
1384 

Genesis of Acetate and Methane by Gut Bacteria 
of Nutritionally Diverse Termites 

Alain Brauman, Matthew D. Kane, Marc Labat, John A. Breznak* 
The evolution of different feeding guilds in termites is paralleled by differences in the activity 
of their gut microbiota. In wood-feeding termites, carbon dioxide-reducing acetogenic 
bacteria were found to generally outprocess carbon dioxide-reducing methanogenic bac- 
teria for reductant (presumably hydrogen) generated during microbial fermentation in the 
hindgut. By contrast, acetogenesis from hydrogen and carbon dioxide was of little signif- 
icance in fungus-growing and soil-feeding termites, which evolvedmore methane than their 
wood- and grass-feeding counterparts. Given the large biomass of termites on the earth 
and especially in the tropics, these findings should help refine global estimates of carbon 
dioxide reduction in anoxic habitats and the contribution of termite emissions to atmo- 
spheric methane concentrations. 

Although generally recognized for their 
ability to thrive on a diet of wood, the 
feeding behavior and nutritional ecology of. 
termites is quite diverse and not limited to 
xylophagy. Some species forage for grass 
and leaves, whereas others feed exclusively 
on soil, presumably deriving nutrition from 
the humic compounds therein (1, 2). Still 
others cultivate and consume cellulolytic 
fungi, which, when ingested with plant 
materials, augment the digestive enzymes of‘ 
the insect ( 3 ) .  Nevertheless, all known 
termites have a dense and diverse hindgut 
microbial community, which aids in diges- 
tion and which is the source of fermenta- 
tion products such as acetate, methane 

The symbiotic hindgut microflora of 
wood-eating, “lower” tekites (for exam- 
ple, Reticulitennes flauips) includes protozoa 
and bacteria and effects an essentially ho- 
moacetic fermentation of wood polysaccha- 
ride (principally cellulose) consumed by the 
insect. Cellulolytic protozoa first hydrolyze 
cellulose and ferment each glucose mono- 
mer to acetate, carbon dioxide (CO,), and 

(CH,), and H, (4). 

H, (5): 
C6H1206 + 2 HzO + 

2 CH,COOH + 2 COZ + 4 H2 
then CO,-reducing acetogenic bacteria 
convert H, and CO, to an additional ace- 
tate molecule (6): 

4 H2 + 2 COZ + CH3COOH + 2 H2O 
The three net acetates formed per glucose 
monomer are absorbed from the hindgut and 
oxidized by the termite to support up to 100% 
of the insect’s respiratory requirement (7): 
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3 CH3COOH + 6 0 2  + 6 COZ + 6 HzO 

Both H, and CH, (the latter formed by 
reduction of CO, by methanogenic bacte- 
ria) are also emitted by termites, and the 
extent to which termites contribute to glob- 
al increases in atmospheric CH, has been 
hotly debated (8,14). However, emission 
of these gases represents only a small part of 
reduction equivalents (H+ + e-) generated 
by microbial fermentation in the hindgut of 
R. j h i p s  (7). In limited studies of other 
wood-eating “lower” and “higher” termites 
(the latter of which contain only bacteria in 
their hindguts), a similar pattem was ob- 
served (6). This in itself was surprising, 
because, in most anoxic habitats low in 
sulfate and nitrate, CO2 reduction to CH, 
(not acetate) is the dominant H,-consum- 
ing process (15). Therefore, to determine 
whether bacterial acetogenesis, rather than 
methanogenesis, was the major H,-con- 
suming “electron sink” reaction of hindgut 
fermentation of termites in general, we 
examined a variety of tropical species rep- 
resenting different feeding guilds (different 
pattems of food resource preference) - Be- 
cause opportunities to collect fresh speci- 
mens of many of the species (especially 
those from remote regions) were rare, our 
sampling strategy in the time available was 
to maximize species diversity within a par- 
ticular feeding guild rather than to sample 
repeatedly a given species from different 
sites for replicate analyses. Included in this 
study were wood-feeding members of three 
families of “lower”. termites (Hodo-, Kalo- 
and Rhinotermitidae), and wood-, grass-, 
and soil-feeding and fungus-growing repre- 
sentatives of the higher termite family Ter- 
mitidae, which includes about three-quar- 
ters of all known termite species (1, 2). 

We quantified acetogenesis from CO, by 
measuring the reduction of 14C0, to I4C- 
acetate by anoxic suspensions of termite gut 
contents. This was done under two condi- 
tions: (i) in the presence of exogenously 
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supplied H, and (ii) with reductant (pre- 
sumably H,) produced endogenously by gut 
microbes present in the suspension (6). By 
contrast, CO,-reducing methanogenesis by 
the gut microbiota was usually estimated as 
CH, emission from live termites during 
brief ( 2  to 4 hours) incubation in stoppered 
bottles (7). This latter technique is sensi- 
tive and noninvasive and minimizes disrup- 
tion of the insects and their gut microbiota, 
and it was well suited to measurements in 
the field (16). 

Rates of acetogenesis from CO, (with 
endogenous H,) for 14 wood-feeding ter- 
mites and one grass-feeding species were, 
on average, three times those of CH, emis- 
sion (Table 1) (17, 18). However, this 
assay condition may seriously underestimate 
in situ rates of acetogenesis from CO,, 
because homogenization and dilution of gut 
contents probably disrupt important physi- 
cal interactions between H,-producing mi- 
crobes and H,-utilizing acetogenic bacteria 
that would otherwise occur in situ (19). 
Not surprisingly then, rates of acetogenesis 
from CO, by wood-feeding termites usually 
increased to more than ten times those of 
CH, emission when acetogenesis was mea- 
sured in the presence of exogenously sup- 
plied H,. By contrast, for both fungus- 
growing and soil-feeding termites, rates of 
CH, emission were always greater than 
rates of acetogenesis from CO,, even when 
the latter process was measured in the 
presence of exogenously supplied H,. 

Differences in acetogenesis and methan- 
ogenesis activity between termites of differ- 
ent feeding guilds were also apparent. Rates 
of CO, reduction to acetate by gut contents 
from wood- and grass-feeding termites (.uti& 
or without exogenously supplied H,) were 
greater than those of fungus-growing or 

' soil-feeding termites (Table 1) (18). By 
contrast, rates of CH, emission by soil- 
feeding and, to a lesser extent, fungus- 
growing termites were greater than those of 
almost all wood-feeding termites. Gut con- 
tents from all lower and higher wood-feed- 
ing termites (and from one grass-feeding 
species) displayed readily detectable levels 
of CO,-reducing acetogenic activity, 
whereas one fungus-growing species and 
five soil-feeding species exhibited almost no 
acetogenesis from H, + CO,, even when 
supplied with exogenous H,. Conversely, 
all fungus-growing and soil-feeding species 
evolved relatively high amounts of CH,, 
but three wood-feeding species (C. formo- 
sunus, C. cavifrm, and P. occidentis) 
evolved little or none. 

It might be argued that the relatively 
low rate of CH, emission from wood-feed- 
ing termites is due to aerobic oxidation of 
CH, before it emanates from the insect. 
However, kinetic analyses of O, consump- 
tion by live termites suggest that this is not 

the case (7). Moreover, we have measured 
rates of L4C0, reduction to ',CH, by an- 
oxic gut contents from the wood-feeding R. 
flaplipes, 2. angusticollis, and N. nigriceps (6) 
(see also Table l), as well .as from M. 
purplus, N. lujae, and the soil-feeding C. 
speciosus (20). In all cases, such rates were 
less than or equal to CH, emission by live 
termites, even when the gut contents were 
supplied with exogenous H,. Unfortunate- 

ly, because of limited time and supplies in 
the field, we were unable to determine rates 
of ''C0, reduction to ',CH, by gut con- 
tents from other soil-feeding species or from 
fungus-growing species. 

It is not surprising that animals with 
anaerobic, fermentative microbial commu- 
nities in their alimentary tract evolve CH,. 
A classic example is a bovine animal, 
whose rumen microbiota evolves up to 200 

Table 1. Rates of H,P4C0, acetogenesis by termite gut contents and CH, emission by live termites 
of different feeding guilds. Units are micromoles of product per gram of termite per hour. The origin 
and condition of termites before the assay are as indicated in (77). The first six species listed are 
"lower" termites, the others are "higher" termites [see (7)].  The standard assay system has been 
described in detail (6) and is only summarized here. Guts from 20 to 60 worker termites were 
removed in an anaerobic chamber and were pooled in an anoxic, buffered salt solution before 
homogenization. Reaction vials (8-ml) had a final liquid volume of 0.5 ml and contained 1.2 pmol of 
NaHI4CO, (specific activity, -6.5 x 1 O4 dpmlpmol) and the equivalent of two to four homogenized 
termite guts. The atmosphere in the reaction vials consisted of 100% N, (for determination of rates 
of I4C-acetate formation from 14C0, by endogenously produced H2) or 100% H,. After termination 
of the reaction, the supernatant fluid was analyzed for 14C-labeled products by high-performance 
liquid chromatography. Modified assays, performed with gut homogenates of R. flavipes incubated 
with 52 mM NaH14C03 in the liquid phase and 20% 14C0,/80% N, (or 80% H,) in the gas phase, 
gave results virtually identical to those tabulated for the standard assay system. Results are mean 
values of duplicate reactions of samples from the same pooled gut homogenate for n = 1 
homogenate, except for the following species (for which the data are mean values of duplicate 
reactions for nas indicated): R. flavipes, n = 20; Z. angusticollis, n = 3; M. parvus, n = 3; N. lujae, 
n = 2; C. albotarsalis, n = 2; C. speciosus, n = 3. Values for R. flavipes, P. simplex, Z. angusticollis, 
N. costalis, and N. nigriceps were published as portions of a separate study (6) and are included 
here for comparison. The rate of H,/CO, acetogenesis reported here for R. flavipes is slightly lower 
than the value reported previously, which was based on~n = 6 (6). Assays of C. cavifronswere done 
by J. Klenz with J.A.B. during a summer course in microbial diversity at the Marine Biological 
Laboratory, Woods Hole, Massachusetts. For results where n 2 3, results are mean values c 
standard deviation (78). 

14C-acetate 
CH, 

Exogenous Endogenous emitted* Termite 

H, i H, 

Coptotermes formosanus 
Cryptotermes cavifrons 
Prorhinotermes simplex 
Pterotermes occidentis 
Reticulitermes flavipes 
Zootermopsis angusticollis 
Amitermes sp. 
Gnathamitermes perplexus 
Microcerotermes parvus 
Nasutitermes arbarum 
Nasutitermes costalis 
Nasutitermes lujae 
Nasutitermes nigriceps 
Tenuirastritermes tenuirostris 

Trinervitermes rhodesiensis 

Macrotermes mülleri 
Pseudacanthotermes militaris 
Pseudacanthotermes spiniger 

Crenetermes albotarsalis 
Cubitermes fungifaber 
Cubitermes speciosus 
Noditermes sp. 
Procubitermes sp. 
Thoracotermes macrothora 

Wood-feeding termites 
1.66 
1.34 
1.18 
2.07 

0.93 + 0.43 
0.33 2 0.25 

5.1 6 
1.83 

4.96 2 1.34 
2.29 
5.96 
1.91 
3.68 
0.98 

2.70 

0.05 
0.23 
0.17 

0.05 
0.56 

0.02 r 0.01 
0.03 
0.05 
0.07 

Grass-feeding termite 

Fungus-growing termites 

Soil-feeding termites 

0.10 
0.58 
0.57 
0.48 

0.09 2 0.06 
0.07 2 0.02 

1 .O3 
0.13 

1.16 2 0.98 
3.00 
0.99 
0.13 
0.89 
0.05 

2.38 

0.01 
0.16 
0.01 

0.02 
0.21 

0.01 c 0.01 
0.05 
0.03 
0.01 

0.01 
0.00 
0.45t 
0.00 
0.10 
1.30 
0.13 
0.21 
0.14 
0.13 
0.49t 
0.15 
0.24 
0.1 1 

0.18 

0.25 
0.67 
0.36 

0.93 
0.48 
0.85 
0.64 
0.39 
1 .o9 

'Assayed as described (7) for live termites, except where indicated. Mean values of duplicate analyses are 
reported for n = 3 to 5. ?Determined (6) by measuring I4CO, reduction to 14CH, by gut homogenates in the 
presence of exogenously supplied H,. 
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liters of CH,, per day (21). However, the 
apparent ability of CO2-reducing acetogens 
to outprocess methanogens for H2 in the 
guts of wood- and grass-feeding termites 
[and in certain other habitats, including the 
colon of some humans (22)] is enigmatic. 
Thermodynamic and kinetic considerations 
suggest that CO2 reduction to CH, (not 
acetate) is more likely to be the dominant 
Hz-consuming process (15, 23, 24). Clear- 
ly, other factors must affect competition for 
Hz between acetogens and methanogens in 
habitats such as the termite gut. On the 
basis of this study, one additional factor 
appears to be the feeding guild of the host. 
However, we do not yet know whether it is 
the nature of the food consumed or other 

'features accompanying evolution into a par- 
ticular feeding guild (for example, modified 
gut anatomy or digestive physiology) that 
affect terminal H, and CO2 processing by 
the resident microflora. 

We have recently isolated in pure cul- 
ture three strains of COz-reducing acetoge- 
nic bacteria, one from the gut of a higher 
and one from the gut of a lower wood- 
feeding termite, and Gne from the gut of a 
higher soil-feeding termite (23, 25). Each is 
a novel and different bacterial species, but, 
like other CO2-reducing acetogens, none is 
strictly dependent on the presence of H2 + 
CO,. Each can ferment a variety of organic 
substrates for energy, including methoxyl- 
ated aromatics, which are components of 
lignin. One of these isolates, Sporomusa 
termitida, has also been shown to be mix- 
otrophic, that is, it can derive energy by 
simultaneou; use of organic and inorganic 
(H, + CO,) substrate mixtures (26). Mix- 
otrophy may enhance the ability of aceto- 
gens to outcompete methanogens for CO2 
reduction in the guts of wood- and grass- 
feeding termites, particularly if organic sub- 
strates utilizable by acetogens are more 
readily available in termites from such feed- 
ing guilds. 

The gradually increising concentrations 
of CH, in the atmosphere, and its potential 
effect on global warming, have underscored 
oiir need to clarify the sources and sinks of 
this trace gas (27) - Other investigators have 
suggested that termite emissions may be a 
significant source of atmospheric CH,, with 
estimates ranging from less than 5% to 
more than 40% of the total annual global 
CH, production (8-14). However, we 
share with most of these investigators the 
belief that such estimates must still be 
viewed with caution, because of uncertain- 
ties in global estimates of termite numbers 
and activities and because the magnitude of 
CH, oxidation by soil bacteria in and 
around termite mounds may or may not be 
significant [see (12-14)]. Moreover, earlier 
estimates were made without information 
on rates of methanogenesis versus aceto- 
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genesis from H, + CO, for termites of 
different feeding guilds. It appears from the 
present study that, owing to the hydro- 
genotrophic activity of acetogenic hindgut 
bacteria, wood- and grass-feeding termites 
typically evolve less than 10% of the 
amount of CH, that might theoretically be 
formed. By contrast, fungus-growing and 
soil-feeding termites lack significant levels 
of bacterial acetogenesis from H, + CO, 
and are potentially more important sources 
of CH, emission. 

Our findings are consistent with the obser- 
vation by Zimmerman et al. ( I I )  that a 
fungus-growing Macrotems sp. and an un- 
named species of soil-feeding termite dis- 
played relatively high rates of CH, emission, 
but the specific values were not reported nor 
were they compared with rates of CO,-reduc- 
ing acetogenesis for those same specimens. 

In any case, termites representing such 
feeding guilds are among the most abundant 
in many tropical ecosystems (8-14, 28) and 
should be important groups for more de- 
tailed study. As population estimates of 
specific termite feeding guilds become more 
reliable and as the specific origins of carbon 
for aceto- and methanogenesis by the gut 
flora become more defined, the data report- 
ed herein should help to clarify the contri- 
bution of termites and their gut microbes to 
atmospheric CH, production and to carbon 
and hydrogen flow through anoxic habitats. 
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