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Detection and Fading Channel Estimation for
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Abstract—A novel multiuser code division multiple access
(CDMA) receiver based on genetic algorithms is considered,
which jointly estimates the transmitted symbols and fading
channel coefficients of all the users. Using exhaustive search,
the maximum likelihood (ML) receiver in synchronous CDMA
systems has a computational complexity that is exponentially
increasing with the number of users and, hence, is not a viable
detection solution. Genetic algorithms (GAs) are well known
for their robustness in solving complex optimization problems.
Based on the ML rule, GAs are developed in order to jointly
estimate the users’ channel impulse response coefficients as well
as the differentially encoded transmitted bit sequences on the
basis of the statistics provided by a bank of matched filters at
the receiver. Using computer simulations, we showed that the
proposed receiver can achieve a near-optimum bit-error-rate
(BER) performance upon assuming perfect channel estimation at
a significantly lower computational complexity than that required
by the ML optimum multiuser detector. Furthermore, channel
estimation can be performed jointly with symbol detection without
incurring any additional computational complexity and without
requiring training symbols. Hence, our proposed joint channel
estimator and symbol detector is capable of offering a higher
throughput and a shorter detection delay than that of explicitly
trained CDMA multiuser detectors.

Index Terms—Channel estimation, code division multiple access,
genetic algorithms, joint data, multiuser detection.

I. INTRODUCTION

CODE DIVISION multiple access (CDMA) [1]–[4] con-
stitutes an attractive multiuser scheme that allows users

to transmit at the same carrier frequency in an uncoordinated
manner. However, this creates multiple access interference
(MAI), which—if not controlled—can seriously deteriorate the
quality of reception. Numerous methods have been proposed
for reducing the amount of MAI present in the received signal,
such as power control, the optimization of signature sequences,
and sectorized antennas. Nevertheless, these techniques have
their limitations in combating the effects of MAI, in conjunc-
tion with the conventional single user detector, since the MAI
is treated as noise.

On the other hand, the so-called multiuser detector [5] treats
the MAI as a part of the information, rather than noise. Hence, by
processing this additional information, significant performance
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improvements can be achieved, approaching the ultimate limit of
the single-user bound. The optimum multiuser detector [6] based
on the maximum likelihood (ML) rule has a computational com-
plexity that is exponentially increasing with the number of users.
Hence, the optimum ML multiuser detector is impractical to im-
plement. This complexity constraint led to numerous so-called
suboptimal multiuser detection proposals, highlighted in [5] and
the references therein, which sacrifice performance for the sake
of a reduced complexity. In particular, the reduced complexity
tree-search type algorithms [7]–[9] based on the ML rule with a
specific number of surviving paths were shown to achieve a near-
optimum performance, when used in conjunction with a noise
whitening filter. However, some form of memory is required at
the receiver in order to store the metrics of the surviving paths.
Conventionally, the fading channel impulse response (CIR) co-
efficients are usually estimated using a pilot signal [10] as, for
example, on the downlink of the IS-95 system [11] in order to
facilitate coherent detection. However, this technique becomes
inefficient on the uplink, since an independent pilot signal is re-
quired from each user in order to estimate the independent fading
CIR coefficients experienced by each user’s signal. Nonetheless,
in order to support multiuser detection, this approach was used
in the third-generation UTRA system [4]. The associated ineffi-
ciency can be eliminated by invoking joint channel and data esti-
mation, which is the topic of this paper.

Recently, the notion of joint multiuser symbol detection and
channel estimation was addressed in [7], [12]–[14], and [16]. In
[7], symbol detection is accomplished using a tree-search algo-
rithm, while the users’ complex signal amplitudes are estimated
using recursive least-squares techniques. In [12], Gauss–Seidel
iterations are applied, in order to solve the joint symbol detection
and channel estimation problem. The channel estimation is per-
formed via the expectation maximization (EM) algorithm, while
a multistage detection algorithm is used for detecting the data
packets. In [13], joint multiuser detection and channel estimation
is performed using two types ofdecorrelators inconjunction with
a channel estimator. A path-by-path decorrelator is used to pro-
vide noisy channel information for the channel estimator, while
a channel-matched decorrelator decides on the symbols trans-
mitted and these decisions are fed back to the channel estimator
as referencesignals. In [14]and [15],adecorrelatorandaKalman
filter were used for symbol detection and channel estimation,
respectively. A per-survivor approach was also proposed in [14],
which used a bank of Kalman filters for channel estimation.
Furthermore, in [16] a multiuser receiver based on the Kalman
filter wasused for joint symbol detection and channel estimation.
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We note that in all the proposed methods mentioned above [7],
[12]–[16], the symbol detection and channel estimation were
performed using two separate but interlinked techniques, which
potentially incurs additional complexity.

In this paper, we present a novel approach to the problem
of joint symbol detection and channel estimation in DS/CDMA
over flat-fading channels based on a genetic algorithm (GA) in-
novation. GAs have been employed for solving many complex
optimization problems in numerous fields. While GAs are not
perfect, i.e., they do not always find the optimal point, they are
very efficient in attaining near-optimal solutions significantly
faster than conventional point-by-point exhaustive search tech-
niques, especially in large solution spaces. Based on the ML
rule, we developed a GA that jointly estimates all the users’
channel coefficients as well as the transmitted bit sequences
on the basis of the statistics provided by the bank of matched
filters at the receiver. GA-based multiuser detection has been
proposed, e.g., in [17]–[20], where the analysis was based on
the AWGN channel, where the only variables of interest are
the users’ transmitted bits. Hence, the search space was discrete
with a finite number of search points that is exponentially de-
pendent on the number of users. In this paper, we demonstrate
that such a GA-based multiuser detector can also be applied to
symbol detection over a fading channel, if the CIR coefficients
are known. However, in the context of joint CIR estimation
and symbol detection solely by GAs—as considered here—the
search space is continuous with an infinite number of possible
points, simply because the fading attenuation and phase tra-
jectories are continuous. A GA-based channel estimation tech-
nique has been proposed previously in [21], which employed
the Viterbi algorithm for data detection in a single-user receiver.
Hence, our proposed GA-based multiuser detector is slightly
different in terms of its structure from those in [17]–[21]. We
will show in Section III that the CIR estimation can be per-
formed jointly with the symbol detection using the same GAs
simultaneously, without incurring any additional computational
complexity, unlike in [7], [12]–[16]. Furthermore, in contrast to
Kalman filter-based CIR estimation [16], which is CIR-depen-
dent, no knowledge of the CIR is required for our proposed es-
timator. Since the CIR estimation can be conducted without ex-
plicit training sequences or decision feedback, our proposed de-
tector is capable of offering a potentially higher throughput and
a shorter detection delay than that of explicitly trained CDMA
multi-user detectors.

The CIR estimation and symbol detection performance of the
proposed multiuser detector is examined by computer simula-
tions. The performance measures of interest in this paper are
the mean-squared error (MSE) and the BER for the CIR esti-
mation and symbol detection, respectively. We will show that
our proposed receiver can achieve a near-optimum BER per-
formance with the aid of perfect channel estimation at a signifi-
cantly lower computational complexity than that required by the
ML optimum multiuser detector. The MSE performance of the
CIR estimator is particularly crucial, since it was shown in [15],
[22]–[24] that a high CIR estimation MSE can cause a signifi-
cant BER degradation, which induces an irreducible error floor.

The paper is organized as follows. Section II describes the
system model used in this paper. We consider a synchronous

CDMA system over a single-path frequency-nonselective
fading channel. Section III describes the GAs used to im-
plement our proposed joint multiuser channel estimator and
symbol detector in the context of slowly fading channels.
Our simulation results are presented in Section IV. Section V
concludes the paper.

II. SYSTEM DESCRIPTION

We consider a symbol-synchronous CDMA system, where
users transmit data packets over a single-path frequency-nonse-
lective slowly Rayleigh fading channel, and hence, no multipath
diversity can be exploited. Assuming ideal low-pass filtering,
the baseband received signal is given by

(1)

where is the zero-mean complex additive white Gaussian
noise (AWGN) with independent real and imaginary compo-
nents, each having a double-sided power spectral density of

and

(2)

In (2), is the number of data bits in a frame transmitted by
each user, is the bit energy of the th user, is the sig-
naling interval, is the frame duration, and is the sig-
nature sequence of theth user associated with a processing
gain of . However, our proposed detector is capable of han-
dling sequences of long period, as long as the cross-correlations
between the users’ signature sequences over each signaling in-
terval are known to the detector. The unknown variables in (2)
are and , which denote theth bit and the
corresponding complex CIR coefficient of theth user, respec-
tively. The channel is assumed to be slowly fading, such that

may be taken to be constant over one signaling interval
and the fading is independent for all users.It is also assumed
that varies over the duration of the -bit transmission
frame according to the Doppler frequency. There are nu-
merous models that can be used to describe the fading channel
characteristics, for example, the Jakes model [5] or a first-order
Gauss–Markov model as given by [15]

(3)

where and is a zero-mean white
Gaussian variable. Kalman filter-based CIR estimation requires
exact knowledge of and that of the variance of , which
must be acquired with the aid of training symbols and updated
frequently over a time-variant channel [24]. Alternatively, we
can express the relation between and as

(4)

where is a random variable whose value is dependent on
and . Note that (4) is analogous to the
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Fig. 1. Block diagram of the system model.

LMS-based CIR estimator, in which
(see [25, eq. (8)]), where is the step size.

In the context of joint channel estimation and symbol detec-
tion using phase shift keying (PSK), there is always the inherent
problem of a phase ambiguity of in the estimated CIR coef-
ficients. In order to overcome this problem, the transmitted bit
sequence is differentially encoded [22]. Our system model is
shown in Fig. 1.

At the receiver, a bank of filters matched to the corresponding
set of the users’ signature sequences is sampled at the end of the
th bit interval. In this paper, we are interested in determining the

unknown data bits for and
as well as the CIR coefficients for and

at the receiver, in order to perform coherent de-
tection of the received signals. It is convenient to formulate the
output of the matched filters in vector notation, which is given
by

(5)

where is a user signature sequence cross-correlation
matrix with elements given by

(6)

and

is a zero mean Gaussian noise vector with a covariance matrix
.

Based on the observation vectorgiven in (5), it can be shown
that the so-called log-likelihood function (LLF) conditioned on
the matrix containing the CIR coefficients in its diagonal

and on the vector incorporating the data bits is given by [8],
[12]

(7)

where denotes the conjugate operation. The decision rule
for the optimal joint multiuser channel estimation and symbol
detection scheme is to choose the channel coefficient matrix

and symbol vector , which maximizes the LLF given
in (7) under a constraint on the channel coefficient matrix
as imposed by (4). Hence,

subject to (8)

Equation (8) constitutes a global optimization problem and is
nonlinear, since it entails taking the maximum of .
Hence, (8) cannot be solved by a conventional linear optimiza-
tion approach or by an exhaustive tree search, because the actual
values of the channel coefficient matrix in (7) are unknown,
unless a separate CIR estimator is incorporated, as in [7].

III. GENETICALGORITHM BASEDJOINT CHANNEL ESTIMATION

AND SYMBOL DETECTION

The efficiency of any global optimization technique can be
measured in terms of two properties: the so-calledexplorative
property and theexploitativeproperty [26]. Techniques that pos-
sess a high explorative property have a slower convergence rate
and a higher computation complexity but they explore the entire
space in order to locate the global optimum. Hence, accuracy
is always guaranteed. The optimal ML multiuser detector [6],
which computes the LLF for every point in the solution space,
is an example of such techniques. On the other hand, techniques
such as the family of hill-climbing methods possess a high ex-
ploitative property, and hence they offer fast convergence to an
optimum of a given subspace. However, this optimum may not
be the global optimum of the entire solution space. Unless that
particular subspace contains the global optimum, the outcome
will always be suboptimum, resulting in a so-calledpremature
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convergence. For example, the tree-search techniques based on
the -algorithm [8] retaining a limited number of surviving
paths can be said to favor exploitation rather than exploration,
since once a trellis path is discarded, it will not be reconsidered.

GAs [27]–[29] constitute robust global search and optimiza-
tion strategies that can strike an attractive balance between ex-
ploitation and exploration. These algorithms were introduced by
Holland [27], and their principles are based on the concept of
natural evolution. Specifically, GAs use a population of candi-
date solutions initially distributed randomly over the entire so-
lution space. Hence, GAs are highly explorative at the begin-
ning. By evolving this population of candidate solutions over
successive iterations orgenerations, through probabilistic tran-
sition operations based on Darwinian survival of the fittest, the
GA quickly identifies and exploits the subspaces, in which the
global optimum may be located, while at the same time main-
tains the exploration of other parts of the solution space. Hence,
while the optimum solution is not always located, the GA has
a low probability of curtailing the exploration in suboptimal,
rather than optimal solutions. For an in-depth examination of
the principles of GAs [27]–[29] are highly recommended. In this
paper, we employ GAs in order to solve the joint CIR estimation
and symbol detection optimization problem, where the required
objective function is defined by the LLF in (7). Specifically, we
are interested in determining the CIR matrix and the data
vector that maximize this objective function. The structure
of the proposed GA-based CIR estimator and symbol detector
can be best understood with the aid of the flowchart shown in
Fig. 2, which will be referred to often.

A. Initialization

Initialization of the GA is performed at the so-called
( )st generation for each new signaling interval, as seen
in Fig. 2, by creating number of candidate solutions, or
strings in GA parlance. The set of strings is known as a
population, and is known as thepopulation size. These
strings represent the unknown variables of interest, which
in this case are the diagonal CIR matrix and the data
vector of (7). Hence, each string will contain ele-
mentscorresponding to the users, each assuming a certain
value. We shall denote the complex-valued CIR coefficient
strings as , which is
composed of real and imaginary parts, and the data string as

, which is composed
of the antipodal bits of the users at instant. Explicitly, the
parameters, , and denote theth signaling interval, theth
generation, and theth string, respectively. The reason for using
two sets of strings—rather than one—is purely to differentiate
between the complex CIR coefficient strings and the
data strings , since the mutation process of these strings
seen in Fig. 2 is different, which will be further elaborated on
later in this section. Furthermore, such distinction can easily
cater for situations when, e.g., known pilot symbol assisted
CIR estimates are available. We then simply assign thesea
priori known CIR estimates to all the corresponding strings
without changing the structure of the GA.In this case, only
the data strings will be processed by the GAs. This process is

reversed appropriately, if the CIR coefficients are estimated
using the GA-based CIR estimator in conjunction with known
bits. We shall use the terminologycombinationstring whenever
we refer to both the CIR coefficient-string and the data-string.
Hence, the th combination string will consist of theth CIR
coefficient-string and theth data-string.

In order to attain a highly diversified search (exploration)
at the beginning without knowing where the optimum solution
may be located, it is desirable to distribute the candidate solu-
tions randomly throughout the solution space. Hence, the ele-
ments of the antipodal bit strings for and

at are randomly generated1 or
1 values with equal probability. Similarly at , the likely

values of the CIR coefficients will not be known. Hence, the
initial CIR coefficient strings for are ran-
domly generated with the aid of real and imaginary Gaussian
variables. Note that at , the users’ data has to be a known
bit, since the transmitted bit sequences are differentially en-
coded. Based on this known data bit, the CIR coefficients for

can be estimated from the output of the matched filters.
These estimated CIR coefficients will be interfered by the MAI
and hence will not be accurate. Nevertheless, this CIR estimate
will provide a good foundation for the GA to evolve from.For
the CIR coefficients of subsequent signaling intervals, i.e., for

at , we used the CIR coefficient-strings estimated
from the previous symbol interval as the initial CIR coefficient
strings for the present symbol interval. More explicitly, we had

for , since the
CIR coefficients are correlated between consecutive signaling
intervals as governed by (4). The parameter is associ-
ated with the GA generation corresponding to the termination
of the search, as seen in Fig. 2.

B. Evaluation

Associated with the th combination string is a so-called
figure of merit—more commonly known in GAs as thefitness
value—which has to be evaluated, as seen in Fig. 2. The fitness
value, denoted by for is
computed by substituting the elements of both theth CIR
coefficient-string and the th data-string into the objective
function or LLF of (7).

C. Selection

The exploitative property of the GA is derived from two
GA operations referred to asselectionandcrossover[28]. The
crossover operation will be highlighted in the next subsection.
Let us refer to the elements that constitute the optimal solution
as good elements. Any other elements are referred to asbad
elements. For example, if the optimal solution constitutes a
string containing all 1 elements, then any1 in a string will
be a good element while any1 in the string will be a bad
element. Intuitively, strings having a high fitness in the sense
of (8) will contain more good elements and hence should be
exploited further. At the same time, strings having a low fitness
value should be discarded. Using a so-calledtruncated selection
technique [29], as shown in Fig. 2, following the termination test,
the number of fittest combination strings in the population
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Fig. 2. Flowchart depicting the structure of the proposed genetic algorithm used to jointly estimate the users’ CIR coefficients and to detect the transmitted bits
at theith signaling interval.

for the generation concerned are placed in the so-called mating
pool [28]. The strings in the mating pool will then be used for
subsequent exploitation and exploration of the solution space. In
a way, this selection technique is analogous to a tree-search type
algorithm, in which only a limited number of paths are retained
as survivors based on their corresponding metrics.

D. Crossover

The exploitation of the strings in the mating pool is carried
out by the so-called crossover operation [28] of Fig. 2. Simply
speaking, crossover entails the exchange of elements (good or

bad) with equal probability between two different strings, the
so-calledparentsin GA parlance, selected from the mating pool.
This will produce two new strings, which are referred to asoff-
spring. These offspring will constitute the new population of the
next generation.

There are three possible outcomes from the crossover opera-
tion, as illustrated by the examples in Fig. 3. We assumed that
the optimum point of a given eight-variables solution space is a
string contains all 1 elements of equal contribution to the ob-
jective function, a condition which we refer to as equal weight.
A so-calledcrossover mask[32] consisting of a sequence of
randomly generated 1s and 0s of equal probability is invoked,
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(a)

(b)

(c)

Fig. 3. Examples of crossover between two parent bit strings. (a) First out-
come. No change in fitness between parents and offspring. (b) Second outcome.
One offspring has one more+1 than its parents, while the other has one less+1
than its parents. (c) Third outcome. The offspring has fitness values within the
range of its parents.

in which the elements are exchanged between the pair of par-
ents at locations corresponding to a 1 in the crossover mask.
In the event of the first outcome seen in Fig. 3(a), both parents
exchange identical elements, resulting in identical offspring. In
this case, there is no crossover gain, since the fitness of the off-
spring will be the same as their parents. This outcome will also
occur if an even number of different elements are exchanged
between parents, again assuming equal weight amongst the el-
ements. Intuitively, this outcome will be encountered, when the
population is converging toward the optimum, either global or
local, when the strings are almost identical. Premature conver-
gence toward a local optimum can be avoided by employing the
so-calledmutationoperation, which will be highlighted later in
Section III-E.

According to the second outcome, two offspring are pro-
duced, one of which has a higher fitness than both of its parents
due to gaining additional good elements, as shown in the figure.
On the other hand, the other offspring has a lower fitness than
both of its parents due to losing good elements. For equal
weight elements, this occurs when both parents exchange an
odd number of different elements. This outcome is usually
encountered during the first few generations of a GA when both
parents have nearly equal fitness, but they are still sufficiently
diverse. In this case, there is a crossover gain, since a string of
higher fitness was found, which will then be evolving further
in the subsequent generations.

The possible third outcome is encountered when one of the
parents is a highly fit string, while the other one has a low fit-
ness value, as shown in Fig. 3(c). They produce offspring having
fitness values that lie between those of their parents. In this case,

there is a crossover loss, since a highly fit string, i.e., one of the
parents, is lost in the subsequent generation. In order to pre-
vent this loss, the process of so-called elitism [29] is employed,
which will be highlighted later in Section III-F.

The crossover operation is then repeated for different parents
selected with equal probability from the mating pool in order
to produce offspring out of which will become potential
parents and in turn will produce offspring for subsequent gen-
erations. The relative occurrence frequency of the first and third
outcomes largely depends on the value of. If the value of
is too low, certain high-fitness strings may not be evolving to
future generations and the same parents are always selected, re-
sulting in almost identical offspring (outcome one). On the other
hand, if is too high, too many low-fitness strings may be sur-
viving to future generations (outcome three). Hence, if the value
of is appropriately chosen, then intuitively we can see that the
crossover operation of the GA is capable of exploiting the good
elements of highly fit strings in order to produce strings with
even higher fitness. Based on the same concept, the data vector
elements and CIR vector elements belonging to a pair of par-
ents will be exchanged using the same crossover mask in our
proposed joint symbol detector and CIR estimator.

E. Mutation

We have seen that the crossover operation can cause pre-
mature convergence, which will result in suboptimal solutions.
This usually occurs when the strings in the mating pool are iden-
tical or almost identical, resulting in identical offspring. Refer-
ring to our previous example, if all the strings in the mating pool
have a bad element at the same location, then further crossover
processes between any of these strings will not be able to re-
move the bad element, since all theoffspring will also “in-
herit” the bad element. In order to escape this trapped situation,
the so-called mutation [28] operation is employed. The mutation
procedure of Fig. 2 refers to the alteration of the value of each
element in the offspring with a probability denoted by. In the
case of the data string, the mutation process simply inverts the
bit value of the element concerned from 1 to1 or vice versa.
Hence, in our example, if and are sufficiently high, then
the bad element in certain offspring will be mutated to a good
element. If these offspring are later transferred to a mating pool
and selected as parents, then this good element will be passed
on to future generations.

Implementing mutation in conjunction with the com-
plex-valued CIR coefficient-string is slightly more compli-
cated, since it is difficult to distinguish between a good and
bad element [30]. We can only strive for achieving a value that
is as close to the optimum value as possible. Hence, adopting
the constraint of (4) in order to search for the optimum CIR
coefficients is sensible, since the previous estimated CIR
coefficients will be relatively close to the optimum value of the
current CIR coefficients in a slowly fading channel. When a
complex-valued CIR vector element is picked for mutation, the
direction of mutation is chosen randomly with equal probability
for both the real and imaginary part of the complex CIR vector
element. Then a real-valued mutation size is randomly
generated, whose value ranges between . The
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value of the real and imaginary parts of the element are then
increased or decreased accordingly by a magnitude prescribed
by the mutation size

for (9)

Notice that a limit is placed on the value of by the
parameter so that the difference in phase between
the mutated and original channel coefficients should be less
than . This is to ensure that the phase ambiguity will not
change from the th symbol to theth symbol, unless the
phase is near zero, as we shall see in the context of one of our
simulation results in Section IV. On the other hand, the value
of should be sufficiently high—especially for high
Doppler shifts—in order to track the changing CIR coefficients
from one symbol to the next. In our simulations, is
gradually decreased over the course of the evolution according
to , if and only if the maximum
fitness of the population of the th generation is the same
as that of the th generation. By gradually decreasing the
mutation size, we can fine-tune the estimated CIR coefficients
over the course of the evolution.

We have seen that mutation can prevent convergence to a local
optimum. On the other hand, the mutation operation can also
change a good element to a bad element. This is definitely un-
desirable, especially if the offspring, which constitutes the ac-
tual global optimum, was mutated to a suboptimum solution.
On the other hand, mutation creates an opportunity to explore
different areas of the solution space and hence promotes explo-
ration. Hence, the value of must be chosen carefully in order
to prevent excessive mutation. Typically where
is the number of users so that, on average, only one element per
string is mutated.

F. Elitism

We have seen that the crossover operation presents a danger of
losing a high-fitness string. In order to prevent the loss of these
strings, we identify the string having the highest fitness in the
matingpoolcorresponding to thepreviousgenerationandreplace
the lowest-fitness offspring found in the new population by it.

In the context of our proposed joint data detector and CIR
estimator:

is replaced by

(10)

Hence, the highest-merit combination string of a particular
generation is propagated to the next generation. This strategy is
known aselitism [29].

We can see that by employing the combination of the
crossover, mutation, and elitism operations governed by proba-
bilistic rules, the GA is capable of exploiting the good elements

in highly fit strings in order to search for strings of even higher
fitness, and it also ensures that the fittest will survive. At the
same time, it also allows the opportunity to explore other parts
of the solution space.

G. Termination

The GA can be terminated if there is no improvement in the
maximum fitness value of the population after several iterations.
This will ensure with a high probability that the global optimum
is found at the expense of high computational complexity and
long convergence time. In multiuser detection, it is more desir-
able to detect the data fast and at a low complexity. Hence, we
terminate the GA of Fig. 2 after a specified number of
generations. In the context of our proposed joint data detector
and CIR estimator,the combination string corresponding to the
highest-fitness value is finally chosen as the estimated users’
CIR coefficients and transmitted bits.

For a given population size with the GA terminated after
generations, the number of objective function evalu-

ations required to detect the users’ transmitted bit at each sig-
naling interval is equal to . By contrast, the computational
complexity of the ML optimum detector using exhaustive search
is equivalent to . Hence, by adjusting the values ofand ,
the complexity of the GA-based detector as well as its BER per-
formance can be controlled, as we shall see in the next section.
We will also show that the GA-based multiuser detector is ca-
pable of attaining a near-optimum performance with the aid of
perfect CIR estimation at a significantly lower computational
complexity compared to the optimum multiuser detector.

IV. SIMULATION RESULTS

In this section, our simulation results are presented in order
to demonstrate the performance of the proposed detector in the
context of both CIR estimation and symbol detection indepen-
dently as well as jointly. A summary of the various parame-
ters that are used in our simulations is shown in Table I. Un-
less otherwise specified, it was assumed that our system sup-
ported users with symbol synchronous transmissions
over a single-path Rayleigh fading channel. The signature se-
quences for all users were randomly generated with a processing
gain of and the received signal power of the users,

was assumed to be known by the receiver.
The Doppler frequency and the bit rate were Hz and

kb/s, respectively, for all users. Let us first evaluate the
CIR estimation performance of the proposed detector, followed
by its BER performance evaluation.

A. Channel Estimation Performance

Fig. 4(a) and (b) demonstrates the tracking capability of the
GA-based CIR estimator both in conjunction with known bits
and unknown bits, respectively. Specifically, a snapshot of the
estimated real and imaginary components of the channel coef-
ficient of a user is compared with its corresponding true value.
Notice the mirror image of the estimated components after about
400symbols with respect to the zero level of theaxis inFig.4(b)
using unknown bits. This will result in the phase ambiguity we
have mentioned previously due to the 180change in the phase
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TABLE I
SUMMARY OF THE VARIOUS PARAMETERS USED IN OUR SIMULATIONS

(or the sign in the case of BPSK). This change in the phase is
caused by the mutation process in the attempt to estimate the de-
sired channel coefficients. The bits in this ambiguity region will
be detected in error, unless differential encoding and decoding
are invoked. However, on the whole, the GA-based channel esti-
mator was capable of tracking closely the channel variations, re-
gardless of whether the bits were known or unknown.

In order to quantify the channel estimator’s performance,
the mean squared error (MSE) between the true value and the
estimated value of the channel’s attenuation was obtained.
Fig. 5 compares the MSE performance of the GA-based channel
estimator for different values and for
and measured over a frame of 200 known bits
and averaged over 200 transmitted frames with equal average
received bit energy for all users. It is seen that GAs using

can achieve a lower MSE than in conjunction
with . However, the former suffered from a
longer convergence period.

Fig. 6 examined the effects of different values on the
achievable MSE for various and parameter values.
From the figure we can see that the value of can have
a significant impact on the achievable MSE for different
values. For example, when ,
gives the optimal MSE for all values. However, for the
same , the MSE for becomes
excessive due to the fact that a low value is inca-
pable of tracking the rapidly changing channel coefficients
between symbols. Hence, in our simulations, we have adopted

since it exhibits a fairly consistent MSE over a
range of 0.01 to 0.001, and it is also ; hence it avoids

the phase-ambiguity problem.
Fig. 7 compares the MSE of the proposed channel estimator

to that of the conventional correlation-type estimator [16]. The

(a)

(b)

Fig. 4. Snapshot of the estimated real and imaginary components of the
CIR coefficients corresponding to one user as compared to its true value for
a narrowband Rayleigh-fading channel atf = 200 Hz, whereK = 10,
P = 40,Y = 10,T = 5,� (1) = 0:1, andp = 0:1. (a) CIR coefficient
estimation with the aid ofknown bits. (b) CIR coefficient estimation with the
aid of unknown bits.

single-user bound using the linear minimum mean-squared error
(LMMSE) channel estimator given in [33] was also plotted for
comparison. It can be seen that our proposed GA-based channel
estimator exhibited a significantly lower MSE value than that
of the conventional estimator, and its performance was not far
from the single-user bound.

B. Symbol Detection Performance

In order to evaluate the BER performance of the GA-based
detector, a frame length of = 640 bits was employed by each
user. In this subsection, the CIR coefficients are assumed to be
perfectly estimated, and, hence, the results were shown in the
context of nondifferential BPSK modulation where the symbols
are not differentially encoded.

In order to give an impression of how the GA manages to de-
tect the users’ transmitted bits over the course of evolution given
a population of randomly generated possible solutions at the be-
ginning, the BER performance of the proposed detector at each
generation is shown in Fig. 8 at dB in conjunc-
tion with perfect channel estimates, i.e., when the GA was not
invoked for channel estimation. As we have mentioned in Sec-
tion III, the crossover operation will efficiently identify the areas
in thesolutionspace,where theoptimalsolutionmightbe located.
This can be seen from the steep slope during the first few genera-
tions.However,crossoveralonewillnot findtheoptimalsolution,
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Fig. 5. Average mean squared channel estimation error in aK = 10-user synchronous CDMA system over a frame of 200 known bits and averaged over 200
transmitted frames with equal average received bit energy for all users over a narrow-band Rayleigh channel atf = 200 Hz, whereP = 40, Y = 10, T = 5,
andp = 0:1.

Fig. 6. Average mean squared channel estimation error after convergence in aK = 10-user synchronous CDMA system with known bits and equal average
received bit energy for all users over a narrowband Rayleigh-fading channel at variousf T , whereP = 40, Y = 10, T = 5, andp = 0:1.

when no mutation is invoked, resulting in a suboptimal solution,
as shown in Fig. 8. Hence, when crossover is used in conjunction
withmutation, theBERperformanceis improvedsignificantly,as
showninFig.8.Finally,elitismisemployed inorder toensurethat
the best string is not lost over the course of the evolution. Hence,
we can see that GAs associated by elitism will always perform
better than without elitism, as illustrated in Fig. 8.

Fig. 9 characterizes the BER performance of the proposed de-
tector in conjunction with perfect channel estimates for different
number of generations and different population sizes. The
single-user bound was computed using the following equation
for BPSK modulation [34]

(11)

where . As can be seen from the figure, the combina-
tion of bit strings and generations—which con-
stitutes LLF evaluations according to (7)—was
capable of achieving a near-optimum single-user-like BER per-
formance. By contrast, the optimum multiuser detector using ex-
haustive search would require LLF evaluations.
For values beyond 40 dB, the system exhibited an error
floor due to the performance limitations of the GA in conjunc-
tion with the given and values studied. At lower values of

and , the error floor occurred at a lower value. For
instance, at and , which constitutes 200 ob-
jective function evaluations according to (7), the error floor oc-
curred at an value of about 32 dB, while for values
up to 24 dB, the detector exhibited near-optimum BER perfor-
mance. Hence, the proposed GA-based detector was capable of
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Fig. 7. Average mean squared channel estimation error in aK = 10-user synchronous CDMA system with known bits as compared to that of a conventional
correlator-type estimator in aK = 10 user system and a single user LMMSE estimator over a narrowband Rayleigh channel atf = 200 Hz,P = 40, Y = 10,
T = 5, � (1) = 0:1, andp = 0:1.

Fig. 8. BER performance of the proposed GA-based detector as a function of the number of generations assuming equal bit energy for allK = 10 users with
perfect channel estimation, whereP = 40, Y = 10, T = 5, andp = 0:1.

offering a tradeoff between computational complexity and an op-
timum BER performance. We also note that GAs using a higher
number of generations per signaling interval gave a better BER
performance than GAs having a larger bit string population size

and a lower number of generationsat the same computa-
tional complexity. For example, in Fig. 9 the BER performance
of the scenario was better than that of the

arrangement, both of which require 200 ob-
jective function evaluations according to (7).

In order to show that the computational complexity of the GA
is not exponentially dependent on the number of users, the
BER performance was evaluated for various number of users,
employing in conjunction with

. The results are shown in Fig. 10. At and
, we can see that the BER performance gradually degrades

upon increasing number of users, due to the limited population
size , which was too small for adequately exploring a sig-

nificantly larger search space. As the population sizeis in-
creased, the BER improves. With a population size of ,
we can see that the GA-assisted detector is capable of attaining
a near-optimal performance, when supporting users.
More importantly, we noted that the number of LLF evaluations,
denoted within the brackets in the legend of Fig. 10, increase
more slowly than exponentially with the number of users. For
example, when is increased from 10 to 16, the population size

has to be increased from 40 to 120, in order to maintain the
same level of performance. This constituted a factor of 1200/400

3 increased computational complexity whenwas increased
from 10 to 16, while maintaining a near-optimum BER perfor-
mance. By contrast, the computational complexity of the op-
timum multiuser detection using exhaustive search would be
increased by a factor of . Similarly, when is
increased to 20, a population size of is sufficient
for attaining the same level of BER performance. This consti-
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Fig. 9. BER performance of the proposed GA-based detector forK = 10 users with various combinations ofP , Y , andT in conjunction with perfect channel
estimation over narrowband Rayleigh-fading channels atf = 200 Hz, where� (1) = 0:1 andp = 0:1.

Fig. 10. BER performance of the proposed GA-based detector for as a function of the number of usersK with various population sizesP in conjunction with
perfect channel estimation over narrowband Rayleigh-fading channels atf = 200 Hz, where� (1) = 0:1, Y = 10, T = 5, andp = 0:1.

tuted only a factor of 1600/400 4 increased computational
complexity. Furthermore, in contrast to the reduced tree-search
type algorithms [8], [9]—which can also achieve a near-op-
timum BER performance at a complexity lower than that of the
optimum detector—our GA-based multiuser detector does not
require any memory capacity, since all information related to
previous generations can be erased. Additionally, for the tree-
search algorithms a noise whitening filter is required.

C. Joint Symbol Detection and Channel Estimation
Performance

In the context of joint channel estimation and symbol detec-
tion, the bit sequence in the frame was differentially encoded
with the first bit made known to the receiver. The average BER
performance was evaluated after the detected bits were differ-
entially decoded.

Fig. 11 shows the BER performance of the proposed joint
channel estimator and symbol detector for processing gains
of and . The BER performance of the
GA-based symbol detector using imperfect channel estimation
having an MSE of 0.01 and 0.001 is also shown. Also plotted
in the figure are the differentially coded single user bound in
conjunction with perfect channel estimation, which is given by
[34]:

(12)

as well as the differentially decoded BER performance of the
proposed GA-based symbol detector assisted by perfect channel
estimation. As can be observed, the joint CIR and data detector
exhibited an error floor due to the imperfect channel estimation,
and the MSE of the CIR estimation was somewhere between
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Fig. 11. BER performance of the proposed GA-based joint channel estimator and symbol detector forK = 10 users over narrowband Rayleigh-fading channels
at f = 200 Hz after the differential decoder, whereP = 40, Y = 10, T = 5, � (1) = 0:1, andp = 0:1. Results were shown for processing gains of
N = 31 andN = 127. Also shown are the BER performances of the GA-based data detector with imperfect channel estimation with MSE values at 0.01 and
0.001.

Fig. 12. BER performance of the proposed GA-based joint channel estimator and symbol detector forK = 10 users with� =� at 0 dB, 6 dB, and 10 dB for
k = 2; . . . ; K after the differential decoder of the first user, i.e.,k = 1 is the desired user, whereP = 40, Y = 10, T = 5, and� (1) = 0:1.

0.01 and 0.001. This phenomenon can also be observed in the
context of other multiuser detectors. For the sake of comparison,
the joint symbol detection and CIR estimation using a decorre-
lator and an ideal Kalman filter shown in [15] achieved a BER
of for users and for a processing gain of 127.
As shown in Fig. 11, our proposed detector is attaining a per-
formance close to that. Furthermore, it should be noted that our
BER is calculated over the entire length of the transmitted bit se-
quence, i.e., from the zeroth symbol to the th symbol,
rather than after the initial convergence. Hence, the bit errors

observed during the acquisition of the CIR estimates were also
taken into account.

Finally, Fig. 12 characterizes the near–far resistance of the
proposed joint channel estimator and symbol detector in terms
of the BER of the desired user. Theaxis portrays the
values of the desired user, while the average received bit ener-
gies of all other users were set to 0 dB, 6 dB, and 10 dB higher
than that of the desired user. It is seen that for both
dB and dB, the proposed joint GA-based CIR es-
timator and data detector was near–far resistent up to a
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value of 16 dB. Beyond that, a BER performance degradation
was observed, eventually leading to an error floor.

V. CONCLUSION

In this paper, GAs were developed in order to jointly esti-
mate the CIR coefficients as well as the transmitted bits simul-
taneously for all users in a symbol-synchronous CDMA system
based on the ML decision rule. The system’s performance was
investigated using computer simulations as a 1) channel esti-
mator with known bits, 2) symbol detector with perfect channel
estimates, and 3) joint channel estimator and symbol detector.

Our results showed that as a channel estimator, the GA was
capable of tracking the variations of the fading channel, while
achieving a channel gain estimation MSE as low as in a
noiseless channel. The proposed symbol detector was capable
of attaining a near-optimum BER performance at low
values with perfect channel estimates and under the conditions
of equal bit energy for all users, while maintaining a computa-
tional complexity significantly lower than that of an ML op-
timum multiuser detector. Upon exploiting its capabilities as
a channel estimator and symbol detector, the proposed joint
channel estimator and symbol detector can achieve a BER as
low as at an value of 30 dB in a ten-user
CDMA environment without channel coding or diversity. An
error floor was observed beyond dB due to the im-
perfect channel estimation. Furthermore, since the channel esti-
mation and symbol detection are performed simultaneously, no
pilot symbols or decision feedback are necessary, which results
in a higher throughput and shorter detection time than that of
explicitly trained CDMA multiuser detectors.

Based on our simulation results, we have demonstrated that
the proposed GA-based multiuser detector can attain a BER per-
formance close to the single-user bound with perfect channel es-
timation in the context of synchronous CDMA systems. How-
ever, further study is required in order to determine its effec-
tiveness in asynchronous CDMA systems in conjunction with
multipath propagation, which constitutes a more realistic envi-
ronment. While this paper only considered the estimation of the
Rayleigh fading channel gain, other forms of impairments such
as imperfect power control, shadowing, and path-loss, which
have a multiplicative effect on the received signal, can be es-
timated by the GA upon incorporating these effects in the LLF.
These issues will constitute the topic of our future work. Re-
ducing the computational complexity further by finding the op-
timal setup for the GA is also being investigated at present.
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