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Abstract Distinct subtypes of triple negative (TN) breast

cancer have been identified by tumor expression profiling.

However, little is known about the relationship between

histopathologic features of TN tumors, which reflect

aspects of both tumor behavior and tumor microenviron-

ment, and molecular TN subtypes. The histopathologic

features of TN tumors were assessed by central review and

593 TN tumors were subjected to whole genome expres-

sion profiling using the Illumina Whole Genome DASL

array. TN molecular subtypes were defined based on gene

expression data associated with histopathologic features of

TN tumors. Gene expression analysis yielded signatures for

four TN subtypes (basal-like, androgen receptor positive,

immune, and stromal) consistent with previous studies.

Expression analysis also identified genes significantly

associated with the 12 histological features of TN tumors.

Development of signatures using these markers ofElectronic supplementary material The online version of this
article (doi:10.1007/s10549-016-3775-2) contains supplementary
material, which is available to authorized users.
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histopathological features resulted in six distinct TN sub-

type signatures, including an additional basal-like and

stromal signature. The additional basal-like subtype was

distinguished by elevated expression of cell motility and

glucose metabolism genes and reduced expression of

immune signaling genes, whereas the additional stromal

subtype was distinguished by elevated expression of

immunomodulatory pathway genes. Histopathologic fea-

tures that reflect heterogeneity in tumor architecture, cell

structure, and tumor microenvironment are related to TN

subtype. Accounting for histopathologic features in the

development of gene expression signatures, six major

subtypes of TN breast cancer were identified.

Keywords Gene expression � Pathology � Tumor

biology � Germline mutation � Breast cancer

Introduction

Triple negative (TN) breast cancer is a distinct

histopathological subtype of breast cancer that accounts for

approximately 15 % of all invasive breast cancers [1, 2].

This disease subtype, defined by low or no expression of

estrogen receptor (ER), progesterone receptor (PR), and

human epidermal growth factor receptor-2 (HER2) is

treated as a single group clinically. However, TN tumors

have been shown to have significant biological hetero-

geneity that is not captured by clinical subtyping alone [3].

Intrinsic subtypes of breast tumors based on gene expres-

sion profiling have been defined using the PAM50

expression microarray. These include two luminal epithe-

lial groups (A and B), a HER2 over-expressing group, a

normal-like group, and a basal-like group that is largely TN

(80–85 %) [4, 5]. Separately, six subtypes of TN breast

cancer (referred to here as Lehmann subtypes) have been

defined using combined gene expression microarray data

from several studies. These subtypes were classified as

basal-like 1 (BL1), basal-like 2 (BL2), immunomodulatory

(IM), mesenchymal (M), mesenchymal stem-like (MSL),

and luminal androgen receptor (LAR) [6].

Independent analyses of microarray data for TN tumors,

which had substantial overlap with the original TN study,

further suggested that the TN subtypes are driven in part by

differences in tumor microenvironment [7]. Specifically,

four main gene expression clusters were found, represent-

ing a stromal gene signature, a luminal signature, an

immune signature, and a basal epithelial signature. Con-

sistent with this model, these gene signatures were not

observed in cell lines or xenografted tumors. Thus, the TN

subtypes may reflect genomic heterogeneity in tumor cells

and/or expression changes resulting from microenviron-

mental influences. Importantly, these models may have

implications for breast cancer treatment and outcome,

because tumor microenvironment features, including lym-

phocytic infiltration and fibrosis, have been associated with

breast cancer progression and prognosis [8–12]. Indeed,

pathologic complete response rates after neoadjuvant

chemotherapy may differ by Lehmann subtype [13], sug-

gesting that TN subtypes may have distinct prognostic

implications.

TN tumors exhibit high histologic grade and prolifer-

ation rates relative to other breast tumor subtypes [1, 14].

In addition, TN tumors have greater frequencies of sev-

eral distinguishing histopathologic features including

medullary and metaplastic features, pushing borders,

fibrous proliferation, lymphocytic infiltrate within the

tumor and in lobules adjacent to the tumor, elevated

mitotic count, necrosis, and the presence of many syn-

cytial clusters [15–17]. However, the relationship between

these features and both TN expression signatures and TN

subtypes is not well defined. In this study we identified

molecular subtypes of TN tumors based on expression

profiles and 11 histopathologic features of TN tumors

from the triple negative breast cancer consortium in order

to evaluate the relationship between gene expression

patterns and key structural and microenvironment features

of TN tumors.

Methods

Study participants

TNBCC cases (n = 704) from ten studies described in

detail elsewhere, were included (Table S1) [18–20]. TN

breast cancer cases were defined as individuals with ER-

negative, PR-negative, and HER2-negative (0 or 1 by IHC)

breast tumors. Criteria used for defining ER, PR, and HER2

status varied by study and have been previously described

[18–20].
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Macrodissection, RNA extraction, and gene

expression profiling

Tumor samples were either whole 10 micron sections or

1 mm (mm) cores from formalin-fixed paraffin-embedded

tumor blocks (Table S1). Whole sections were macrodis-

sected to select the tumor region on the slide, guided by a

hematoxylin and eosin (H&E)-stained slide from the same

block, reviewed and marked by a single pathologist (D.

Visscher). RNA was extracted from all tissue specimens

using the Roche High Pure RNA Isolation Kit (Indi-

anapolis, USA). Expression profiling was performed by the

Mayo Clinic Medical Genome Facility Gene Expression

Core (Rochester, MN, USA) using the Illumina Whole

Genome cDNA-mediated annealing, selection, extension,

and ligation (DASL) v4.0 assay. RNA samples were run on

12-sample chips in two batches (456 samples and 288

samples, respectively).

Normalization, data reduction, and batch effect

removal

Raw intensity data were exported from the Illumina iScan

software (Figs. S1, S2). Given the difference in median

expression of per-sample median values between batches

(Batch 1 median = 8.1, Batch 2 median = 10.7, Wilcoxon

p = 1.1 9 10-99), all subsequent quality control and nor-

malization procedures were performed separately by batch.

Median R2 between 22 replicates was 0.91 (Batch 1 median

R2
= 0.91, Batch 2 median R2

= 0.99).

After log-2 transformation and exclusion of all universal

human reference samples (Batch 1 n = 10, Batch 2 n = 6),

an iterative median quantile normalization (MQN) proce-

dure using cyclic stress reduction separately by batch was

performed. First, MQN was applied and a stress measure-

ment was calculated for each sample, equivalent to the

median absolute deviation after normalization [21]. The

top 10 % of samples with the highest stress was removed,

and the MQN and stress calculation were repeated until

only 30 % of the original dataset—those with the least

stress during repeated normalization remained. This least-

stressed dataset was used as a reference for MQN of the

full dataset and recalculated stress (Figs. S3, S4). Samples

with stress C0.5 were excluded (Batch 1 n = 27, Batch 2

n = 6); for replicates, the sample with the highest stress

was excluded (Batch 1 n = 16, Batch 2 n = 10). Probes

with p-value of detection[0.05 were excluded (Batch 1

n = 713, Batch 2 n = 479).

Expressions of ER (ESR1, Illumina probe ILMN_

1678535), PR (PGR, Illumina probe ILMN_1811014), and

HER2 (ERBB2, Illumina probe ILMN_2352131) were eval-

uated [22]. The expression values for each of the PAM50

genes, that can be used to define breast cancer subtypes

[luminal A (LumA), luminal B (LumB), basal-like, HER2-

enriched (HER2), normal-like (NL)], were correlated with the

gene expression centroids for each subtype, using centroid

parameters from the ‘‘genefu’’ Bioconductor package (http://

www.bioconductor.org/). When multiple probes existed for a

gene, the correlation between each probe and the corre-

sponding PAM50 gene was included. Each sample was

assigned a PAM50 subtype according to the best correlated

subtype (Table S2). A total of 78 samples (Batch 1 n = 51,

Batch 2 n = 27) were excluded where the standard deviation

of ESR1 expression was C1.5 from the mean (Fig. S5;

Table S2). No further exclusions based on PGR or ERBB2

expression were made (Figs. S6, S7).

Batch effects in the final dataset of 593 samples (Batch 1

n = 352, Batch 2 n = 241) were corrected by standard-

ization of probes (subtracting the mean expression value

and dividing by standard deviation) by study. There was no

evidence for batch effects after standardization by

12-sample chip, 96-well plate, study, or batch (Fig. S8),

and all samples were combined into a single dataset for

subsequent analyses. Lehmann subtypes were determined

via hierarchical clustering using Ward’s linkage as imple-

mented in the ‘‘hclust’’ R package, using probes corre-

sponding to 2119 out of the 2188 Lehmann centroid genes

[6] for which normalized DASL data were available. When

multiple probes were available for a gene, the most vari-

able probe was chosen.

Agnostic subtype derivation and functional

annotation

Hierarchical clustering including the 2158 most variable

probes, defined by skewness and interquartile range

(Table S3; Fig. S9), was performed using Ward’s linkage

as implemented in the ‘‘hclust’’ R package. Consensus

clustering was used to determine the number of

stable clusters (1000 iterations with average linkage). The

optimal number of clusters, representing TN subtypes, was

selected as the number at which no substantial increase in

the area under the cumulative distribution function was

observed. Functional annotation of TN subtypes was per-

formed using gene set enrichment analysis (GSEA) as

implemented in GSEA v2.1.0 software using default

parameters [23, 24] and a normalized enrichment score

(NES) C1.5. The single probe with the largest interquartile

range was used for each gene. Genes within each subtype

were tested for enrichment of C2 curated canonical path-

ways compared to all remaining subtypes using 1000 per-

mutations. A gene signature for these pathways was

developed using significance analysis of microarrays

(SAM) as implemented in the ‘‘samr’’ R package (http://

cran.r-project.org/) with 100 permutations. Genes were

evaluated for associations with each TN subtype relative to
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all TN tumors combined. Among genes significant at a

false discovery rate of 0.1 using the Wilcoxon rank sum

test, those up- and down-regulated by [3-fold standard

deviations from the mean for each feature were selected

(Table S4).

Histopathologic features: review and subtype

derivation

H&E slides were available for 310 of the 593 TN tumors

included in subtype analyses. Tumors were evaluated for

21 histopathological categories and for 11 histopathologi-

cal features by a single pathologist (D. Visscher)

(Tables S5, S6). Categories of certain tumor features were

collapsed due to small numbers as follows: mitotic index

(1/2; 3), grade (1/2; 3), trabecular pattern (present; absent),

necrosis (present; absent), fibrosis (0/1; 2/3), ductal carci-

noma in situ (DCIS present; absent), lobulitis (0/1; 2; 3).

Lobular involution was evaluated as previously described

[25, 26]. Genes were evaluated for association with indi-

vidual histopathologic features using SAM with 100 per-

mutations. Among genes significant at a false discovery

rate of 0.1 by the Wilcoxon rank sum test, up-regulated

genes with a fold change[1.5 and down-regulated genes

with fold change \0.67 were selected for each feature

(Table S7). A gene signature for phenotype-driven sub-

types was identified by SAM. Among genes significant at

10 % FDR, those up- and down-regulated by [3-fold

standard deviations from the mean for each feature were

selected (Table S8). Lasso-based multinomial regression

predicting TN subtype based on histopathologic features

was performed with the ‘‘glmnet’’ package in R using cross

validation. Per-gene linear regression models were per-

formed using the ‘‘lm’’ function in R to evaluate the mul-

tivariate associations between age, histopathologic

features, and each of 185 genes from the SAM-derived

gene signature. Coefficients with p\ 0.01 were considered

statistically significant.

Germline mutation detection

The methods for detecting mutations in 17 breast cancer

predisposition genes (BRCA1, BRCA2, PALB2, BARD1,

BRIP1, RAD51C, RAD51D, RAD50, NBN, MRE11A,

XRCC2, ATM, CHEK2, TP53, PTEN, STK11, and CDH1)

in germline DNA samples matched to these TN tumors has

been described previously [27]. Briefly, germline DNA

samples from TN patients were subjected to custom cap-

ture (eArray; Agilent, Santa Clara, CA, USA) for all coding

sequences and intron/exon boundaries of coding exons for

these genes. Products from each capture reaction were

sequenced on a HiSeq 2000 (Illumina, San Diego, CA,

USA). Pathogenic mutations were validated by Sanger

sequencing. Mutation screening data were available for 156

TN tumors in this study.

Results

Intrinsic subtype classification

Whole genome expression profiling was analyzed for 593

TN tumors from the TNBCC with clinical ER-, PR-, and

HER2-negative status. Initially, each sample was assigned

an intrinsic breast tumor subtype using published PAM50

gene expression centroids, where 76.7 % was identified as

basal-like, 11.6 % as normal-like, 9.1 % as luminal, and

2.5 % as HER2-enriched (Table S2). These findings were

consistent with PAM50 distributions among TN tumors

from clinical trials and publically available microarray data

[7, 28]. We also assigned Lehmann subtypes (denoted with

prefix ‘‘L-’’) using published Lehmann centroid genes in a

hierarchical clustering analysis, where 13.2 % was identi-

fied as L-BL1, 36.3 % as L-BL2, 11.3 % as L-LAR,

23.8 % as L-IM, 10.1 % as L-M, and 5.4 % as L-MSL.

Derivation of TN subtypes

We first performed unsupervised hierarchical clustering to

identify molecular subtypes of TN breast cancer. Using

2158 highly variable probes, the data were clustered into

four groups using the Engelman–Hartigan test (Table 1;

Fig. 1a), which was confirmed by analysis of sample

classification robustness using consensus clustering

(Fig. 1b, c). GSEA revealed a basal-like signature (BL)

(50.8 %), a luminal signature (LAR) with overexpression

of androgen receptor (AR) and AR transcriptional targets

(10.6 %), an immune signature (IM) (16.9 %), and a stro-

mal signature (STR) (21.7 %) (Fig. 2). Tumors defined by

PAM50 modeling as LumA, LumB, and HER2-enriched

were assigned predominantly to the LAR subtype, while

the PAM50 basal-like tumors were divided between the BL

(61 %), IM (16 %), and STR (23 %) subtypes. NL tumors

were evenly distributed across all four TN subtypes

(Table 1). The LAR subtype was also associated with older

age (mean = 62.1) compared to non-LAR subtypes

(mean = 50.6) (p = 1.5 9 10-8). Enriched signaling

pathways among these four subtypes were similar to those

seen for comparable groups within the Lehmann classifi-

cation scheme (Table S9). This is further confirmed by the

overlap between agnostic subtypes and Lehmann subtype

assignments (Table 1), where roughly 80 % of the BL,

LAR, and IM groups and 63 % of the STR group were

assigned to analogous Lehmann subtypes. The most

notable departure in agreement is the presence of L-IM

tumors in the BL and STR groups. When exploring the

120 Breast Cancer Res Treat (2016) 157:117–131
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Table 1 Distribution of intrinsic subtypes and histopathologic features among four agnostic subtypes

BL

n (%)

LAR

N (%)

IM

N (%)

STR

n (%)

p-value

four subtypes

p-value

B versus NBa
p-value

BL, IM, STR

N = 301 N = 63 N = 100 N = 129

PAM50 subtype

Basal 278 (92) 0 (0) 74 (74) 103 (80)

HER2-enriched 1 (0.5) 23 (37) 5 (5) 6 (5)

Luminal A 0 (0) 15 (24) 2 (2) 2 (1)

Luminal B 1 (0.5) 7 (11) 2 (2) 5 (4)

Normal-like 21 (7) 18 (29) 17 (17) 13 (10) 7.2 9 10-61

Lehmann subtype

L-BL1 60 (20) 0 (0) 15 (15) 3 (2)

L-BL2 186 (62) 3 (5) 3 (3) 23 (18)

L-LAR 2 (0.7) 52 (83) 5 (5) 8 (6)

L-IM 49 (16) 5 (8) 74 (74) 13 (10)

L-M 3 (1) 1 (2) 3 (3) 53 (41)

L-MSL 1 (0.3) 2 (3) 0 (0) 29 (22) 2.5 9 10-48

BL

n (%)

LAR

N (%)

IM

N (%)

STR

n (%)

p-value

four subtypes

p-value

B versus NBa
p-value

BL, IM, STR

N = 161 N = 37 N = 55 N = 58

Mitotic index

1 or 2 23 (14) 17 (46) 10 (18) 12 (21)

3 138 (86) 20 (54) 45 (82) 46 (79) 2.7 9 10-4 6.3 9 10-5 0.49

Grade

1 or 2 13 (8) 10 (27) 4 (7) 9 (16)

3 148 (92) 27 (73) 51 (93) 49 (84) 6.0 9 10-3 4.3 9 10-3 0.21

Trabecular pattern

Absent 88 (55) 31 (84) 38 (69) 39 (67)

CPresent 73 (45) 6 (16) 17 (31) 19 (33) 5.0 9 10-3 9.2 9 10-3 0.079

Growth pattern

Epicenter 107 (66) 13 (35) 33 (61) 38 (66)

Infiltrative 45 (28) 18 (49) 19 (35) 18 (31)

Multifocal 9 (6) 6 (16) 2 (4) 2 (3) 0.011 4.9 9 10-4 0.83

Necrosis

Absent 52 (32) 25 (68) 36 (65) 29 (50)

CPresent 109 (68) 12 (32) 19 (35) 29 (50) 3.9 9 10-6 7.5 9 10-3 4.5 9 10-5

Fibrosis

0 or 1 88 (55) 12 (32) 37 (67) 36 (62)

2 or 3 73 (45) 25 (68) 18 (33) 22 (38) 7.0 9 10-3 4.4 9 10-3 0.22

In situ

Absent 125 (78) 17 (46) 45 (83) 50 (86)

CPresent 36 (22) 20 (54) 9 (17) 8 (14) 2.8 9 10-5 8.5 9 10-6 0.31

Lymphoid infiltrate

0 5 (2) 3 (8) 0 (0) 3 (5)

1 77 (48) 24 (65) 6 (11) 19 (33)

2 64 (40) 6 (16) 13 (24) 21 (36)

3 15 (9) 4 (11) 35 (65) 15 (26) 1.8 9 10-15 2.0 9 10-3 1.1 9 10-13

Lobulitis

0 or 1 56 (47) 14 (64) 19 (43) 13 (37)

2 40 (34) 6 (27) 16 (36) 13 (37)

3 22 (19) 2 (9) 9 (20) 9 (26) 0.59 0.20 0.84
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possibility of six TN subtypes (Table S10), no distin-

guishing pathways or ontologies were observed between

two candidate BL subtypes or two candidate STR subtypes

(Table S11). Thus, while the four subtypes are similar to

those described previously [6, 7], we were unable to

duplicate the presence of six subtypes of TN breast cancer

in this unsupervised analysis.

Histopathologic features among TN subtypes

TN tumors have several distinctive histopathologic charac-

teristics that capture differences in tumor cell behavior and

the tumor microenvironment. We evaluated 310 TN tumors

for 11 histopathological features (Table S5). The TN tumors

were most commonly classified as undifferentiated adeno-

carcinomas (37 %), but several rare tumors including ade-

noid cystic carcinomas, apocrine adenocarcinomas,

metaplastic carcinomas, and medullary carcinomas were

also observed (Table S6), with LAR enrichment of apocrine

adenocarcinomas and IM enrichment of medullary carcino-

mas. Significant differences in the distribution of all

histopathological features except lobulitis by TN subtype

were observed (Table 1). These associations were driven

largely by differences between the LAR subtype and the BL,

IM, and STR subtypes (Table 1).When restricting to the BL,

IM, and STR subtypes, only necrosis (p = 4.5 9 10-5),

lymphoid infiltrate (p = 1.1 9 10-13), and involution

(p = 0.03) were significantly associated with subtype

(Table 1). The degree to which histopathologic features

were correlated was variable (Table S12). As expected grade

and mitotic index showed the highest correlation (r = 0.73).

Age was also positively correlated with involution, where

breast cancer cases with complete involution were on aver-

age 10 years older than those with incomplete involution

(complete mean = 60.5 years; incomplete mean =

48.0 years).

Molecular TN subtypes based on histopathology

Given that we were unable to recapitulate the Lehmann

subtypes in an unsupervised analysis, we hypothesized that

genes related to tumor cell behavior and tumor microen-

vironment are integral to the identification of TN molecular

subtypes. Thus, we next utilized genes associated with 10

Table 1 continued

BL

n (%)

LAR

N (%)

IM

N (%)

STR

n (%)

p-value

four subtypes

p-value

B versus NBa
p-value

BL, IM, STR

N = 161 N = 37 N = 55 N = 58

Involution

Incomplete 66 (52) 8 (0.31) 33 (75) 20 (54)

Complete 60 (48) 18 (69) 11 (25) 17 (46) 3.5 9 10-3 0.018 0.030

Age [mean (SD)] 50.4 (14.8) 62.2 (13.7) 50.4 (13.2) 51.1 (14.9) 1.2 9 10-7 1.5 9 10-8 0.90

a Basal versus non-basal

Fig. 1 Clustering robustness using 2158 agnostic probes. a A plot of

Hartigan score values from the Engelman–Hartigan test for two

through ten clusters. The yellow-highlighted area indicates the

threshold below which additional clusters should not be added.

b The consensus cumulative distribution functions (CDF) for each

solution from two to ten clusters. c The delta area, or the relative

change in the area under the consensus CDF curve for each solution

from two to ten clusters
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Fig. 2 Agnostic TN subtypes. A heatmap of the 177 genes that were

significantly different across four agnostic TN subtypes. Red indicates

up-regulated genes; green represents down-regulated genes compared

to the mean. Each of the four subtypes is clustered as shown by the

dendrogram and samples are color coded by subtype: black BL, red

LAR, green IM, blue STR. Enriched ontologies by GSEA corre-

sponding to each of the four subtypes are listed next to the genes that

were significantly up-regulated in clusters
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histopathologic features, excluding tumor cell type, in a

hypothesis-driven clustering analysis of TN tumors. Within

the 310 samples for which histopathologic data were

available, we identified 2776 unique probes significantly

associated with each of the ten features (Table S7). Hier-

archical clustering for all 593 TN tumors using these 2776

probes identified six groups (Table 2; Fig. 3a). This was

confirmed by analysis of sample classification robustness

using consensus clustering (Fig. 3b, c). The six groups are

hereafter referred using the prefix ‘‘P-’’ to distinguish them

from the four original TN clusters and the Lehmann sub-

type assignments.

GSEA showed strong similarities between these six

phenotype-driven clusters and the Lehmann subtypes

(Table S13; Fig. 4). There was substantial although imper-

fect agreement between phenotype-driven clusters and

Lehmann subtype assignments for all groups except for the

P-BL1 subtype (j = 0.75, 95 % confidence interval

0.70–0.80), where tumors were assigned as L-BL1 (38 %),

L-BL2 (38 %), and L-IM (23 %) using Lehmann centroid

genes. Breast cancer cases in the P-LAR subtype were older

(mean = 62.7) than those in all other subtypes

(mean = 50.6) (p = 2.1 9 10-7). Compared to the previ-

ous agnostic analysis resulting in only four subtypes, we

identified a second BL and a second STR group. The P-BL2

subtype is distinguished from the P-BL1 subtype by the

overexpression of cell motility/adhesion and glycolysis/

gluconeogenesis pathways, and by the relative lack of

expression of inflammation, antigen presentation, and

adaptive immunity genes (Fig. 4). The P-STR1 subtype is

distinguishable from the P-STR2 subtype largely by the

overexpression of a wide range of immunomodulatory

pathways, while the P-STR2 subtype is enriched for MAPK

components, PI3K, NFKB, and smooth muscle cell devel-

opment pathways (Fig. 4). Furthermore, overexpression of

the CD3, interferon gamma (IFGN), and IL10Th1 and Th2

cellmarkers that regulate transcription of innate and adaptive

immune response genes including the PD-L1 marker asso-

ciated with increased T-cell cytotoxic immune response in

basal breast cancers [29], was observed among the P-IM,

P-BL1, and P-STR1 subtypes (Fig. S10). Finally, AR and

AR targets were substantially overexpressed among the

P-LAR group of TN tumors (n = 58, 9.8 %) (Fig. S11). We

utilized SAM to identify the probes (n = 185) most strongly

associated with these six subtypes (Table S8).

Histopathologic features among pathology-based TN

subtypes

The distribution of histopathologic features across the six

phenotype-driven subtypes was evaluated to better understand

how individual features were associated with each subtype

(Table 2). As before, all features were significantly associated

with TN subtypes except for lobulitis (Tables 2, S14). Apoc-

rine adenocarcinomas and medullary carcinomas were again

more commonamong the P-LAR (p = 6.9 9 10-6) andP-IM

(p = 2.9 9 10-5) subtypes. In addition, undifferentiated car-

cinomas were overrepresented among the P-BL1 subtype and

underrepresented among the P-LAR subtype (p = 8.0 9

10-9). Mitotic index, grade, growth pattern, necrosis, fibrosis,

and lymphoid infiltrate were all significantly associated with

non-LAR TN subtypes (Tables 2, S15).

We used a lasso-based multinomial regression model to

evaluate the combined effects of histopathologic features

and age that best predicted each of the six subtypes

(Fig. S12; Table S16). Each subtype had a unique pattern

of features that characterized membership. Lymphoid

infiltrate was the only variable that was predictive of each

subtype, where it was a positive predictor of P-BL1, P-IM,

and P-STR1 subtypes and a negative predictor of P-BL2,

P-LAR, and P-STR2 subtypes. The presence of necrosis

and higher mitotic index were positive predictors of both

P-BL subtypes, but these two groups were distinguished by

the absence of fibrosis among P-BL1 tumors, the presence

of trabecular pattern in P-BL2 tumors, and inverse rela-

tionships with lymphoid infiltrate. The two P-STR groups

shared no common predictors, where P-STR1 was only

predicted by lymphoid infiltrate and absence of DCIS; in

contrast, P-STR2 was negatively predicted by grade,

mitotic index, and lymphoid infiltrate and positively pre-

dicted by fibrosis. Lymphoid infiltrate was the strongest

predictor of the P-IM subtype, along with lower rates of

necrosis, DCIS, and involution. The P-LAR subtype was

distinct in that it was associated with lower grade, older

age, and higher rates of DCIS and complete involution.

We then evaluated the multivariate relationships

between each gene accounting for histopathologic features

and age to identify the features driving the 185-gene sig-

nature (Table S17). The majority of genes (n = 127) were

significantly associated with a single feature in the multi-

variate models, with no more than three features predicting

any single gene (p\ 0.01). Lymphoid infiltrate and

necrosis were the strongest drivers of this 185-gene sig-

nature, where lymphoid infiltrate was associated with 35 %

of genes and necrosis was associated with 38 % of genes.

Age, DCIS, fibrosis, and mitotic index were associated

with 12–15 % of genes, while lobulitis, trabecular pattern,

and grade had negligible impact on the signature. These

patterns further suggest that TN tumor heterogeneity is best

described by the integration of histopathologic features and

expression patterns of key pathways.

Cancer predisposition genes

To further characterize these six subtypes in terms of

potentially targetable pathways, germline mutations in
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Table 2 Distribution of intrinsic subtypes and histopathologic features among six phenotype-driven subtypes

P-BL1

n (%)

P-BL2

n (%)

P-LAR

n (%)

P-IM

n (%)

P-STR1

n (%)

P-STR2

n (%)

p-value

N = 161 N = 158 N = 58 N = 129 N = 50 N = 37

Agnostic subtype

BL 135 (84) 129 (82) 7 (12) 17 (13) 8 (16) 5 (13)

LAR 0 (0) 2 (1) 43 (74) 14 (11) 0 (0) 4 (11)

IM 17 (11) 0 (0) 4 (7) 77 (60) 2 (4) 0 (0)

STR 9 (5) 27 (17) 4 (7) 21 (16) 40 (80) 28 (76) 3.2 9 10-147

PAM50 subtype

Basal 155 (96) 146 (92) 4 (7) 84 (65) 47 (94) 19 (51)

HER2-enriched 3 (2) 1 (1) 16 (28) 9 (7) 2 (4) 4 (11)

Luminal A 0 (0) 0 (0) 11 (19) 4 (3) 0 (0) 4 (11)

Luminal B 1 (1) 4 (3) 6 (10) 2 (1) 1 (2) 1 (3)

Normal-like 2 (1) 7 (4) 21 (36) 30 (23) 0 (0) 9 (24) 7.0 9 10-47

Lehmann subtype

L-BL1 61 (38) 6 (4) 0 (0) 5 (4) 6 (12) 0 (0)

L-BL2 61 (38) 133 (84) 7 (12) 4 (3) 2 (4) 8 (22)

L-LAR 0 (0) 1 (1) 48 (83) 13 (10) 0 (0) 5 (14)

L-IM 37 (23) 4 (3) 3 (5) 96 (74) 1 (2) 0 (0)

L-M 1 (1) 14 (9) 0 (0) 8 (6) 37 (74) 0 (0)

L-MSL 1 (1) 0 (0) 0 (0) 3 (2) 4 (8) 24 (65) 5.6 9 10-98

P-BL1

n (%)

P-BL2

n (%)

P-LAR

n (%)

P-IM

n (%)

P-STR1

n (%)

P-STR2

n (%)

p-value

N = 86 N = 85 N = 37 N = 68 N = 21 N = 14

Mitotic index

1 or 2 8 (9) 10 (12) 18 (49) 14 (21) 1 (5) 11 (79)

3 78 (91) 75 (88) 19 (51) 54 (79) 20 (95) 3 (21) 4.8 9 10-12

Grade

1 or 2 4 (5) 4 (5) 12 (32) 7 (10) 1 (5) 8 (57)

3 82 (95) 81 (95) 25 (68) 61 (90) 20 (95) 6 (43) 3.2 9 10-10

Trabecular pattern

Absent 45 (52) 46 (54) 33 (89) 49 (72) 11 (52) 12 (86)

CPresent 41 (48) 39 (46) 4 (11) 19 (28) 10 (48) 2 (14) 1.8 9 10-4

Growth pattern

Epicenter 62 (72) 58 (68) 11 (30) 42 (63) 16 (76) 2 (14)

Infiltrative 18 (21) 25 (29) 23 (62) 20 (30) 5 (24) 9 (64)

Multifocal 6 (7) 2 (2) 3 (8) 5 (7) 0 (0) 3 (21) 7.1 9 10-6

Necrosis

Absent 25 (29) 22 (26) 26 (70) 47 (69) 11 (52) 11 (79)

CPresent 61 (71) 63 (74) 11 (30) 21 (31) 10 (48) 3 (21) 2.6 9 10-10

Fibrosis

0 or 1 60 (70) 46 (54) 8 (22) 41 (60) 16 (76) 2 (14)

2 or 3 26 (30) 39 (46) 29 (78) 27 (40) 5 (24) 12 (86) 3.3 9 10-7

In situ

Absent 73 (85) 64 (75) 16 (43) 53 (79) 21 (100) 10 (71)

CPresent 13 (15) 21 (25) 21 (57) 14 (21) 0 (0) 4 (29) 3.7 9 10-6

Lymphoid infiltrate

0 0 (0) 4 (5) 4 (11) 0 (0) 0 (0) 3 (21)

1 20 (23) 59 (69) 28 (76) 10 (15) 0 (0) 9 (64)

2 49 (57) 21 (25) 2 (5) 23 (34) 7 (33) 2 (14)

Breast Cancer Res Treat (2016) 157:117–131 125

123



breast cancer susceptibility genes were evaluated by TN

subtype [27]. The distribution of pathology-based TN

subtypes in the 156 TN tumors with mutation screening

data was comparable to the overall group of 593 tumors

(Table S18). A total of 21 (13.5 %) pathogenic mutations

were identified in six DNA repair genes: BRCA1, BRCA2,

BARD1, RAD50, BRIP1, and PALB2 (Table S18), which is

consistent with the 14.6 % of TN cases found to carry

germline mutations in other larger studies [27, 30]. The

mean age at diagnosis for women with germline mutations

(mean = 40.3 years) was significantly lower than for

women without germline mutations (mean = 48.1 years)

(p = 0.0013). Consistent with the observation that DNA

repair pathways are integral to the P-BL1 and P-BL2

subtypes, these two subtypes had the highest proportion of

individuals with germline mutations (17.8–22.5 %). Inter-

estingly, although the number of P-STR2 tumors screened

was small (n = 9), a relatively large proportion of these

tumors contained mutations in BRCA1 and PALB2

(22.2 %). In contrast, only 5.9 % of the P-IM subtype had

mutations in BRCA1 and BRCA2. No mutations were

identified in either the P-LAR or the P-STR1 subtypes. In

combination with the histopathologic features described

above, these patterns of germline mutations in DNA repair

genes provide further evidence for the heterogeneity of TN

tumors.

Discussion

In this analysis of 593 TN tumors, we identified six distinct

TN molecular subtypes by expression profiling and showed

that these subtypes are characterized by genes related to

histopathologic features that reflect heterogeneity in tumor

architecture, cell structure and behavior, and tumor

microenvironment. While our six phenotype-driven sub-

types were largely similar to those described by Lehmann,

et al. when comparing subtype-specific pathway enrichment,

Fig. 3 Clustering robustness using 2776 pathology-based probes. a A

plot of Hartigan score values from the Engelman–Hartigan test for

two through ten clusters. The yellow-highlighted area indicates the

threshold below which additional clusters should not be added. b The

consensus cumulative distribution functions (CDF) for each solution

from two to ten clusters. c The delta area, or the relative change in the

area under the consensus CDF curve for each solution from two to ten

clusters

Table 2 continued

P-BL1

n (%)

P-BL2

n (%)

P-LAR

n (%)

P-IM

n (%)

P-STR1

n (%)

P-STR2

n (%)

p-value

N = 86 N = 85 N = 37 N = 68 N = 21 N = 14

3 17 (20) 1 (1) 3 (8) 34 (51) 14 (67) 0 (0) 4.0 9 10-29

Lobulitis

0 or 1 27 (40) 30 (55) 15 (65) 19 (39) 7 (44) 4 (5)

2 26 (38) 19 (35) 4 (17) 19 (39) 3 (19) 4 (5)

3 15 (22) 6 (11) 4 (17) 11 (22) 6 (38) 0 (0) 0.13

Involution

Incomplete 36 (51) 36 (59) 7 (27) 36 (71) 10 (63) 2 (22)

Complete 34 (49) 25 (41) 19 (73) 15 (29) 6 (38) 7 (78) 2.6 9 10-3

Age [mean (SD)] 49.8 (14.4) 49.3 (14.1) 62.7 (15.1) 52.4 (14.0) 49.7 (14.5) 55 (14.8) 4.2 9 10-8

126 Breast Cancer Res Treat (2016) 157:117–131

123



Fig. 4 Phenotype-driven TN subtypes. A heatmap of the 185 genes

that were significantly different across the six phenotype-driven TN

subtypes. Red indicates up-regulated genes; green represents down-

regulated genes compared to the mean. Each of the six subtypes is

clustered as shown by the dendrogram and samples are color coded by

subtype: black P-BL1, red P-BL2, green P-LAR, blue P-IM, cyan

P-STR1, purple P-STR2. Enriched ontologies by GSEA correspond-

ing to each of the six subtypes are listed next to the group of genes

that were significantly up-regulated in clusters
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there were differences between the two classification

schemes. In particular, differences between the two BL

subtypes and two STR subtypes in the current study were

dependent on the integration of signaling pathways associ-

ated with pathology features. Specifically, the up-regulation

of immune pathways was a distinguishing feature of both the

P-BL1 and P-STR1 subtypes, consistent with lymphocytic

infiltration histopathological patterns across the six TN

subtypes. However, mitotic index, grade, growth pattern,

necrosis, fibrosis were also driving factors in the differences

in histopathological patterns between these subtypes.

Basal-like breast cancers are known to have higher

grade and mitotic index and have greater presence of

necrosis, tumor infiltrating lymphocytes, and incomplete

involution compared to non-basal breast cancer subtypes

[16]. We validate this in the current study by showing that

these differences exist between the P-LAR and basal-like

subtypes. In addition, we show that these features are

heterogeneous among basal-like subtypes. In particular,

mitotic index and grade were low among the P-IM and

P-STR2 subtypes, necrosis was substantially lower among

P-IM and P-STR tumors, complete involution was highest

among the P-STR2 subtype, and lymphoid infiltrate was

highly variable across all basal-like subtypes. We further

show for the first time that unique combinations of these

features can be used to predict TN molecular subtype.

In a recent study of germline cancer predisposition gene

mutations in TN cases, mutations in genes involved in

homologous recombination (HR) accounted for 81 % of all

non-BRCA1/2 mutations identified [27], indicating that the

perturbation of HRDNA repair may be particularly

important for TN breast carcinogenesis. In light of this, it is

not surprising that the 21 mutations identified in the 156

women included in the current study were all found in six

HR genes (BRCA1, BRCA2, BRIP1, BARD1, PALB2,

RAD50) [31]. While it is known that DNA repair mutations

are associated with the basal breast cancer molecular sub-

type [32], our data suggest that this effect may be limited to

the development of the P-BL1, P-BL2, and possibly

P-STR2 subtypes of TN breast cancer through disruption of

the HR pathway.

A better understanding of the immune cells associated

with each of these subtypes is particularly important con-

sidering the prognostic implications of lymphocytic infil-

tration in highly proliferative tumors such as TN breast

cancers. The presence of T regulatory cells and tumor-

associated macrophages has been correlated with negative

effect on survival in pancreatic, liver, colorectal, and breast

cancers [33–38]. In contrast, better overall and disease-free

survival has been associated with increased infiltration of

CD8? cytotoxic T cells in colorectal, ovarian, hepatocel-

lular, and breast cancers [39–42]. Cytokines associated

with T helper cells, Th1 (IFN-c/CD3?) and Th2 (IL10/

CD3?) cells have also been used to show that the relative

levels of Th1/Th2 cells have prognostic implications for

ovarian, non-small cell lung, and breast cancer [43–45].

Further studies that explore the extent to which these

individual cell types, and the immune processes they rep-

resent, influence specific TN subtypes are necessary.

Another important implication of the identification of

specific pathways up-regulated in TN subtypes is the pos-

sibility for the development of targeted therapies. The PD1/

PD-L1 pathway is a key inhibitor of the immune system

that favors tumor progression [46–48]. PD-L1 expression is

up-regulated specifically in basal breast tumors, and high

expression has been associated with better metastasis-free

and breast cancer-specific survival in basal breast tumors

[29]. Clinical trials of melanoma, renal, lung, prostate, and

bladder cancers investigating the use of anti-PD1 and anti-

PD-L1 agents suggest that blocking the PD1/PD-L1 path-

way may restore anti-cancer immunity [49–51] in a number

of tumors. The knowledge that PD1 and PD-L1 are up-

regulated in specific subtypes of TN breast cancer allows

for more focused and hence better-designed clinical trials

of anti-PD1/PD-L1 therapy in breast cancer and TN breast

cancer. Beyond PD1/PD-L1, these data may identify

additional targetable pathways that may lead to the

development of new therapies specific to TN breast cancer

subtypes.

In conclusion, we have shown that TN tumors are highly

heterogeneous, as determined by both gene expression and

pathology. The integration of these data with other geno-

mic and epidemiologic data is integral to a better under-

standing of these aggressive tumors. The utilization of tools

such as targeted sequencing and DNA copy number vari-

ation in combination with gene expression and pathology

will help to further define TN subtypes and to identify

potentially targetable biomarkers. It is also of particular

importance to characterize the implications of these TN

subtypes for response to treatment, disease progression,

and survival. Further studies are necessary to explore the

full extent of heterogeneity in TN tumors and the associ-

ated clinical implications.
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