
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

DOI : 10.5121/vlsic.2012.3602 13

�

���������	�
�������������������

��������
������
������	���������������

��������
��������������
�������������
�

��������
������������������������������

���������

�
Abhishek Jain

1
, Giuseppe Bonanno

2
, Dr. Hima Gupta

3
and Ajay Goyal

 4

1
Imaging Group, STMicroelectronics, Greater Noida, India

1
JBS, Jaypee Institute of Information Technology (JIIT), Noida, India

abhishek-mmc.jain@st.com;ajain_design@yahoo.co.in
2
Imaging Group, STMicroelectronics, Grenoble, France

giuseppe.bonanno@st.com
3
JBS, Jaypee Institute of Information Technology (JIIT), Noida, India

hima.gupta@jiit.ac.in
4
Cadence Design System, Noida, India

gajay@cadence.com

ABSTRACT

In this paper, we present Generic System Verilog Universal Verification Methodology based Reusable

Verification Environment for efficient verification of Image Signal Processing IP’s/SoC’s. With the tight

schedules on all projects it is important to have a strong verification methodology which contributes to

First Silicon Success. Deploy methodologies which enforce full functional coverage and verification of

corner cases through pseudo random test scenarios is required. Also, standardization of verification flow is

needed. Previously, inside imaging group of ST, Specman (e)/Verilog based Verification Environment for

IP/Subsystem level verification and C/C++/Verilog based Directed Verification Environment for SoC Level

Verification was used for Functional Verification. Different Verification Environments were used at IP

level and SoC level. Different Verification/Validation Methodologies were used for SoC Verification across

multiple sites. Verification teams were also looking for the ways how to catch bugs early in the design

cycle? Thus, Generic System Verilog Universal Verification Methodology (UVM) based Reusable

Verification Environment is required to avoid the problem of having so many methodologies and provides a

standard unified solution which compiles on all tools.

The main aim of development of this Generic and automatic verification environment is to develop an

efficient and unified verification environment (at IP/Subsystem/SoC Level) which reuses the already

developed Verification components and also sequences written at IP/Subsystem level can be reused at SoC

Level both with Host BFM and actual Core using Incisive Software Extension (ISX) and Virtual Register

Interface (VRI)/Verification Abstraction Layer (VAL) approaches. IP-XACT based tools are used for

automatically configuring the environment for various imaging IPs/SoCs. Although this paper focus on

Generic System Verilog Universal Verification Methodology based reusable verification environment built

for imaging IPs/SoCs. Same concept can be extended for non imaging IPs/SoCs.

KEYWORDS
System Verilog, Universal Verification Methodology (UVM), register interface(s), video data interface(s),

Universal Verification Component(UVC), register and memory model, IP-XACT, Incisive Software

Extension (ISX), Virtual Register Interface (VRI), Verification Abstraction Layer(VAL),UVM-ML.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

14

1. INTRODUCTION

Imaging group has mainly two types of devices - sensors and processors. The sensors main

function is to convert the viewed scene into a data stream. The companion processor function is to

manage the sensor so that it can produce the best possible pictures and to process the data stream

into a form which is easily handled by upstream mobile baseband or MMP (Multi-Media

Processor) chipsets.

Image signal processing algorithms are developed and evaluated using Python models before

RTL implementation. Once the algorithm is finalized, Python models are used as a golden

reference model for the IP development. To maximize re-use of design effort, the common bus

protocols are defined for internal register and data transfers. A combination of such configurable

image signal processing IP modules are integrated together to satisfy a wide range of complex

video processing SoCs.

“e” (Specman)/Verilog based Verification Environment was used for IP/Subsystem level

verification and C/C++/Verilog based Directed Verification Environment for SoC Level

Verification.

Main Challenges of Previous Environment/Verification Methodology were as follows:

1. Reusability

a. Test cases from IP/Subsystem level could not be reused at SoC Level.

2. Maintainability

a. Different Verification Environments were used in different IP and SoCs across

multiple sites.

3. Significant time was spent in reproducing the issue reported at SoC level at IP/Subsystem

level.

4. How to catch bugs early in the design cycle?

5. Verification of registers at SoC level was not efficient and automatic as small change in

the register description caused manual rework in the verification environment and

testcase(s).

6. At SoC level, it was difficult to align design specification with corresponding RTL

implementation and verification environment.

To overcome above challenges, System Verilog Universal Verification Methodology is adopted.

The main aim of development of Generic System Verilog Universal Verification Methodology

based reusable verification environment is to -

1) Develop standard unified methodology across all sites which is

a) Vendor independent

b) Reusable from IP -> Subsystem -> SoC both with Host BFM and actual Core.

c) Open

d) Leveraging Existing Verification Environment

2) Usage of IP-XACT based tools for automatically generating Imaging IPs/SoCs dependent

files.

The following sections discuss the new verification environment.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

15

2. GENERIC SYSTEM VERILOG UNIVERSAL VERIFICATION

METHODOLOGY BASED REUSABLE VERIFICATION ENVIRONMENT

2.1 IP Level Verification Environment

IP level verification is key aspect in SoC level verification as at SoC level, each IP is a black box

and is considered as a golden block. Extensive and Exhaustive IP verification is a key

requirement from protocol and functionality perspective. It is imperative to verify each and every

feature of IP to greatest extent possible and delivering a zero bug IP to SoC team.

In an image signal processing IP, there are A input video data interfaces, C output video data

interfaces, B memory interfaces, D output Interrupts and E register interfaces, where A, B, C, D

and E values can be from 0 to any arbitrary number.

Figure. 1 Image Signal Processing IP Block Diagram

For verifying these interfaces, dedicated UVCs are used. In case of register interface(s), register

interface UVC and UVM_RGM register model are used. Similarly for video data interface(s),

video data interface UVC is used and for verification of interrupts, generic interrupt checker is

used.

Image Signal

Processing IP

(RTL)

A

Input video

data

D

Output

Interrupts

E

Register

Interfaces

C

Output video

data interfaces

B

Memory

interfaces

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

16

Figure. 2 Basic blocks of System Verilog UVM based IP Level Verification Environment

Note that there can be multiple instances of these UVC’s in a verification environment. Each

agent is configured separately and any combination of agent configurations can coexist in the

same environment. Therefore in above case, E instances of register interface UVC agents, M (M

= max (A, C)) instances of video data interface UVC agents and D instances of interrupt checker

are used to interface with a DUT. Figure 2 illustrates the basic blocks of System Verilog UVM

based IP Level Verification Environment.

2.2 Subsystem Level Verification –

At subsystem level, various IPs are connected may be via Interconnects and becomes more

complex from verification perspective. It is very important to reuse the IP level verification

environment to reduce the verification effort at Subsystem level.

Reuse of Environment –

All internal IP level verification environments are configured as Passive agents whereas Interface

IP level verification environments are used as Active agents. UVM-ML (Multiple Language)

approach helps us in reusing the existing verification components.

Reuse of Sequences –

Register read/write sequences: UVM_RGM register read/write sequences write and read

address mapped registers in the DUT. As UVM_RGM have API that is independent of the bus

protocol and hence can be reused at Subsystem and SoC level as at Subsystem and SoC level base

address of these registers changes and in register sequences, registers can be accessed using name

or type also. UVM_RGM register package is used to lookup the register address by name.

UVM_RGM register package built-in sequences supports this kind of abstraction. This makes

these sequences reusable and maintainable because there is no need to update the sequence each

time a register address changes.

Image

Signal

Processing

IP

(DUT)

Video

Data Bus

interface

UVC

RGM

Register

and

Memory

Model

Register

Bus

Interface

UVC

Apply /

Collect

Test

Vectors

Test Environment

Apply /

Collect

Test

Vectors

Memory Model

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

17

Virtual sequences on accessible interfaces (IP3, IP4, IP5 and IP6) at subsystem-

level: These sequences are reusable from IP level to subsystem-level; some of them can be used

to verify the integration of IP’s into sub-system.

Figure. 3 Reuse of IP Level Verification Environment at Sub-System Level

2.3 SoC Level Verification Environment

Various subsystems are integrated together to build a SoC and make a verification task very

challenging at SoC level. There are various challenges at SoC level verification like

� How to reuse subsystem level verification environment at SoC level to minimize the

verification effort at SoC level

� Connectivity between IPs

� Verification of System Level scenarios

� How to synchronize “C” testcases running on Core with IP/Subsystem level

verification environments to enable maximum reuse

At IP/Subsystem level verification, Cores are usually stub to do verification and BUS UVCs are

used to generate BUS traffic which can be replaced by Core at SoC level.�Working with a

verification component at the SoC level makes it difficult to create activity that will be similar to

the way the design will behave with CPU and software. An even more important challenge is

what to do about SoC initialization. Sometimes, there are thousands of programmable registers

that must be configured before SoC is ready to do any meaningful activity. Besides being a

tedious process, the motivation for writing a long initialization sequence just for verification is

low because in the end it's the job of the software to initialize the SoC, not the verification

engineer. The result is duplication of effort.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

18

At SoC level, we reuse register sequences and all internal IP/Subsystem level verification

environments are configured as Passive agents whereas Interface IP level verification

environments are used as Active agents. Since the register sequences are independent of BUS

protocol, it enables to reuse of the register sequences with different BUS at IP/Subsystem/SoC

level.

Figure. 4 Reuse of Sub-System Level Verification Environment at SoC Level

When we replace Host BFM with actual Core then it becomes challenging to reuse the existing

verification environment as with Core in place, “C” testcases are used to do verification. At SoC

level, it is important to verify the hardware and software works seamlessly together to deliver the

functionality and performance of the system. Below are the 2 approaches which is used in

imaging group -

1) We use Incisive Software Extension (ISX) to reuse the IP/Subsystem level verification

environment. In this approach, Hardware/Software Co-Verification technique is used in

which “C” routines are controlled/called from HVLs like “e” or “System Verilog”. It enables

to do constrained random and coverage driven verification of embedded software. It enable

users to provide

a. Constrained random values to “C” functions parameters

b. Functional coverage of “C” variables

c. Random calling of “C” functions

This helps in performing thorough verification of hardware and software together and enables in

getting corner cases.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

19

Virtual sequences from IP/Subsystem level verification environment are reused at SoC level. In

this approach, “C” testcases were controlled from virtual sequences. A SW UVC was created

which enabled control of “C” testcases from HVL verification environments. Since the SW UVC

is in HVL, it can be used with rest of the SoC level verification environment which enables reuse

of the IP/Subsystem level verification environment. At IP/Subsystem level, virtual sequences

were calling register sequences over HOST BFM, which can be reused to call “C” routines which

is performing register read/write to IPs via SW UVCs. SW UVC contains sequences which

correspond to each “C” routine which is executing on the core. From Virtual sequences we can

call these SW UVC sequences which in turn will call “C” routines.

Figure. 5 Use of ISX (Incisive software extensions) in System Verilog UVM based SoC Level

Verification Environment

In this approach, by connecting and controlling the C functions from the verification

environments, the best of both worlds is achieved which is running C code on the CPU and the

generation, checking and coverage provided by Coverage Driven Verification environment.

Incisive Software Extension is having a concept of Generic Software Adapter (GSA) which is

used to connect to and control embedded software. It enables verification engineers to hook their

IP/Subsystem level verification environments at SoC level executing embedded software.

System

Verilog

Testcases

Virtual

Sequences

 Register

Sequences

of

different

IPs for

register/

memory

interface

Calling

C

Routines

ISX

 Data

 Interface

IPs

Sequences

(Other

than

Register

Sequences)

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

20

Figure 6. GSA Integration Flow. Source: Chip Design Magazine.

2) Second approach is to reuse IP/Subsystem verification environments from “C” testcases

running on the Core. Today, most of the embedded test infrastructure uses some adhoc

mechanism like “shared memory” or synchronisation mechanism for controlling simple Bus

functional models (BFMs) from an embedded software.

In order to provide full controllability to the “C” test developer over these verification

components, a virtual register interface layer is created over these verification environments

which provides the access to the sequences of these verification environment to the embedded

software enabling configuration and control of these verification environments and provide

the same exhaustive verification at SoC Level.

 This approach addresses the following aspects of verification at SoC Level

� Configuration and control of verification components from embedded software

� Reusability of verification environments from IP to SoC

� Enables reusability of testcases from IP to SoC

� Providing integration testcases to SoC team which is developed by IP verification

teams.

It has been achieved by using Verification Abstraction Layer (VAL)/Virtual Register Interface

(VRI) layer over Verification components. VAL/VRI layer over verification components is

Define backdoor access to

mailbox

Define ports for functions

and variables

Modify embedded software

main() to call GSA

“write stubs –my_gsa” to

generate c code

Compile embedded software

with C stubs files into an

executable

Use C functions and variables

in verification sequences in

HVL

Run SoC simulation with

CDV and software

International Journal of VLSI desig

� A virtual layer over

software

� Provides high level C

Figure 7.

Figure 8. Reusing the IP level ver

sign & Communication Systems (VLSICS) Vol.3, No.6, De

er verification environment to make it controllable fro

l C APIs hiding low level implementation

. VAL/VRI layer over UVC used for IP verification

verification environment at SoC Level (using VAL/VR

December 2012

21

from embedded

RI layer)

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

22

2.4 IP-XACT Flow

In System Verilog UVM based Verification Environment, register description file for register

model, address map file, sequences file, functional Coverage file, data checker file to compare the

output of RTL with output of Reference(Python) model are IP/SoC specific which need to be

modified for every IP/SoC. Therefore, IP-XACT based tools are used for generation of these files.

First, the register map description has to be provided in XML-based IP-XACT view.

XML-based IP-XACT view is automatically generated from the Register Specification

Document.

In Data checker file, there is invocation of executable of Python model containing attributes thus,

automatic generation of data checker file requires the mapping between the registers/register-

fields/parameters of RTL and the attributes of Python model. Thus, in IP-XACT based tools,

there are two input files

1. IP-XACT view of register map, containing the register description.

2. Map file for mapping between the registers/register-fields/parameters of RTL and the

attributes of Python model.

IP-XACT based tools generates IP/SoC specific files which are used in the System Verilog UVM

based verification environment as shown in figure 9.

Figure. 9 IP-XACT Flow usage in System Verilog Universal Verification Methodology based

Verification Environment

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

23

Figure. 10 IP-XACT Flow for generating IP and SoC level Verification Environment files

2.5 Register Verification

Standard RGM Register and Memory model is used for efficient register and memory

verification. It contains built-in mechanisms with predefined types for efficient modeling. This is

used in conjunction with the register interface UVC, so that whenever the IP/SoC registers are

read/written, the associated RGM UVC pre-defined registers are also updated and IP/SoC register

contents will be verified by a self-checking scheme.

2.6 Bit Accurate Verification

For the purpose of data checking, the System Verilog UVM based verification environment

integrates the IP/ISP level python reference model. For control IP’s, System Verilog scoreboard is

written. Output of python model is compared with the output of the RTL in data checkers which

are part of System Verilog UVM based verification environment.

3. CONCLUSIONS

We presented a Generic System Verilog UVM based reusable verification environment for

verification of imaging IPs/SoCs both with Host BFM and actual Core using Incisive Software

Extension (ISX) and Virtual Register Interface (VRI)/Verification Abstraction Layer (VAL)

approaches. IP-XACT based tools are used for the automatic generation of IP/SoC dependent

system verilog files. This verification environment has been started to be used for the verification

of imaging IPs/SoCs. As compared to earlier methodologies, where verification flows were

disjoint at IP, SoC and Validation level which was

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

24

• Increasing the verification effort and cost

• Increasing the maintenance of multiple verification environments

The proposed methodology helped in overcoming these drawbacks and helped in saving

verification cost and effort.

Although this environment is developed for imaging IPs/SoCs. Same concept can be extended for

non imaging IPs/SoCs. We are currently working on Formal Verification Methodology and Low-

power simulation flow.

ACKNOWLEDGEMENTS

The authors would like to thank management and team members of Imaging Division,

STMicroelectronics; Faculty members and peer scholars of JBS, Jaypee Institute of Information

Technology University and also cadence team for their support and guidance.

REFERENCES

[1] Abhishek Jain, Mahesh Chandra, Arnaud Deleule and Saurin Patel, (2009) “Generic and Automatic

Specman-based Verification Environment for Image Signal Processing IPs”, Design & Reuse 2009.

[2] Rich Edelman et al., (2010) “You Are in a Maze of Twisty Little Sequences, All Alike – or Layering

Sequences for Stimulus Abstraction”, DVCON 2010.

[3] Jason Andrews, (2007) “Unified Verification of SoC Hardware and Embedded Software”, Chip

Design Magazine 2007.

[4] Mark Glasser, (2009) Open Verification Methodology Cookbook, Springer 2009.

[5] Iman, S., (2008) “Step-by-Step Functional Verification with SystemVerilog and OVM”, Hansen

Brown Publishing, ISBN: 978-0-9816562-1-2.

[6] Rosenberg, S. and Meade, K., (2010) “A Practical Guide to Adopting the Universal Verification

Methodology (UVM)”, Cadence Design Systems, ISBN 978-0-578-05995-6.

[7] J. Bergeron, (2003), “Writing Testbenches: Functional Verification of HDL models”, Kluwer

Academic Publishers, 2003.

[8] N. Kitchen and A. Kuehlmann, (2007) “Stimulus generation for constrainted random simulation”, In

International Conference on Computer-Aided Design, pages 258–265, 2007.

[9] Accellera Organization, Inc. Universal Verification Methodology (UVM) May 2012.

[10] Cadence Design Systems, Inc. Universal Reuse Methodology (URM).

[11] Cadence Design Systems, Inc. Open Verification Methodology Multi-Language (OVM-ML).

[12] IEEE Computer Society. IEEE Standard for System Verilog-Unified Hardware Design, Specification,

and Verification Language - IEEE 1800-2009. 2009.

[13] Incisive Software Extension Product from Cadence Design System.

[14] Virtual Register Interface Layer over VIPs from Cadence Design System.

[15] Spirit information, http://www.spiritconsortium.org.

[16] Accellera VIP TSC, UVM Register Modeling Requirements, www.accellera.org/activities/vip/

[17] www.ovmworld.org

[18] www.SystemVerilog.org

[19] www.uvmworld.org

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

25

Authors

Abhishek Jain, Technical Manager, STMicroelectronics Pvt. Ltd.

Research Scholar, JBS, Jaypee Institute of Information Technology, Noida, India.

Email: ajain_design@yahoo.co.in;

 abhishek-mmc.jain@st.com

Abhishek Jain has more than 10 years of experience in Industry. He is responsible for

Functional Verification Flow in Imaging Division of STMicroelectronics. He has done

PGDBA in Operations Management from Symbiosis, M.Tech in Computer Science

from IETE and M.Sc. (Electronics) from University of Delhi. His main area of Interest

is Project Management, Advanced Functional Verification Technologies and System

Design and Verification especially UVM based Verification, Emulation/Acceleration

and Virtual System Platform. Currently he is doing Research in Advanced Verification

Methodologies for Process improvement and control of Projects in Semiconductor

Sector. Abhishek Jain is a member of IETE (MIETE).

Dr. Hima Gupta, Associate Professor, Jaypee Business School (A constituent of Jaypee Institute of
Information Technology University), A – 10, Sector-62, Noida, 201 307 India.

Email: hima_gupta2001@yahoo.com

Dr. Hima has worked with LNJ Bhilwara Group & Bakshi Group of Companies for 5

yrs. and has been teaching for last 10 years as Faculty in reputed Business Schools.

She also worked as Project Officer with NITRA and ATIRA at Ahmedabad for 5

years.

She has published several research papers in National & International journals.

Giuseppe BONANNO, CAD Tools and Methodology Group Manager, STMicroelectronics Pvt. Ltd.

Email: giuseppe.bonanno@st.com

Degree in Computer Science at Milan State University (Italy) in 1989. Worked as

CAD Engineer for Bull HN Italy (1989-1997) on the development of place and route

tools for PCBs and then on ASIC hardware emulation. Joined STMicroelectronics in

France in 1997 where he has worked on CAD support in different domains: FPGA

prototyping, DFT, Functional Verification. Since 2006 he is managing the CAD Tools

and methodology team of Imaging Division with the mission of developing and

supporting Design tools and flows for modeling, IP and SOC design, functional

verification and physical implementation.

Ajay Goyal, Senior Sales Technical Leader, Cadence Design System Pvt. Ltd.

Email: gajay@cadence.com

Ajay has more than 12 years of experience in EDA Industry. He has done MDBA from

Symbiosis Institute of Management Studies (2002) and Bachelor of Engineering from

MPIET, Nagpur University (1999). His main area of interest is Advanced Verification

and System Design and Verification especially UVM based Verification, High Level

Synthesis, Emulation/Acceleration and Virtual System Platform.

