GENERIC SUBSTATION EVENT MONITORING BASED ON IEC 61850 AND IEEE 1588 STANDARDS

by

YANG LIU

B.E. (Hons)

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Electrical and Electronic Engineering

The University of Adelaide

September 2015

©Copyright 2015

Yang Liu

DECLARATION STATEMENT

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature:

Date: 04 MAY 2015

KEYWORDS

Substation events, electromechanical protection device, IED, IEC 61850, IEEE 1588, Ethernet, GOOSE, sampled values, synchrophasor, PTP, electric utility, substation automation, decentralised state estimation, topology processing Hall Effect, electronics, embedded systems, Linux, kernel, device driver

ABSTRACT

Electricity has become not only an essential element to people's everyday life but also the most important power source to most industries and businesses. The continuously increasing demand of electricity consumption has resulted in a consistent expansion of power grid as it was seen in the past few decades. This in turn has dramatically increased the cost of electricity during the same period in Australia. In contrast, the recently recorded low economic activities and significant growth of rooftop photovoltaic has led to a reduction in the forecasted electricity demand in Australia. This has resulted a reduced number of network augmentation projects for most electric utilities across the country. Instead, the substation refurbishment work has become the focus for most electric utilities in the foreseeable future. Such sharp turning point of trend has placed an enormous challenge in front of electric utilities on how to make the power system operation more cost effective and preserve a high level of reliability and security. In response to the challenge, the integration of advanced technologies with the existing power system has been recognised as a viable solution. The international standard IEC 61850 for substation communication system has gained momentum globally to be implemented in power utility automation systems. The flexibility and vendor independent feature of the standard inspired a range of innovative approaches for power grid projects including substation refurbishment work.

This research aims to develop and verify a vendor independent device, which is named as substation event monitor, with the capability of interfacing the legacy and existing substation automation system equipment to the modern intelligent electronic devices (IEDs) over Ethernet network in a non-intrusive and cost effective manner. The substation event monitor is also equipped with the ability of providing synchronised time information at the accuracy level of ± 1 microsecond over the same communication infrastructure via IEEE 1588 standard, also called the Precision Time Protocol (PTP). The created device is suitable for substation refurbishment work and has the potential in many other utility applications, such as network state estimation and substation commissioning. This thesis takes a bottom-up approach to the form of information on the construction and verification of substation event monitor. It begins with the provision of the critical review on the detailed knowledge of both international standards of IEC 61850 and IEEE 1588. This work was needed because there is lack of concise, publicly available and informative material on these complex standards for power utility engineers. The thesis is then expanded with the in-depth design information on the developed prototype of substation event monitor. Finally, the verification results of the prototype device were produced at both component level and system level in this thesis. The provision of the comprehensive knowledge of the prototype device will

deliver confidence to utility engineers in considering the adoption of substation event monitor as a low cost, non-intrusive, IEC 61850 compatible and synchronised IED that meets the needs of substation refurbishment work and other potential power utility applications.

CONTENTS

Keywo	rds		i
Abstrac	ct		ii
List of Figures		vii	
List of Tables		viii	
List of Abbreviations		ix	
List of	Publ	ications	xii
Acknol	ledge	ment	xiii
Chapte	r 1	Introduction	1
1.1	Ba	ckground	1
1.2	Hig	gh Voltage Power Network	1
1.3	Int	ernational Standards for Ethernet Technology Applications	4
1.4	Cu	rrent Economic Outlook and Concerns	7
1.5	Re	search Objectives	8
1.6	Re	search Questions	9
1.7	1.7 Research Contributions		9
1.8	1.8 Outline of the Thesis		10
Chapte	r 2	Literature Survey	13
2.1	Su	bstation Automation System (SAS)	13
2.	1.1	Power System Protection Relays	13
2.	1.2	Supervisory Control and Data Acquisition System	14
2.2	IE	C 61850 Standard Implementations	15
2.3	Pre	ecision Timing for Power System Applications	19
2	3.1	Evaluation on the Performance of Precision Time Protocol	21
2.	3.2	Reliability of Precision Time Protocol	22
2.4	Су	ber Security Implications	23
2.5	Distributed Topology Processing in Substation Automation System		23
2.6	Summary		25

Chapter 3		IEC 61850 Standard Architecture	28
3.1	Ope	en System Interconnection (OSI) Model and Ethernet	28
3.2	IEC	C 61850 Standard Architecture	29
3.2	.1	IEC 61850 Abstract Architecture Overview	31
3.2	.2	Specific Communication Services Mapping (SCSM)	38
3.2	.3	Substation Configuration Language (SCL)	46
3.3	Sun	nmary	47
Chapter	4	Synchronisation Technologies	50
4.1	Sub	station Synchronisation Technologies	50
4.1	.1	Network Time Protocol (NTP)	50
4.1	.2	1-Pulse-per-Second (1PPS)	51
4.1	.3	IRIG-B Code Synchronisation	51
4.1	.4	IEEE 1588 Standard	52
4.1	.5	IEC 61850 Standard Applications Timing Requirement	53
4.2	PTI	P Operation Mechanism	53
4.2	.1	Message Timestamping Point	56
4.2	.2	PTP Clock Types	56
4.2	.3	Summary of Major Differences of PTPv1 and PTPv2	58
Chapter	5	Prototype Construction	61
5.1	Pro	totype Construction Requirements	61
5.2	Ove	erall Structure	61
5.3	Cur	rent Sensor	62
5.4	Ele	ctronic Board	65
5.4	.1	Amplification	65
5.4	.2	Comparison	67
5.4	.3	Pulse Generation	68
5.4	.4	Voltage Control	69
5.5	Em	bedded System Design	70

5.	5.1	Linux	70
5.:	5.2	Embedded System Device Drivers	70
5.:	5.3	IEC 61850 IED Capability Description	72
5.:	5.4	Embedded System Software	74
5.	5.5	IEEE 1588 Synchronisation Program	76
5.:	5.6	Completed Prototype	76
5.6	Sum	imary	76
Chapte	r 6	Prototype Verification	79
6.1	Hall	Effect Sensor Output Voltage Verification	79
6.2	2 Electronic Circuits Verification		80
6.3	PTP	v1 Time Synchronisation Test	81
6.4	6.4PTPv2 Time Synchronisation Test8		
6.5	Electronic Circuit Time Compensation 8		85
6.6	GOOSE Publication Test 8		86
6.7	6.7 Interoperability with Different Vendor Device		88
6.8	Sum	imary	90
Chapte	r 7	Applications	92
7.1	Inte	rfacing with Legacy Devices	92
7.2	Assistance in Network State Estimation		95
7.3	Sum	Summary 9	
Chapter 8 Conclusion		99	
8.1	App	lications of the SEM Platform	100
8.2	Out	of Scope in the Current Study	101
8.3	Sug	gestions for Future Work	102
APPEN	DIX .	A National Electricity Market	104
APPEN	NDIX I	B Data Encoding Rules for Fixed Length GOOSE Messages	105
APPEN	NDIX (C Electronic CIRCUIT Board Schematics	106
References			108

LIST OF FIGURES

Figure 1.2: Substation automation system within control building3Figure 1.3: Substation connection structure4Figure 1.4: Thesis outline map11Figure 2.1: High impedance bus differential relay (ABB, 2014)14Figure 3.1: OSI model and Ethernet29Figure 3.2: IEC 61850 implementation in typical project31
Figure 1.4: Thesis outline map
Figure 2.1: High impedance bus differential relay (ABB, 2014)
Figure 3.1: OSI model and Ethernet
-
Figure 3.2: IEC 61850 implementation in typical project
Figure 3.3: Hierarchical view of XCBR LN
Figure 3.4: IED ACSI model
Figure 3.5: Real substation operation
Figure 3.6: Special Communication Service Mapping (SCSM) to communication protocol 39
Figure 3.7: MMS write service message example
Figure 3.8: Tag encoding principle
Figure 3.9: Value encoding under BER
Figure 3.10: MMS message encoding illustration
Figure 3.11: Captured GOOSE message
Figure 4.1: PTP syntonisation process
Figure 4.2: IEEE 1588 offset and delay measurement
Figure 4.3: E2E transparent clock synchronisation
Figure 4.4: P2P transparent clock synchronisation
Figure 5.1: Substation event monitor overall structure
Figure 5.2: Illustration of open loop construction
Figure 5.3: Non-intrusive Hall Effect sensing clamp
Figure 5.4: Differential amplifier circuit
Figure 5.5: Comparator circuit
Figure 5.6: Pulse generation circuit
Figure 5.7: Linux kernel structure
Figure 5.8: Program flow chart
Figure 5.9: Substation event monitor prototype76
Figure 6.1: Hall Effect sensor output voltage verification
Figure 6.2: Measured amplification with zero current flow

Figure 6.3: Measured amplification signal with 560 mA current flow	81
Figure 6.4: Measured Schmitt Trigger output at 490 mA	81
Figure 6.5: Electronic logic circuit measurement	81
Figure 6.6: PTPv1 synchronisation test setup diagram	82
Figure 6.7: PTPv1 synchronisation test result	82
Figure 6.8: PTPv2 synchronisation test setup diagram	83
Figure 6.9: PTPv2 performance at synchronisation start-up phase	84
Figure 6.10: PTPv2 performance histogram and standard deviation	84
Figure 6.11: Signal amplification delay	85
Figure 6.12: Schmitt Trigger rising delay measurement	85
Figure 6.13: Schmitt Trigger falling delay measurement	85
Figure 6.14: Caption of encoded GOOSE message	87
Figure 6.15: Compatibility test setup diagram	88
Figure 6.16: SEL-387 relay configuration	88
Figure 6.17: SEL-387 relay event log	89
Figure 7.1: Demonstrated SEM application as communication interface	94
Figure 7.2: Overview of decentralised state estimation with SEM platform	96
Figure A.1: Map of Australian National Electricity Market (AEMO, 2014)	. 104

LIST OF TABLES

Table 3.1: Structure of the IEC 61850 standard	30
Table 3.2: Message transfer time classes	40
Table 5.1: XOR logic gate truth table	69
Table 6.1: Hall Effect sensor output verification	79
Table 7.1: Feeder protection scheme and relay technologies at Whyalla Terminal substation	93
Table 7.2: Transformer protection scheme and relay technologies at Whyalla Terminal substa	tion
	93
Table B.1: GOOSE PDU data elements encoding rules	105
Table B.2: GOOSE data encoding rules	105

LIST OF ABBREVIATIONS

1PPS	One Pulse Per Second
9-2LE	UCA User Group Implementation Guidelines for IEC 61850-9-2 Standard
AC	Alternating Current
ACSI	Abstract Communication Service Interface
AEMO	Australian Energy Market Operator
ASN.1	Abstract Syntax Notation One
BER	Binary Encoding Rules
BMC	Best Master Clock algorithm
CID	Configured IED Description
CDC	Common Data Class
CFI	Canonical Format Identifier
СТ	Current Transformer
DA	Data Attribute
DC	Direct Current
DO	Data Object
DPC	Controllable Double Point
DS	Data Set
E2E	End-to-End
EPRI	Electric Power Research Institute
FAT	Factory Acceptance Testing
FC	Functional Constraint
FCD	Functional Constraint Data
FCDA	Functional Constraint Data Attribute
GGIO	Generic Process I/O
GMR	Giant Magneto-Resistive
GOOSE	Generic Object Oriented Substation Event
GPIO	General Purpose I/O
GPS	Global Positioning System

GSE	Generic Substation Event
HMI	Human Machine Interface
HSR	High availability Seamless Ring (IEC 62439-3 Standard)
HVDC	High Voltage Direct Current
ICD	IED Capability Description
IEC	International Electrotechnical Commission
IED	Intelligent Electronic Device
IEEE	Institute of Electrical and Electronic Engineers
IID	Instantiated IED Description
IP	Internet Protocol
IRIG-B	Inter Range Instrumentation Group Code B
ISO	International Standard Organisation
LD	Logical Device
LED	Light Emitting Diode
LLN0	Logical Node Zero
LN	Logical Node
LNPD	Logical Node Physical Device
MI	Magneto Impedance
MMS	Manufacturing Message Specification
MTTF	Mean Time To Failure
NCIT	Non-Conventional Instrument Transformer
NEM	National Electricity Market (Australia)
NIST	National Institute for Standards and Technology
NTP	Network Time Protocol (RFC 5905)
OSI	Open System Interconnection
P2P	Peer-to-Peer
PDU	Protocol Data Unit
PRP	Parallel Redundancy Protocol (IEC 62439-3 Standard)
PSRC	Power System Relaying Committee (IEEE Power and Energy Society)

РТР	Precision Time Protocol (IEEE 1588 Standard)
QoS	Quality of Service
SAS	Substation Automation System
SAT	Site Acceptance Testing
SCD	Substation Configuration Description
SCL	Substation Configuration Language
SCSM	Specific Communication Service Mapping
SED	System Exchange Description
SEM	Substation Event Monitor
SLD	Single Lind Diagram
SSD	Substation Specification Description
SV	Sampled Values
TLV	Tag, Length, Value
TPID	Tag Protocol Identifier
UCA2.0	Utility Communication Architecture version 2.0
UDP	User Datagram Protocol
UTC	Coordinated Universal Time
VLAN	Virtual Local Area Network (IEEE 802.1Q Standard)
VT	Voltage Transformer
XCBR	Circuit Breaker Logical Node
XML	eXtensible Markup Language
WLS	Weighted Least Square
WG	Working Group

LIST OF PUBLICATIONS

Liu, Y., Zivanovic, R. and Al-Sarawi, S., 2014. Industrial Case Study of an IEC 61850 Standard Compatible and Synchronised Tripping Circuit Monitor for Electric Substations. *Symposium of Specialists in Electric Operational and Expansion Planning*, 18-21 May.

Liu, Y., Zivanovic, R. & Al-Sarawi, S., 2013. A synchronized generic substation events tripping circuit monitor for electric substation applications. *International Transactions on Electrical Energy Systems*, 24 October, Issue Wiley Online Library (wileyonlinelibrary.com), pp. 1-16. DOI: 10.1002/etep.1814

Liu, Y., Zivanovic, R. & Al-Sarawi, S., 2012. IEC 61850 Tripping Circuit Monitor with IEEE 1588 Synchronisation. *Australian Protection Symposium*, 21-22 August, pp. 1-10.

Liu, Y., Zivanovic, R. & Al-Sarawi, S, 2010. An IEC 61850 synchronised event logger for substation topology processing. *Australian Journal Electrical Electronics Engineering*, vol. 7, no. 3, pp. 225-233.

Liu, Y., Zivanovic, R., Al-Sarawi, S., Marinescu, C. & Cochran, R., 2009. A synchronised event logger for substation topology processing. *Australiasian Universities Power Engineering Conference*, 27-30 September, pp. 1-6.

ACKNOLEDGEMENT

I would like to express my sincere gratitude to my supervisors, Dr. Rastko Zivanovic and Dr. Said Al-Sarawi, for their guidance and support throughout my candidature. Their experience and knowledge kept me on track in the face of many challenges along the way.

This project could not have happened without the support of Omicron Electronics GmbH. Their generous provision of internship and programming library is greatly appreciated. A special mention goes to Mr. Richard Cochran, Mr. Manfred Rudigier and Dr. Christian Marinescu for their kind support in the development of substation event monitor. Many thanks to Mr. Kiet To for his generous help in resolving many technical issues during the prototype development.

I must kindly thank Mr. Marino Pallotta and Mr. Hamish McCarter at ElectraNet Pty Ltd for their great support of my study at university, especially for the permission of the extended leave from full-time employment.

I also would like to thank my parents, parents-in-law and my extended family for their support and care provided during my study. Finally, I would like to thank my wife Boqiong. Her tireless contribution at home and continuous encouragement have been absolutely essential in completing this thesis.

Yang Liu

The University of Adelaide May 2015 This page is intentionally left blank.