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Genetic Algorithm Assisted Joint Multiuser Symbol
Detection and Fading Channel Estimation for
Synchronous CDMA Systems

Kai Yen and Lajos Hanzdsenior Member, IEEE

Abstract—A novel multiuser code division multiple access improvements can be achieved, approaching the ultimate limit of
(CDMA) receiver based on genetic algorithms is considered, the single-user bound. The optimum multiuser detector [6] based
which jointly estimates the transmitted symbols and fading o, the maximum likelihood (ML) rule has a computational com-
channel coefficients of all the users. Using exhaustive search, lexity that i fiallvi . ith th ber of
the maximum likelihood (ML) receiver in synchronous CDMA plexity thatis e?(ponen 1a yln'CreaSIng wi ! gnum gro usgrs.
systems has a computational complexity that is exponentially Hence, the optimum ML multiuser detector is impractical to im-
increasing with the number of users and, hence, is not a viable plement. This complexity constraint led to numerous so-called
detection solution. Genetic algorithms (GAs) are well known suboptimal multiuser detection proposals, highlighted in [5] and
for their robustness in solving complex optimization problems. hq references therein, which sacrifice performance for the sake

Based on the ML rule, GAs are developed in order to jointly f duced lexity. | ticular. th duced lexit
estimate the users’ channel impulse response coefficients as wel®' & reduced complexity. In particuiar, the reduced compiexity

as the differentially encoded transmitted bit sequences on the tree-search type algorithms [7]-[9] based on the ML rule with a
basis of the statistics provided by a bank of matched filters at specific number of surviving paths were shown to achieve a near-
the receiver. Using computer simulations, we showed that the gptimum performance, when used in conjunction with a noise
proposed receiver can achieve a near-optimum bit-error-rate \hitening filter, However, some form of memory is required at

(BER) performance upon assuming perfect channel estimation at th ; . der to st th tri fth . th
a significantly lower computational complexity than that required € receiver in oraer to store the metrics or the surviving patns.

by the ML optimum multiuser detector. Furthermore, channel ~Conventionally, the fading channel impulse response (CIR) co-
estimation can be performed jointly with symbol detection without  efficients are usually estimated using a pilot signal [10] as, for
incurring any additional computational complexity and without  example, on the downlink of the 1S-95 system [11] in order to
requiring training symbols. Hence, our proposed joint channel - ¢4 jjitate coherent detection. However, this technique becomes
estimator and symbol detector is capable of offering a higher . . . . . . . .
throughput and a shorter detection delay than that of explicitly mgfﬁment onthe upllnl-<, since an mcliependen.t pilot signal is rg-
trained CDMA multiuser detectors. quired from each user in order to estimate the independent fading
CIR coefficients experienced by each user’s signal. Nonetheless,
in order to support multiuser detection, this approach was used
in the third-generation UTRA system [4]. The associated ineffi-
ciency can be eliminated by invoking joint channel and data esti-
. INTRODUCTION mation, which is the topic of this paper.

ODE DIVISION multiple access (CDMA) [1]-[4] con- Recently, the notion of joint multiuser symbol detection and
C stitutes an attractive multiuser scheme that allows uséf@annel estimation was addressed in [7], [12]-{14], and [16]. In
to transmit at the same carrier frequency in an uncoordinated Symbol detection is accomplished using a tree-search algo-
manner. However, this creates multiple access interferefé8m, while the users’ complex signal amplitudes are estimated
(MAI), which—if not controlled—can seriously deteriorate thd!Sing recursive least-squares techniques. In [12], Gauss—Seidel
quality of reception. Numerous methods have been propogﬁations are applied, in order to solve the joint symbol detection
for reducing the amount of MAI present in the received signaﬂ,”d channel estimation problem. The channel estimation is per-
such as power control, the optimization of signature sequencé$med via the expectation maximization (EM) algorithm, while
and sectorized antennas. Nevertheless, these techniques RdWdltistage detection algorithm is used for detecting the data
their limitations in combating the effects of MAI, in conjunc-Packets. In[13], jointmultiuser detection and channel estimation
tion with the conventional single user detector, since the MAg Performed using two types of decorrelatorsin conjunction with
is treated as noise. a channel estimator. A path-by-path decorrelator is used to pro-

On the other hand, the so-called multiuser detector [5] tredi€le noisy channel information for the channel estimator, while
the MAI as a part of the information, rather than noise. Hence, Bychannel-matched decorrelator decides on the symbols trans-

processing this additional information, significant performand@itted and these decisions are fed back to the channel estimator
asreference signals. In[14] and [15], adecorrelator and a Kalman

filter were used for symbol detection and channel estimation,
Manuscript received April 26, 2000; revised November 17, 2000. respectively. A per-survivor approach was also proposed in [14],
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We note that in all the proposed methods mentioned above [CDMA system over a single-path frequency-nonselective

[12]-[16], the symbol detection and channel estimation wefading channel. Section Il describes the GAs used to im-

performed using two separate but interlinked techniques, whiplement our proposed joint multiuser channel estimator and

potentially incurs additional complexity. symbol detector in the context of slowly fading channels.
In this paper, we present a novel approach to the problépur simulation results are presented in Section IV. Section V

of joint symbol detection and channel estimation in DS/CDMA&oncludes the paper.

over flat-fading channels based on a genetic algorithm (GA) in-

novation. GAs have been employed for solving many complex Il. SYSTEM DESCRIPTION

optimization problems in numerous fields. While GAs are not

tact ie. thev d tal find th timal point. th We consider a symbol-synchronous CDMA system, wiére
pertect, 1.€., they do not always find the oplimal point, ey alg.q . 4ransmit data packets over a single-path frequency-nonse-
very efficient in attaining near-optimal solutions S|gn|f|cantl)f

faster than conventional boint-b int exhaustive search te ctive slowly Rayleigh fading channel, and hence, no multipath
1S onventional p y-point € S€ versity can be exploited. Assuming ideal low-pass filtering,
niques, especially in large solution spaces. Based on the

rule, we developed a GA that jointly estimates all the users baseband received signal is given by
channel coefficients as well as the transmitted bit sequences (t) = S(t,b) + n(t) 1)
on the basis of the statistics provided by the bank of matched

filters at the regeiver. GA-based multiuser detgction has be\ﬁ,ﬂeren(t) is the zero-mean complex additive white Gaussian
proposed, e.g., in [17]-[20], where the analysis was based gfise (AWGN) with independent real and imaginary compo-

the AWGN channel, where the only variables of interest affents, each having a double-sided power spectral density of
the users’ transmitted bits. Hence, the search space was discig{e> and

with a finite number of search points that is exponentially de-
pendent on the number of users. In this paper, we demonstrate M-1 K

that such a GA-based multiuser detector can also be applied to S(t,b) = Z Z vV Sch>bS>ak (t —i1}),
symbol detection over a fading channel, if the CIR coefficients i=0 k=1
are known. However, in the context of joint CIR estimation 0<t <1y (2)

and symbol detection solely by GAs—as considered here—the . o ]

search space is continuous with an infinite number of possitfe(2), M is the number of data bits in a frame transmitted by
points, simply because the fading attenuation and phase §8ch useréy is the bit energy of théth user,7; is the sig-
jectories are continuous. A GA-based channel estimation te@@ling interval,7; is the frame duration, and, (#) is the sig-
nique has been proposed previously in [21], which employé‘é‘_ture sequence of thigh user associated Wlth a processing
the Viterbi algorithm for data detection in a single-user receivé}in of Ve. However, our proposed detector is capable of han-
Hence, our proposed GA-based multiuser detector is slighfijjnd sequences of long period, as long as the cross-correlations
different in terms of its structure from those in [17]-[21]. wé€tween the users’ signature sequences over each signaling in-
will show in Section IlI that the CIR estimation can be perterva(li)are known to the d(%tecto_r. The unknown variables in (2)
formed jointly with the symbol detection using the same GAR€b;.” € {+1,—1} andc,”, which denote théth bit and the
simultaneously, without incurring any additional computation&eresponding complex CIR coefficient of theh user, respec-
complexity, unlike in [7], [12]-[16]. Furthermore, in contrast tdiVely. The channel is assumed to be slowly fading, such that
Kalman filter-based CIR estimation [16], which is CIR-deperfz.. May be taken to be constant over one signaling interval
dent, no knowledge of the CIR is required for our proposed ePd the fading is independent for all useltss also assumed
timator. Since the CIR estimation can be conducted without ékat i’ varies over the duratioff; of the M-bit transmission

plicit training sequences or decision feedback, our proposed ffié@me according to the Doppler frequengy. There are nu-
tector is capable of offering a potentially higher throughput ariiérous models that can be used to describe the fading channel
a shorter detection delay than that of explicitly trained CDMAharacteristics, for example, the Jakes model [5] or a first-order
multi-user detectors. Gauss—Markov model as given by [15]

The CIR estimation and symbol detection performance of the
proposed multiuser detector is examined by computer simula-
tions. The performance measures of interest in this paper are @) _
the mean-squared error (MSE) and the BER for the CIR esffherea = exp(—2r/,1;) and»,” is a zero-mean white
mation and symbol detection, respectively. We will show th&aussian variable. Kalman filter-based CIR estimation requires
our proposed receiver can achieve a near-optimum BER p@xact knowledge of: and that of the variance of”, which
formance with the aid of perfect channel estimation at a signifidust be acquired with the aid of training symbols and updated
cantly lower computational complexity than that required by tHéequently over a time-variant channel [24]. Alternatively, we
ML optimum multiuser detector. The MSE performance of thean express the relation betwegl andcy " as
CIR estimator is particularly crucial, since it was shown in [15], (1) @ @

[22]-[24] that a high CIR estimation MSE can cause a signifi- A AV (4)
cant BER degradation, which induces an irreducible error floor. ‘

The paper is organized as follows. Section Il describes tirere A is a random variable whose value is dependent on

system model used in this paper. We consider a synchronaus: exp(—2x f;T3) andz/,ii). Note that (4) is analogous to the

c,(j—i—l) = ac,(j) + I/Igi) 3)
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Fig. 1. Block diagram of the system model.

LMS-based CIR estimator, in which{” = ;)" [c{?5() + and on the vectds™ incorporating the data bits is given by [8],
n{) — &) (see [25, eq. (8)]), wherg is the step size. [12]

In the context of joint channel estimation and symbol detec- D 1 N A
tion using phase shJift keying (PSK), there is alway)s/ the inherent A(C( )’ b )) - 2§R{b( : S(C( )) z}

roblem of a phase ambiguity afin the estimated CIR coef- N T i O\ i
ﬁcients. In ordper to overcgmeythis problem, the transmitted bit B (b( )) (CUR (C( )) & (7)
sequence is differentially encoded [22]. Our system modelygere(-)* denotes the conjugate operation. The decision rule
shown in Fig. 1. for the optimal joint multiuser channel estimation and symbol

Atthe receiver, a bank of filters matched to the correspondiggtection scheme is to choose the channel coefficient matrix
set of the users’ signature sequences is sampled at the end og#hie and symbol vectob™, which maximizes the LLF given
ith bitinterval. In this paper, we are interested in determining the (7) under a constraint on the channel coefficient magti
unknown data bitégj) fori=1,...,M—-1andk=1,...,K asimposed by (4). Hence,
as well as the CIR coefﬁcieméj) fork =1,...,K andi =
0,...,M — 1 at the receiver, in order to perform coherent d -C’(i),ﬁ(i)) :arg{ max [A(C“),b(i))H
tection of the received signals. It is convenient to formulate the R

outputz of the matched filters in vector notation, which is given subjectto ¢ ==Y+ ALY (8)
by Equation (8) constitutes a global optimization problem and is
. T o nonlinear, since it entails taking the maximumz‘c(fC(Z), b(z)).
z 21 s RR & +n (5) Hence, (8) cannot be solved by a conventional linear optimiza-

_ _ _tion approach or by an exhaustive tree search, because the actual
whereRis aK x K user signature sequence cross-correlatiaalues of the channel coefficient mate%” in (7) are unknown,

matrix with elements given by unless a separate CIR estimator is incorporated, as in [7].
T
R;; = / ' a;(t)a;(t) dt (6) [ll. GENETICALGORITHM BASED JOINT CHANNEL ESTIMATION
0 AND SYMBOL DETECTION

The efficiency of any global optimization technique can be
measured in terms of two properties: the so-ca#igplorative

@) _ qiao )G (i) o .
c —dlag[cl G2 v"'ch} property and thexploitativeproperty [26]. Technigques that pos-

R TIN N sess a high explorative property have a slower convergence rate
¢ =diag [\/E, \/{2, Y \/57} and a higher computation complexity but they explore the entire
b — Hi)j bgi)7 o bgz‘)r space in order to locate the global optimum. Hence, accuracy
is always guaranteed. The optimal ML multiuser detector [6],
and ‘ ‘ ‘ which computes the LLF for every point in the solution space,
n= [n@, n§;>, e n%)} is an example of such techniques. On the other hand, techniques

such as the family of hill-climbing methods possess a high ex-

is a zero mean Gaussian noise vector with a covariance mapigitative property, and hence they offer fast convergence to an

R, = 0.5NoR. optimum of a given subspace. However, this optimum may not

Based on the observation vectagiven in (5), it can be shown be the global optimum of the entire solution space. Unless that

that the so-called log-likelihood function (LLF) conditioned orparticular subspace contains the global optimum, the outcome
the matrixC'” containing the CIR coefficients in its diagonaiwill always be suboptimum, resulting in a so-callp@mature
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convergenceFor example, the tree-search techniques basedrewersed appropriately, if the CIR coefficients are estimated
the M-algorithm [8] retaining a limited number of survivingusing the GA-based CIR estimator in conjunction with known
paths can be said to favor exploitation rather than exploratidsits. We shall use the terminologpmbinationstring whenever
since once a trellis path is discarded, it will not be reconsiderese refer to both the CIR coefficient-string and the data-string.
GAs [27]-29] constitute robust global search and optimizadence, thesth combination string will consist of thgth CIR
tion strategies that can strike an attractive balance between evefficient-string and theth data-string.
ploitation and exploration. These algorithms were introduced byln order to attain a highly diversified search (exploration)
Holland [27], and their principles are based on the concept aff the beginning without knowing where the optimum solution
natural evolution. Specifically, GAs use a population of candinay be located, it is desirable to distribute the candidate solu-
date solutions initially distributed randomly over the entire sdions randomly throughout the solution space. Hence, the ele-
lution space. Hence, GAs are highly explorative at the begiments of the antipodal bit strindéz)(y) forp=1,...,Pand
ning. By evolving this population of candidate solutions over = 1,...,AM/ — 1 aty = 1 are randomly generated1 or
successive iterations generationsthrough probabilistic tran- —1 values with equal probability. Similarly at= 0, the likely
sition operations based on Darwinian survival of the fittest, thalues of the CIR coefficients will not be known. Hence, the
GA quickly identifies and exploits the subspaces, in which thaitial CIR coefficient string@éo)(l) forp=2,...,Pareran-
global optimum may be located, while at the same time maidemly generated with the aid of real and imaginary Gaussian
tains the exploration of other parts of the solution space. Hengeariables. Note that at= 0, the users’ data has to be a known
while the optimum solution is not always located, the GA hdsit, since the transmitted bit sequences are differentially en-
a low probability of curtailing the exploration in suboptimalcoded. Based on this known data bit, the CIR coefficients for
rather than optimal solutions. For an in-depth examination 61‘50)(1) can be estimated from the output of the matched filters.
the principles of GAs [27]-[29] are highly recommended. In thiShese estimated CIR coefficients will be interfered by the MAI
paper, we employ GAs in order to solve the joint CIR estimaticgind hence will not be accurate. Nevertheless, this CIR estimate
and symbol detection optimization problem, where the requirell provide a good foundation for the GA to evolve froiffor
objective function is defined by the LLF in (7). Specifically, wethe CIR coefficients of subsequent signaling intervals, i.e., for
are intgrested in determining the CIR maté%” and the data ; > 0 at y = 1, we used the CIR coefficient-strings estimated
vectorb™ that maximize this objective function. The structurérom the previous symbol interval as the initial CIR coefficient
of the proposed GA-based CIR estimator and symbol detectitrings for the present symbol interval. More explicitly, we had
can be best understood with the aid of the flowchart shown @'léi)(y =1) = é’éi_l)(y =Y)forp = 1,..., P, since the

Fig. 2, which will be referred to often. CIR coefficients are correlated between consecutive signaling
intervals as governed by (4The parametey — Y is associ-
A. Initialization ated with the GA generation corresponding to the termination

of the search, as seen in Fig. 2.
Initialization of the GA is performed at the so-called

_(y = 1)st generatiqn for each new signal_ing interva!, as se@ Eyaluation

in Fig. 2, by creatingP number of candidate solutions, or ) ) o L

strings in GA parlance. The set oP strings is known as a _ Assomated_ with thepth combination s_trmg is a sp—called
population and P is known as thepopulation size These figure of merit—more commonly known in GAs as tfitess
strings represent the unknown variables of interest, whi¥g!ue—which hasto pt(ei)evalqz(ait)ed,as seen in Fig. 2. The fitness
in this case are the diagonal CIR matdX” and the data value, denoted by/[C} (y), by (y)] for p = 1,....P is
vector b of (7). Hence, each string will contaifk ele- Computed by substituting the elements of both fitle CIR
mentscorresponding to thé users, each assuming a certaiff°efficient-string and thesth data-string into the objective
value We shall denote the complex-valued CIR coefficierfnction or LLF of (7).

strings asCy (y) = [ (1), & (x), ..., &% ()], which is

p,L\I )0 Tp,2 »p, K - .
composed of real and imaginary parts, and the data stringGs Selection

bg)(y) = [biii(y),biié(y),---,bff,);((y)], which is composed  The exploitative property of the GA is derived from two
of the antipodal bits of thé(' users at instant Explicitly, the GA operations referred to alectionandcrossove28]. The
parameters, y, andp denote theth signaling interval, thgth  crossover operation will be highlighted in the next subsection.
generation, and theth string, respectively. The reason for using et us refer to the elements that constitute the optimal solution
two sets of strings—rather than one—is pure[y to differentiatgs good elementsAny other elements are referred to lzad
between the complex CIR coefficient Strinﬁg’)(y) and the elements For example, if the optimal solution constitutes a
data stringsi;g)(y), since the mutation process of these stringgring containing allk-1 elements, then any1 in a string will
seen in Fig. 2 is different, which will be further elaborated obe a good element while anyl in the string will be a bad
later in this section. Furthermore, such distinction can eas#yement. Intuitively, strings having a high fitness in the sense
cater for situations when, e.g., known pilot symbol assisted (8) will contain more good elements and hence should be
CIR estimates are available. We then simply assign tleeseexploited further. At the same time, strings having a low fithess
priori known CIR estimates to all the corresponding stringglue should be discarded. Using a so-caliadcated selection
without changing the structure of the Gk this case, only technique[29], as showninFig. 2, following the termination test,
the data strings will be processed by the GAkis process is the " number of fittest combination strings in the population
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Fig. 2. Flowchart depicting the structure of the proposed genetic algorithm used to jointly estimate the users’ CIR coefficients and to detsctitieel toéts
at theisth signaling interval.

for the generation concerned are placed in the so-called matbag) with equal probability between two different strings, the
pool [28]. The strings in the mating pool will then be used foso-calledparentsn GA parlance, selected from the mating pool.
subsequent exploitation and exploration of the solution spaceThis will produce two new strings, which are referred taés
away, this selection technique is analogous to a tree-search tgpeng These offspring will constitute the new population of the
algorithm, in which only a limited number of paths are retainedext generation.
as survivors based on their corresponding metrics. There are three possible outcomes from the crossover opera-
tion, as illustrated by the examples in Fig. 3. We assumed that
the optimum point of a given eight-variables solution space is a
string contains alt+1 elements of equal contribution to the ob-
The exploitation of the strings in the mating pool is carriefctive function, a condition which we refer to as equal weight.
out by the so-called crossover operation [28] of Fig. 2. Simpky so-calledcrossover mask32] consisting of a sequence of
speaking, crossover entails the exchange of elements (goodamdomly generated 1s and Os of equal probability is invoked,

D. Crossover
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Parents Offspring there is a crossover loss, since a highly fit string, i.e., one of the
parents, is lost in the subsequent generation. In order to pre-

-1-111-1-1 ===== 1 1-1-111-1-1 . .. .
br-- vent this loss, the process of so-called elitism [29] is employed,

10 0010 1 1 <==== Crossover mask which will be highlighted later in Section IlI-F.
The crossover operation is then repeated for different parents
1-1111-1-1-1 =====> 1-1111-1-1-1 selected with equal probability from the mating pool in order
@) to produceP offspring out of whichZ” will become potential
parents and in turn will produce offspring for subsequent gen-
Parents Offspring erations. The relative occurrence frequency of the first and third

outcomes largely depends on the valu€/ofif the value of T’
is too low, certain high-fithess strings may not be evolving to
future generations and the same parents are always selected, re-

11-1-111-1-1 =====> 111-111-1-1

10 1000 1 1 <==== Crossover mask Lo . ) )
sulting in almost identical offspring (outcome one). On the other
1111 1-1-1-1 =====> 1-1-111-1--1 hand, ifT" is too high, too many low-fitness strings may be sur-
(b) viving to future generations (outcome three). Hence, if the value
of I"is appropriately chosen, then intuitively we can see that the
Parents Offspring crossover operation of the GA is capable of exploiting the good
1 1-1-111-- 1 11-1-1 1-1-1 elements of highly fit strings in order to produce strings with
even higher fitness. Based on the same concept, the data vector
100010 11 <==== Crossover mask elements and CIR vector elements belonging to a pair of par-
-1 -1-1-1-1 1-1-1 I-1-1-111-1-1 ents will be exchanged using the same crossover mask in our
() proposed joint symbol detector and CIR estimator.

Fig. 3. Examples of crossover between two parent bit strings. (a) First out-
come. No change in fitness between parents and offspring. (b) Second outcogne.M tati
One offspring has one moxel than its parents, while the other has one #4ds - Mutation

than its parents. (c) Third outcome. The offspring has fitness values within the .
range of its parents. We have seen that the crossover operation can cause pre-

mature convergence, which will result in suboptimal solutions.

_ ) _ This usually occurs when the strings in the mating pool are iden-
in which the elements are exchanged between the pair of p@ta| or aimost identical, resulting in identical offspring. Refer-

ents at locations corresponding to a 1 in the crossover magy 1o our previous example, if all the strings in the mating pool
In the event of the first outcome seen in Fig. 3(a), both parenigye a bad element at the same location, then further crossover
exchange identical elements, resulting in identical offspring. }ocesses between any of these strings will not be able to re-
this case, there is no crossover gain, since the fitness of the gffsve the bad element, since all tieoffspring will also “in-
spring will be the same as their parents. This outcome will al$yit” the bad element. In order to escape this trapped situation,
occur if an even number of different elements are exchangg so-called mutation [28] operation is employed. The mutation
between parents, again assuming equal weight amongst the,@cedure of Fig. 2 refers to the alteration of the value of each
ements. Intuitively, this outcome will be encountered, when tRgement in the offspring with a probability denotedy. In the
population is converging toward the optimum, either global @iase of the data string, the mutation process simply inverts the
local, when the strings are almost identical. Premature convgft value of the element concerned from 1@ or vice versa.
gence toward a local optimum can be avoided by employing thince, in our example, iP andp,,, are sufficiently high, then
so-callednutationoperation, which will be highlighted later in the bad element in certain offspring will be mutated to a good
Section IlI-E. element. If these offspring are later transferred to a mating pool
According to the second outcome, two offspring are pr@and selected as parents, then this good element will be passed
duced, one of which has a higher fitness than both of its parentsto future generations.
due to gaining additional good elements, as shown in the figureimplementing mutation in conjunction with the com-
On the other hand, the other offspring has a lower fitness thalex-valued CIR coefficient-string is slightly more compli-
both of its parents due to losing good elements. For equalted, since it is difficult to distinguish between a good and
weight elements, this occurs when both parents exchangebaitl element [30]. We can only strive for achieving a value that
odd number of different elements. This outcome is usually as close to the optimum value as possible. Hence, adopting
encountered during the first few generations of a GA when batiiie constraint of (4) in order to search for the optimum CIR
parents have nearly equal fitness, but they are still sufficiendpefficients is sensible, since the previous estimated CIR
diverse. In this case, there is a crossover gain, since a stringoéfficients will be relatively close to the optimum value of the
higher fitness was found, which will then be evolving furthecurrent CIR coefficients in a slowly fading channel. When a
in the subsequent generations. complex-valued CIR vector element is picked for mutation, the
The possible third outcome is encountered when one of tHigection of mutation is chosen randomly with equal probability
parents is a highly fit string, while the other one has a low fifor both the real and imaginary part of the complex CIR vector
ness value, as shown in Fig. 3(c). They produce offspring havialgment. Then a real-valued mutation sfxg) (y) is randomly
fitness values that lie between those of their parents. In this cagenerated, whose value ranges betwé@m\,,.x(y)]. The



YEN AND HANZO: GA ASSISTED JOINT MULTIUSER SYMBOL DETECTION 991

value of the real and imaginary parts of the element are thienhighly fit strings in order to search for strings of even higher
increased or decreased accordingly by a magnitude prescrifiebss, and it also ensures that the fittest will survive. At the
by the mutation size same time, it also allows the opportunity to explore other parts
of the solution space.

R [e0)] =0 [0 - D] £ AP - 1)
(i

[0 w)] =3 [ - 1] £ A @ - 1) o |
The GA can be terminated if there is no improvement in the
fory =2,...,Y. (9) . ) . . .
maximum fithess value of the population after several iterations.
Notice that a limit is placed on the value @¢”(y) by the This will ensure with a high probability that the global optimum
parameter),..(y) so that the difference in phase betweeis found at the expense of high computational complexity and
the mutated and original channel coefficients should be 16989 convergence time. In multiuser detection, it is more desir-
than 7. This is to ensure that the phase ambiguity will noable to detect the data fast and at a low complexity. Hence, we
change from thé: — 1)th symbol to theth symbol, unless the terminate the GA of Fig. 2 after a specified numbeyof Y
phase is near zero, as we shall see in the context of one of ganerations. In the context of our proposed joint data detector
simulation results in Section IV. On the other hand, the val@d CIR estimatothe combination string corresponding to the
of Amax(y) should be sufficiently high—especially for highhighest-fitness value is finally chosen as the estimated users’
Doppler shifts—in order to track the changing CIR coefficienteIR coefficients and transmitted hits
from one symbol to the next. In our simulations,.(y) is For a given population siz€ with the GA terminated after
gradually decreased over the course of the evolution according= Y generations, the number of objective function evalu-
t0 Anax (%) = Amax(y — 1) % 0.75, if and only if the maximum ations required to detect the users’ transmitted bit at each sig-
fitness of the population of th@g; — 2)th generation is the samenaling interval is equal t¢’ x Y. By contrast, the computational
as that of théy — 1)th generation. By gradually decreasing th€omplexity of the’ML optimum detector using exhaustive search
mutation size, we can fine-tune the estimated CIR coefficierigsequivalent t@" . Hence, by adjusting the values BfandY’,
over the course of the evolution. the complexity of the GA-based detector as well as its BER per-
We have seen that mutation can prevent convergence to a ldeamance can be controlled, as we shall see in the next section.
optimum. On the other hand, the mutation operation can al¥é will also show that the GA-based multiuser detector is ca-
change a good element to a bad element. This is definitely yrable of attaining a near-optimum performance with the aid of
desirable, especially if the offspring, which constitutes the aperfect CIR estimation at a significantly lower computational
tual global optimum, was mutated to a suboptimum solutiogomplexity compared to the optimum multiuser detector.
On the other hand, mutation creates an opportunity to explore
different areas of the solution space and hence promotes explo- IV. SIMULATION RESULTS
ration. Hence, the value ¢f,, must be chosen carefully in order
to prevent excessive mutation. Typicafly, = 1/K whereK
is the number of users so that, on average, only one element
string is mutated.

G. Termination

In this section, our simulation results are presented in order
to demonstrate the performance of the proposed detector in the
&iitext of both CIR estimation and symbol detection indepen-
dently as well as jointly. A summary of the various parame-
ters that are used in our simulations is shown in Table I. Un-

F. Elitism . . )
) less otherwise specified, it was assumed that our system sup-
We have seen that the crossover operation presents adangﬁbﬂfedK = 10 users with symbol synchronous transmissions

losing a high-fitness string. In order to prevent the loss of thegger 4 single-path Rayleigh fading channel. The signature se-

strings, we identify the string having the highest fitness in th,ences for all users were randomly generated with a processing

mating pool corresponding tothe previous generation andrepl% of N. = 31 and the received signal power of the users,

the lowest-fitness offspring found in the new population by it. Wk = 1,..., K was assumed to be known by the receiver.

In the context of our proposed joint data detector and CHy,e Doppler frequency and the bit rate wefe= 200 Hz and

estimator: R, = 64 kb/s, respectively, for all users. Let us first evaluate the

min {f [égz)(l)jggz)(l)} T [é§i>(1),5§i>(1)}} CIR estimation performance of the proposed detector, followed
by its BER performance evaluation.
is replaced by

S (i—1) (- 1) A. Channel Estimation Performance
max{f[Cl (), 8 (Y)},...,

Fig. 4(a) and (b) demonstrates the tracking capability of the
f [C’(,i_l)(y),g(,i_l)(y)} } . (10) GA-based CIR _estimator b_oth in conj_u_nction with known bits
and unknown bits, respectively. Specifically, a snapshot of the
Hence, the highest-merit combination string of a particulastimated real and imaginary components of the channel coef-
generation is propagated to the next generation. This strategfiégent of a user is compared with its corresponding true value.
known aselitism[29]. Notice the mirror image of the estimated components after about
We can see that by employing the combination of th#00symbolswithrespecttothe zerolevel offtaeis in Fig. 4(b)
crossover, mutation, and elitism operations governed by proheing unknown bits. This will result in the phase ambiguity we
bilistic rules, the GA is capable of exploiting the good elementsave mentioned previously due to the 1&hange in the phase



992 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 6, JUNE 2001

TABLE |
SUMMARY OF THE VARIOUS PARAMETERS USED IN OUR SIMULATIONS

2.0
- actual
LS £/Ng=20dB fork=1,..K - -~ estimated

Symbol | Description

10} 1

e
0.0 N «WW\‘M \ 5 b
0.8 —'MM| /J‘ ‘

Hor \ ’?f‘ ' \Real component h ]

0.5

System parameters

K Number of users

M Number of data bits per frame

N, Number of chips per bit

Amplitude of Real and Imaginary Components

Imaginary component
fa Doppler frequency 20T 0 00 30 a0 500 600 700 800 S0 1000
Symbol
Ry Data rate (@)
&k Average received bit energy of the kth user 2 20
S 2
§ """"""" actual
Genetic algorithm parameters g T £/Ny =20 dB for k=1,...K ——- estimated
P Population size i 1orF 1
o
% 0.5 [ /” "'"‘\\ pwx;'ﬁlki“.\‘;"“?
P Mutation probability g fm 'w“'d' y R e ek
= Wwﬁ ;‘*;.,“,V'"A,':\;?{ k
Amaz{1) | Maximum mutation size for real-valued variables at initialization g o5 _l’."u,'gw v o/,’f “"'{'),MV”'”" \\Q\“
@ W . By
T Number of individuals considered for selection T ool \ ‘.—{\e’ \ J
] Real component
Y Number of generations per signalling interval :—%H I Imaginary component k
E: 20T T e 0w S0 &0 70 80 %00 1o
Symbol
(or the sign in the case of BPSK). This change in the phase is (b)

C?‘used by the mUta_‘tl_on Process '_n the afctempt.to ?Stlma.te theﬁ&l. Snapshot of the estimated real and imaginary components of the
sired channel coefficients. The bits in this ambiguity region wittir coefficients corresponding to one user as compared to its true value for
be detected in error, unless differential encoding and decod@gazgwyt{andlORazX'e'gb'?d'”%Shanon?'f@t o 2000H12,(W)hglfgf" - 1U't
H = s = 4 =9, Amax = 0.1,andp,, = 0.1. (& coertncien

are invoked. However, on the whole, the GA-based Ch_an_nel eﬁgﬁmation with the aid ofknown bits. (b) CIR coefficient estimation with the
mator was capable of tracking closely the channel variations, &gt of unknown bits.
gardless of whether the bits were known or unknown.

In order to quantify the channel estimator's perforrr“"mcgingIe—userbound using the linear minimum mean-squared error

the_ mean squared error (MSE) b,etween the_ true value an_d F/IMSE) channel estimator given in [33] was also plotted for
estimated value of the channel's attenuation was obtain

) parison. It can be seen that our proposed GA-based channel
F'g.' 5 compares the MSE performance of the GA-based Cha”BS imator exhibited a significantly lower MSE value than that
estimator for different;, /Ny values and fot\,,,x(1) = 0.05

. of the conventional estimator, and its performance was not far
and \,.x(1) = 0.1 measured over a frame of 200 known b|t§rom the single-user bound

and averaged over 200 transmitted frames with equal average
received bit energy for all users. It is seen that GAs usi@ Symbol Detection Performance

Amax(1) = 0.05 can achieve a lower MSE than in conjunction
With Amax(1) = 0.1. However, the former suffered from a In order to evaluate the BER performance of the GA-based

longer convergence period. detector, a frame length @ff = 640 bits was employed by each
Fig. 6 examined the effects of differeky,...(1) values onthe USer.In this subsection, the CIR coefficients are assumed to be
achievable MSE for varioug,7} andé; /N, parameter values. perfectly estimated, and, hence, the results were shown in the
From the figure we can see that the value\gf..(1) can have context of nondifferential BPSK modulation where the symbols
a significant impact on the achievable MSE for differgpt;, are not differentially encoded.
values. For example, whefy7, = 0.001, A\pax(1) = 0.02 In order to give an impression of how the GA manages to de-
gives the optimal MSE for alf;, /N, values. However, for the tect the users’ transmitted bits over the course of evolution given
sameluax(1) = 0.02, the MSE for f,;7;, = 0.01 becomes apopulation of randomly generated possible solutions at the be-
excessive due to the fact that a low,..(1) value is inca- ginning, the BER performance of the proposed detector at each
pable of tracking the rapidly changing channel coefficien@eneration is shown in Fig. 8 §/No = 30 dB in conjunc-
between symbols. Hence, in our simulations, we have adoptih with perfect channel estimates, i.e., when the GA was not
Amax(1) = 0.1 since it exhibits a fairly consistent MSE over d@nvoked for channel estimation. As we have mentioned in Sec-
faTy range of 0.01 to 0.001, and it is also 7; hence it avoids tion Ill, the crossover operation will efficiently identify the areas
the phase-ambiguity problem. inthe solution space, where the optimal solution mightbe located.
Fig. 7 compares the MSE of the proposed channel estimaldiis can be seen from the steep slope during the first few genera-
to that of the conventional correlation-type estimator [16]. Thigons. However, crossover alone will notfind the optimal solution,
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Fig. 5. Average mean squared channel estimation errofina 10-user synchronous CDMA system over a frame of 200 known bits and averaged over 200

transmitted frames with equal average received bit energy for all users over a narrow-band Rayleigh ctfanae2@d Hz, whereP = 40,Y = 10,7 = 5,
andp,,, = 0.1.
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56 Q& - deb'—'OOOl
~ Same &,/N, for all users
. — £,T,=0.005
~. aly
: o —— f,T,=0.01
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Fig. 6. Average mean squared channel estimation error after convergendeé iz a0-user synchronous CDMA system with known bits and equal average
received bit energy for all users over a narrowband Rayleigh-fading channel at vAriBysvhereP = 40,Y = 10,7 = 5, andp,, = 0.1.

when no mutation is invoked, resulting in a suboptimal solutiomherey,, = &, /No. As can be seen from the figure, the combina-
as shown in Fig. 8. Hence, when crossover is used in conjunctim of P = 40 bit strings and” = 10 generations—which con-
with mutation, the BER performance isimproved significantly, astitutes40 x 10 = 400 LLF evaluations according to (7)—was
showninFig. 8. Finally, elitismis employedinorderto ensure thagpable of achieving a near-optimum single-user-like BER per-
the best string is not lost over the course of the evolution. Henéetmance. By contrast, the optimum multiuser detector using ex-
we can see that GAs associated by elitism will always perfor@ustive search would requigd® = 1024 LLF evaluations.
better than without elitism, as illustrated in Fig. 8. For &, /N values beyond 40 dB, the system exhibited an error

Fig. 9 characterizes the BER performance of the proposed #leor due to the performance limitations of the GA in conjunc-
tector in conjunction with perfect channel estimates for differetion with the givenY” and P values studied. At lower values of
number of generations and different population sizeB. The Y and P, the error floor occurred at a lowgy, /Ny value. For
single-user bound was computed using the following equatigtstance, at” = 10 andP = 20, which constitutes 200 ob-
for BPSK modulation [34] jective function evaluations according to (7), the error floor oc-
< — ) curred at arf, /Ny value of about 32 dB, while fafi. /Ny values

e (11) up to 24 dB, the detector exhibited near-optimum BER perfor-

7, mance. Hence, the proposed GA-based detector was capable of

Py=
’ L+,

2
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Fig. 7. Average mean squared channel estimation errotfina 10-user synchronous CDMA system with known bits as compared to that of a conventional
correlator-type estimator in& = 10 user system and a single user LMMSE estimator over a narrowband Rayleigh chafinel 200 Hz, P = 40,Y = 10,
T =5, Amax(1) = 0.1, andp,,, = 0.1.
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Fig. 8. BER performance of the proposed GA-based detector as a function of the number of generations assuming equal bit enBrgy fod alers with
perfect channel estimation, whefe= 40,Y = 10,7 = 5, andp,, = 0.1.

offering a tradeoff between computational complexity and an opiicantly larger search space. As the population dzes in-
timum BER performance. We also note that GAs using a highereased, the BER improves. With a population siz€ef 160,
number of generations per signaling interval gave a better BER can see that the GA-assisted detector is capable of attaining
performance than GAs having a larger bit string population sizaenear-optimal performance, when supportiig= 20 users.
P and a lower number of generatiobhsat the same computa- More importantly, we noted that the number of LLF evaluations,
tional complexity. For example, in Fig. 9 the BER performancgenoted within the brackets in the legend of Fig. 10, increase
ofthe P = 20, Y = 10 scenario was better than that of thanore slowly than exponentially with the number of users. For
P = 40, Y = 5 arrangement, both of which require 200 obexample, wheik is increased from 10 to 16, the population size
jective function evaluations according to (7). P has to be increased from 40 to 120, in order to maintain the
In order to show that the computational complexity of the GAame level of performance. This constituted a factor of 1200/400
is not exponentially dependent on the number of ugérshe = 3increased computational complexity whi§rwas increased
BER performance was evaluated for various number of usefrgm 10 to 16, while maintaining a near-optimum BER perfor-
employing P = 40, 80, 120, 160, 200 in conjunction withY” = mance. By contrast, the computational complexity of the op-
10. The results are shown in Fig. 10. & = 40 andY = timum multiuser detection using exhaustive search would be
10, we can see that the BER performance gradually degradiesreased by a factor ¢fl/2!° = 64. Similarly, whenK is
upon increasing number of users, due to the limited populatiorcreased to 20, a population size Bf = 160 is sufficient
size P, which was too small for adequately exploring a sigfor attaining the same level of BER performance. This consti-
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Fig. 9. BER performance of the proposed GA-based detectdk fer 10 users with various combinations 6, Y, andT" in conjunction with perfect channel
estimation over narrowband Rayleigh-fading channelgat 200 Hz, where\,,,..(1) = 0.1 andp,,, = 0.1.
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Fig. 10. BER performance of the proposed GA-based detector for as a function of the number &f wgérs/arious population sizeB in conjunction with
perfect channel estimation over narrowband Rayleigh-fading channgls-at200 Hz, where\,,.x(1) = 0.1,Y = 10, T = 5, andp,. = 0.1.

tuted only a factor of 1600/40& 4 increased computational Fig. 11 shows the BER performance of the proposed joint
complexity. Furthermore, in contrast to the reduced tree-searttannel estimator and symbol detector for processing gains
type algorithms [8], [9]—which can also achieve a near-omf N. = 31 and N, = 127. The BER performance of the
timum BER performance at a complexity lower than that of th@ A-based symbol detector using imperfect channel estimation
optimum detector—our GA-based multiuser detector does rfaving an MSE of 0.01 and 0.001 is also shown. Also plotted
require any memory capacity, since all information related to the figure are the differentially coded single user bound in
previous generations can be erased. Additionally, for the tramnjunction with perfect channel estimation, which is given by

search algorithms a noise whitening filter is required. [34]:
C. Joint Symbol Detection and Channel Estimation P, = 1 <1 — 7_C_> (12)
Performance 2 1+7.

In the context of joint channel estimation and symbol deteas well as the differentially decoded BER performance of the
tion, the bit sequence in the frame was differentially encodgdoposed GA-based symbol detector assisted by perfect channel
with the first bit made known to the receiver. The average BE&stimation. As can be observed, the joint CIR and data detector
performance was evaluated after the detected bits were diffexhibited an error floor due to the imperfect channel estimation,
entially decoded. and the MSE of the CIR estimation was somewhere between
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Fig. 11. BER performance of the proposed GA-based joint channel estimator and symbol detdgtet foi users over narrowband Rayleigh-fading channels

at f4 = 200 Hz after the differential decoder, whefe = 40,Y = 10,7 = 5, Apax(1) = 0.1, andp,,, = 0.1. Results were shown for processing gains of

N. =31andN. = 127. Also shown are the BER performances of the GA-based data detector with imperfect channel estimation with MSE values at 0.01 and
0.001.
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Fig. 12. BER performance of the proposed GA-based joint channel estimator and symbol detektosfdd users withé, /&, at 0 dB, 6 dB, and 10 dB for
k=2,..., K after the differential decoder of the first user, ife= 1 is the desired user, whef@ = 40,Y = 10, T = 5, and,,ax(1) = 0.1.

0.01 and 0.001. This phenomenon can also be observed indbserved during the acquisition of the CIR estimates were also
context of other multiuser detectors. For the sake of comparistaken into account.

the joint symbol detection and CIR estimation using a decorre-Finally, Fig. 12 characterizes the near—far resistance of the
lator and an ideal Kalman filter shown in [15] achieved a BERroposed joint channel estimator and symbol detector in terms
of 1073 for K = 10 users and for a processing gain of 1270f the BER of the desired user. Theaxis portrays the&; /Ny

As shown in Fig. 11, our proposed detector is attaining a pefalues of the desired user, while the average received bit ener-
formance close to that. Furthermore, it should be noted that @ies of all other users were set to 0 dB, 6 dB, and 10 dB higher
BER is calculated over the entire length of the transmitted bit stran that of the desired user. It is seen that for atff; = 6
quence, i.e., from the zeroth symbol to {id — 1)th symbol, dB and¢,/¢; = 10 dB, the proposed joint GA-based CIR es-
rather than after the initial convergence. Hence, the bit errdiator and data detector was near—far resistent up&ig A
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value of 16 dB. Beyond that, a BER performance degradation[4]
was observed, eventually leading to an error floor. 5]

V. CONCLUSION [6]
In this paper, GAs were developed in order to jointly esti- [7
mate the CIR coefficients as well as the transmitted bits simul-
taneously for all users in a symbol-synchronous CDMA system
based on the ML decision rule. The system’s performance wad®
investigated using computer simulations as a 1) channel esti-
mator with known bits, 2) symbol detector with perfect channel ]
estimates, and 3) joint channel estimator and symbol detector.
Our results showed that as a channel estimator, the GA was
capable of tracking the variations of the fading channel, whild®!
achieving a channel gain estimation MSE as lom@s?® in a
noiseless channel. The proposed symbol detector was capalfi¢]
of attaining a near-optimum BER performance at Iy Ny 12]
values with perfect channel estimates and under the conditiorgs
of equal bit energy for all users, while maintaining a computa-
tional complexity significantly lower than that of an ML op- [13]
timum multiuser detector. Upon exploiting its capabilities as
a channel estimator and symbol detector, the proposed joirit4]
channel estimator and symbol detector can achieve a BER as
low as2 x 1073 at an& /Ny value of 30 dB in a ten-user [1i5]
CDMA environment without channel coding or diversity. An
error floor was observed beyogg/N, = 30 dB due to the im-
perfect channel estimation. Furthermore, since the channel esgi—
mation and symbol detection are performed simultaneously, ng
pilot symbols or decision feedback are necessary, which results”!
in a higher throughput and shorter detection time than that of
explicitly trained CDMA multiuser detectors. [18]
Based on our simulation results, we have demonstrated that
the proposed GA-based multiuser detector can attain a BER pdn9]
formance close to the single-user bound with perfect channel es-
timation in the context of synchronous CDMA systems. How-[5q
ever, further study is required in order to determine its effec-
tiveness in asynchronous CDMA systems in conjunction wit
multipath propagation, which constitutes a more realistic envi-
ronment. While this paper only considered the estimation of the
Rayleigh fading channel gain, other forms of impairments suctfZ
as imperfect power control, shadowing, and path-loss, which
have a multiplicative effect on the received signal, can be es-
timated by the GA upon incorporating these effects in the LLF[?3]
These issues will constitute the topic of our future work. Re-
ducing the computational complexity further by finding the op-[24]
timal setup for the GA is also being investigated at present.

21]
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