graph rewriting systems’,

Proceedings of the 1st International Workshop on Strategies in Rewriting, Proving, and

Programming (IWS 2010), Vol. 44 of Electronic Proceedings in Theoretical Computer Science,

pp.1–20.

Fernández, M., Kirchner, H. and Namet, O. (2012) ‘A strategy language for graph rewriting’,

Proceedings of the 21st International Symposium on Logic-Based Program Synthesis and

Transformation (LOPSTR 2011), Vol. 7225 of Lecture Notes in Computer Science, pp.173–188.

Ferris, J.P., Joshi, P.C., Edelson, E.H. and Lawless, J.G.J. (1978) ‘HCN: a plausible source of purines,

pyrimidines and amino acids on the primitive earth’, J. Mol. Evol., Vol. 11, pp.293–311.

Ferris, J.P., Wos, J.D., Nooner, D.W. and Oró, J. (1974) ‘Chemical evolution. XXI. The amino acids

released on hydrolysis of HCN oligomers’, J. Mol. Evol., Vol. 3, pp.225–231.

Fialkowski, M., Bishop, K., Chubukov, V., Campbell, C. and Grzybowski, B. (2005) ‘Architecture

and evolution of organic chemistry’, Angew. Chem. Int. Ed., Vol. 44, pp.7263–7269.

Grzybowski, B., Bishop, K., Kowalczyk, B. and Wilmer, C. (2009) ‘The “wired’ universe of organic

chemistry’, Nature Chemistry, Vol. 1, pp.31–36.

increpare games (2013) Catalan, Accessed 4 February, 2013.

Karp, P. and Caspi, R. (2011) ‘A survey of metabolic databases emphasizing the MetaCyc family’,

Arch. Toxicol., Vol. 85, pp.1015–1033.

Kauffman, K.J., Prakash, P. and Edwards, J.S. (2003) ‘Advances in flux balance analysis’, Curr. Opin.

Biotechnol., Vol. 14, No. 5, pp.491–496.

Kim, H-J., Ricardo, A., Illangkoon, H.I., Kim, J.K., Carrigan, M.A., Frye, F. and Benner, S.A. (2011)

‘Synthesis of carbohydrates in mineral-guided prebiotic cycles’, J. Am. Chem. Soc., Vol. 133,

No. 24, pp.9457–9468.

Klamt, S. and Stelling, J. (2003) ‘Two approaches for metabolic pathway analysis?’, Trends

Biotechnol., Vol. 21, No. 2, pp.64–69.

Matthews, C.N. and Minard, R.D. (2006) ‘Hydrogen cyanide polymers, comets and the origin of life’,

Faraday Discuss., Vol. 133, pp.393–401 and 427–452.

Miyakawa, S., Cleaves, H.J. and Miller, S.L. (2002) ‘The cold origin of life: B. Implications based

on pyrimidines and purines produced from frozen ammonium cyanide solutions’, Origins Life

Evol. Biosphere, Vol. 32, pp.209–218.

Nicolaou, K., Snyder, S. and Montagnon, T. amd Vassilikogiannakis, G. (2002) ‘The Diels-Alder

Reaction in total synthesis’, Angew. Chem. Int. Ed., Vol. 41, pp.1668–1698.

O’Boyle, N., Banck, M., James, C., Morley, C., Vandermeersch, T. and Hutchison, G. (2011) ‘Open

babel: An open chemical toolbox’, Journal of Cheminformatics, Vol. 3, No. 1, p.33.

Generic strategies for chemical space exploration 251

Oró, J. and Kimball, A.P. (1961) ‘Synthesis of purines under possible primitive earth conditions. I.

Adenine from hydrogen cyanide’, Arch. Biochem. Biophys, Vol. 94, pp.217–227.

Pinaud, B., Melançon, G. and Dubois, J. (2012) ‘PORGY: A visual graph rewriting environment for

complex systems’, Comput. Graph. Forum, Vol. 31, No. 3pt4, pp.1265–1274.

Reymond, J-L. and Awale, M. (2012) ‘Exploring chemical space for drug discovery using the chemical

universe database’, ACS Chem. Neurosci., Vol. 3, pp.649–657.

Ricardo, A., Carrigan, M.A., Olcott, A.N. and Benner, S.A. (2004), ‘Borate minerals stabilize ribose’,

Science, Vol. 303, p.196.

Ritson, D. and Sutherland, J.D. (2012) ‘Prebiotic synthesis of simple sugars by photoredox systems

chemistry’, Nat. Chem., Vol. 4, pp.895–899.

Rozenberg, G. and Ehrig, H. (1997) Handbook of Graph Grammars and Computing by Graph

Transformation, Vol. 1, World Scientific, Singapore.

Ruddigkeit, L., van Deursen, R., Blum, L.C. and Reymond, J-L. (2012) ‘Enumeration of 166

billion organic small molecules in the chemical universe database gdb-17’, Journal of Chemical

Information and Modeling, Vol. 52, No. 11, pp.2864–2875.

Saladino, R., Crestini, C., Costanzo, G. and DiMauro, E. (2004), ‘Advance in the prebiotic synthesis of

nucleic acids bases: implications for the origin of life’, Curr. Org. Chem., Vol. 8, pp.1425–1443.

Voet, A. and Schwartz, A. (1983) ‘Prebiotic adenine synthesis from HCN-evidence for a newly

discovered major pathway’, Bioorg. Chem. Vol. 12, pp.8–17.

Weininger, D. (1988) ‘SMILES, a chemical language and information system. 1. Introduction to

methodology and encoding rules’, J. Chem. Inf. Comput. Sci., Vol. 28, No. 1, pp.31–36.

Weininger, D., Weininger, A. and Weininger, J.L. (1989) ‘SMILES 2. Algorithm for generation of

unique SMILES notation’, J. Chem. Inf. Comput. Sci., Vol. 29, No. 2, pp.97–101.

Wong, Y-S. (2012) ‘Exploring chemical space: recent advances in chemistry’, Chemical Genomics

and Proteomics, Springer, Vol. 800, pp.11–23.

Zeigarnik, A.V. (2000) ‘On hypercycles and hypercircuits in hypergraphs’, in Hansen, P., Fowler, P.W.

and Zheng, M. (Eds.): Discrete Mathematical Chemistry, Vol. 51 of DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, American Mathematical Society, Providence,

RI, pp.377–383.

Notes

1In this scenario we regard derivations which only differ in the matching morphism as duplicates.

The evaluation of the strategy takes in the order of 10 seconds with a Intel® Core™ i5-2500K CPU

(3.30 GHz).
2In this scenario we regard derivations which only differ in the matching morphism as duplicates.

The evaluation of the strategy takes in the order of 8 seconds with a Intel® Core™ i5-2500K CPU

(3.30 GHz).

Appendix A: Transformation rules for the formose chemistry

The main formose chemistry consists of two reversible reactions, keto-enol tautomerism

and aldol addition. These reaction patterns are listed below as four transformation rules,

r0 to r3, one for each direction. Additionally, for modelling borate inhibition we use a borate

addition rule, r4. The inverse of this rule, r5, is used for generating the underlying molecule

without borate. The rules r6 and r7 are used for converting between acidic and non-acidic

252 J.L. Andersen et al.

hydrogens in borate complexes. Note that the context graph, K, of r6 and r7 also uses the

labeling scheme “L label | R label”, with the meaning that the vertex changes label from

‘L label’ to ‘R label’.

A.1 r0, keto-enol tautomerism, keto-to-enol (see online version for colours)

C C

H O

L

C C

H O

K

C C

H O

R

A.2 r1, keto-enol tautomerism, enol-to-keto (see online version for colours)

C C

H O

L

C C

H O

K

C C

H O

R

A.3 r2, aldol reaction, addition (see online version for colours)

C

C

O

H

O

C

L

C

C

O

H

O

C

K

C

C

O

H

O

C

R

A.4 r3, aldol reaction, splitting (see online version for colours)

C

C

O

H

O

C

L

C

C

O

H

O

C

K

C

C

O

H

O

C

R

Generic strategies for chemical space exploration 253

A.5 r4, borate reaction, addition (see online version for colours)

B

R

O

O

H

H

H

O

C

C

OH

L

B

R

O

O

H

H

H

O

C

C

OH

K

B

R

O

O

H

H

H

O

C

C

OH

R

The rule has the following matching condition: none of the adjacent edges of the carbon

vertices may represent a double bond.

A.6 r5, borate reaction, splitting (see online version for colours)

B

R

O

O

H

H

H

O

C

C

OH

L

B

R

O

O

H

H

H

O

C

C

OH

K

B

R

O

O

H

H

H

O

C

C

OH

R

A.7 r6, acidic to non-acidic hydrogen (see online version for colours)

H

C

O

B

L

H | D

C

O

B

K

D

C

O

B

R

254 J.L. Andersen et al.

A.8 r7, non-acidic to acidic hydrogen (see online version for colours)

D

C

O

B

L

D | H

C

O

B

K

H

C

O

B

R

Appendix B: Additional Diels-Alder chemistry figure

Figure 14 shows the derivation graph obtained from the breadth-first expansion of the Diels-

Alder chemistry. The number of expansion steps is only 2.

Appendix C: solving the catalan game

The Catalan game (increpare games, 2013) is a puzzle game in which the player in each

level is presented with a simple undirected graph without labels. The goal is to transform the

graph into a single vertex using the following rewriting rule; given a vertex v with degree

exactly 3, identify v with its neighbours and preserve simpleness of the graph by identifying

parallel edges and deleting loops. Figure 15 shows level 1 with the intermediary graphs

towards the goal graph with a single vertex.

The transformation in the game can not be formulated as a single rule in the DPO

formalism, because such rules must explicitly match the vertices and edges which are

changed, while the Catalan transformation needs to change arbitrarily many edges. In the

following we show how the strategies can be used to implement a move in the game, using

only DPO rules.

Let g be the graph from some Catalan level, with all edge labels set to the empty string

and all vertex labels set to the arbitrarily chosen label ‘0’. A high-level description of a

move is:

1 find a vertex v with at least 3 neighbours and mark it by changing the label to ‘A’.

Mark the 3 matched neighbours with the label ‘R’

2 if possible, find another fourth neighbour of v and mark v with ‘FAIL’

3 discard all graphs with a vertex with the label ‘FAIL’

4 for all edges e with both end-vertices having label ‘R’, remove e

5 for all edges ur with u having label ‘0’ and r having label ‘R’, add uv if it does not

exist already and then remove ur

6 for all edges ur with u having label ‘0’ and r having label ‘R’, remove ur

7 remove all neighbours of v having label ‘R’

8 unmark v by changing the label to ‘0’.

Generic strategies for chemical space exploration 255

Figure 14 The derivation graph resulting from evaluating the breadth-first expansion strategy

QBFS = addSubset[{isoprene, cyclohexadine}]→ repeat[Qp, 2] (on an empty

graph state). To minimise clutter, the vertex with isoprene and the corresponding edges

are not shown

Step 3 can be implemented with a filtering strategy while the other steps each require a

transformation rule. The following strategy can be used to solve a level, in the sense that if

a graph with a single vertex with label ‘0’ is found, then a path to that graph is equivalent

to a solution. The details of the transformation rules (mark, markForFail, removeInterR,

reattachExternal, removeAttached, removeR and unmark) are shown in Appendix D.

Qcatalan =addSubset[{g}]→ altRuleApp[repeat[

mark→ revive[markForFail]→ filterUniverse[Pfail]

→ repeat[revive[removeInterR]]

→ repeat[revive[reattachExternal]]

→ repeat[revive[removeAttached]]

→ removeR→ unmark

]]

P (g′, F) ≡ no vertex of g′ has the label ‘FAIL’.

256 J.L. Andersen et al.

With strategy Qcatalan all 56 levels of Catalan could be solved, all but one level took

less than 10 minutes of computation time. Figure 16(b) exemplarily shows the derivation

graph created when executing the strategy with g encoding level 25 of the game, and

Figure 16(a) show the initial level graph. The resulting derivation graph is, in contrast

to chemical reaction networks, not a hypergraph. However, the graph clearly illustrates

subspaces that are connected via a small number of bridging edges. Such subspaces are also

expected in chemical reaction networks.

Figure 15 Level 1 of the Catalan game and the intermediary graphs during transformation to a

graph with a single vertex

0

0
0

0

0

0

0

0
0

0

0

0

0

0

0

0 0

0

0

0

0

0
0

0

0

0

0

0

0

Figure 16 The derivation graph created during expansion of level 25 of the Catalan game. A path

equivalent to a solution is highlighted (see online version for colours)

0

0

0

0

0

0

0

0

0
0

0

0

0

(a) (b)

Appendix D: Transformation rules for the Catalan game

The following sections contain visualisation of the rules used in the strategy to solve a

level in the Catalan game. Vertices and edges shown in red are those being changed during

Generic strategies for chemical space exploration 257

transformation. For some vertices the change is only a change of label. The label in the

context graph, K, is for those in the format ‘L | R’ with L and R being the label in the

left and right side of the rule.

D.1 mark (see online version for colours)

0
0

0

0

L

0 | A
0 | R

0 | R

0 | R

K

A
R

R

R

R

D.2 markForFail (see online version for colours)

A
0

L

A
0 | FAIL

K

A
FAIL

R

D.3 removeInterR (see online version for colours)

A R

0

L

A R

0

K

A R

0

R

D.4 reattachExternal (see online version for colours)

A

R

R

0

L

A

R

R

0

K

A

R

R

0

R

258 J.L. Andersen et al.

D.5 removeAttached (see online version for colours)

A R

R

L

A R

R

K

A R

R

R

D.6 removeR (see online version for colours)

R

A

R

R

L

A

K

A

R

D.7 unmark (see online version for colours)

A

L

A | 0

K

0

R

