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Abstract

Active Appearance Models (AAMs) are generative parametric models
that have been successfully used in the past to model faces. Anecdotal evi-
dence, however, suggests that the performance of an AAM built to model the
variation in appearance of a single person across pose, illumination, and ex-
pression (Person Specific AAM) is substantially better than the performance
of an AAM built to model the variation in appearance of many faces, includ-
ing unseen subjects not in the training set (Generic AAM). In this paper we
present an empirical evaluation that shows that Person Specific AAMs are,
as expected, both easier to build and more robust to fit than Generic AAMs.
Moreover, we show that: (1) building a generic shape model is far easier
than building a generic appearance model, and (2) the shape component is
the main cause of the reduced fitting robustness of Generic AAMs. We then
proceed to describe two refinements to Generic AAMs to improve their per-
formance: (1) a refitting procedure to improve the quality of the ground-truth
data used to build the AAM and (2) a new fitting algorithm. For both refine-
ments we demonstrate vastly improved fitting performance.

1 Introduction
Active Appearance Models (AAMs)[3] are generative parametric models commonly used
to model faces. Depending on the task at hand AAMs can be constructed in different ways.
For example, we might build an AAM to model the variation in appearance of a single
person across pose, illumination and expression. Such aPerson Specific AAMmight be
useful for interactive user interface applications that involve head pose estimation, gaze
estimation, or expression recognition. Alternatively, we might attempt to build an AAM
to model any face, including unseen subjects not in the training set. The most common
use of such aGeneric AAMwould be face recognition.

Anecdotal evidence suggests that Person Specific AAMs perform substantially better
than Generic AAMs. The performance of an AAM depends on two steps: (1) Modelling:
How well is the AAM able to model (or generate) images in the class under consideration
and (2) Fitting: How robustly can the AAM be fit to a novel input image? AAMs consist
of two components: (1) a shape component, and (2) an appearance component. In the
first part of this paper (Section 3) we present an empirical evaluation that shows that
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Person Specific AAMs are indeed both easier to build and far more robust to fit than
Generic AAMs. Besides validating the anecdotal evidence, we also attempt to determine
the reason for the inferior performance of Generic AAMs. In particular, we attempt to
answer the following questions: Is it harder to build a generic shape model that models
the shape of any face well, or is building a generic appearance model harder? What makes
fitting harder, a large generic shape model, or a large generic appearance model?

In the second part of this paper (Section 4) we proceed to describe two refinements
to Generic AAMs to improve their performance. We first propose a refitting procedure
to improve the quality of the ground-truth data used to build the AAM (Section 4.1). We
then introduce a new fitting algorithm (Section 4.2). For both refinements we demonstrate
vastly improved fitting performance.

2 Background: Active Appearance Models
We begin with a brief review of Active Appearance Models[3, 9]. We explain how AAMs
are constructed from training data and describe an algorithm for fitting AAMs to an image.

2.1 Model Construction
The 2D shapeof an AAM is defined by a 2D triangulated mesh and in particular the
vertex locations of the mesh. Mathematically, we define the shapes of an AAM as the
2D coordinates of then vertices that make up the mesh:s = (x1,y1,x2,y2, . . . ,xn,yn)T.
AAMs allow linear shape variation. This means that the shape matrixs can be expressed
as a base shapes0 plus a linear combination ofm shape matricessi :

s = s0 +
m

∑
i=1

pi si (1)

where the coefficientspi are the shape parameters. AAMs are normally computed from
training data consisting of a set of images with the shape mesh (usually hand) marked
on them[3]. The training shapes are then geometrically aligned using theProcrustes
algorithm[5]. Principal Component Analysis (PCA)[7] is then applied to the aligned
training meshes. The base shapes0 is the mean shape and the matricessi are the (reshaped)
eigenvectors corresponding to them largest eigenvalues.

Theappearanceof the AAM is defined within the base meshs0. Lets0 also denote the
set of pixelsu = (u,v)T that lie inside the base meshs0, a convenient abuse of terminology.
The appearance of the AAM is then an imageA(u) defined over the pixelsu ∈ s0. AAMs
allow linear appearance variation. This means that the appearanceA(u) can be expressed
as a base appearanceA0(u) plus a linear combination ofl appearance imagesAi(u):

A(u) = A0(u)+
l

∑
i=1

λi Ai(u) (2)

where the coefficientsλi are the appearance parameters. The appearance imagesAi are
usually computed by applying PCA to the shape normalized training images[3, 9].

2.2 Model Fitting
Fitting an AAM may be formulated as minimizing the sum of squares difference between
the appearanceA(u) = A0(u)+ ∑l

i=1 λiAi(u) and the input image warped back onto the



base meshI(N(W(u;p);q)) [9]:

∑
u∈s0

[
A0(u)+

l

∑
i=1

λiAi(u)− I(N(W(u;p);q))

]2

(3)

In this equation, the warpW is the piecewise affine warp defined by the mesh triangulation
from the base meshs0 to the current AAM shapesandN is a 2D similarity transformation
used to normalize the shape of the AAM. The goal of AAM fitting is to minimize the
expression in Equation (3) simultaneously with respect to the appearance parametersλ ,
the linear shape parametersp, and the similarity transform parametersq.

One algorithm for fitting an AAM to an image is the “project-out” inverse composi-
tional algorithm proposed in[9]. This algorithm performs the non-linear optimization of
Equation (3) in two steps (similar to Hager and Belhumeur[6]). First the shape and linear
transformation parametersp andq are found through a non-linear optimization in a sub-
space in which the appearance variation can be ignored. The second step is then a closed
form linear optimization with respect to the appearance parametersλ . The algorithm is
very fast, running at over 230 frames per second on standard hardware[9].

3 Generic vs. Person Specific AAMs
In this section we present an empirical comparison of Generic and Person Specific AAMs.
To support these experiments we assembled datasets for the construction and fitting of
Generic and Person Specific AAMs which separate shape and appearance variation. See
Section 3.1. We use these datasets to evaluate the model construction performance (Sec-
tion 3.2) and the model fitting performance (Section 3.3) of both types of AAMs.

3.1 Datasets
We assembled three datasets which separately vary illumination, pose and identity. For
the illumination dataset we recorded a single subject in a static frontal pose and neutral
expression while smoothly changing the position of a lamp illuminating the face. We
randomly selected 100 images from this sequence for the experiments. This data is used
to construct Person Specific AAMs. It contains a large amount of appearance variation,
but little or no shape variation. In the second set the same subject was recorded under
constant illumination and neutral expression while smoothly changing head pose. We
randomly selected 100 images from the sequence for evaluation. Again, this data is used
to build Person Specific AAMs. Unlike the illumination set, the pose set contains a lot of
shape variation. Due to the non-uniform lighting and the presence of specularities, a small
amount of appearance variation is visible as well. For the identity dataset, we chose 100
different subjects from thefa set of the FERET database[10]. This data is used to build
Generic AAMs. This set contains both shape and appearance variation due to the variation
across face identities. Even though the images were taken from the same set, differences
in facial expression, face pose and illumination are also present. Figure 1 shows three
example images from each dataset. To ground-truth the data the vertex locations of the
shape mesh for all 300 images were marked by hand.

3.2 Model Construction
In order to quantify model construction performance we determine how well an AAM
can modelunseendata based on a training set of the same type. In the experiments we
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Figure 1: Datasets. Illumination set: The subject was recorded with constant frontal pose and
neutral expression while smoothly changing the position of a lamp illuminating the face. Pose set:
The same subject was recorded under constant illumination while smoothly changing head pose.
Identity set: We selected 100 subjects from thefa set of the FERET database[10].

separately evaluate the shape and appearance components of the AAMs.

3.2.1 Experiment Description

We randomly select a varying number of training images from the dataset to build shape
and appearance models. For all models we retain enough variance to explain 95% of
the training data. We then evaluate the reconstruction error of a fixed number of images
from anindependenttest set. In order to calculate the reconstruction error for a test shape
s and appearanceA, we compute the shape parametersp1, . . . , pm and the appearance
parametersλ1, . . . ,λl by projectings andA into the shape and appearance eigenspaces.
The reconstruction errors are then defined by:

RS =

∥∥∥∥∥s− (s0 +
m

∑
i=1

pisi)

∥∥∥∥∥
2

RA =

∥∥∥∥∥A− (A0 +
l

∑
i=1

λiAi)

∥∥∥∥∥
2

(4)

where‖·‖2 is the Euclidean L2 Norm.

3.2.2 Experiment Results

Figure 2(a) plots the shape reconstruction errors for all three datasets against a varying
number of training images. The illumination dataset theoretically has zero shape vari-
ation. Hence the reconstruction error for a single training image (0.5 pixels) can be
attributed to errors in ground-truthing. We use this threshold to determine how many
training images are needed for the pose and identity sets to model unseen data. The error
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Figure 2: Shape and appearance reconstruction errors for the illumination, pose and iden-
tity datasets. We compute the reconstruction error by projecting independent test data into the
eigenspace spanned by training sets of varying size, reconstructing the data using the eigenspace
representation and measuring the Euclidean distance between original and reconstructed data.

Illumination (90) Pose (90) Identity (90) Identity (190)
RA 5.06 6.99 10.67 9.14

Table 1: Appearance reconstruction errorRA for the illumination, pose and identity
datasets for 90 and 190 training images. Even for 190 training images in the identity
set the reconstruction error stays well above the error for the illumination and pose sets.

over the pose set falls below 0.5 after 5 training images, which is consistent with intu-
ition and recent theoretical results showing that at most 6 2D shape vectors are needed to
model a single rigid 3D face[11]. For the identity set 15 training images are needed to
reach this level of modelling accuracy. We can therefore conclude that (1) it is possible to
build a generic shape model and (2) as few as 15 training images are needed for a generic
shape model. However, this only applies to generic shape models for frontal faces. More
training images will be neccessary to build a generic shape model for faces under varying
poses.

Figure 2(b) plots the appearance reconstruction error. Again we can use the recon-
struction error over the illumination set as guideline to determine when the models only
explain noise due to errors in (shape) ground-truthing and appearance model interpolation.
This holds since faces under fixed pose but varying illumination can be modelled using
a low dimensional subspace[8]. The reconstruction error over the pose set is actually
slightly higher than over the illumination set, possibly due to the more difficult ground-
truthing and the non-uniform illumination. The reconstruction error over the identity set
always stays well above the level of either the illumination or the pose set. This obser-
vation holds even if we expand the training set to 190 images. See Table 1 for numerical
results. Overall we can conclude that it is much more difficult to build a generic appear-
ance model.



3.2.3 Experiment Conclusions

We empirically showed that it is relatively easy to build a generic shape model for frontal
faces. With as few as 15 training images the shape model is able to model unseen faces
with sufficient accuracy. However, the same does not hold for a generic appearance model.

3.3 Model Fitting
In order to quantify model fitting performance we determine how well an AAM can be
fit to an image using the “project-out” algorithm described in Section 2.2. We again
separately evaluate the shape and appearance components of both Generic and Person
Specific AAMs following a similar evaluation methodology to the one in[9].

3.3.1 Experiment Description

For a given AAM and test image we randomly perturb the ground truth shape and sim-
ilarity transform parameters by a large, fixed magnitude to generate the inital parameter
estimates for the fitting algorithm. We then record theaverage frequency of convergence
by measuring how often the algorithm converges after 20 iterations1 to within 2.0 pixels2

of the ground truth (RMS mesh point error). In order to quantify the influence of the shape
model on the fitting performance we run the algorithm using shape models of varying size
with a constant appearance model computed over the complete dataset. The shape models
are computed by randomly choosing a fixed numbern of training shapes and varyingn
between 5 and 100 while retaining the same fixed amount of variance (95%). The influ-
ence of the appearance model is determined in a similar fashion by running the fitting
algorithm using a static shape model computed over the whole dataset and an appearance
model of varying size. To separate the effects of model construction and fitting, the fitting
algorithm is tested on the training images. We therefore know that the AAM is able to
model the input image it is being fit to. If it fails to fit, it is due to the difficulty of the
fitting process rather than the inability of the AAM to model the image.3

3.3.2 Experiment Results

Figure 3 shows the results of the fitting experiments. It is immediately apparent that fitting
the Generic AAM is significantly harder than fitting either of the Person Specific AAMs.
Note that the relative performance is entirely due to the data. These results obtained using
a theoretically sound algorithm should be interpreted as indicating that fitting the Generic
AAM is an inherently far harder task than fitting the Person Specific AAM.

At this point, it is natural to ask what is the cause of this drastically different per-
formance. Note the following results: (1) A Generic AAM built with 5 shape training
images and 100 appearance training images operates about as well as similar Person Spe-
cific AAMs. See leftmost point in Figure 3(a). (2) A Generic AAM built with 100 shape
training examples and 5 appearance training examples operates far, far worse than sim-
ilar Person Specific AAMs. See leftmost point in Figure 3(b). From these results, we
speculate that it is the shape component of the Generic AAM that is causing the problem.
As further evidence of this argument, consider Figure 4 in which we plot the magnitudes

1In earlier experiments we found that the algorithm typically converges well within 20 iterations[9].
2There are no obvious or established choices for the selection of the convergence criterion. We simply

choose a value and verified that it corresponds to “good” convergence. We plan to revisit this question in more
detail in future work.

3In a future extended version of this paper we will investigate the combined difficulty of model construction
and fitting by evaluating fitting performance on unseen images.
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Figure 3: Average rate of convergence for the project-out algorithm[9]. (a) Results for a fixed
appearance model computed over the whole dataset and a shape model computed using different
numbers of training images. (b) Results for a fixed shape model and varying appearance model.

(a) Shape (b) Appearance

Figure 4:Energy distribution of AAM shape (a) and appearance (b) eigenvectors. Generic AAMs
contain relatively more shape variation than Person Specific AAMs, but not much more appearance
variation.

of the eigenvectors for the shape and appearance models each computed with all 100
training images. The appearance eigenvectors for the 3 databases are all very similar. If
anything, there is less appearance variation in the Generic AAM than the Person Specific
AAMs. On the other hand, the shape eigenvectors of the Generic AAM are substantially
larger than those of the Person Specific AAMs (at least after the first 4). The “effec-
tive” dimensionality of the shape component of the Generic AAM is far higher than the
dimensionality of the Person Specific shape models.

3.3.3 Experiment Conclusions

Although constructing a generic shape model is relatively easy, fitting a Generic AAM is
far harder than fitting a Person Specific AAM because the effective dimensionality of the
generic shape model is far higher than that of the Person Specific shape models.

4 Improvements to Generic AAMs
Perhaps the main reason for performing the evaluation in Section 3 was to suggest possible
methods of improving the performance of Generic AAMs. In the remainder of this paper
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Figure 5: Average rate of convergence for Generic AAMs computed using original and refitted
labels. Results are shown for (a) AAMs with varying shape model sizes and fixed appearance
model and (b) AAMs with varying appearance model sizes and fixed shape model.

we describe two such techniques: (1) refitting (Section 4.1) and (2) simultaneous fitting
of shape and appearance (Section 4.2). These are by no means the only possibilities. We
plan to cover several other possibilities in a future paper.

4.1 Data Refitting
The vertex locations of the shape mesh for all images (in total 16,800) used in the experi-
ments were marked by hand. Due to the large amount of data involved and the difficulty
of the task the quality of the labels is less than perfect. We use a two step algorithm to
improve the ground truth data. First we construct a AAM with the original hand-marked
labels. We then fit the AAM to the original training images and recover the vertex loca-
tions of the fitted shape mesh as new landmark data. We visually check that the fit is good
for every image in the dataset, a process that may be automated using the model fitting
error. We then compute new AAMs using only the refitted labels. Since we retain less
than 100% of the variance in the shape and appearance model used to refit the data, out-
liers in the data are eliminated. Note that depending on the amount of variance retained
refitting might remove signal along with the noise. Also, this procedure does not improve
consistently misplaced labels.

The refitting procedure is evaluated by comparing the average rate of convergence
of the project-out algorithm using Generic AAMs constructed from the original labels
with the results obtained by fitting models constructed from the refitted labels. For the
refitting procedure we used an AAM which retaines enough variance to explain 95% of
both the shape and appearance training data. We follow the same evaluation methodology
as used in Section 3.3. As shown in Figure 5 AAM fitting performance for the refitted
labels is substantially better than fitting performance for the original labels. For AAMs
with varying shape model sizes fitting performance improves on average from 20.8%
of trials converged to 37.4% of trials converged (see Figure 5(a)). Similarly the fitting
performance for AAMs with varying appearance model sizes improves on average from
3.1% of trials converged to 24.4% (see Figure 5(b)).

4.2 Simultaneous Fitting of Shape and Appearance
As stated in Section 2.2, the goal of AAM fitting is usually formulated as minimizing the
sum of squares difference between the model instance and the input image warped back
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Figure 6:Average rate of convergence for Generic AAMs using the simultaneous inverse compo-
sitional (SIC) and project-out (PO) algorithms.

onto the base mesh (see Equation (3)). Recently, Baker et al.[1] introduced the simul-
taneous inverse compositional algorithm which minimizes Equation (3) by performing
Gauss-Newton gradient descent optimization simultaneously on the warp parametersp,
the linear transformation parametersq and the appearance parametersλ 4. In comparison
to the project-out algorithm, the simultaneous algorithm is very slow (up to 30× slower).
See[1] for the details.

We compare the performance of the simultaneous inverse compositional and project-
out algorithms by comparing the average rate of convergence for Generic AAMs for
varying shape and appearance model sizes. Here we use AAMs constructed using re-
fitted labels as described in Section 4.1. As shown in Figure 6, the simultaneous fitting
algorithm performs significantly better than the project-out algorithm. For AAMs with
varying shape model sizes the fitting performance improves on average from 37.4% of
trials converged to 76.8% (Figure 6(a)). For AAMs with varying appearance model sizes
the fitting performance improves on average from 24.4% to 67.5% (Figure 6(b)).

5 Discussion
In this paper we first empirically compared the performance of Generic and Person Spe-
cific Active Appearance Models (AAMs). In Section 3.2 we showed that building a
generic shape model is comparatively easy, while building a generic appearance model
is much harder. We then demonstrated in Section 3.3 that fitting a Generic AAM ap-
pears to be harder than fitting a Person Specific AAM due mainly to the higher effective
dimensionality of the shape model. In Section 4 we then discussed two refinements to
Generic AAMs: (1) label refitting and (2) the simultaneous inverse compositional fitting
algorithm. The performance improvement due to these two refinements is summarized in
Figure 7.

In Section 3.3 we showed that fitting an AAM with a complicated shape model is dif-
ficult. As a further refinement to address this problem we plan to incorporate shape priors
into the fitting algorithm as suggested in[2, 4]. While the simultaneous fitting algorithm
performs significantly better than the project-out algorithm (see Figure 6), it is also very

4The simultaneous inverse compositional algorithm is defined forindependent AAMs[9], which separately
parameterize shape and appearance . It is different from the original AAM fitting algorithm defined forcombined
AAMswhich jointly parameterize shape and appearance[3].
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Figure 7:Average rate of convergence for Generic AAMs using the simultaneous inverse compo-
sitional (SIC) algorithm on refitted labels and the conventional project-out (PO) algorithm on the
original hand-marked labels.

slow [1]. We intend to combine the two algorithms by using the simultaneous algorithm
on the first image of a sequence for a high quality fit, update the mean appearance image
of the AAM with the extracted face appearance and continue to track the face with the
efficient project-out algorithm. Preliminary results (omitted) show this technique to be
promising.
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