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Abstract

Background: The genetic origins of Uralic speakers from across a vast territory in the temperate zone of North Eurasia
have remained elusive. Previous studies have shown contrasting proportions of Eastern and Western Eurasian ancestry
in their mitochondrial and Y chromosomal gene pools. While the maternal lineages reflect by and large the
geographic background of a given Uralic-speaking population, the frequency of Y chromosomes of Eastern Eurasian
origin is distinctively high among European Uralic speakers. The autosomal variation of Uralic speakers, however, has
not yet been studied comprehensively.

Results: Here, we present a genome-wide analysis of 15 Uralic-speaking populations which cover all main groups of
the linguistic family. We show that contemporary Uralic speakers are genetically very similar to their local geographical
neighbours. However, when studying relationships among geographically distant populations, we find that most of the
Uralic speakers and some of their neighbours share a genetic component of possibly Siberian origin. Additionally, we
show that most Uralic speakers share significantly more genomic segments identity-by-descent with each other than
with geographically equidistant speakers of other languages. We find that correlated genome-wide genetic and lexical
distances among Uralic speakers suggest co-dispersion of genes and languages. Yet, we do not find long-range
genetic ties between Estonians and Hungarians with their linguistic sisters that would distinguish them from their
non-Uralic-speaking neighbours.

Conclusions: We show that most Uralic speakers share a distinct ancestry component of likely Siberian origin,
which suggests that the spread of Uralic languages involved at least some demic component.
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Background
The linguistic landscape of North Eurasia is dominated by

three language families—Turkic, Indo-European (IE) and

Uralic. It has recently been shown that the spread of

Turkic languages was mediated by gene flow from South

Siberia [1]. Similarly, ancient DNA evidence of a major

episode of gene flow from the Ponto-Caspian Steppe Belt

to Central Europe and Central Asia during the Late Neo-

lithic and Early Bronze Age (BA) has been interpreted as

supporting the ‘Steppe Hypothesis’ of the spread of IE

languages [2, 3]. However, while historical linguists have

some level of consensus over the origin and spread of the

Uralic languages and archaeologists have views about the

dynamics of material culture over the relevant time and

space [4–8], the genetic history of Uralic-speaking popula-

tions has remained poorly known.

The Uralic family contains 40–50 different languages

[9–11] and covers a vast territory mainly from the shores

of the Baltic Sea in Europe to the West Siberian Plain and

the Taymyr Peninsula in Asia (Fig. 1a). According to the
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Fig. 1 Geographic distribution of the Uralic-speaking populations and the schematic tree of the Uralic languages. a The geographic spread of the
Uralic-speaking populations. Colour coding corresponds to the respective language in panel b. b Schematic representation of the phylogeny of
the Uralic languages. Pie diagrams indicate the relative share of West and East Eurasian mitochondrial (mtDNA) and Y chromosomal (Y) lineages.
Data from Additional file 5: Table S4 and Additional file 6: Table S5
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classical view, the Uralic languages derive from a protolan-

guage that split into two major branches—the

Finno-Ugric (FU) and the Samoyed. The suggested age of

the Uralic language family is 6,000–4,000 years before

present (BP) (see e.g. [12–14], cf. [15, 16]). The most

widely accepted hypotheses place the homeland of the

Uralic language family into the watershed of river Volga

and its tributaries Oka and Kama (see e.g. [17–20] and ref-

erences therein), while some scholars propose a Siberian

homeland [12, 21, 22]. The precursors of present-day FU

languages gradually spread west towards the Baltic Sea

(Proto-Finnic) [13, 23], north-west (Proto-Saami) [24],

north (Proto-Permian branch giving rise to Komi) [9],

whereas some (Udmurt, Mordovian and Mari) remained

in the Volga area. The precursors of the Ugric (Khanty,

Mansi and Hungarian) and Samoyed languages (e.g.

Nenets, Nganasan, Selkup), spoken today mostly to the

east of the Ural Mountains, but also in Central Europe

(Hungarian) and in Northeast (NE) Europe (Nenets), are

thought to have descended from the easternmost varieties

of the Uralic proto-languages spoken in western [18] or

eastern [12] side of the Ural Mountains. Their geographic

range expansion occurred most likely as a combination of

demic and cultural dispersal processes [9]. The

proto-Hungarian spread southwest towards Central Eur-

ope during the first millennium AD, while the linguistic

ancestors of Mansi and Khanty remained mostly in West

Siberia [9]. The Samoyed languages reached the periphery

of their present-day spread area in the Taimyr Peninsula

as late as on sixteenth century AD [25, 26]. Recent lin-

guistic studies associate the diversification of the Uralic

family with climatic and cultural changes [13] that may

have led to a considerable demographic changes since

the Mesolithic times in their core areas and to further

migrations towards the north and northwest.

The question as which material cultures may have

co-spread together with proto-Uralic and Uralic lan-

guages depends on the time estimates of the splits in the

Uralic language tree. Deeper age estimates (6,000 BP) of

the Uralic language tree suggest a connection between

the spread of FU languages from the Volga River basin

towards the Baltic Sea either with the expansion of the

Neolithic culture of Combed Ware, e.g. [6, 7, 17, 26] or

with the Neolithic Volosovo culture [7]. Younger age es-

timates support a link between the westward dispersion

of Proto-Finno-Saamic and eastward dispersion of Proto-

Samoyedic with a BA Sejma-Turbino (ST) cultural com-

plex [14, 18, 27, 28] that mediated the diffusion of specific

metal tools and weapons from the Altai Mountains over

the Urals to Northern Europe or with the Netted Ware

culture [23], which succeeded Volosovo culture in the

west. It has been suggested that Proto-Uralic may have

even served as the lingua franca of the merchants involved

in the ST phenomenon [18]. All these scenarios imply that

material culture of the Baltic Sea area in Europe was influ-

enced by cultures spreading westward from the periphery

of Europe and/or Siberia. Whether these dispersals in-

volved the spread of both languages and people remains

so far largely unknown.

Previous genetic studies have shown that demographic

histories of Uralic-speaking populations inferred from ma-

ternally inherited mitochondrial (mtDNA) and paternally

inherited Y chromosomes (chrY) are different. MtDNA

studies of Uralic speakers suggest that the distribution of

Western and Eastern Eurasian components is mostly de-

termined by geography [29–32]. Thus, Western and East-

ern Eurasian mtDNA lineages co-occur only in their

contact zone in the Circum-Uralic region [29, 31, 33]. In

contrast, the spread of paternal lineages among Uralic

speakers in Europe does not follow this pattern: up to one

half of males belong to the pan-North Eurasian chrY hap-

logroup (hg) N3a, which is closely related to lineages found

in Siberian and East Asian populations [34–36]. This hg is

virtually absent or rare in Southern Europe and in

IE-speaking Scandinavians [30, 35, 37–42]. A recent study

suggests that the high frequency of N3a lineages in Eastern

and Northern Europe is due to a demic expansion from East

Eurasia within the last 5000 years [35, 36]. It has also been

suggested that certain hg N3a3`6 sub-branches may have

co-spread with ST tools and possibly also FU languages [36].

Our goal in this study was to test whether the

Uralic-speaking peoples share recent common genetic

ancestry in their genomes. Specifically, we tested whether

the clear signal of migration between East Eurasia and

Europe that is present in the distribution of paternal lineages

could be also detected in the patterns of autosomal variation.

It has been shown earlier that the genetic landscape of

northern and northeastern European populations displays af-

finities with Siberia [43–45] and today the components of

East Eurasian origin are seen most prominently among the

Fennoscandian Saami [46, 47], where they constitute about

13% of their genomes [47]. To this end, we generated a data-

set of genome-wide genetic variation at over half a million

genomic positions (Additional file 1: Table S1) for 15

Uralic-speaking populations (Additional file 2: Table S2), cov-

ering the main groups of the language family. We analysed

this dataset in the context of relevant European and Asian

populations.

Results
The population structure of Uralic speakers

To contextualize the autosomal genetic diversity of

Uralic speakers among other Eurasian populations

(Additional file 1: Table S1), we first ran the principal

component (PC) analysis (Fig. 2a, Additional file 3: Figure

S1). The first two PCs (Fig. 2a, Additional file 3: Figure

S1A) sketch the geography of the Eurasian populations

along the East-West and North-South axes, respectively.
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A

B

Fig. 2 Principal component analysis (PCA) and genetic distances of Uralic-speaking populations. a PCA (PC1 vs PC2) of the Uralic-speaking populations
(highlighted, population abbreviations are as in Additional file 1: Table S1). Values in brackets along the axes indicate the proportion of genetic
variation explained by the components. b UPGMA tree of FST distances calculated based on autosomal genetic variation
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The Uralic speakers, along with other populations speaking

Slavic and Turkic languages, are scattered along the first

PC axis in agreement with their geographic distribution

(Figs. 1 and 2a) suggesting that geography is the main pre-

dictor of genetic affinity among the groups in the given

area. Secondly, in support of this, we find that FST-distances

between populations (Additional file 3: Figure S2)

decay in correlation with geographical distance (Pearson’s

r = 0.77, p < 0.0001). On the UPGMA tree based on these

FST-distances (Fig. 2b), the Uralic speakers cluster into

several different groups close to their geographic

neighbours.

We next used ADMIXTURE [48], which presents the in-

dividuals as composed of inferred genetic components in

proportions that maximize Hardy-Weinberg and linkage

equilibrium in the overall sample (see the ‘Methods’ section

for choice of presented K). Overall, and specifically at lower

values of K, the genetic makeup of Uralic speakers resem-

bles that of their geographic neighbours. The Saami and (a

subset of) the Mansi serve as exceptions to that pattern be-

ing more similar to geographically more distant

populations (Fig. 3a, Additional file 3: S3). However, start-

ing from K = 9, ADMIXTURE identifies a genetic compo-

nent (k9, magenta in Fig. 3a, Additional file 3: S3), which is

predominantly, although not exclusively, found in Uralic

speakers. This component is also well visible on K = 10,

which has the best cross-validation index among all tests

(Additional file 3: S3B). The spatial distribution of this

component (Fig. 3b) shows a frequency peak among

Ob-Ugric and Samoyed speakers as well as among neigh-

bouring Kets (Fig. 3a). The proportion of k9 decreases rap-

idly from West Siberia towards east, south and west,

constituting on average 40% of the genetic ancestry of FU

speakers in Volga-Ural region (VUR) and 20% in their

Turkic-speaking neighbours (Bashkirs, Tatars, Chuvashes;

Fig. 3a). The proportion of this component among the

Saami in Northern Scandinavia is again similar to that of

the VUR FU speakers, which is exceptional in the geo-

graphic context. It is also notable that North Russians,

sampled from near the White Sea, differ from other Rus-

sians by sporting higher proportions of k9 (10–15%), which

is similar to the values we observe in their Finnic-speaking

A

B

Fig. 3 Population structure of Uralic-speaking populations inferred from ADMIXTURE analysis on autosomal SNPs in Eurasian context. a Individual
ancestry estimates for populations of interest for selected number of assumed ancestral populations (K3, K6, K9, K11). Ancestry components
discussed in a main text (k2, k3, k5, k6, k9, k11) are indicated and have the same colours throughout. The names of the Uralic-speaking populations are
indicated with blue (Finno-Ugric) or orange (Samoyedic). The full bar plot is presented in Additional file 3: Figure S3. b Frequency map of component k9
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neighbours. Notably, Estonians and Hungarians, who are

geographically the westernmost Uralic speakers, virtually

lack the k9 cluster membership.

The mitochondrial gene pool of most of the Uralic

speakers is comprised of typical West Eurasian mtDNAs

(Fig. 1b). Only West Siberian Nenets and Nganasans have

> 50% of Eastern EurasianmtDNAvariants (Additional file 4:

Table S3 and Additional file 5: Table S4). Contrary to that,

a considerable amount of the chrY lineages of both West

Siberian and European Uralic speakers belong to East Eur-

asian hg N (Fig. 1b, Additional file 6: Table S5). The only

exceptions to this pattern among the Uralic speakers are

Hungarians and Selkups. Among Hungarians, hg N is vir-

tually absent, while among Selkups, it is much less fre-

quent (< 10%) than in other Samoyeds (Additional file 6:

Table S5). The prevailing hg in the paternal pool of Selk-

ups is hg Q, which they share with genetically similar Kets

and South Siberians (Additional file 3: Figure S11). Besides

low frequencies of hg N Selkups share with East European

populations also hg R1a-M458 (Additional file 6: Table

S5). We performed correlation analysis to formally test

whether the distribution of the k9 component (Fig. 3b)

spatially overlaps with the spread of specific chrY hg N2

and N3 lineages that have been shown to be relevant in

the context of Uralic speakers [36]. We found a weak but

significant correlation with the sub-hgs spread near the

Ural Mountains, but not with those that reach up to

Fennoscandia (Additional file 7: Table S6).

We also tested the different demographic histories of fe-

male and male lineages by comparing outgroup f3 results

for autosomal and X chromosome (chrX) data for pairs of

populations (Estonians, Udmurts or Khanty vs others) with

high versus low probability to share their patrilineal ances-

try in chrY hg N (see the ‘Methods’ section, Add-

itional file 3: Figure S13). We found a minor but

significant excess of autosomal affinity relative to chrX for

pairs of populations that showed a higher than 10%

chance of two randomly sampled males across the two

groups sharing their chrY ancestry in hg N3-M178, com-

pared to pairs of populations where such probability is

lower than 5% (Additional file 3: Figure S13).

In sum, these results suggest that most of the Uralic

speakers may indeed share some level of genetic con-

tinuity via k9, which, however, also extends to the geo-

graphically close Turkic speakers.

Distilling the language-mediated excess of genetic

continuity

To test whether the common genetic substrate of Uralic

speakers suggested by the k9 component also presents

itself in the sharing patterns of derived alleles across the

genome, we calculated D-statistics [49] as in Skoglund et

al. [50] (Additional file 3: Figure S4). We explored de-

rived allele sharing patterns in a wide set of Eurasian

populations contrasting sharing with the westernmost

Uralic speakers (Saami, Finns, Estonians, Hungarians)

on one hand and European populations (Swedes, Poles,

French) on the other. We found that it is the admixture

with the Siberians that makes the Western Uralic

speakers different from the tested European populations

(Additional file 3: Figure S4A-F, H, J, L). Differentiating

between Estonians and Finns, the Siberians share more

derived alleles with Finns, while the geographic neigh-

bours of Estonians (and Finns) share more alleles with

Estonians (Additional file 3: Figure S4M). Importantly,

Estonians do not share more derived alleles with other

Finnic, Saami, VUR FU or Ob-Ugric-speaking popula-

tions than Latvians (Additional file 3: Figure S4O). The

difference between Estonians and Latvians is instead

manifested through significantly higher levels of shared

drift between Estonians and Siberians on the one hand

and Latvians and their immediate geographic neighbours

on the other hand. None of the Uralic speakers, includ-

ing linguistically close Khanty and Mansi, show signifi-

cantly closer affinities to the Hungarians than any

non-FU population from NE Europe (Additional file 3:

Figure S4R).

We next tested whether the Uralic-speaking popu-

lations share more identity-by-descent (IBD) [51]

segments with geographically distant Uralic groups

than their non-Uralic neighbours do (Fig. 4 A–E,

Additional file 8: Table S7, Additional file 9: Table S8,

Additional file 10: Table S9). High IBD sharing between

Permic speakers and Khanty has been earlier reported in

Triska et al. [52]. Indeed, Finnic speakers and Saami

share more IBD segments with their distant linguistic rel-

atives in VUR (Mari, Komi and Udmurts) and even with

West Siberian Uralic speakers than NE Europeans in the

control group (blue cells, Fig. 4 A). In addition, Saami

and Karelians show a significant excess of IBD segment

sharing with several non-Uralic peoples of Siberia (green

cells, Fig. 4 A). Compared to their non-Uralic neighbours,

the Samoyedic Nganasans share more IBD segments with

all the tested Siberian Uralic speakers, most of the Uralic

speakers from VUR, and even with Saami and Karelians

from NE Europe (Fig. 4 E). When Maris and Udmurts

(Fig. 4 C) are compared to their neighbouring Chu-

vashes, Tatars and Bashkirs, they display more shared

IBD segments with Saami, Vepsians and North Rus-

sians in the west and specifically only with the

Uralic-speaking populations to the east of the Ural

Mountains. All the above-mentioned findings of IBD

analyses attest to at least some degree of common

genetic substrate among most of the analysed Uralic

populations. Yet, we did not find any excess IBD

sharing when Estonians (Fig. 4 A), Hungarians (Fig. 4 B)

and Mordovians (Fig. 4 D) were compared to the Uralic

speakers from VUR and Siberia.
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fineSTRUCTURE. Globetrotter

To study the fine-scale genetic structure of Uralic-speaking

populations and to reconstruct past admixture events in

their history, we used the haplotype-based approach imple-

mented in fineSTRUCTURE [53] and GLOBETROTTER

[54]. fineSTRUCTURE clusters individuals into natural

groups based on patterns of haplotype sharing similarity.

The clusters identified in our sample largely correspond to

self-identified ethnic groups while higher hierarchical clus-

ters follow broader geographic proximity patterns (Add-

itional file 3: Figures S5-S6). In some cases, geographic and

linguistic proximity co-vary and for example the clusters

we name ‘Finnic’ and ‘Saami’ (Additional file 3: Figure S5)

consist of only Uralic speakers, while ‘Europe 1’ and ‘Eur-

ope 2’ encompass both Uralic and non-Uralic speakers.

Here, Uralic-speaking Hungarians group together with

Slavic speakers and Germanic-speaking Swedes in ‘Europe

2’ (Additional file 3: Figure S5). Similarly, Uralic-speaking

Estonians form a cluster with Baltic-speaking Latvians and

Lithuanians (‘Europe 1’ in Additional file 3: Figure S5),

which also includes Mordovians and Russians.

Globetrotter full analysis The natural clusters defined

by fineSTRUCTURE were further used to study admixture

history with Globetrotter analysis, which was applied in

two different setups. First, we performed the ‘full’ analysis,

where every recipient population could copy from any

other donor group (Fig. 5a, Additional file 11: Table S10).

Populations of interest were clustered into three geo-

graphically defined groups: (1) European (blue palette, all

studied Europeans except the easternmost VUR popula-

tions—Maris, Udmurts, Komis, Tatars, Bashkirs and Chu-

vashes); (2) VUR (green palette); and (3) West Siberian

(magenta palette). Most of the inferred admixture events

in this analysis were simple one-date events with high stat-

istical support (third quartile of maxR2 fit scores of single

date events = 0.91, Additional file 11, Table S10). As ex-

pected, many events involved contacts between geograph-

ically close source populations. For example, the majority

of admixture events in the European set (‘Europe 1’, ‘Eur-

ope 2’, ‘Finnic’ and ‘Saami’, Fig. 5a) involve populations

from within the set, and only two groups show traces of

admixture from non-European sources: ‘Europe 2’ from

A

B

C

D

E

Fig. 4 Share of ~ 1–2 cM identity-by-descent (IBD) segments within and between regional groups of Uralic speakers. For each Uralic-speaking
population representing lines in this matrix, we performed permutation test to estimate if it shows higher IBD segment sharing with other population
(listed in columns) as compared to their geographic control group. Empty rectangles indicate no excess IBD sharing, rectangles filled in blue indicate
comparisons when statistically significant excess IBD sharing was detected between one Uralic-speaking population with another Uralic-speaking
population (listed in columns), rectangles filled in green mark the comparisons when a Uralic-speaking population shows excess IBD sharing with a
non-Uralic-speaking population. For each tested Uralic speaker (matrix rows) populations in the control group that were used to generate
permuted samples are indicated using small circles. For example, the rectangle filled in blue for Vepsians and Komis (A) implies that the
Uralic-speaking Vepsians share more IBD segments with the Uralic-speaking Komis than the geographic control group for Vepsians, i.e.
populations indicated with small circles (Central and North Russians, Swedes, Latvians and Lithuanians). The rectangle filled in green for
Vepsians and Dolgans shows that the Uralic-speaking Vepsians share more IBD segments with the non-Uralic-speaking Dolgans than the
geographic control group
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Caucasus/Near Eastern groups and ‘Saami’ from the VUR

(Fig. 5).

In the VUR (Fig. 5a), all populations except Maris and

Udmurts show considerable admixture with other Euro-

peans. In West Siberia, three out of four clusters display

traces of admixture mostly with Siberian, and East and

Central Asian donors. On the contrary, ‘Mansi’ has a dis-

tinctive admixture profile—nine Mansi samples cluster

closely together with VUR populations (Additional file 3:

Figure S5; for ADMIXTURE profiles, see also Fig. 3) and,

similarly to them, show evidence for substantial recent ad-

mixture with Europeans around sixteenth to eighteenth cen-

tury. This group is considered as an outlier here. The rest of

the Mansi are clustered with Khanty people following the

linguistic grouping of Ob-Ugric (Additional file 3: Figure S5).

Globetrotter regional analysis The excess of admixture

events between closely related geographical neighbours

may mask traces of subtle genetic contacts with distantly

related populations [54]. Therefore, in the ‘regional’

analysis, we excluded neighbours from the set of possible

surrogates, allowing copying only from donors with a

different group label, if not specified differently (see

Additional file 12: Table S11 and note therein). Similarly

to the ‘full’ analysis, ‘regional’ results have high statistical

support (third quartile of maxR2 fit scores of single date

events = 0.93, Additional file 11: Table S10).

In the European set, only the Uralic-speaking ‘Finnic’

and ‘Saami’ clusters have a detectable (more than 3%)

amount of admixture with West Siberian sources (Fig. 5b),

even if we leave aside the contribution from already

admixed Western Siberian ‘Mansi’ cluster (Fig. 5 and

Additional file 3: Figure S5). In ‘Saami’, the Siberian influ-

ence is more notable as well as diverse: it is linked both

with ‘Samoyed’ (consisting here of Nenets, Selkups and

neighbouring Kets) and with West/Central Siberian

(‘W-C-Sib’) clusters (Fig. 5b).

The Uralic- and non-Uralic clusters from the VUR

have different admixture histories. Turkic speakers

(Bashkirs, Tatars and Chuvashes) contain three European

A B

Fig. 5 Circos plots of GLOBETROTTER (GT) results. The outer circle represents target groups for which GT inference was performed (wide segments)
and additional surrogate populations, which were used to describe admixture in target populations (narrow segments). Geographic affiliation of target
groups is colour-coded: blue—Europe (except populations from Volga-Ural region—Komis, Udmurts, Maris, Tatars, Chuvashes, Bashkirs); green—Volga-
Ural region; and magenta—Western Siberia. Inner bar plots depict genetic composition of inferred sources of admixture in each of the target groups.
A pair of sources is shown for a simple one-way admixture event between two populations, and an additional pair of sources for the less strongly
signaled event is shown for a one-date multi-way admixture between more than two sources (marked as MW in the outer circle). In a simple one-date
event, a pair of sources contributes 100% of the DNA of the target population. Surrogate populations in the inner bar plots are shaded according to
the colour scheme given in the outer ring, and those contributing < 3% to mixing sources are coloured in grey. Point estimates and confidence
intervals for the date of inferred admixture event are shown next to the cluster label. The details of the GT source groups are given in Additional file 3:
Figure S5 and Additional file 11: Table S10. a Results of ‘full’ analysis, where each cluster was allowed to copy from every other cluster. b Results of
‘regional’ analysis, where no copying between samples from the same geographical region was allowed. For example, in the ‘full’ analysis of the
‘Europe 1’ cluster, a simple one-date admixture event was detected. The first source population contributes 85% of the total DNA, including 76% from
the ‘Europe 2’ surrogate; the second source contributes 15% and is dominated by the ‘Finnic’ cluster. The admixture took place around 1211 CE (95%
CI: 1213–1412 CE). Abbreviations: C-Central; Cauc-Caucasus; E-East; N-North; S-South; Sib-Siberia; W-West.
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donors (‘Europe1’, ‘Europe2’ and ‘W-S-Europe’; Fig. 5b),

while admixture in Uralic speakers displays mostly only

one dominating European Eastern Baltic/Russian surro-

gate (‘Europe1’). In addition, Turkic speakers receive

substantial genetic contribution from South Siberian/

East Asian groups (‘E-Asia/S-Sib’ in Fig. 5b), as was also

shown earlier in Yunusbaev et al. [1]. This is not seen in

the Uralic-speaking groups (Komis, Maris, Udmurts),

who instead have both ‘Khanty-Mansi’ and ‘Samoyed’, i.e.

Uralic-speaking Siberian donors. Contacts between

Uralic speakers from Europe and West Siberia/VUR dis-

play mostly unidirectional east-to-west ‘donating’ pat-

tern: for example, Komis are dominant surrogates for

the ‘Finnic’ and ‘Saami’ groups, but the latter two do not

contribute much to admixture events involving Komis.

A similar trend was also seen in IBD analysis (Fig. 4).

In the ‘regional’ analysis, admixture sources of West Si-

berian ‘Khanty-Mansi’ include Samoyeds and a range of

VUR surrogates with a minor Central Asian/South Siber-

ian component (‘C-Asia/S-Sib’). The ‘Samoyed’ cluster

shows evidence for a complex one-date multiway admix-

ture shaped by multiple regionally diverse surrogates

dominated by West/Central Siberian and Khanty-Mansi

groups. The ‘Samoyed’ cluster is, together with South and

West Siberians, also a major contributor to an admixture

event in a separate Samoyed-speaking group—Nganasans

(‘Nganassan’, Fig. 5b and Additional file 3: Figure S6, see

Additional file 12: Table S11 for details). The most distinct

difference between Ob-Ugric (Khanty-Mansi) and Samoy-

edic speakers (Nenets, Selkups and Nganasans) is the

presence of East Asian/South Siberian (‘E-Asia/S-Sib’,

Fig. 5) component in the latter.

The time depth of the Globetrotter (Fig. 5b) inferred

admixture events is relatively recent—500–1900 AD (see

also complementary ALDER results, in Additional file 13:

Table S12 and Additional file 3: Figure S7)—and agrees

broadly with the results reported in Busby et al. [55]. A

more detailed examination of the ALDER dates, however,

reveals an interesting pattern. The admixture events de-

tected in the Baltic Sea region and VUR Uralic speakers

are the oldest (800–900 AD or older) followed by those in

VUR Turkic speakers (∼1200–1300 AD), while the admix-

ture dates for most of the Siberian populations (>1500 AD)

are the most recent (Additional file 3: Figure S7). The West

Eurasian influx into West Siberia seen in modern genomes

was thus very recent, while the East Eurasian influx into

NE Europe seems to have taken place within the first mil-

lennium AD (Fig. 5b, Additional file 3: Figure S7).

Affinities of the Uralic speakers with ancient Eurasians

We next calculated outgroup f3-statistics [48] to esti-

mate the extent of shared genetic drift between modern

and ancient Eurasians (Additional file 14: Table S13,

Additional file 3: Figures S8-S9). Consistent with previous

reports [45, 50], we find that the NE European popula-

tions including the Uralic speakers share more drift with

any European Mesolithic hunter-gatherer group than

Central or Western Europeans (Additional file 3: Figure

S9A-C). Contrasting the genetic contribution of western

hunter-gatherers (WHG) and eastern hunter-gatherers

(EHG), we find that VUR Uralic speakers and the Saami

share more drift with EHG. Conversely, WHG shares

more drift with the Finnic and West European popula-

tions (Additional file 3: Figure S9A). Interestingly, we see

a similar pattern of excess of shared drift between VUR

and EHG if we substitute WHG with the aDNA sample

from the Yamnaya culture (Additional file 3: Figure S9D).

As reported before [2, 45], the genetic contribution of

European early farmers decreases along an axis from

Southern Europe towards the Ural Mountains (Fig. 6,

Additional file 3: Figure S9E-F).

We then used the qpGraph software [48] to test alterna-

tive demographic scenarios by trying to fit the genetic di-

versity observed in a range of the extant Finno-Ugric

populations through a model involving the four basic Euro-

pean ancestral components: WHG, EHG, early farmers

(LBK), steppe people of Yamnaya/Corded Ware culture

(CWC) and a Siberian component (Fig. 6, Additional file 3:

Figure S10). We chose the modern Nganasans to serve as a

proxy for the latter component because we see least evi-

dence for Western Eurasian admixture (Additional file 3:

Figure S3) among them. We also tested the Khantys for

that proxy but the model did not fit (yielding f2-statistics,

Z-score > 3). The only Uralic-speaking population that did

not fit into the tested model with five ancestral components

were Hungarians. The qpGraph estimates of the contribu-

tions from the Siberian component show that it is the main

ancestry component in the West Siberian Uralic speakers

and constitutes up to one third of the genomes of modern

VUR and the Saami (Fig. 6). It drops, however, to less than

10% in most of NE Europe, to 5% in Estonians and close to

zero in Latvians and Lithuanians. Indeed, Estonians

show an excess of shared derived alleles with Ngana-

sans compared to Latvians [D-statistic of the form

D(Yorubas, Nganasans; Estonians, Latvians) = − 0.00263

(± 0.0008); Z-score = − 3.0691)] and Lithuanians [D(Yor-

ubas, Nganasans; Estonians, Lithuanians) = − 0.00426 (±

0.0009); Z-score = − 5.6638)].

Correlation between linguistic, geographical and genetic

data of Uralic speakers

In order to determine whether and to what extent Uralic

linguistic ancestry predicts genetic ancestry (see Add-

itional file 3: Figure S12), we studied the correlations of

genetic (autosomal, mtDNA and chrY, Additional file 15:

Table S14A-F), linguistic (Additional file 15: Table S14G)

and geographical distances (Additional file 15: Table

S14H) with Mantel [56] and partial Mantel tests [57]
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(see the ‘Methods’ section for details). We used two

types of autosomal distance matrices: FST distances and

the fineSTRUCTURE coancestry based matrix using the

data of shared chunk counts and two types of FSTs with

both mtDNA and chrY (six genetic distance matrices in

total, Additional file 15: Table S14).

Lexical distances between Uralic languages were signifi-

cantly positively correlated with all types of genetic dis-

tances (Additional file 16: Table S15). Lexical distances also

increased with geographical distances (r = 0.62, p = 0.001)

as did all the genetic distances (Additional file 16: Table

S15). When the effect of geographical distance was taken

into account, lexical and autosomal distances still showed

significant connections. For the fineSTRUCTURE-based

distances, the correlation was twice stronger than for

FST-based distances (r = 0.46, p = 0.001 vs r = 0.25, p =

0.01). This is consistent with the expectation that

haplotype-based distances capture more recent signals of

shared ancestry that are more relevant to recent history of

language expansions. For mtDNA and chrY distances, cor-

relation was not significant after correcting for geography.

Thus, our findings indicate a clear relationship between

autosomal genetic distances and lexical distances among

Uralic-speaking populations, even when the effect of

geographical distance is taken into account. The non-sig-

nificant finding with respect to mtDNA and chrY data may

reflect greater noise in these haploid loci. It is also worth

noting that geographical distances significantly predict

autosomal and chrY distances (but do not predict mtDNA

distances) when keeping the lexical distance constant

(Additional file 16: Table S15). This indicates that while

lexical distance accounts for some of the variation in auto-

somal genetic distances between populations independent

of geography, there remains genetic variation between

groups that is attributable to geography independent of

lexical distance—i.e. genetic variation is explained by a

combination of lexical distance and geographic distance.

Discussion

In prehistoric times, with no written texts or alphabets,

learning a language was only possible through direct

contact and, hence, it is natural to expect that languages

would often spread together with human migrations

[58]. There are several examples where indeed a

large-scale migration of people has also resulted in the

dispersal of new languages in a previously populated
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Fig. 6 Proportions of ancestral components in studied European and Siberian populations and the tested qpGraph model. a The qpGraph model
fitting the data for the tested populations. Colour codes for the terminal nodes: pink—modern populations (‘Population X’ refers to test population) and
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area [59–61]. On the other hand, it has been shown that

the spread of Turkic languages has at least in its west-

ernmost reach been mediated by only a handful of mi-

grants [1]. A more complex pattern of migration and

admixture appears to be behind the ‘Central-East Euro-

pean’ supralinguistic genetic substratum characterising

both East and West Slavic-IE speakers [62].

Here, we have studied the genetic variation of 15

Uralic-speaking populations to reveal patterns that could

correspond to the spatial distribution of the Uralic lan-

guages. Our analyses show that in the first approxima-

tion, the genetic diversity patterns of the Uralic speakers

correspond to geography. Principal component and AD-

MIXTURE analyses suggest that the Uralic-speaking

populations are genetically more similar to their neigh-

bours than to geographically distant linguistic relatives.

These analyses capture the broad-scale patterns of gen-

etic variation arisen through the cumulative demo-

graphic processes in the population history of the

continent. Importantly, ADMIXTURE analysis suggests

a genetic component (k9) that is primarily present in

most Uralic speakers (Fig. 3). Assuming that the spread

of Uralic languages occurred within the past 5 kya, we

next focused on haplotype sharing patterns between

populations to concentrate on more recent demographic

events. By inferring sharing of IBD segments between

populations, we found the excess of shared IBD seg-

ments between most of the Uralic speakers (Fig. 4). This

pattern is most notable for Uralic speakers in the Volga

River basin who share more IBD segments with Uralic

speakers both to the west and to the east of them than

do their geographic neighbours.

Our Mantel test is consistent with the presence of

common genetic substrate in most of the Uralic speakers

(Additional file 16: Table S15): we found a significant as-

sociation between autosomal genes and lexical variation

that is independent of geographic proximity. This could

be due to the legacy of ancient migrations shaping both

genetic and linguistic diversity. Alternatively, the associ-

ation could reflect a bias in gene flow between close lin-

guistic relatives. The clear relationship between genetic

and linguistic data does not extend to haploid markers,

possibly because the latter are more prone to the effects

of genetic drift. It has to be noted that this quantitative

approach does not allow us to study the correlation be-

tween the spread of specific genetic and linguistic

sub-lineages, for which a more precise case studies could

provide information in the future.

We next used fineSTRUCTURE and Globetrotter ap-

proach to identify genetic clusters and admixture signals

based on a wider spectrum of shared haplotypes. This

approach does not depend on prior information on sam-

ple groupings and operates instead with data-driven nat-

ural groups defined by patterns of haplotype sharing.

Most of the Finnic, Saami and VUR Uralic speakers

form clusters in accordance with their self-reported lin-

guistic affinity. These clusters are also distinct from the

neighbouring Turkic speakers who form their own

groupings. The exceptions here are for example the

Mansi, who clearly form two clusters that differ in the

extent of recent admixture with NE Europeans.

One of the notable observations that stands out in the

fineSTRUCTURE analysis is that neither Hungarians nor

Estonians or Mordovians form genetic clusters with other

Uralic speakers but instead do so with a broad spectrum

of geographically adjacent samples. Despite the docu-

mented history of the migration of Magyars [63] and their

linguistic affinity to Khantys and Mansis, who today live

east of the Ural Mountains, there is nothing in the

present-day gene pool of the sampled Hungarians that we

could tie specifically to other Uralic speakers. It is import-

ant to note here that our sample comes from the capital

region. Given the complex history and ethnic makeup of

Hungary, it is possible that a comprehensive sampling of

the country could reveal genetic ties to the Ugric speakers.

Furthermore, analyses of early medieval aDNA samples

from Karos-Eperjesszög cemeteries in Hungary have re-

vealed the presence of mtDNA haplogroups with East

Asian provenance testifying for vestiges of a real migration

of people from the east [64].

Perhaps even more surprisingly, we found that Esto-

nians, who show close affinities in IBD analysis to neigh-

bouring Finnic speakers and Saami, do not share an

excess of IBD segments with the VUR or Siberian Uralic

speakers. This is even more striking considering that the

immediate neighbours—Finns, Vepsians and Karelians—

do. In this context, it is important to remind that the

limited (5%, Fig. 6) East Eurasian impact in the auto-

somal gene pool of modern Estonians contrasts with the

fact that more than 30% of Estonian (but not Hungarian)

men carry chrY N3 that has an East Eurasian origin and

is very frequent among NE European Uralic speakers

[36]. However, the spread of chrY hg N3 is not language

group specific as it shows similar frequencies in

Baltic-speaking Latvians and Lithuanians, and in North

Russians, who in all our analyses are very similar to

Finnic-speakers. The latter, however, are believed to have

either significantly admixed with their Uralic-speaking

neighbours or have undergone a language shift from

Uralic to Indo-European [38].

Saami stand out from other NE European populations

by drawing up to 30% of their autosomal ancestry from

Asian genetic components (Fig. 3). They also display

long-range genetic affinities with both the Uralic- and

non-Uralic-speaking Siberians (Figs. 4 and 5). This is

probably because the ancestors of the modern Saami (a)

have lived in isolation from Southern and Eastern Euro-

pean gene flow and (b) have had more contacts with
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Nordic peoples on both sides of the Ural Mountains,

driven by the similar life-style of the Arctic people. Curi-

ously enough, the mtDNA heritage of Saami can be con-

sidered as predominantly (< 90%) Western Eurasian [30].

With some exceptions such as Estonians, Hungarians

and Mordovians, both IBD sharing and Globetrotter re-

sults suggest that there are detectable inter-regional

haplotype sharing ties between Uralic speakers from

West Siberia and VUR, and between NE European

Uralic speakers and VUR. In other words, there is a frag-

mented pattern of haplotype sharing between popula-

tions but no unifying signal of sharing that unite all the

studied Uralic speakers.

Recent aDNA studies have shown that extant Euro-

pean populations draw ancestry form three main migra-

tion waves during the Upper Palaeolithic, the Neolithic

and Early Bronze Age [2, 3, 45]. The more detailed re-

constructions concerning NE Europe up to the Corded

Ware culture agree broadly with this scenario and reveal

regional differences [65–67]. However, to explain the

demographic history of extant NE European populations,

we need to invoke a novel genetic component in Eur-

ope—the Siberian. The geographic distribution of the

main part of this component is likely associated with the

spread of Uralic speakers but gene flow from Siberian

sources in historic and modern Uralic speakers has been

more complex, as revealed also by a recent study of an-

cient DNA from Fennoscandia and Northwest Russia

[68]. Thus, the Siberian component we introduce here is

not the perfect but still the current best candidate for

the genetic counterpart in the spread of Uralic lan-

guages. On the westernmost reach of Uralic speakers,

the extent of this shared ancestry is, however, small on

the genome level and is significantly sex-specific in its

nature. The shared ancestry is clearly pronounced in

chrY, with Uralic speakers showing distinctively high

(29% on average) frequency of hg N3-M178. The tested

Uralic-speaking populations show marginally, though sig-

nificantly, higher affinity to populations with high frequency

of N3-M178 in the autosomal loci than predicted from

their X chromosomal similarity and their comparison to

other populations where N3-M178 is infrequent or ab-

sent. These sex-specific differences which are widely

spread among Uralic speakers today may trace their ori-

gins back to the time of the shared population history of

the Uralic populations and reflect complex socio-cul-

tural factors amplified by small effective population

sizes, potentially including examples such as male-spe-

cific elite dominance and/or cultural inheritance of

male reproductive fitness [34, 69] during the time of

their dispersal and admixture with neighbouring

groups.

Understanding the interplay between the cultural and

demographic processes leading to these observations

will, no doubt, motivate future studies, especially those

that will be done in the field of ancient genomics.

Conclusions
Here, we present for the first time the comparison of

genome-wide genetic variation of nearly all extant

Uralic-speaking populations from Europe and Siberia. We

show that (1) the Uralic speakers are genetically most

similar to their geographical neighbours; (2) nevertheless,

most Uralic speakers along with some of their geographic

neighbours share a distinct ancestry component of likely

Siberian origin. Furthermore, (3) most geographically dis-

tant Uralic speaking populations share more genomic IBD

segments with each other than with equidistant popula-

tions speaking other languages and (4) there is a positive

correlation between linguistic and genetic data of the

Uralic speakers. This suggests that the spread of the Uralic

languages was at least to some degree associated with

movement of people. Moreover, the discovery of the Siber-

ian component shows that the three known major compo-

nents of genetic diversity in Europe (European

hunter-gatherers, early Neolithic farmers and the Early

Bronze Age steppe people) are not enough to explain the

extant genetic diversity in (northeast) Europe.

Methods

Linguistic background and geographical location of the

samples

Approximately 20.5 million people speak Uralic lan-

guages today [10] (see details in Additional file 2: Table

S2), and only three of the Uralic languages—Hungarian,

Finnish and Estonian (Fig. 1a, Additional file 2: Table

S2)—are not listed as endangered in the UNESCO Atlas

of the World’s Languages in Danger [70]. In this study,

DNA samples of a total of 15 Uralic-speaking popula-

tions from Europe and Western Siberia were collected

from the present-day spread area of corresponding

Uralic languages (Fig. 1, Additional file 2: Table S2). The

population affiliations of the samples were derived from

the reported self-identity of the volunteers. We assume

that these affiliations reflect also the language they speak

as their mother tongue. The samples used here do not

encompass all extant Uralic languages, but represent ex-

amples of each of the main branches of the family, and

cover the whole distribution area.

Due to the small sample sizes and genetic homogen-

eity revealed by the genetic profiles on the ADMIX-

TURE plot of some of the studied populations, we

pooled the samples of Erzas and Mokshas together as

Mordovians and the samples of Permyak and Zyryan

Komis as Komi. The heterogeneous Mansi population

was divided into two to three subsets, according to the

proportions of Eastern and Western Eurasian ancestry

components in their genetic profiles. The Finnish group
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consists of Finns and Ingrian Finns who have been ana-

lysed separately in the analyses of PCA, FST distance cal-

culations, ADMIXTURE and D-statistics.

DNA of the samples was extracted from whole blood

according to the phenol/chloroform method [71]. DNA

concentrations were determined with spectrophotometry

(NanoDrop, Wilmington).

A total of 286 samples of Uralic-speaking individuals, of

those 121 genotyped in this study, were analysed in the

context of 1514 Eurasian samples (including 14 samples

published for the first time) based on whole genome

single nucleotide polymorphisms (SNPs) (Additional file 1:

Table S1). All these samples, together with the larger sam-

ple set of Uralic speakers, were characterized for mtDNA

and chrY markers.

Population structure and admixture

A total of 135 samples from this study were genotyped

using the Illumina 610K, 650K, 660K or 1M SNPs arrays

(Human610-Quad, HumanHap650Y, Human660W-Quad

or HumanOmni1-Quad BeadChip DNA Analysis Bead-

Chip Kits) and analysed for the whole-genome variation

together with published genotype data (Additional file 1:

Table S1). We used the software PLINK 1.05 [72] to filter

the dataset and to include only SNPs of autosomal chro-

mosomes with minor allele frequency > 0.1% and genotyp-

ing success > 97%. We excluded SNPs in strong linkage

disequilibrium (LD) (pairwise genotypic correlation r2 >

0.4) in a window of 200 SNPs (sliding the window by 25

SNPs at a time), due to the possible effect of background

LD on PCA and structure-like analysis. To exclude pos-

sible close relative pairs (first and second degree) among

the individuals, the software KING v1.4 [73] was applied

to the entire dataset and the resulting data were confirmed

by REAP v.1.2 [74]. The samples (populations and no.

of individuals) used for different analysis are given in

Additional file 1: Table S1.

PCA and FST
PCA (Fig. 2a and Additional file 3: Figure S1) was car-

ried out with the smartpca program of the EIGENSOFT

package [75], using 171,454 SNPs. Mean pairwise FST
values between populations and regional population

groups for 303,671 autosomal SNPs (Additional file 3:

Figure S2) were calculated with the method of Weir and

Cockerman [76] as in Metspalu et al. [77]. Only popula-

tions with n > 4 were included in FST calculations. The

UPGMA tree that visualizes the clustering based on the

genetic distances of studied population was built with

MEGA7 [78] (Fig. 2b).

ADMIXTURE

The population structure was analysed using the soft-

ware ADMIXTURE [79] implementing a structure-like

[80] model-based maximum likelihood clustering algo-

rithm (Fig. 3 and Additional file 3: Figure S3). The final

dataset of ADMIXTURE analysis of Uralic-speaking

populations in the general Eurasian background con-

sisted of 181,005 SNPs and 1800 individuals from 111

populations (Additional file 1: Table S1). We ran AD-

MIXTURE 100 times for each assumed number of an-

cestral populations (K) from K = 3 to K = 20 to observe

the deviation of the results between individual runs

(Additional file 3: Figure S3A). According to a low level

of variation in log likelihood scores (LLs < 1) within the

top 10% fraction of runs with the highest LLs [81], we

assume that usable results were at K = 3 to K = 18 and the

best fit K value appears on K10 level (Additional file 3:

Figure S3). We use letter k to refer to the specific compo-

nents in the genetic profiles of individuals/populations.

The frequency of k9 component from Additional file 7:

Table S6B was spatially mapped (Fig. 3b) with Surfer soft-

ware (v7, Golden Software, Inc.).

D-statistics

We calculated D-statistics [49] (Additional file 3: Figure

S4A-R) from tests of four populations in the form of (A,

B; C, D), where A is an outgroup, B is a test population,

C is an Uralic-speaking population and D is a non-Ura-

lic-speaking population, for a suggested tree-like popula-

tion history as in Skoglund et al. [50]. The test provides

information on whether or not the test population (B)

shares more derived alleles with one population from a

pair (C, D) than is expected from the process of incom-

plete lineage sorting without admixture, indicating a re-

cent gene flow between B and C or B and D. If D < 0, a

test population (B) shares more derived alleles with the

Uralic-speaking population (C) compared to the

non-Uralic-speaking population (D); if D > 0, a test

population (B) shares more derived alleles with the

non-Uralic-speaking population (D) compared to the

Uralic-speaking population (C). We used Yorubas as an

outgroup (A) and one out of four westernmost

Uralic-speaking populations: Saami from Sweden, Finns,

Estonians and Hungarians; and one out of three Euro-

pean non-Uralic speakers: French (representing West

Europeans), Poles (representing East Europeans) and

Swedes (representing North Europeans) as a fixed pair

(C, D). We ran the D-statistics test (Additional file 3:

Figure S4A-L) with a list of European and Siberian pop-

ulations (Additional file 1: Table S1) used as the test

population (B). We also ran the test using the local geo-

graphical neighbours of European Uralic speakers (Add-

itional file 3: Figure S4M-R). The null hypothesis was

that there is no excess share of derived alleles between

the Uralic-speaking populations and test population B

(D = 0). Only the D-values with |Z-score| > 3 were con-

sidered significant.
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Analysis of IBD segment sharing

We used the fastIBD algorithm implemented in the

BEAGLE 3.3 software [51] to detect chromosomal tracts

(> 1 cM in length) that are IBD between pairs of individ-

uals (Fig. 4, Additional file 8: Table S7, Additional file 9:

Table S8, Additional file 10: Table S9). IBD tracts with a

fastIBD score of 1e−10 from ten independent runs were

further post-processed using the algorithm developed by

Ralph and Coop 2013 [82]. This algorithm removes

spurius gaps, breaks introduced into long blocks of IBD

by low marker density and phasing switch-error and per-

forms final IBD tract calls. IBD tracts were first sorted

into bins (classes) based on their length: 1–2, 2–3, 3–4

and 4–5 cM. Within each bin, we computed average

length of IBD (sum of all tracts divided by sample size)

between randomly chosen pairs of subsamples from two

populations. We then tested whether Uralic speakers

from different regions demonstrate more IBD sharing

between each other. For this, we split populations in our

dataset into three regional groups: 1—Baltic-Scandina-

vian; 2—Eastern European-Volga; and 3—Siberian. We

then computed average IBD sharing between Uralic

speakers from two different regions. Next, within each

region, for each tested Uralic-speaking population, we

selected non-Uralic-speaking populations that are geo-

graphically close to them, as a control group. In order,

to assess, for example, whether Finns from the Baltic-

Scandinavian region have higher than expected IBD

sharing with Udmurts, we compared observed IBD shar-

ing with values characteristic of the control group popu-

lations. Namely, we took multiple random samples from

the pooled set of control for Finns and computed IBD

sharing with Udmurts and compared it with the ob-

served value. Given no recent shared ancestry between

Finns and Udmurts due to linguistic relatedness, Finns

are expected to show the same level of IBD sharing as

their control group. IBD sharing values higher than

background were counted to compute a p value. We

note that for some populations, we do not have an ap-

propriate geographic control group to carry out this kind

of permutation test. Nevertheless, most of the Uralic

peoples tested show higher IBD sharing with distant

Uralic speakers compared to their regional non-Uralic

control, and this suggests higher number of shared an-

cestors between Uralic speakers within the past dozens

of generations.

fineSTRUCTURE and GLOBETROTTER

While ADMIXTURE uses independent unlinked SNPs for

reconstructing individual ancestries, fineSTRUCTURE is a

much more powerful approach which infers fine-scale

population structure from haplotype data. Each individual

is presented as a matrix of non-recombining genomic

chunks received from a set of multiple donor individuals.

The patterns of similarities between these copying matri-

ces are then used to cluster individuals into genetic groups

using the Bayesian approach (Fig. 5, Additional file 3:

Figures S5-S6). This multistage process included the

following steps:

(a) First, we phased the data with SHAPEIT v.2 [83],

using the HapMap phase II b37 genetic map;

(b) We performed population assignments

(Additional file 1: Table S1) to genetic groups

(Additional file 3: Figure S5) using fineSTRUCTURE

v.2 [53]. We estimated initial Ne and θ parameters

using 10% of the samples and 10 Expectation-

Maximization steps of the algorithm. Next, we

described each individual recipient chromosome as a

mixture of genetic chunks from the set of all other

individuals (donors) using the estimated demographic

parameters;

(c) We used a matrix of the copying vectors generated

in the previous step to cluster the individuals using

the Bayesian algorithm. We performed two parallel

runs and assessed convergence between them using

Gelman-Rubin statistics, as implemented in the

software. Convergence was reached after 35 million

MCMC iterations, including the first three million

iterations, which we discarded as burn-in;

(d) Finally, we performed the tree-building step using

default settings and used the run with the highest

observed posterior likelihood to cluster the samples

into genetic groups. We inspected the population

dendrogram manually and assigned samples to

individual groups. We excluded a few outlying

samples, which showed evidence for very recent

genetic admixture or incorrect population

identification, from further admixture inference

with Globetrotter (Additional file 3: Figure S5,

Additional file 1: Table S1).

After assigning individual samples into natural genetic

groups, we performed two types of Globetrotter analysis

(Fig. 5), following the guidelines as in Hellenthal et al.

[54]. First, in the ‘full’ analysis (Additional file 11: Table

S10), we allowed the recipient individual to copy from

every donor population, except from its own population

label (self-copying). Second, in the ‘regional’ analysis

(Additional file 11: Table S10), we grouped the genetic

clusters identified by fineSTRUCTURE into three geo-

graphic regions: Europe, VUR and Western Siberia. We

allowed no self-copying within regional groups (Add-

itional file 12: Table S11 and see Note therein). In both

analyses, we used additional donors from outside of the

populations of interest to describe genetic ancestry, but

we did not perform admixture inference for them. These

included ‘W-S-Europe’, ‘Cauc/N-East’, ‘N-Cauc/C-Asia’,
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‘C-Asia/S-Sib’, "E-Asia/S-Sib", ‘Far East’, ‘W-C-Sib’, ‘Sib 1’

and ‘Sib 2’ (Additional file 3: Figure S5, Additional file 12:

Table S11). For all, except the ‘Nganassan’ group, we

grouped all donors from Western and Central Siberia to

form the ‘W-C-Sib’ cluster. For the admixture analysis of

Nganasan samples, we split the ‘W-C-Sib’ cluster into

‘Sib 1’, ‘Sib 2’ and ‘Nganassan’ and excluded the latter

from the generation of copying vectors to deny

self-copying as explained above (see Additional file 12:

Table S11 for details).

ALDER analysis

We used a method based on the decay of admixture link-

age disequilibrium (LD) implemented in the ALDER v1.03

software [84] to test and date the admixture signal in con-

temporary Northern Eurasian populations (Add-

itional file 3: Figure S7). We tested all population triplets

in our dataset with pre-set ALDER v1.03 parameters

(‘multiple admixture tests’ mode). We report the admixed

populations with their pairs of reference populations and

their inferred admixture timeframe that passed all the

pre-test steps had significant p values and highest

two-reference weighted LD curve amplitude, presenting

only triplets with consistent LD decay rates if possible

(Additional file 13: Table S12). Exceptions include Finns,

Swedish Saami, Vepsians and Khanty whose decay time

constants for all reference populations disagree by more

than 25% (Additional file 13: Table S12), which may stem

from bottlenecks in their demographic history [84].

Outgroup f3-statistics

We performed f3 analysis of our modern and published

ancient human genotyping data with the AdmixTools

v3.0 software package [48]. The outgroup f3-statistic

(outgroup; X, Y) is a function of shared branch length

between X and Y in the absence of admixture with the

outgroup [44]. We used Yorubas as an outgroup to

non-African populations and computed f3-statistics in

the form of (Yorubas; ancient group, modern group) to

investigate the shared history of a set of 47 European, Si-

berian and East Asian populations, including the Uralic

speakers and 216 ancient genomes (Additional file 1:

Table S1). We first prepared our modern dataset by ex-

cluding all positions with less than 3% genotyping suc-

cess rate, and A/T and C/G polymorphisms to minimize

potential strand mismatch problems. We extracted

genotype information of 522,274 SNPs, which passed the

filtering criteria, from the ancient DNA dataset of

Mathieson et al. [85]. We divided ancient samples fur-

ther into groups according to their cultural background

as in the source article [85] (Additional file 1: Table S1)

and merged the modern and ancient datasets. We per-

formed an outgroup f3 test on all pairwise combinations

between ancient and modern groups (Additional file 3:

Figure S8 and Additional file 14: Table S13).

To allow for chrX versus autosomes comparison, out-

group f3 statistics of the form f3(Yorubas; test population,

comparison population) were computed with Uralic-

speaking populations and their geographical neigh-

bours as test populations, and all European and Siber-

ian populations from the EBC Illumina dataset as

comparison populations. The analyses (data shown for

Estonians, Udmurts and Khantys in Additional file 3:

Figure S13) were run both using the same autosomal

SNPs as for qpGraph (see below, Illumina chip data-

set filtered by missing genotypes and minor allele fre-

quency; 511,602 SNPs) and also all chrX positions

available in the filtered dataset (12,547 SNPs). Since

all individuals inherit half of their autosomal material

from their father but only females inherit their chrX

from their father, then in this comparison, chrX data

gives more information about the female and auto-

somal data about the male ancestors of a population.

Considering that chrY hg N3-M178 has a distinctively

high frequency in Uralic-speaking populations, we

used a summary statistic p(M178-coA), the probability

for a pair of men sampled from two different populations

to share their chrY ancestry in hg N3-M178 (calculated by

multiplying hg frequencies for compared population pairs,

data from Additional file 6: Table S5). This data was added

to plots opposing the chrX and autosomal outgroup f3 re-

sults of the above-mentioned test populations to see

whether those results also reflect the differences observed

between chrY and mtDNA affinities among the popula-

tions are reflected also in the chrX and autosomal data

(Additional file 3: Figure S13). The significance of the

slope and interception of the regression lines of high (>

10%) and low (< 5%) M178-co-ancestry groups under a

linear model was tested with ANOVA in R, using the car

package [86].

qpGraph

We ran the qpGraph software v6.5 of the AdmixTools

v4.1 package [48] on a merged dataset of modern and

ancient data. To merge the two datasets, we extracted

the 511,602 SNPs present in the quality filtered Illumina

chip data from a dataset containing ancient samples

from Lazaridis et al. [87], Jones et al. [67] and Saag et al.

[66] resulting in a genotyping rate of 0.4. Only samples

with at least 100,000 SNPs covered were used in the

analysis. We used qpGraph with default settings, with

Yorubas as an outgroup, with the useallsnps = YES op-

tion, retaining 362,380 SNPs. We were able to fit the

demographic model with our data (f2-statistics`|Z--

score| < 3) when we modelled ancient and modern Euro-

pean populations through several admixture events

shown in Fig. 6 (see Additional file 3: Figure S10 for

Tambets et al. Genome Biology  (2018) 19:139 Page 15 of 20



details). Of the tested Uralic-speaking populations, only

Hungarians did not fit into the model.

MtDNA and Y chromosomal variation

We present new genotype data of 1578 mtDNAs and

994 chrY of Uralic-speaking individuals, which include

also all those individuals genotyped for autosomal

markers. MtDNA hgs were determined by genotyping

the variation of the first hypervariable segment (HVS-I)

and coding region markers of mtDNA (Additional file 4:

Table S3). The PCR-amplified probes were examined by

RFLP or direct sequencing. The classification of mtDNA

hgs follows the present nomenclature of the Global Hu-

man Mitochondrial DNA Phylogenetic Tree (mtDNA

tree Build 17) [88]. The samples studied for chrY variation

were genotyped for 18 NRY SNP markers at minimal, ana-

lysed by PCR/AFLP, PCR/RFLP or PCR/sequencing. The

hg designation follows common nomenclature [34, 89,

90]. The hg frequencies for mtDNA and chrY were calcu-

lated and presented in a context of published data of

12,157 mtDNA (Additional file 5: Table S4) and 9730 chrY

(Additional file 6: Table S5). A subset of the samples from

the chrY hg Q was analysed for markers M346 and L54

[91] (Additional file 17: Table S16, Additional file 3: Figure

S11) and a subset of the Selkup samples from hg R1a for

marker M458.

Correlation analysis

Linguistic data and lexical distances

To measure linguistic distances, we first created a Uralic

family tree (Additional file 3: Figure S12A) by using

Uralic basic vocabulary data and cognate coding as de-

scribed in Syrjänen et al. [16] and Lehtinen et al. [92]

with extension to Nganasan (data collected by BED-

LAN). We used only the languages matching the ethnic

identity of the individuals sampled for the genetic ana-

lyses (16 languages in total). We chose North Saami lan-

guage to represent the genetic sample of Swedish Saami

as that population has been sampled between the

speaker areas of Lule Saami and North Saami (we do

not have linguistic data on Lule Saami). We used Kildin

Saami language to represent the genetic sample of Kola

Saami as the sample has been collected from the classic

distribution range of Kildin Saami.

Our linguistic data comprises of basic vocabulary data

referring to meanings (words) that are universal, max-

imally resistant to borrowings and temporally stable.

The Uralic basic vocabulary data and cognate assess-

ments were achieved from the available literature. The

data was collected by one single person (Jyri Lehtinen)

which ensured equal quality of the data throughout the

languages. In total, we had 226 meanings based on the

meanings listed in Swadesh 100 and 200 lists [93, 94]

and the Leipzig-Jakarta list [95]. We used the whole data

without extracting the known loan words, as Lehtinen et

al. [92] concludes that the loan words do not mess the

evolutionary signal of the Uralic tree, but add informa-

tion of the horizontal transfer of lexical material. The

linguistic data was coded into binary form according to

the cognacy relationships, i.e. whether the words for a

meaning in two languages shared a common origin (=1)

or not (=0). The phylogenetic tree was made with the

MrBayes software [96] by following the settings in Syrjä-

nen et al. [16]. The produced phylogeny resembles the

ones in Syrjänen et al. [16] and Lehtinen et al. [92], has

a well-supported structure following the outcomes in

the earlier Uralic literature and is better resolved than

many of the recent trees made with traditional linguistic

methods without objective computational analyses or

large data behind (see Syrjänen et al. [16] for review).

The in-depth presentation of the language data, analyses,

the comparison between trees, networks and earlier sug-

gestions of the Uralic tree are given in Lehtinen et al. [92]

and Syrjänen et al. [16], respectively. Some early criticism

of the use of Swadesh list data by geneticists concerned

the use of distance-based tree-building techniques known

as ‘lexicostatistics’. Over the last decade, the application of

modern Bayesian phylogenetic methods to linguistic data

has allowed researchers to overcome these problems [97,

98]. We calculated pairwise linguistic distances between

the tips of the phylogenetic tree (i.e. branch lengths) with

the ‘ape’ package [99] in R [100]. Geographical distances

were calculated as great-circle-distances (haversine) be-

tween genetic sampling locations with the ‘geosphere’

package in R [101].

To assess correlation between genetic, linguistic (lexical)

and geographic distances for the Uralic-speaking popula-

tions, we employed the Mantel test [56] using Pearson’s

correlation coefficient. To test whether statistically signifi-

cant associations between linguistic and genetic affiliations

reflect the same events in population history or parallel

but separate isolation by distance processes, partial corre-

lations keeping geography constant were performed [102].

Analyses were performed using the ‘vegan’ package [103]

in R. Statistical significance was assessed using 1000 ran-

dom permutations. We applied both of these tests to four

types of genetic matrices. We used (1) Slatkin’s linearized

ФST [104] values calculated based on both mtDNA and

chrY hg frequencies and (2) conventional FST for both

mtDNA and chrY [105], (3) Weir and Cockerham [76]

pairwise average FST for autosomal SNPs and (4) total

variation distances (TVD) [61] between group pairs of

fineSTRUCTURE chunkcount matrix (Additional file 15:

Table S14). The calculations of geographic distances be-

tween populations were performed by using approxi-

mate latitude and longitude data for the sample sites

(Additional file 15: Table S14I). The results of the Man-

tel test are presented in Additional file 16: Table S15.
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Correlation between autosomal ADMIXTURE component k9

l and chrY hg N sublineages

Pearson correlation coefficients between two variables—the

frequency of the k9 ancestral component (Fig.3b) and the

frequency of chrY hg N sub-hgs in European,

Volga-Uralic, Siberian and Central Asian populations

—were calculated in R [100] using cor.test(). Results

are presented in Additional file 7: Table S6.
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