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The FXLMS algorithm, used extensively in active noise control (ANC), exhibits frequency-dependent convergence behavior.
This leads to degraded performance for time-varying tonal noise and noise with multiple stationary tones. Previous work by
the authors proposed the eigenvalue equalization filtered-x least mean squares (EE-FXLMS) algorithm. For that algorithm,
magnitude coefficients of the secondary path transfer function are modified to decrease variation in the eigenvalues of the filtered-x
autocorrelation matrix, while preserving the phase, giving faster convergence and increasing overall attenuation. This paper revisits
the EE-FXLMS algorithm, using a genetic algorithm to find magnitude coefficients that give the least variation in eigenvalues. This
method overcomes some of the problems with implementing the EE-FXLMS algorithm arising from finite resolution of sampled
systems. Experimental control results using the original secondary path model, and a modified secondary path model for both the
previous implementation of EE-FXLMS and the genetic algorithm implementation are compared.
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1. INTRODUCTION

The most common control approach control (ANC) is the
filtered-x least mean squares (FXLMS) algorithm [1, 2]. One
of the limitations of the FXLMS algorithm is that it exhibits
frequency-dependent convergence behavior that can lead to
a significant degradation in the overall performance of the
control system. Two types of noise will be discussed as they
relate to this limitation.

(1) A single tone with time-varying frequency, such as
engine noise, where the engine firing frequency changes
along with the speed of the engine in revolutions per minute
(rpm) during operation. It is assumed that the signal power
of the tone in the reference remains the same, independent
of frequency. This type of noise will be referred to as “swept
tone noise.”

(2) Noise containing multiple quasistationary tones, such
as helicopter cabin noise, where multiple rotating parts
contribute strong tones that do not vary significantly in
frequency during normal operation. This type of noise will
be referred to as “multiple tone noise.”

Various adaptations to the FXLMS algorithm have been
developed in an effort to overcome the performance loss
due to its frequency-dependent convergence behavior. The

normalized FXLMS algorithm [3] has a variable convergence

parameter that changes with the power of the input for noise
containing a single tone. Clark and Gibbs and Lee et al.

[4, 5] developed a method to process tonal components of

a multiple tone noise problem separately allowing for a dif-
ferent convergence parameter for each tone. More uniform
convergence and increased overall attenuation of all tones are
achieved at the expense of more computational complexity.
Kuo et al. improved convergence for multiple tone noise by
optimizing the magnitude of internally generated reference

signals as the inverse of the secondary path magnitude [6].

This approach requires that the user have control over the

reference tone amplitudes. The drawback of most of these
approaches is that they increase the computational burden
of the algorithm, increase the algorithm’s complexity, or are
not applicable to one of the two types of noise considered
here.
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Elliot and Cook preconditioned the input to the LMS
update by using a second filter that was the inverse of the
minimum phase part of the secondary path estimate, thus
“whitening” the input and making convergence independent
of resonances in the secondary path [7].

Prior research by the authors proposed the eigenvalue
equalization filtered-x least mean squares (EE-FXLMS) algo-
rithm [8]. This algorithm improves performance without
increasing the computational burden or complexity of the
algorithm. The development of the algorithm came from
focusing on the eigenvalues of the autocorrelation matrix of
the filtered-x signal, which relate to the dynamics or time
constants of the modes of the system. Typically, there is a
large spread in the eigenvalues of this matrix, corresponding
to fast and slow modes of convergence. If the variance in
the eigenvalues of the autocorrelation matrix is minimized,
convergence properties will be more uniform and controller
parameters could be optimized for all frequencies leading
to increased performance (faster convergence speed and
additional noise attenuation) of the controller.

For the EE-FXLMS algorithm, adjustments to the sec-
ondary path estimate are made in the frequency domain.
The phase of the original secondary path transfer function
estimate is preserved while the magnitude coefficients are
adjusted to have the inverse trend of tones in the reference
signal. The new magnitude coefficients are combined with
the original phase response and transformed back into the
time domain, giving a new FIR estimate of the secondary
path to filter the reference signal. This is intended to equalize
the power of tonal components in the filtered-x signal,
which in turn would equalize the eigenvalues of the filtered-x
autocorrelation matrix.

Previously, the EE-FXLMS was implemented for swept
tone noise by making each secondary path transfer function
coefficient flat (equal amplitude) over frequency because, as
noted, the power of the reference signal was independent of
frequency. For multiple tones, the trend of the magnitude
coefficients was made to be the inverse trend of the
amplitudes of the tones in the reference signal. For both
cases, this led to more uniform eigenvalues (of the filtered-
x autocorrelation matrix), faster convergence times, and
additional attenuation at the error sensor [8].

This paper revisits the EE-FXLMS implementation to
modify the magnitude coefficients as motivation for inves-
tigating improved methods of adjusting the magnitude
coefficients. In this work, a genetic algorithm is used to find
the optimal magnitude coefficients for a limited frequency
range, swept tone noise, and for a specific set of reference
tones for multiple tone noise. Experimental results for ANC
in a mock cabin enclosure for these control implementations
are presented and compared.

2. BACKGROUND

The FXLMS algorithm involves adaptively filtering a refer-
ence signal taken from the noise source to create a control
signal that attenuates the unwanted noise. The LMS update
is used to change the control filter coefficients such that
the measured residual noise is minimized. The measured
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Figure 1: Block diagram of the FXLMS algorithm.

residual is called the error signal and for this research,
it will be utilized to minimize a squared pressure (SP)
quantity. The mean squared error is a quadratic function
of the filter coefficients with a unique global optimum. The
LMS update is a gradient descent search method. It follows
the path of steepest descent on the error surface toward
the optimum filter weights. A block diagram for a single-
channel implementation of the FXLMS algorithm is shown
in Figure 1. In Figure 1, and in all equations presented, the
variable t is a discrete time index and the variable z a discrete
frequency domain index.

2.1. Secondary path transfer function

The FXLMS algorithm derives its name from the filtered-x
signal, r(t), which is the convolution of the reference signal

x(t), with ĥ(t), a finite impulse response (FIR) estimate of
the secondary path transfer function. The secondary path
transfer function (shown in Figure 1 as H(z)) includes the
effects of digital-to-analog and analog-to-digital converters,
filters, audiopower amplifiers, loudspeakers, the acoustical
transmission path, error sensors, and other signal condition-
ing.

The secondary path model, Ĥ(z), is estimated through
a process called system identification (SysID). The SysID
process is performed offline (before ANC is started) for the
fastest convergence of the algorithm where the secondary
path does not change significantly during operation of the
system. Band-limited white noise is played through the
control speaker(s) and the output is measured at the error
sensor(s). The measured impulse response is obtained as an

FIR filter, ĥ(t), that represents Ĥ(z). The coefficients of ĥ(t)
are stored and used to prefilter the input signal to the LMS

update to run control. While inclusion of Ĥ(z) is necessary
for stability, the FXLMS algorithm is robust to errors in
its estimation. The algorithm will converge (slowly) as long
as phase errors are less than 90◦ [1] and phase errors less
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than 40◦ do not significantly affect convergence [9]. The

gain applied to the reference signal by filtering it with ĥ(t)
does not affect the stability of the algorithm and is usually
compensated for by modifying the convergence parameter µ.

2.2. FXLMS convergence and eigenvalues of
filtered-x autocorrelation matrix

The time constants for the modes of convergence of the
ANC system are determined by the eigenvalues of the
autocorrelation matrix of the filtered-x signal [10]. While
the convergence parameter, µ, can be optimized to give
fast convergence for one mode, others will converge more
slowly. For swept tone noise, µ can be optimized for a
given frequency in the range of the sweep, but not for all
frequencies in the range. When the algorithm is controlling
a tone at a frequency other than that for which it was
optimized, convergence will be slower and attenuation less.
For multiple tone noise, the algorithm will be able to
attenuate portions of the total noise quickly while other tones
in the noise will linger and take longer to converge.

The properties of the filtered-x signal, and hence the
autocorrelation matrix, are a function of the magnitude

response of Ĥ(z) and the spectrum of the reference signal.
The autocorrelation matrix of the filtered-x signal is defined
as

R = E
[

r(t)r
T(t)

]
, (1)

where E[·] denotes the expected value of the operand which
is the filtered-x signal vector, r(t), multiplied by the filtered-x
signal vector transposed rT(t). In general, it has been shown
that the FXLMS algorithm (or any of its variations) will
converge (in the mean) and remain stable as long as the
chosen µ satisfies the following equation [9]:

0 < µ <
2

λmax
, (2)

where λmax is the maximum eigenvalue of the autocorrelation
matrix.

In practice, it is computationally demanding to obtain
a real-time estimate of the autocorrelation matrix, so the
optimal µ is often selected through experimentation. In
this work, the structure of the eigenvalues of a given
ANC problem is explored using an offline estimate of the
autocorrelation matrix. This is done in a numerical analysis

program by taking an actual ĥ(t) model from a mock
cabin enclosure, convolving this with a reference signal for
the given noise application, computing the autocorrelation
matrix, and getting the eigenvalues. If a single frequency
reference signal is used, λmax can be computed for that
frequency. If the simulation is repeated over a range of
frequencies, λmax for a single tone at each frequency in that
range can be found. For control of a single tone, λmax is
the only eigenvalue of interest since it will determine the
convergence of the algorithm for that frequency. Figure 2

(solid line) shows an offline simulation using an actual ĥ(t)
from the mock cabin enclosure, and equal amplitude tonal
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Figure 2: Plot of normalized maximum eigenvalues over frequency
for original and modified (flat magnitude) eigenvalues.

inputs from 0–300 Hz. The disparity in λmax over frequency
shows how the convergence of the algorithm will change
as it controls a single tone swept through this range. The
range of interest from 0–300 Hz was selected because the
experimental hardware was set with a cutoff frequency at
400 Hz. The eigenvalues in the figure have been normalized
to the largest eigenvalue in the range.

The largest eigenvalue for a single tone occurs at about
125 Hz. This location corresponds to the largest µ that is
stable for the entire frequency range from 0–400 Hz as given
by (2). All other frequencies have a smaller eigenvalue and
could use a larger µ, and still be stable, if just that particular
frequency was targeted for control. Frequencies at the valleys
of the solid line in Figure 2 have the smallest eigenvalues and
could use the largest µ’s and still be stable, again if they were
the only frequencies targeted for control. The larger µ’s are
especially desirable for nonstationary noise as they lead to
faster convergence and increased attenuation.

For multiple tone noise that is stationary, the eigenvalues
are not computed for individual tones as before, but for
the composite reference signal containing all tones to be
controlled. In this case, the disparity among all of the
nonzero eigenvalues, not just λmax, gives information about
how different spectral components of multiple tone noise
will converge.

3. EIGENVALUE EQUALIZATION—PRIOR METHODS

If the variance in the eigenvalues of the autocorrelation
matrix was minimized, a single-convergence parameter
could then be chosen that would be nearly optimal for all
frequencies targeted for control and the algorithm would
converge at nearly the same rate at all frequencies or for
all modes of convergence. Additionally, “misadjustment”
errors that prevent the algorithm from converging to the
true optimal solution depend on the eigenvalues of the
autocorrelation matrix. Misadjustment error is larger when
there is large disparity in the eigenvalues [11]. Misadjustment
(and hence attenuation) can be improved by making these
eigenvalues equal.
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As previously stated, the autocorrelation matrix is
directly dependent on the filtered-x signal, which is com-

puted by filtering the input reference signal, x(t), with Ĥ(z).
Any attempt at equalizing the eigenvalues must be done by
altering either the reference signal or the secondary path
model. Adjusting the power of the reference signal has been
shown to be an effective way of doing this [6]; however, in
many applications this amount of control over the reference

signal is not feasible. We focus on making changes to Ĥ(z)
only. The span, defined as λmax divided by λmin, is used
as a metric to quantify any improvement in the eigenvalue
disparity. This ratio is the most important property, as
any change in the actual magnitude of the eigenvalues is
compensated for by making a complementary adjustment to
the magnitude of the convergence parameter µ.

3.1. Eigenvalue equalization applied to
swept tone noise

For swept tone noise, it has been shown that flattening the

magnitude coefficients of Ĥ(z), while preserving the phase
reduces the variance in the eigenvalues [8]. Figure 2 shows
both the original eigenvalues (solid line) and the modified
eigenvalues (dotted line) when the magnitude coefficients of

Ĥ(z) are flattened. In the figure, the eigenvalues for both
the original and modified cases have been normalized by the
largest of the original eigenvalues. The span for the original
eigenvalues in this range (0–400 Hz on the plot) is 1.385 ×

105 and the span for the flattened magnitude Ĥ(z) is 162.3.

These modifications to Ĥ(z) make a noticeable improvement
in the performance of the algorithm [8]. The more uniform
rate of convergence of all modes of the system is beneficial as
it speeds up the overall convergence of the error signal. For
dynamic signals, this increased rate of convergence equates to
greater attenuation, as it also results in more rapid tracking.

The eigenvalues are much more uniform, but still not
perfectly uniform. This is due to the finite resolution of the
digital system and of the sampled secondary path estimate.

The shape of the magnitude response, Ĥ(z), can only
be constrained to some value at its respective frequency

bins; there is no guarantee that the response of Ĥ(z) is
also flat between frequency bins. As an example, a 128

coefficient Ĥ(z) model sampled at 2000 Hz will have a
frequency resolution of 15.625 Hz. For swept tone noise,
the system may be excited at any frequency in the range of
the application. An estimate of the “analog” or continuous

response of Ĥ(z) between frequency bins can be made by
zero padding the 128-coefficient model before computing
the fast Fourier transform (FFT). The original, flattened, and

zero-padded flattened magnitude coefficients of Ĥ(z) from a
mock cabin are shown in Figure 3. The discrete magnitude
response is indeed flat at the frequency bin values, but the
zero-padded model shows that the true response deviates
from flat in between bins. This magnitude variation between

frequency bins in Ĥ(z) contributes to the residual variation
seen in the modified eigenvalues for the range.

Another source of variation may come from frequency
leakage when the reference signal gets downsampled before

being convolved with ĥ(t). Before being convolved with ĥ(t),
the reference signal is downsampled with the same sampling

frequency as was used to find ĥ(t); for this example, 2000 Hz
was used. In addition, only n number of samples are kept of
the reference signal at a given time, where n is the number

of coefficients in ĥ(t); for this example, 128 was used. This
downsampling process causes amplitude estimation error in
the frequency domain due to leakage. Thus if the original
reference signal is assumed to be equally weighted at each
frequency, as was done to create the eigenvalue simulations
shown in Figure 2, the actual reference signal used in those
simulations is no longer equally weighted over frequency.
This also contributes to residual variation in the eigenvalues.

3.2. Eigenvalue equalization applied to
multiple tone noise

When multiple noise sources are present, a reference signal
may be obtained from each and combined into a single-
reference signal. In some cases, the reference signal will
contain a fundamental frequency and harmonics from a
single-noise source. In either case, the combined tones in
the reference signal will in general have different amplitudes.
This weighting of the reference tones will be specific to
each application and depends on how the reference signals
are conditioned and combined. This frequency-dependent
weighting of the reference tones as well as the gain applied
by the secondary path estimate contributes to the eigenvalue
disparity for multiple tone noise. For multiple tone noise
in this research, an arbitrary (but specific, for consistency)
weighting was applied to the reference tones. The amplitude
of the reference signal tones was defined by

Tonal Amplitude = −0.0036∗(Tonal Frequency) + 1.18.
(3)

This gave a decreasing trend in amplitude for increasing
frequency that ranged from 1.0 at 50 Hz to 0.1 at 300 Hz. All
tones used for the multiple tone noise were in this range.

To equalize the eigenvalues for this case, a trend line
connecting the peaks of the tones (on a power spectrum plot)
in the reference is drawn. The inverse of this line gives the

desired trend for the magnitude coefficients in Ĥ(z), which
here corresponds to the inverse of (3). Since the tonal ampli-
tudes for the test case were specified, obtaining the inverse
trend line was straightforward. In actual implementation, an
offline “Ref ID” process would also be required. This would
entail recording the reference signal under normal operating
conditions for the system at the sampling frequency used
by the controller. The desired magnitude trend for the
modified Sys ID filter could be obtained from the fast Fourier
transform (FFT) or power spectrum plot of the reference.

This type of modified Ĥ(z) is designated as an “X-
inverse” model. Figure 4 shows the trend line for the
amplitude of tones in the reference as given by (3), the

desired magnitude response for Ĥ(z), and the zero-padded
response of the 256 coefficients X-inverse model. All curves
have been normalized in the figure. As before, the response
of the filter between bins deviates from the trend assigned
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Figure 3: Plot of original-, flattened-, and zero-padded flattened

magnitude coefficients of Ĥ(z).
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Figure 4: Reference tone amplitude trend line for multiple tone
noise signals with desired trend and zero-padded X-inverse model
magnitude responses.

the coefficients. Increasing the coefficients from 128 to 256
makes the magnitude response match the desired curve at
more points, but does not improve the variation between
bins. The same is true for the phase response.

This method will reduce the eigenvalue variation only
for some cases. If the tones in the reference are chosen to
correspond exactly to frequency bin values, the eigenvalues
are much more uniform using the X-inverse model than
using the original model. However, if the tones lie off these
frequency bin values, the eigenvalue span can be worse than

for the unmodified Ĥ(z).

Table 1: Comparison of eigenvalue span for original and X-inverse
models for multiple tones with frequencies on and off frequency bin
values.

Sys ID length Original X-inverse

Tones on bin values
128 4350 2.0

256 2162 2.0

Tones off bin values
128 217 16

256 239 991

Phase difference-original and x-inverse

Sys ID models (128 coefficients)
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Figure 5: Phase difference between 128-coefficient original and
X-inverse models with reference tones off frequency bin values.
Dashed lines indicate tonal frequencies.

Two reference signals containing six tones were made
for comparison; one with all six tones on frequency bins
(62.5, 93.75, 125, 171.875, 203.125, and 296.875 Hz) and
the other with these tones shifted slightly to lie between
bin values (50, 100, 130, 180, 200, and 280 Hz). The length

of the FIR filter model of Ĥ(z) was increased from 128 to
256 to double the resolution in an attempt to constrain the
magnitude response between bins to follow more closely the
desired trend. The eigenvalue span for these reference signals

with the original and X-inverse Ĥ(z) models of different
lengths were calculated. The results of these comparisons
are shown in Table 1. When the tones lie on the frequency
bins, the X-inverse model gives a significant improvement
in the eigenvalue span. For offbin frequencies the X-inverse
model is better than the original for the 128-coefficient filter,
but not as good as when the tones are on bins. When the
filter length is increased to 256, the span for the X-inverse
model was worse than the original model for offbin tones.
The span for the X-inverse model with 256 coefficients went
from 239 to 991 likely because the magnitude response of the
X-inverse model goes almost to zero at 200 Hz (see Figure 4).
Increasing the resolution by using a longer filter does not (at
least in some cases) improve the eigenvalue span. This gives
the desired magnitude response at a larger number of points,
but the deviation from the desired trend in between these
points is not necessarily improved.

The eigenvalue span for the 128-coeffficient X-inverse
model and tones at offbin frequency values was reduced
significantly over the original model from 217 to 16.
However, Figure 5 shows that the phase errors introduced
exceed stability limits near several tones in the reference.
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Horizontal lines mark 40◦ and 90◦ of phase error between
the original and modified phase response and vertical dashed
lines show the positions of offbin reference tones. Phase
errors introduced into regions where no tonal components
of the noise are being controlled will not affect the stability
or performance of the system. For helicopters, the tones
in the noise are very stable and do not shift in frequency
significantly, however, phase errors very near those tonal
frequencies are potentially problematic for both stability and
overall performance of the ANC system.

In this case, even though the eigenvalue span was
improved, the X-inverse model would not work well if used
in ANC since instability and poor performance would result
from the phase issues. This is another reason the X-inverse
method is inadequate.

The inability to control the magnitude and phase
response of the secondary path estimate in between fre-
quency bin values and the unpredictable changes that occur
in each when the magnitude coefficients of the original
model are modified make the X-inverse method of eigen-
value equalization inadequate. A genetic algorithm approach
was developed to optimize the magnitude coefficients, and
which can overcome these difficulties for multiple tone noise.

4. EIGENVALUE EQUALIZATION—GENETIC
ALGORITHM

A genetic algorithm was used to investigate the possibility
of getting more uniform eigenvalues over narrow bands of
frequencies for swept tone noise and for specific multiple
tone noise cases. Optimizing the magnitude coefficients of

Ĥ(z) in ways other than those described previously may
lead to improved eigenvalue span, but are not intuitive.
Genetic algorithms (GAs) [12, 13] have gained considerable
popularity in recent years for their ability to solve problems
with a large number of design variables, multiple local
minima and maxima, nondifferentiable functions, or some
combinations of these. They can work well for both discrete-
and real-valued problems. GA’s mimic the natural selection
process found in nature that allows individuals with the
best “fitness” to survive. Parents are chosen from the
most fit individuals of a population of randomly generated
designs. These parents are then sent through a reproduction
process to exchange and pass on genetic information to new
designs (children). As in nature, mutations are introduced
occasionally to provide for random variation. Parents and
children compete to be included in the next generation. As
the generations progress, the random designs converge to a
design that has the best fitness.

4.1. Genetic algorithm cycle

The genetic algorithm cycle used to optimize the magnitude

coefficients of Ĥ(z) can be broken down into nine steps.
A brief description of each step is now given. It should be
noted that other GA’s with different cost functions could
be investigated. The purpose of this work is to present one
such GA and compare the results to other easily implemented
techniques.

(1) Determine a coding for the design

Each design in a GA consists of a number of independent
variables chosen by the designer. Each independent variable
is called a “gene,” a set of genes giving one design, or
“chromosome.” As the desired result of the algorithm was

to obtain an optimized impulse response model, ĥ(t), that
could be used in physical experimentation, a 128 or 256

coefficient ĥ(t) for the mock cabin described in Section 6 was
obtained by the SysID process described in Section 2.1. The

FFT of ĥ(t) was then taken, and the phase information of

Ĥ(z) was preserved in a vector. The magnitude information

of Ĥ(z) was discarded, as the GA was implemented to find
the optimal magnitude coefficients by making each unknown
magnitude coefficient a gene. Each design then contained 64
or 128 genes, which were the unknown 128 or 256 magnitude

coefficients of Ĥ(z) (since they are mirrored about the
Nyquist frequency).

(2) Generate an initial population

Once the coding scheme for a single design was established,
a population of N designs was randomly generated. This was
done by randomly assigning a value between a minimum
value of 0.01 and a maximum of 10 for each gene (magnitude
coefficient) in the design. This range was chosen based on
some trial and error. If the minimum was set to zero, the
GA would make all the magnitude coefficients zero giving a
trivial solution of all zero eigenvalues. The maximum value
was set to 10 so that the generated designs were close to the
overall magnitude values for the original model. The process
was repeated N times to generate the entire population. In
general, designs with many genes require large population
sizes to maintain adequate diversity. The population size was
500.

(3) Calculate fitness for each design

After the initial population was randomly generated, each
design was evaluated and assigned a fitness value. Each
randomly generated set of magnitude coefficients was recom-
bined with the stored phase information, and the inverse
FFT was taken to get a new unique model for the impulse

response, ĥ(t). This new model was used to compute the
eigenvalues of the filtered-x autocorrelation matrix in the
same manner as explained in Section 4. For swept tone noise,
the eigenvalues were computed over a specified frequency
range and then normalized by the largest of the eigenvalues.
As the ideal normalized eigenvalue at each frequency would
be one, the fitness value was chosen as a sum of the squared
errors between the actual value of each eigenvalue in the
frequency range and one, as shown in (4):

fitness =

fend∑

fstart

(1− λk)2. (4)

The fitness value for multiple tone noise was simply the span
(λmax divided by λmin) of all nonzero eigenvalues.
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In addition, a penalty was applied to any design whose
phase response was in error by more than 40◦ in a range of
+/− 5 Hz around each of the tonal frequencies in the multiple
tone noise. This was done to decrease the design’s sensitivity
to tonal frequencies shifting. Constraining the phase in this
way ensures that the algorithm will remain stable for small
changes in the tonal frequencies. Designs whose performance
would be hindered by the phase error introduced by altering
the magnitude response were assigned a poor fitness value.

(4) Selection of parents

A tournament selection process was used to choose parent
designs from the population. A specified number of designs
were randomly selected to compete in the tournament.
The design with the best fitness wins the tournament and
was made a parent design. This process was repeated until
enough parents had been selected to make N children; a set
of two parent designs producing a single-child design.

(5) Perform crossover

A process called crossover exchanged traits from each parent
design and created children designs. In this way, new designs
were made that had traits from each parent. For this work,
blend crossover was used. In blend crossover, genes from
both parents are blended to make two new children genes.
This occurs gene by gene. First, a random number between
zero and one is chosen for each gene to determine whether
crossover will occur. If the random number is larger than the
user defined crossover probability, no crossover occurs. The
genes for the children, c1 and c2, are equal to the parent genes,
p1 and p2, respectively, so that if no crossover occurs for
any genes in the design, the children will be identical to the
parents. If the random number is less than the user specified
crossover probability, another random number is chosen. If
it is <0.5, the blend parameter, a, is calculated by

a =
(2r)1/η

2
, (5)

and if the random number is ≥0.5, the blend parameter is

a = 1−
(2− 2r)1/η

2
. (6)

The children genes c1 and c2 are created from the parent
genes p1 and p2 by

c1 = (a)p1 + (1− a)p2,

c2 = (1− a)p1 + (a)p2.
(7)

The value of η is chosen by the user. As η→0, the
crossover becomes uniform, meaning that c1 = p2 and c2 =

p1. As η→∞, a→1/2 and the children’s genes are the average
of the parent’s gene values.

The crossover probability was chosen to be 50% and η
was 0.5.

(6) Perform mutation

After crossover, some of the genes in the children designs are
mutated. Mutation provides for diversity and occasionally
introduces new beneficial information into a design. Higher
mutation probability maintains more diversity in the designs
as the generations progress and can help the algorithm
avoid converging on a local optimum in the design space.
Mutation can be made dynamic allowing for high diversity
initially, keeping the algorithm from settling prematurely in a
local optimum. In later generations, mutation is constrained
allowing the algorithm to randomly make fine adjustments
to the design once it is near what is hoped to be the global
optimum. Initially, mutation can cause the gene to become
any value in the allowable range for that gene. By the last
generation, when mutation occurs the new value for the gene
is only allowed to have a new value that is very close to
the original. The probability of mutation occurring does not
change, only how different the mutated gene is allowed to
be from its premutation value. This is done by introducing a
dynamic mutation parameter α:

α =

(
1−

n− 1

N

)β
, (8)

where n is the current generation number and N is the total
number of generations. The exponent, β, is a user defined
parameter that weights the dynamic function of α. If β = 0,
α will always be one and the amount of mutation allowed
will be uniform for all generations. If β is greater than zero,
the amount of mutation allowed decreases as the generation
number increases.

A random number is chosen to determine whether
mutation will occur for each child gene. If the random
number is less than the user-specified mutation probability,
another random number, cmut, is chosen within the allowable
range for that gene. If cmut is less than the current value for
the gene, the new gene value is

cnew = cmin +
(
cmut − cmin

)α(
c − cmin

)(1−α)
, (9)

and if cmut is greater than the current value for the gene, the
new gene value is

cnew = cmax −
(
cmax − cmut

)α(
cmax − c

)(1−α)
. (10)

The mutation probability was chosen to be 50% and β
was set to 0.5.

(7) Measure fitness of children

Once all of the children were created through crossover and
mutation, the fitness value of each child was computed in the
same way as described in Step 3.

(8) Perform elitism

Once each child design has a fitness value, parents are made
to compete with children in a process called elitism. All of the
parents and children are sorted by their fitness value, and the
N number of designs with the best fitness value becomes the
starting generation for the next iteration of the algorithm.
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Figure 6: Original and modified magnitude coefficients of Ĥ(z) for
genetic algorithm run from 60–90 Hz.

(9) Repeat Steps 4–8 for M number of generations

Steps 4–8 were repeated for M number of generations. The
number of generations needed to be large enough to allow
the algorithm to converge on an optimum design. For the
work reported here, M was chosen to be in the range of 50–
200.

The optimization performed by the genetic algorithm is
all done offline as part of the setup of the ANC system after
the offline system identification routine. It is not run in real-
time and so is currently limited to use with systems where
the secondary path does not change significantly and can be
characterized offline.

4.2. Genetic algorithm results

(1) Swept tone noise

The GA was unable to produce a design that had lower
eigenvalue span than the flattened magnitude design when
optimizing for the entire range of frequencies from 0–
400 Hz. There were not enough degrees of freedom in the
design variables to get a better result. The frequency range
for swept tone noise was reduced to a much smaller range
to see if the genetic algorithm could improve the span of the
eigenvalues in a smaller range. The GA was run for swept
tone noise in the range 60–90 Hz with 128 filter coefficients.
The results for 60–90 Hz are shown in Figures 6 and 7.
Figure 6 shows the original- and new-modified magnitude
coefficients, and Figure 7 shows the resulting eigenvalues. As
before, the eigenvalues in both the original and modified
case have been normalized by the largest of the original
eigenvalues. The eigenvalues from the genetically optimized
magnitude coefficients are more uniform. The eigenvalue
span for the genetic algorithm model approach was 1.08,
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Figure 7: Normalized original and modified eigenvalues for genetic
algorithm run from 60–90 Hz.
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Figure 8: Fitness history for genetic optimization of 128-coefficient
Sys ID model.

which is improved over both the eigenvalue span of 4.578 and
2.45 from the original and the flattened models, respectively.

(2) Multiple tone noise

The GA was also run for the reference signal containing six
offbin tones, as described in Section 4.2, for 128 and 256
filter coefficients. The genetic algorithm was able to find a
magnitude response that is unlike the X-inverse model and
reduces the eigenvalue span to 5.8 for 128 coefficients and
5.3 for 256 coefficients. These values can be compared to
the results for the other methods shown in Table 1, which
have span values typically several orders of magnitude higher.
Figure 8 shows the fitness history of the best design in each
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Table 2: Comparison of eigenvalue span for original and GA magnitude coefficients for offbin tones shifted in frequency from the values for
which the GA optimized the model.

f shift −10 −6 −4 −2 0 2 4 6 10

Original model
128 span 193.5 209.3 217.5 220.7 216.8 213 201.1 202.2 392.7

256 span 64.4 265.5 444.0 361.7 238.5 169.6 174.8 500.0 1240.1

Genetic model
128 span 9.0 5.1 4.3 5.0 5.8 7.6 9.9 12.8 24.4

256 span 23.9 11.3 28.2 13.0 5.3 12.9 51.4 132.0 1309.2
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Figure 9: Magnitude of original and genetic 128-coefficient models along with the phase error in the genetic model.

generation of the 128-coefficient optimization and gives an
idea of the dynamics of the genetic optimization. The fitness
is the span plotted on a logarithmic scale.

The optimized magnitude coefficients found by the
genetic algorithm are specific to the noise problem given
to the genetic algorithm. If the tones shift in frequency
or change in amplitude, the result is no longer guaranteed
to be an optimum result. To see how sensitive the genetic
algorithm model is to shifts in the tonal frequencies, the
eigenvalue span for reference signals with all tones shifted by
+/− 2 Hz up to +/− 10 Hz was calculated. This is compared
to the original model in Table 2. In general, the farther the
tones get from the frequencies for which the magnitude
was optimized, the worse the span gets. It is difficult to
predict how sensitive a genetic model will be for any given
application without first performing the optimization. The
sensitivity will depend on how much the magnitude response
of the genetic model varies near the frequencies for which
it was optimized. The phase is guaranteed to be within
acceptable error +/− 5 Hz from the tonal frequencies by the
GA and so the design remains robust in terms of stability
for changes within this range. Where more shift in the tones
is anticipated the GA can be constrained accordingly. The
magnitude of both the original and genetic 128-coefficient
models is plotted together in Figure 9 along with the phase
error in the genetic model (difference between the two).

5. EXPERIMENTAL RESULTS

Experiments were performed to verify that the reduction
in eigenvalue span demonstrated in Section 4 also leads to
better ANC performance. First, the experimental setup will
be explained, then ANC results for swept sine noise over the

Error
sensor

Satellite
speaker

Noise
source

Subwoofer

Figure 10: Photo of inside of mock cab.

three ranges (60–90 Hz, 90–120 Hz, and 120–150 Hz) and for
multiple tone noise (at offbin frequencies) will be shown.

5.1. Experimental setup

The experiments were conducted inside a mock cabin
enclosure with nominal dimensions of 1.0 m × 1.5 m ×

1.1 m. The cabin has a steel frame, 0.01 m thick plywood
sides, and a 0.003 m thick Plexiglas front panel. A speaker
placed under a chair served as the primary sound source,
and two loudspeakers were setup in a single channel control
configuration. A crossover circuit routed the low-frequency
content (below 90 Hz) to a subwoofer on the floor of the cab,
and the high-frequency content (above 90 Hz) to a satellite
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Table 3: Comparison of control performance using original, flattened, and genetic ĥ(t) models for swept tone noise.

Frequency Type of µ Error Mic Reproducibility Additional reduction

range ĥ(t) model (0.1∗µmax) avg. reduction (dB) (dB) compared to original (in dB)

60–90 Hz

Original 1e-8 14.8 0.16

Flattened 3e-8 21.9 0.37 7.1

Genetic 5e-8 20.8 0.17 6.0

speaker mounted in the top corner of the cab, near the back.
An error microphone was placed on the ceiling near where an
operator’s head would be. The performance of the algorithms
will be reported at the error sensor. Figure 10 shows the cab,
error sensor, and speakers.

The adaptive control filter consisted of 32 taps for swept
tone noise and 100 taps for multiple tone noise. Secondary
path transfer functions were modeled with either 128 or
256 taps. The convergence coefficient, µ, was determined
experimentally by finding the largest stable value for the
noise signal under test and then scaling it back by a
factor of ten to ensure stability. All input channels were
simultaneously sampled at 2 kHz, and all input and output
signals had 16 bits of resolution. Fourth-order Butterworth
low-pass filters (400 Hz cutoff) provided antialiasing and
reconstruction of input and output signals, respectively.

5.2. Experimental results—swept tone noise

Each ĥ(t) model was tested for swept tone noise over the fre-
quency ranges 60–90 Hz, 90–120 Hz, and 120–150 Hz. A test
signal was created for each frequency range that consisted of a
sine wave being swept up and down over the frequency range
at a rate of 2 Hz/sec. The time-averaged sound pressure level
(SPL) over the entire duration of the test signal was measured
with and without control running. Each measurement was
performed three times for computation of an average and
to give a sense of the measurement’s reproducibility. The
attenuation (the difference in SPL with control off and

on) using all three ĥ(t) models is shown in Table 3. The
“reproducibility” shown in Table 3 was calculated in the same
manner as a standard deviation, although it is recognized
that the small sample size precludes referring to the result
as a statistically valid standard deviation.

In the range from 60–90 Hz, the SPL before running
control was about 95 dB (computed over the entire frequency
range) and about 73 dB with control for the flattened
magnitude model. Figure 11 shows a plot of the frequency
spectrum for both control on and control off for the 60–
90 Hz range.

The data show that control with the genetic and the
flattened models significantly outperformed control with

the original ĥ(t) model. For the range 60–90 Hz, control
with the genetic and flattened models outperformed the
original control by 6-7 dB, with control with the flattened
model providing 1 dB more control than the genetic model.
Experiments for other frequency ranges were also done with
similar results.
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Figure 11: Sound pressure level (SPL) at the error sensor for 60–
90 Hz.

5.3. Experimental results—multiple tone noise

Multiple tone noise ANC experiments in the mock cab were
done using 128 and 256-coefficient original, X-inverse, and
genetic secondary path models with the reference signal
consisting of multiple offbin frequency tones, as described
in Section 4.2. For these tests, three 10-second time records
of the error signal were taken as follows:

(1) stationary error signal with control off;

(2) converging error signal from the time control was
turned on;

(3) stationary error signal after the algorithm had con-
verged to its eventual steady state level.

The measured performance for each test case was the
eventual amount of attenuation (in dB) at the error sensor,
calculated from the first and third time records and the
convergence time in seconds from the second-time record.
The convergence time was taken to be a measure of how
long it took the error signal, from the time that control
was enabled, to reach 1/e of its initial value (about 9 dB
attenuation), where e is the base of the natural logarithm.
The reason for choosing this was that the convergence time
essentially becomes a measure of the rate of attenuation,
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Figure 12: Learning curves for individual tones of multiple noise test case for 128-coefficient original, X-inverse, and genetic models.

Table 4: Comparison of control performance using original, X-

inverse, and genetic ĥ(t) models for multiple tone noise.

Sys ID type
Convergence time Eventual reduction Eignvalue

(sec) (dB) span

Normal 128 3.9 −19.5 217

Normal 256 6.3 −16.9 239

X-inverse 128 10+ −4.6 16

X-inverse 256 10+ −2.6 991

Genetic 128 1 −25.9 2.3

Genetic 256 2.2 −26.1 2.4

which was felt to be useful when comparing cases where
the overall level of attenuation may be significantly different.
These results are summarized in Table 4. When a signal did
not converge to 1/e of its initial value during the second-time
capture, it is reported as 10+ seconds. The actual convergence
time for these measurements was not calculated. The genetic
models for both 128 and 256 coefficients were better than
both the original and X-inverse models for both measures
of performance. Models that gave lower eigenvalue span
performed better with the exception of the 128-coefficient X-
inverse model whose performance was worse than expected.

Based on the eigenvalue span, the 128 coefficient X-
inverse model should have been a significant improve-

ment over the original model. The reason for the poor
performance is a result of phase errors introduced by
modifying the magnitude values. As for the magnitude
coefficients, preserving the phase coefficients guarantees the
phase response will be the same at frequency bins, but
changing the magnitude coefficients does have an influence
on the response in between these bins. As noted previously,
as long as the phase response modeled by the secondary
path estimate is within 90◦ of the true phase response, the
algorithm will be stable. Comparing the zero-padded phase
response for the original 128-coefficient model and the X-
inverse model reveals that the phase difference between the
two at 100 Hz (one of the tonal frequencies) approaches that
limit. While the errors in the original model of the secondary
path are not known, it is assumed that it is a better estimate
and the X-inverse model deviating from it by close to 90◦ is
the cause for the poor performance.

Figure 12 shows learning curves for the individual tones
in the multitone test case for the 128-coefficient model.
These are slices along tonal frequencies from a spectrogram
of the converging error signal. These plots show the different
rates of convergence for the individual tones in the noise. The
genetic model converges faster and to a lower level than the
other models at all tones except 280 Hz where performance is
similar for the original model. This is the fastest converging
mode for the algorithm for all secondary path models. The
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X-inverse model shows that the 180 Hz tone is diverging due
to the >90◦ phase error at that frequency (see Figure 5).

6. CONCLUSIONS

Use of a genetic algorithm to find optimum values for the
magnitude coefficients of the secondary path estimate for the

FXLMS algorithm while preserving the phase of Ĥ(z) has
been shown to reduce the variation in the eigenvalues of the
filtered-x autocorrelation matrix.

ANC in a mock cab using control with both the

flattened and genetic ĥ(t) models provided as much as 6-
7 dB additional attenuation over control with the original

ĥ(t) model. For these specific swept tone noise tests, the

genetically optimized ĥ(t) algorithm did not provide any
additional benefit over the flattened model, even though
the eigenvalues were more uniform. It is possible that
the improved eigenvalues resulting from the genetically
optimized model could lead to better performance in other
applications.

When considering the more general case for multiple
tone noise, with tonal frequencies not corresponding exactly

to frequency bins, control with the X-inverse ĥ(t) models

performed worse than the original ĥ(t) model. Genetic ĥ(t)
models were shown to give 6–9 dB additional attenuation
with faster convergence times.

Use of a genetic algorithm as an optimization method
in implementing the EE-FXLMS algorithm extends its utility
and increases the potential benefit of its use over the FXLMS
algorithm. With this method, the eigenvalue disparity can be
reduced while assuring performance limiting phase errors are
not introduced.

The optimization performed on the secondary path
estimate in the EE-FXLMS algorithm in this paper is limited
to applications where the secondary path model (at least
the phase response) is relatively stable since the secondary
path is only characterized and optimization performed as
part of the setup of an ANC system. Further work could be
done to implement the EE-FXLMS with genetic optimization
for a changing secondary path with an online Sys ID
routine [14]. The secondary path can be characterized online
periodically and the eigenvalue equalization performed in
the background while control is running. Everytime a newly
optimized secondary path model becomes available, it can be
updated and used to run control. The time it would take to
get a new-optimized model for the secondary path estimate
would be set by the time it takes for the genetic algorithm to
execute.
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