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Retinitis pigmentosa (RP) has a prevalence of approximatelyone in 4000; 25%–30% of these
cases are autosomal dominant retinitis pigmentosa (adRP). Like other forms of inherited
retinal disease, adRP is exceptionally heterogeneous. Mutations in more than 25 genes are
known to cause adRP, more than 1000 mutations have been reported in these genes, clinical
findings are highly variable, and there is considerable overlap with other types of inherited
disease. Currently, it is possible to detect disease-causing mutations in 50%–75% of adRP
families in select populations. Genetic diagnosis of adRP has advantages over other forms of
RP because segregation of disease in families is a useful tool for identifying and confirming
potentially pathogenic variants, but there are disadvantages too. In addition to identifying the
cause of disease in the remaining 25% of adRP families, a central challenge is reconciling
clinical diagnosis, family history, and molecular findings in patients and families.

Retinitis pigmentosa (RP) is an inherited dys-
trophic or degenerative disease of the retina

with a prevalence of roughly one in 4000 (Haim
2002; Daiger et al. 2007). Typically, the disease
progresses from the midperiphery of the retina
into the central retina and, in many cases, into
the macula and fovea (Heckenlively and Daiger
2007; Fahim et al. 2013). Clinical features in-
clude night blindness starting in adolescence,
followed by progressive loss of peripheral vi-
sion—referred to as “tunnel vision”—culmi-
nating in legal blindness or complete blindness
in adulthood. Characteristic retinal findings on
examination include bone-spicule formations
and attenuated blood vessels, reduced visual
fields, reduced and/or abnormal electroretino-

grams (ERGs), changes in structure imaged by
optical coherence tomography (OCT), and sub-
jective changes in visual function (Fishman et al.
2005). However, features and findings are highly
variable among patients, even among patients
within the same family.

RP is exceptionally heterogeneous at a genet-
ic level. All modes of inheritance are encoun-
tered: dominant, recessive, autosomal, X-linked,
and even mitochondrial (Berger et al. 2010). It
is assumed that each patient has a monogenic
form of disease (or digenic in rare cases) but
many different genes account for disease in RP
patients as a group. Currently, mutations in
more than 66 genes are known to cause nonsyn-
dromic RP and an additional 31 genes cause
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syndromic forms such as Usher syndrome and
Bardet–Biedl syndrome (Daiger et al. 2013; Ret-
Net 2014). There are also many disease-causing
mutations reported in these genes. More than
3100 mutations are listed in the Human Gene
Mutation Database (HGMD) (HGMD 2014)
in nonsyndromic RP genes alone (Daiger et al.
2013).

This review focuses on nonsyndromic auto-
somal dominant retinitis pigmentosa (adRP).
This is partly to simplify the discussion but
also because finding genes and mutations caus-
ing adRP entails unique opportunities and pit-
falls. In addition, our laboratory has worked
with adRP families for the past 25 years afford-
ing us insights into these issues. Despite the lim-
ited focus, many observations regarding genes
and mutations causing adRP apply equally well
to other forms of inherited retinopathy.

FINDING GENES AND MUTATIONS
CAUSING adRP

The successes in finding adRP genes and disease-
causing mutations over the past two decades are
striking. Table 1 lists genes in which mutations
are reported to cause adRP. References are
in RetNet (RetNet 2014, see https://sph.uth
.edu/retnet/). There are currently 25 reported
adRP genes and an additional linked gene, RP63,
which maps to human chromosome 6q23
(Kannabiran et al. 2012). The HGMD database
(HGMD 2014) lists more than 1000 mutations
in these genes, although not all are dominant-
acting (and not all are pathogenic). To date, mu-
tations in the known adRP genes account for
50%–75% of cases, depending on the tests per-
formed and populations screened. Nonetheless,
significant problems remain.

For example, it should be easy to name genes
known to cause adRP, but it is not. In recent
years, the simple idea that one gene leads to
one disease has proven highly inaccurate, espe-
cially for inherited retinal diseases. A gene first
identified as the cause of one form of disease, for
example, recessive RP, may harbor mutations
that cause another form of retinal disease or
mutations with a different mode of inheritance
for example, adRP. Table 1 lists alternate forms

of disease associated with adRP genes. One con-
sequence of this overlap is that any simple count
of “RP genes” is often arbitrary.

Likewise, there are complications in detect-
ing disease-causing mutations in adRP genes.
For one, the initial diagnosis in a family may
be misleading. That is, because of exceptional
clinical variation, affected family members may
have different clinical diagnoses, or the mode
of inheritance may be misconstrued. For exam-
ple, families with X-linked RP and affected car-
rier females may be mistaken as adRP (Chur-
chill et al. 2013). Further, a significant fraction
of RP patients present as isolated cases, with no
known affected relatives, so the mode of inher-
itance is undetermined. Also, because different
mutations in the same gene can produce differ-
ent clinical consequences, the actual mutation
may be in a known gene not commonly associ-
ated with adRP. Examples include rare adRP
mutations in RPE65 (Bowne et al. 2011a) and
RDH12 (Fingert et al. 2008), genes more likely
to cause recessive RP or recessive Leber congen-
ital amaurosis, respectively.

Beyond these complications, there is the ge-
neral problem of variants of unknown signif-
icance (VUS), that is, rare, potentially patho-
genic variants in known adRP genes for which
the evidence is equivocal. This is a fundamental
problem in medical genetics given the extensive
background of rare and apparently damaging
variants in the human population (Marth et al.
2011). Suggestions for scoring potentially path-
ogenic variants are discussed in the next section.

Finally, there are substantial difficulties in
identifying novel adRP genes. Three advanced
technologies using next-generation sequenc-
ing (NGS) are in use: targeted retinal-gene cap-
ture NGS (Simpson et al. 2011; Audo et al. 2012;
Neveling et al. 2012; O’Sullivan et al. 2012; Chen
et al. 2013; Eisenberger et al. 2013; Glockle et al.
2013; Wang et al. 2014), whole-exome NGS
(Bowne et al. 2011a; Ozgul et al. 2011; Tucker
et al. 2011; Zeitz et al. 2013; El Shamieh et al.
2014; Jin et al. 2014; Sergouniotis et al. 2014),
and whole-genome NGS (Nishiguchi et al.
2013). Each has advantages and disadvantages.

Because targeted retinal-capture NGS ex-
amines only a small portion of the human
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Table 1. Genes reported to cause autosomal dominant retinitis pigmentosa pigmentosa (in chromosomal order)

Symbol Gene/protein Chromosome Alternate diseases Function

1 RPE65 Retinal pigment
epithelium-
specific 65 kD
protein

1p31.2 Recessive retinitis pigmentosa;
recessive Leber congenital
amaurosis

Visual cycle

2 PRPF3 Pre-mRNA
processing factor 3

1q21.2 RNA processing

3 SEMA4A Semaphorin 4A 1q22 Dominant cone–rod dystrophy Neuronal or immune
response

4 SNRNP200 Small nuclear
ribonucleoprotein
200 kDa (U5)

2q11.2 RNA processing

5 RHO Rhodopsin 3q22.1 Dominant congenital
stationary night blindness;
recessive retinitis pigmentosa

Phototransduction,
outer segment
membrane
structure

6 GUCA1B Guanylate cyclase
activating
protein 1B

6p21.1 Dominant macular dystrophy Phototransduction

7 PRPH2 Peripherin 2 6p21.1 Dominant macular dystrophy;
digenic retinitis pigmentosa
with ROM1; dominant adult
vitelliform macular
dystrophy; dominant cone–
rod dystrophy; dominant
central areolar choroidal
dystrophy

Outer segment
membrane
structure

8 RP9 RP9 protein or
PIM1-kinase
associated
protein 1

7p14.3 Unknown

9 KLHL7 Kelch-like 7 protein
(Drosophila)

7p15.3 Ubiquitination
pathway

10 IMPDH1 Inosine
monophosphate
dehydrogenase 1

7q32.1 Dominant Leber congenital
amaurosis

Purine or amino acid
synthesis

11 RP1 RP1 protein 8q12.1 Recessive retinitis pigmentosa Ciliary structure/
function

12 TOPORS Topoisomerase I
binding arginine/
serine rich protein

9p21.1 Ciliary structure/
function

13 PRPF4 Pre-mRNA
processing factor 4

9q32 RNA processing

14 HK1 Hexokinase 1 10q22.1 Glucose metabolism
15 BEST1 Bestrophin 1 11q12.3 Dominant

vitreoretinochoroidopathy;
recessive bestrophinopathy;
recessive retinitis
pigmentosa; dominant
macular dystrophy, Best type

Visual cycle and
chloride channel

Continued
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genome, that is, exons of known retinal genes
and candidate genes, analysis of sequence data
is simplified. Also, retinal capture panels are
optimized for each exon and include retinal-
specific splice variants. However, retinal-cap-
ture NGS is limited to known genes and detects
a large number of VUS mutations (as do all
NGS methods). In contrast, whole-exome se-
quencing is a powerful tool for identifying novel
disease-causing genes but perforce is limited to
exons, whereas whole genome NGS avoids this
limitation but presents a very complex problem
in data analysis. For autosomal dominant dis-

eases, the problems are compounded by the
need to detect a single, heterozygous mutation
in a diploid organism, the proverbial needle-in-
a-hay-stack.

Further, because NGS methods are based on
short-read, paired-end, and shotgun sequenc-
ing, they are underpowered for detecting dele-
tions, insertions, and variable-length repetitive
elements. As examples, large deletions in the
PRPF31 gene account for 2.5% of adRP cases
(Sullivan et al. 2006b), but are generally not
detectable by NGS, and the repetitive elements
of the ORF15 region of the X-linked RP gene

Table 1. Continued

Symbol Gene/protein Chromosome Alternate diseases Function

16 ROM1 Retinal outer
segment
membrane
protein 1

11q12.3 Digenic retinitis pigmentosa
with PRPH2

Outer segment
membrane
structure

17 NRL Neural retina lucine
zipper

14q11.2 Recessive retinitis pigmentosa Transcription factor

18 RDH12 Retinol
dehydrogenase 12

14q24.1 Recessive Leber congenital
amaurosis with severe
childhood retinal dystrophy

Visual cycle

19 NR2E3 Nuclear receptor
subfamily 2 group
E3

15q23 Recessive retinitis pigmentosa
in Portuguese Crypto Jews;
recessive Goldmann–Favre
syndrome; recessive
enhanced S-cone syndrome
(ESC); combined dominant
and recessive retinopathy

Transcription factor

20 PRPF8 Pre-mRNA
processing factor 8

17p13.3 RNA processing

21 CA4 Carbonic anhydrase
IV

17q23.2 Retinal capillary
structure/function

22 FSCN2 Retinal fascin
homolog 2, actin
bundling protein

17q25.3 Dominant macular dystrophy Ciliary structure/
function

23 CRX Cone–rod otx-like
photoreceptor
homeobox
transcription
factor

19q13.32 Recessive, dominant and de
novo Leber congenital
amaurosis; dominant cone–
rod dystrophy

Transcription factor

24 PRPF31 Pre-mRNA
processing
factor 31

19q13.42 RNA processing

25 PRPF6 Pre-mRNA
processing factor 6

20q13.33 RNA processing

References as in RetNet, https://sph.uth.edu/retnet/, and Sullivan et al. 2014 (HK1).
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RPGR are refractory to short-read sequencing
(Churchill et al. 2013).

Fortunately, segregation testing and linkage
analysis in adRP families address many of these
problems. Segregation testing—determining if
a putative disease-causing variant tracks with
disease in a family—can support or exclude
pathogenicity. Complications are the late onset
of disease and nonpenetrance. That is, a clini-
cally unaffected family member may carry a dis-
ease allele, either because the disease has not
manifested yet or because the mutation is non-
penetrant in that individual. An example of the
latter is mutations in PRPF31 for which non-
penetrance may be as high as 20% (McGee et al.
1997; Venturini et al. 2012). However, nonpene-
trance is not common among other adRP genes.
Conversely, absence of a putative mutation in an
affected family member is usually strong evi-
dence against pathogenicity.

Linkage analysis tests for cosegregation of
polymorphic markers with disease in a family.
Loosely, there are two contrasting approaches,
linkage exclusion and linkage inclusion. Link-
age exclusion is simply exclusion of a known
adRP gene by recombination between polymor-
phic markers within or contiguous to the site.
For example, small sets of highly variable STR
(short-tandem repeat) polymorphisms can ex-
clude many known adRP sites in families with
five or more affected members available for test-
ing (Sullivan et al. 2006b). In contrast, because
of statistical issues, larger families are required
for linkage inclusion, that is, mapping a disease
gene by observing cosegregation of polymor-
phic markers. Since dominant retinal disease
families may have many living, affected mem-
bers, linkage mapping is an effective tool for
localizing new adRP genes.

Contemporary marker sets for linkage map-
ping include hundreds of thousands of SNPs
(single-nucleotide polymorphisms) such as
markers in Affymetrix SNP Arrays (Friedman
et al. 2009; Bowne et al. 2011a). Generally, in
families with eight or more affected members
available for testing, linkage mapping reduces
the target region to one or a few chromosomal
sites, each ,10 Mb in length. This substantially
reduces the “space” to search for novel adRP

genes using NGS approaches. As an alternative
to using SNP marker arrays, data from whole-
exome NGS testing of multiple family members
can be combined for linkage mapping in RP
families based on regions identical-by-descent
and shared rare variants (Koboldt et al. 2014).

Each approach is useful: Most adRP genes
in Table 1 were first localized by linkage map-
ping; NGS methods were used to find most of
the recently identified genes; and retinal capture
NGS is a rapid, efficient approach to finding dis-
ease-causing mutations in known adRP genes.
Taken together, advanced DNA sequencing and
mapping methods have revolutionized gene dis-
covery and mutation detection for adRP.

DETERMINING PATHOGENEITY
OF adRP MUTATIONS

Determining which of the many rare variants
in our genomes are pathogenic and which are
benign, with all possibilities in between, is one
of the fundamental problems in medical genet-
ics (MacArthur et al. 2014). Dominant Mende-
lian diseases such as adRP offer the advantage
of segregation testing to evaluate pathogenicity.
However, this is only one of multiple steps in
establishing causality. Although there is no fully
accepted protocol, each of the NGS publications
cited above follows similar strategies. Note that
establishing pathogenicity overlaps with, but
is distinct from, the “pipeline” for sequence as-
sembly and detection of variants. Also, criteria
for establishing pathogenicity of variants that
may cause autosomal dominant diseases are
distinct from criteria for recessive and X-linked
diseases. With these caveats in mind, the follow-
ing are reasonable steps for determining patho-
genicity of potential adRP mutations (not nec-
essarily in order), using retinal capture NGS as a
model.

† Although the model assumes efficient retinal
capture and a patient with autosomal inher-
itance, it is prudent to confirm coverage of
the most common adRP genes, such as rho-
dopsin (RHO) and PRPH2, and to consider
X-linked inheritance in the absence of male-
to-male transmission.

Autosomal Dominant Retinitis Pigmentosa
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† The filtering pipeline should flag all variants
with an allele frequency of ,0.1% in publi-
cally available databases such as 1000 Ge-
nomes, ESP, and dbSNP (Abecasis et al.
2012; Fernandez-Suarez et al. 2014; NCBI
2014). Note that some recessive RP mutations
have population frequencies�0.1%, whereas
all reported adRP mutations are more rare.

† Determine if any flagged variants are known,
published disease-causing mutations. This
requires searching, for example, relevant Lei-
den databases (Cremers et al. 2014), the
HGMD database (HGMD 2014), and clin-
VAR (NCBI 2014). In-house databases
should be consulted too, of course. Caution:
Even though a variant is listed in a disease
database, it may not be pathogenic. For un-
certain variants, it is essential to confirm
pathogenicity based on original publications.

† If there is no unequivocally pathogenic vari-
ant in a known adRP gene, consider deletion
detection for PRPF31 (Sullivan et al. 2006b)
and/or nested Sanger sequencing of ORF15
of RPGR (Churchill et al. 2013).

† In the remaining cases, rank variants by path-
ogenicity scores using publically available
services such as PolyPhen, SIFT, NNSplice,
and Mutation Taster (Schwarz et al. 2010;
Knecht and Krawczak 2014). Published func-
tional data on specific genes may be useful
too.

† Confirm plausible mutations by convention-
al sequencing and test for segregation in
available family members.

† Finally, based on the totality of information
available, including all of the above, plus
clinical information, family history, and the
biology and clinical phenotypes of possible
disease genes, score putative mutations (one
or more) for the likelihood of causing disease
in the patient and family tested. Several scor-
ing systems have been suggested, largely
ranging from “recognized cause of disorder,”
“expected cause of disorder,” “may or may
not cause disorder” (VUS), to “probably
not causative” (Richards et al. 2008).

What do these NGS strategies miss? Muta-
tions in known retinal disease genes outside of
exons, mutations in novel genes, and mutations
not detectable by shotgun sequencing (e.g., var-
iable repeats), among others.

PREVALENCE OF DISEASE-CAUSING
MUTATIONS IN adRP FAMILIES

Our research has focused principally on genetic
studies of adRP patients and families. For pur-
poses of tracking progress in gene discovery and
mutation detection, we have established a co-
hort of well-characterized adRP families (So-
hocki et al. 2001; Sullivan et al. 2006a; Bowne
et al. 2008, 2013). Families in the cohort have
a clinical diagnosis of adRP by a knowledge-
able clinician, three or more affected genera-
tions with affected females, or two or more gen-
erations with male-to-male transmission (to
bias against X-linked RP). Currently, there are
270 families in the cohort (Table 2). The families
are largely Americans of European origin, 75%
white, 5% African American, 5% Hispanic, 3%
Asian, and the remainder other or unknown.

We have applied a variety of methods to de-
tect disease-causing mutations in these families
including linkage mapping (Sullivan et al. 1999;
Bowne et al. 2002, 2011a), conventional Sanger
sequencing (Bowne et al. 1999, 2006, 2008,
2013; Sullivan et al. 1999; Sohocki et al. 2001;
Gire et al. 2007; Friedman et al. 2009), NGS
(Bowne et al. 2011b; Wang et al. 2013), deletion
detection (Sullivan et al. 2006b), and subclone
sequencing of RPGR ORF15 (Churchill et al.
2013). Recently, we reported a novel adRP
gene, hexokinase 1 (HK1), with a missense mu-
tation in five independently ascertained fami-
lies (Sullivan et al. 2014). This gene, too, was
tested in the cohort.

Table 2 summarizes our findings. To date we
have identified the disease-causing mutation in
78% of the families, leaving 22% in which the
known dominant RP genes have been excluded.
Figure 1 shows the fraction of cases caused by
mutations in each gene.

Note that Table 2 includes mutations in two
X-linked genes, RPGR and RP2, found in a total
of 25 families (9%). Each of these families met

S.P. Daiger et al.
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reasonable criteria for inclusion in a cohort of
“autosomal dominant” families, with multiple
affected females and an initial diagnosis of
adRP. On further review, most, but not all, af-
fected females are more mildly affected than
age-matched affected males (Wu et al. 2010;
Churchill et al. 2013). Clinical symptoms are
also more variable in carrier females, consistent
with Lyonization or other factors modifying
expression. This is an example of the power of
molecular findings to dramatically change an
initial diagnosis.

Based on the significant fraction of X-linked
mutations among families with a diagnosis of
adRP, mutations in RPGR are probably the
most common cause of RP in the world. This
is reinforced by the finding that RPGR muta-
tions account for 13% of isolated RP in males
(Branham et al. 2012).

The cohort families also have one instance of
digenic inheritance of a PRPH2 Leu185Pro mu-
tation combined with a ROM1 Leu114fs�131
mutation (Kajiwara et al. 1994; Sullivan et al.
2006a). Technically, the inheritance pattern de-
viates from classical adRP because an affected

child must inherit both alleles from an affected
parent, or one allele from an unaffected parent.
This is a rare condition but other ROM1 (rod
outer-membrane protein 1) mutations are
known to cause digenic RP in combination
with the PRPH2 Leu185Pro mutation (Dryja
et al. 1997).

Table 2 also indicates the distribution of
mutation types in three broad classes, missense,
nonsense, and “other.” From a functional pro-
spective, missense mutations are likely to pro-
duce an abnormal protein and the mode of ac-
tion is through partial loss-of-function, gain-
of-function, dominant negative, or toxic effects.
“Other” mutations most likely result in func-
tional haploinsufficiency, that is, no protein or
a nonfunctional protein. Nonsense mutations
may or may not produce a protein depending
on whether the premature stop is in the last
exon, which escapes nonsense mediated decay,
or earlier exons, which do not. Based on Table 2,
most adRP mutations do not result in function-
al haploinsufficiency, except for PRPF31.

A substantial fraction of mutations detected
in the cohort are “common,” that is, they occur

Table 2. Prevalence of disease-causing mutations in adRP families (N ¼ 270), with number of mutation types

Gene Families Percent Missense Nonsense Other

CRX 2 0.7 1 0 1
HK1 3 1.1 1 0 0
IMPDH1 10 3.7 2 0 0
KLHL7 3 1.1 3 0 0
NR2E3 6 2.2 1 0 1
NRL 2 0.7 2 0 0
PRPF3 4 1.5 2 0 0
PRPF31 24 8.9 4 3 17
PRPF8 7 2.6 4 0 1
RDH12 1 0.4 0 0 1
PRPH2 19 7.0 10 1 2
PRPH2þROM1 1 0.4 1 0 1
RHO 83 30.7 30 2 1
RP1 13 4.8 0 3 1
RP2 3 1.1 1 0 2
RPE65 1 0.4 1 0 0
RPGR 22 8.1 4 2 13
SNRNP200 4 1.5 4 0 0
TOPORS 4 1.5 3 0 1
None 58 21.5
Total 270 100

Autosomal Dominant Retinitis Pigmentosa
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in three or more unrelated families. Table 3 lists
the common mutations and the fraction of
families with each. Twelve mutations in adRP
genes account for nearly 30% of these families
(i.e., excluding RPGR and RP2). Most of these
mutations are ethnic-specific. Several arose by
founder effect and have limited geographic dis-
tribution. That is, the mutation arose once only,
increased in frequency by drift and population
dynamics, and shares a distinct haplotype in cis
to the mutation. For example, the rhodopsin
Pro23His mutation (13%) and the peripherin
828þ3A.T mutation (2%) arose by founder
effect, are almost exclusive to the United States,
and are found only in Americans of European
origin (Dryja et al. 1990, 1991; Shankar et al.
2004). The hexokinase Glu847Lys mutation
also arose from a common ancestor, but the
mutation is found in North America and Eu-
rope (Sullivan et al. 2014). In contrast, the
Asp226Asn mutation in the inosine monophos-
phate dehydrogenase 1 gene (IMPDH1) arose
independently on multiple occasions (Sullivan
et al. 2006a).

This is a general phenomenon for RP muta-
tions: the prevalence of mutations in a given

gene is often dominated by one or a few muta-
tions that arose by founder effect. Thus, popu-
lations will have different prevalences as a result
of founder mutations, even though the RP genes
are universal and the fraction of new mutations
is roughly the same worldwide. For example,
rhodopsin mutations account for 30% of adRP
cases among Americans of European origin but

Unknown: 21.5%

RPE65: 0.4%
PRPH2-ROM1 digenìc: 0.4%
RDH12: 0.4%
NRL: 0.7%
CRX: 0.7%
RP2: 1.1%
KLHL7: 1.1%
HK1: 1.1%
TOPORS: 1.5%
SNRNP200: 1.5%
PRPF3 (RP18): 1.5%
NR2E3: 2.2%
PRPF8 (RP18): 2.6%
IMPDH1 (RP10): 3.7%
RP1: 4.8%
PRPH2 (RDS): 7.0%
RPGR: 8.2%
PRPF31: 8.9%
RHO: 30.7%

Figure 1. Fraction of mutations causing dominant RP in a cohort of 270 “adRP” families.

Table 3. Common mutations in adRP genes and
RPGR (N ¼ 270)

Gene Families Mutation Percent

HK1 3 Glu847Lys 1.1
IMPDH1 6 Asp226Asn 2.2

4 Asp311Asn 1.5
NR2E3 5 Gly56Arg 1.9
PRPF3 3 Thr494Met 1.1
PRPH2 5 828þ3A.T 1.9

4 Pro216Ser 1.5
RHO 5 Arg135Leu 1.9

5 Arg135Trp 1.9
36 Pro23His 13.2

RP1 6 Arg677X 2.2
4 Leu762Tyrfs�17 1.5

RPGR 3 Glu802Glyfs�32 1.1
Total 33.0

S.P. Daiger et al.
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,10% in China, largely because the Pro23His
mutation is absent from China (Li et al. 2010).
In contrast, the prevalence of RPGR muta-
tions, which are predominantly new mutations,
is roughly the same worldwide (Bocquet et al.
2013; Xu et al. 2014).

DOMINANT-RECESSIVE ACTING
adRP MUTATIONS

In most cases in which a gene in Table 1 has
more than one disease association, this is the
result of different mutations in the same gene
causing different diseases. However, there are
two instances in which the same mutation has
different consequences depending on whether
one or two copies are present, that is, whether
the patient is heterozygous or homozygous.
Technically, these mutations are dominant and
recessive acting. In one large adRP family with
the RP1 Arg677X mutation, two homozygous
individuals are severely affected whereas het-
erozygous individuals are more mildly affected
(Sullivan et al. 1999). In contrast, the conse-
quences of this mutation are distinct from clin-
ical expression of the several RP1 mutations,
which are truly recessive, with unaffected carri-
ers (Khaliq et al. 2005; Riazuddin et al. 2005).
Similarly, in a large adRP family with the HK1
Glu847Lys mutation, a single homozygous in-
dividual is significantly more severely affected
than heterozygotes (Sullivan et al. 2014). These
cases may be rare, but because members of large,
multigenerational adRP families occasionally
live in the same community, this is more likely
with adRP than with other dominant diseases.

NORMAL FUNCTION OF adRP GENES

Table 1 provides a brief phrase describing the
functional class of each gene. Excellent, extensive
reviews are also available (Berger et al. 2010;
Wright et al. 2010). Even limiting discussion to
genes that account for 1% or more of cases, genes
causing adRP have diverse functional roles.

It is not surprising that mutations in genes
coding for proteins that are abundant in rods
or play fundamental roles in photoreceptor
function may cause dominant RP. This includes

rhodopsin, the most abundant rod protein; pe-
ripherin (PRPH2) and ROM1, which are essen-
tial structural components of rod outer mem-
branes; and rod/cone expression factors such
as CRX, NRL, and NR2E3. Mutations in these
genes are frequent causes of adRP. On the other
hand, the relationship between function and
disease of other adRP genes is less clear.

For example, the protein products of four
adRP genes, PRPF3, PRPF8, PRPF31, and
SNRNP200, are essential components of the
U4/U6-U5 tri-snRNP complex of the spliceo-
some involved in mRNA splicing (Liu and Zack
2013). The products of two less frequent causes
of adRP,PRPF4 and PRPF6, are also components
of this complex. These genes are expressed in all
tissues and are highly conserved in all eukary-
otes. Why mutations in these genes cause dom-
inant RP, and only RP, is not known. However,
genes coding for other proteins in this complex
are attractive candidates for novel adRP genes.

The protein products of the remaining com-
mon adRP genes, HK1, IMPDH1, KLHL7, RP1,
and TOPORS, are enzymes found in all cells
(HK1 and IMPDH1), have a universal role in
protein degradation (KLHL7), or are compo-
nents of sensory cilia (RP1). That is, their roles
are diverse and not obviously predictive of dom-
inant, degenerative disease limited to the retina.

RECONCILING CLINICAL DIAGNOSIS,
FAMILY HISTORY AND MOLECULAR
FINDINGS

An emerging realization in inherited retinop-
athies is apparent discrepancies between clini-
cal findings, inheritance pattern, and results
of genetic testing. Clinical findings of retinitis
pigmentosa and evidence from family history
of dominant inheritance are consistent with a
diagnosis of adRP. Fortunately, in most cases, a
diagnosis of adRP is supported by the results of
genetic testing. However, given the complex re-
lationship between genes, mutations, and inher-
ited retinopathies, there are opportunities for
conflicts, for instance, when an apparent dis-
ease-causing mutation is in a gene not known
to cause adRP, or the clinical phenotype in the
family is more variable than just RP, or the ap-
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parent mode of inheritance is misleading or not
determined. For these reasons, clinicians, coun-
selors, and geneticists must work closely with
each other to resolve these conflicts. In some
cases, a reconsideration of the clinical, family,
and molecular findings, taken together, may
substantially alter the predicted mode of inher-
itance and prognosis. Thus, in addition to all the
other benefits of genetic testing of patients with
RP, molecular findings may substantially alter di-
agnosis, prognosis, counseling, and treatment.

CONCLUDING REMARKS

The long-term objective of research on genes
and mutations causing inherited retinopathies
is to enable effective genetic testing of patients
and families, to incorporate this information
into clinical care and counseling, and to develop
treatments and cures based on a fundamental
understanding of disease pathology. Currently,
the success rate for finding the causative muta-
tion in adRP patients is 50%–75%, but this
fraction will increase rapidly with widespread
adaptation of NGS testing and development
of “third-generation” sequencing (Laszlo et
al. 2014). Gene-specific and mutation-specific
treatment trials have begun already. In time
the limitation will not be genetic testing per se,
but interpretation of variants, reconciling diag-
nosis and molecular findings, and providing
meaningful information to clinicians and useful
counseling to patients. The realization of these
goals requires close integration of retinal special-
ists, genetic counselors, molecular geneticists,
and bioinformaticists.
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