
REVUE FRANÇAISE D’AUTOMATIQUE, D’INFORMATIQUE ET DE

RECHERCHE OPÉRATIONNELLE. RECHERCHE OPÉRATIONNELLE

R. MATHIEU

L. PITTARD

G. ANANDALINGAM

Genetic algorithm based approach to bi-

level linear programming

Revue française d’automatique, d’informatique et de recherche
opérationnelle. Recherche opérationnelle, tome 28, no 1 (1994),
p. 1-21.

<http://www.numdam.org/item?id=RO_1994__28_1_1_0>

© AFCET, 1994, tous droits réservés.

L’accès aux archives de la revue « Revue française d’automatique, d’infor-
matique et de recherche opérationnelle. Recherche opérationnelle » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/

legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1994__28_1_1_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Recherche opérationnelle/Opérations Research

(vol. 28, n° 1, 1994, p. 1 à 21)

GENETIC ALGORITHM BASED APPROACH

TO BI-LEVEL LINEAR PROGRAMMING (*)

by R. MATHIEU (*), L. PTITARD (2) and G. ANANDALINGAM (3)

Communicated by Jacques CARLIER

Abstract. - This paper reports on the use ofa genetic algorithm based technique, GABBA, to solve
bi-level linear programming (BLLP) problems. GABBA is used to gêner ate the leader's décision
vector, and the follower's reaction is obtained from the solution of a linear program. GABBA
is different from the usual genetic algorithms because we only use mutations, attelés of base-10
numbers, and a survival strategy that is suited to BLLP. Results show that, while it takes more
cpu time, GABBA gets doser to the global optimum than Bard's [1983] grid search technique for
problems of most sizes.

Keywords: Genetic algorithms, bi-level linear programming, hierarchical optimization.

Résumé. - Cet article traite de l'utilisation d'une technique à base d'algorithme génétique
(GABBA) pour la résolution de problèmes de Programmation Linéaire à Double-Niveau (PLDN).
GABBA est utilisé pour générer le vecteur de décision du leader, et la réaction du suiveur est obtenue
grâce à la résolution du programme linéaire. GABBA est différent des algorithmes génétiques
habituels car il n'utilise que des mutations, des allèles de nombres en base 10, et une stratégie
de survie adaptée au PLDN. Les résultats montrent que, bien qu'il demande plus de temps CPU,
GABBA s'approche davantage de l'optimum global que la technique d'optimisation par maillage
de Bard [1983] pour des problèmes de complexité variable.

Mots clés : Algorithmes génétiques, programmation linéaire à deux niveaux, optimisation
hiérarchique.

1. INTRODUCTION

In this paper, we propose a search technique based on concepts that are
non-traditional to the OR community to solve bi-level linear programming

(*) Received April 1992, an earlier version of this paper was presented at the O.R.S.A/TI.M.S.
conference on April 26,1988 at Washington D. C. We thank, without implicating, the participants of
the session on Hierarchical Optimization, and Especially Doug White for comments and criticisms.
We also thank an anonymous référée for suggestions for improving the paper.

(*) Department of Production and Décision Sciences, Cameron School of Business, University
of North Carolina at Wilmington, Wilmington, NC 28403 U.S.A.

(2) Department of Systems Engineering, University of Virginia.
(3) Department of Systems, University of Pennsylvania.

Recherche opérationnelle/Opérations Research, 0399-0559/94/01/$ 4.00
© AFCET-Gauthier-Vülars

2 R. MATHIEU, L. PITTARD, G. ANANDALINGAM

(BLLP) which is a nonconvex problem. Specifically, we present fairly good
results of using a modification of the genetic algorithms (Holland, 1975) to
solve the BLLP. Bi-level programs (BLP) are a static version of Stackelberg
games (von Stackelberg, 1952), that model décision problems involving
leader-follower games. Stackelberg games are being extensively analysed in
the économies (Laffont and Maskin, 1982), control theory (Ho et al, 1981)
and the mathematical programming literature {see Anandalingam and Friesz
[1992] for a survey). General bi-level programs have been used extensively
in the transportation field for network and location planning with integrated
supply and user-optimal demand. (See for instance, Friesz and Harker [1983],
Fisk [1986], LeBlanc and Boyce [1986], and références therein.)

In BLP, the higher level décision maker (the leader) controls décision
vector x E X C R

n in order to maximize his objective F(x, y) where
y E Y C R

m is the lower level (follower's) décision vector. (Note that
for r followers, y = {j>i, ..., yr } and m = ^2 rii where rti is the dimension
of the ï-th follower's décision variable). For given x=xf, the follower also
maximizes his objective fonction f(x*, y) to obtain y*=RR(x?) where RR(.)

is the rational reaction function of the follower.

Since bi-level mathematical programs are non-convex, there is a challenge
to find good solution algorithms suited to this particularity. See the
reviews by Anandalingam and Friesz [1992] and Wen and Hsu [1991].
There are two main approaches to solving bi-level linear programming
problems: Enumeration techniques including implicit enumeration (Candler
and Townsley, 1982), and the "&-th best" algorithm (Bialas and Karwan,
1982) and the Kuhn-Tucker approaches which are solved by mixed integer
programming (Fortuny-Amat and McCarl, 1982), grid search (Bard, 1983),
and parametric complementary pivoting (Bialas and Karwan, 1984). The
recent penalty function approach of Anandalingam and White [1988]
also belongs to the class of Kuhn-Tucker based algorithms. While these
approaches try to handle the nonconvexity, most of them find local rather
then global optima, and have no suggestions for dealing with nonunique
solutions.

A number of global optimization techniques have been proposed for
solving more gênerai class of nonconvex programming problems. They are
primarily based on traditional opération research (OR), using techniques such
as enumeration of extreme points (Matheiss and Rubin, 1980), cutting-plane
and domain partitioning (Glover, 1973), Lagrangian relaxation (Al-Khayyal,
1985), and branch-and-bound (Benson, 1982). The survey by Pardalos and

Recherche opérationnelle/Opérations Research

GENETIC ALGORITHM APPROACH TO BI-LEVEL LINEAR PROGRAMMING 3

Rosen [1986] concluded that althrough a variety of methods have been
proposed the "few implementable approaches are for functions of special
structure, such as quadratic, or separable concave." Also, true to the traditions
of opérations research, the papers concentrate on analysis of convergence
rather than on harnessing the tremendous power of computers to solve these
difficult problems. We should note, in passing, that worst case complexity
of algorithms has to be analyzed in order to get a feel for computational
performance.

The Genetic Algorithm Based Bi-level programming Algorithm (GABBA)
we present in this paper also belongs to the class of global optimization
techniques. However, it uses a computer-intensive search technique to solve
the problem. The Genetic Algorithm (GA) bases the search for better
solutions on Darwinian principles of looking for fitter genes, where the
genes themselves are analogous to admissible solutions to the problem. The
population of new solutions are generated from older ones by using genetic
operators such as mutation and cross-over, and then tested for fitness. Since
the GA follows the generate-and-test paradigm of artificial intelligence (AI),
it is clear that GAs would be very appropriate for solving nonconvex
programming problems.

GAs and more gênerai adaptive reproductive plans have been applied
successfully to many different applications areas. (5ee, for instance,
Proceedings of the Second International Conference on Genetic Algorithms,

1987.) Genetic algorithms have been used for some optimization problems
(DeJong [1980], Goldberg and Richardson [1987] and Abdullah [1991])
including multi-objective learning (Schaffer, 1985). GAs are particularly
powerful when applied to problems with complex search spaces (Davis,
1987 a). Thus the computational complexity of the BLP suggests that a
GA-based approach to solving it would be appropriate.

Since the GA-based heuristic that we propose in this paper falls neither into
the vertex enumeration nor Kuhn-Tuckér catégories, it should be considered a
novel approach for BLP problems. In addition, we show that the performance
of our GA-based technique compares very favorably to the others suggested
in the literature. Our research also contributes to an emerging area of research,
that of using artificial intelligence (AI) based techniques to solve opérations
research problems.

AI based techniques have a great potential in solving difficult opérations
research problems such as bi-level mathematical programming. In a recent
paper, Glover [1987] showed that Tabu Search that he invented provided

vol. 28, n° 1, 1994

4 R. MATHIEU, L. PITTARD, G. ANANDALINGAM

much better solution to the np-hard Travelling Salesman problem than
previous OR based (heuristic) techniques. We should note, however, that the
branch-and-cut OR method of Grotschei and Padberg [1979] is the only one
that solves the TSP of up to 1,000 cities optimally. Other research in this area
includes some initial attempts at linking AI and OR techniques (see Glover
[1986] and références therein). Useful insights into dynamic programming
have also been gained by analyzing it in the context of heuristic search
(Kumar and Kanal, 1983). We contribute to this literature as well.

The paper is organized as follows: In the next section, we describe the
bi-level linear programming problem, and briefly present the traditional
approaches to solve it. Section 3, describes the basic principles behind
the genetic algorithm. The genetic algorithm based bi-level programming
algorithm (GABBA) is presented in Section 4. We report on computational
results in Section 5, and summarize our conclusions in Section 6.

2. THE BI-LEVEL PROGRAMMING PROBLEM

2.1. Overview

Let us consider a two-level hierarchical system where the higher level
décision maker (hereafter the "leader") controls décision variables x G X

and the lower level (hereafter the "follower") controls y G Y respectively.
The leader is assumed to select his décision vector first, and the follower
select his décision vector after that. In order to formulate the problem, let
us define the following:

X=& closed convex set of Rnl

Y- a closed convex set of R
nl

ƒ, F : X x Y -* R
1

g : X x Y -> R
m

where i?; is the real Euclidean space of dimension ;. Using this notation, the
bi-level programming problem is formulated as:
PI Max F (rr, y) where y solves (1)

Maxf(x,y) (2)

subject to g {x, y) < 0 (3)

xeX, yeY (4)

DÉFINITION 1: T h e set 5 (x) = { y : y e Y, g(x,y) < 0 } is ca l led the
Follower's solution set.

Recherche opérationnelle/Opérations Research

GENETIC ALGORITHM APPROACH TO BI-LEVEL LINEAR PROGRAMMING 5

DÉFINITION 2: The point-to-set mapping RR : x —> R
n2 defined by

RR(z) = {y*eY: ƒ (ar, y*) > ƒ (s, y), Vy G 5 (ar) }

is called the follower's rational reaction set,

Thus the feasibility set of problem PI can be denoted by:

5 = {(i,»): lel jGfflW} (4)

and the problem can be rewritten as:

P2 Max F (ar, y) (5)

subject to (x, y) G S (6)

Clearly since, in gênerai, 5 is a nonconvex set, P2 is a nonconvex
programming problem. In the case where all functions are linear, the problem
becomes a bi-level linear program which is formulated as follows:

P3 Max F (ar, y) = ax + 6y where y solves (7)

Max ƒ (rr, y) = ex + dy (8)

subject to g(x, y) = Ax + By-p<0 (9)

ar, V > 0 (10)

Note that once x is given, the follower's objective is simply Maxy dy,

and ex can be dropped from (8).

2.2. The Bi-Level Programming Literature

The geometrie properties of multi-level mathematical programming
problems are more complex than familiar mathematical programming
problems. Bialas and Karwan [1984] showed that even a simple two-level
resource control problem is non-convex. Initial algorithms to solve a special
class of zero-sum bi-level mathematical programs (BLMP) were based on
the branch-and-bound (Falk [1973], Gallo and Ulkucu [1977]) and cutting
plane techniques (Konno, 1976).

One of the first solutions for the gênerai problem as formulated in P3
was proposed by Candler and Townsley [1982]. They observed that once an
optimal basis to the inside problem was obtained, changing x might affect its
feasibility, but not its optimality. Thus they proposed a scheme that involved
implicit enumeration of adjacent bases to test for feasibility and optimality.
Bialas and Karwan [1982] developed a similar vertex enumeration procedure

vol. 28, n° 1, 1994

Ô R. MATHIEU, L. PITTARD, G. ANANDALINGAM

called the "A;-th best" algorithm. The leader solves his problem with respect
to both leader and follower décision vectors, and would order all basic
feasible solutions in such a way that

F(x
k
,y

k
)>F(x

k+
\y

k+1
), k = l,2,...

At any k, given JC*, the follower would solve his problem to obtain
{y*

k
}=RR(x

k
). If >>*Vy% then the algorithm proceeds to the next best

solution for the leader, (je**1, y*+1) and the follower's computation is repeated.
Optimality is reached when y*

k
=^.

In the Kuhn-Tucker approach (Bard and Falk, 1982), the rational reaction
set of the follower is replaced by his optimality (Kuhn-Tucker) conditions.
The leader takes into account the follower's optimality conditions while
solving his own problem; thus the problem can be written equivalently as:

P4 Max F (x, y) = ax + by (11)
x,y,w

subject to d + vJ B = 0 (12)

w' (Ax + By-p) = 0 (13)

Ax + By <p (14)

x, y, w > 0 (15)

where w is the Lagrangian Multiplier associated with équation (3), and the
prime stands for transpose.

Attemps at solving problem P4 that results from the Kuhn-Tucker approach
includes 0-1 mixed integer programming (Fortuny-Amat and McCarl, 1982),
branch-and-bound techniques (Bard and Falk, 1982), grid search (Bard,
1983), and parametric complementary pivoting (Bialas and Karwan, 1984).

2.3. Unresolved Computational Problems

The main computational problem with bi-level mathematical programs is
that they are nonconvex (Bialas and Karwan, 1984). Although ail approaches
up to now have tried to handle the nonconvexity in différent ways, with
the exception of the À>th best approach, the algorithms find local rather
than global optima; the Kuhn-Tucker approach also finds the global optima
when Bard's [1983] grid-search method is used. In any case, none of
the methods have suggestions for dealing with non unique optima for the
follower's problem. Novel approaches and global optimization techniques
offer considérable scope in providing more efficient approaches to the
problem.

Recherche opérationnelle/Opérations Research

GENETIC ALGORITHM APPROACH TO BI-LEVEL LINEAR PROGRAMMING 7

3. THE GENETIC ALGORITHM AND OTHER ADAPTIVE PROCESSES

3.1. Overview

Adaptive processes, of which the genetic algorithm is one, involve the
progressive modification of the structure of the process to give better
performance for a particular problem environment (Holland, 1975). In genetic
algorithms (GAs), the structure is modified according to the gênerai principles
of genetics. The GAs are used for global search, but instead of maintaining a
single structure (hereafter "solution" to the problem) at any one point in time,
it maintains a set of structures (hereafter "population" of solutions). The initial
population of solutions is usually generated at random. Each succeeding
population of solutions is created from its predecessors using randomized
mechanisms which seek to preserve and combine the good characteristics of
the better members of the preceeding population of solutions.

Each solution in a Genetic Algorithm is represented as a string of characters
from some alphabet, usually ones or zeroes from the binary alphabet. This
string is analogous to a chromosome in biological Systems and is meant
to be sufficient to capture (encode) all the characteristics of the solution it
represents. Two genetic opérations are typically performed on strings: Cross-

over replaces part of one string with the corresponding part of another, and
Mutation arbitrarily changes the value of a character on a string to another
member of its alphabet (another of its possible values).

Each candidate solution of each génération is assigned a quantity known as
its "fitness" which is the objective function value in optimization problems.
Création of the succeeding génération from its parent génération occurs as
follows: To create a member of the succeeding génération, first, a member
of the parent génération is selected at random with probability proportional
to its fitness divided by the génération average. Then cross-over occurs with
probability equal to cross-over probability (a parameter of the GA). If cross-
over is not to occur, the single selected member of the parent génération
is copied into the succeeding génération intact, at least temporarily. Finally,
whether or not cross-over occured, the new member of the succeeding
génération is allowed to undergo mutation with (typically low) probability
equal to the mutation probalitity (another parameter of the GA). This entire
process repeats until the succeeding génération has been "procreated" from
the parent génération.

vol. 28, n° 1, 1994

8 R. MATHCEU, L. PITTARD, G. ANANDALINGAM

3.2. Optimization Using Genetic Algorithms

From an optimization perspective, the Genetic Algorithm works as follows:
The first génération of solutions, generated at random, is uniformly distributed
over the search space. Succeeding générations, due to the "survival of the
fittest" of their ancestors, tend to be increasingly localized around the best
modes in the search space. The final génération usually is concentrated
around one or at most few very good modes of the search space. (The
number of générations on a GA, as well as the génération size, is an
exogenous parameter, usually sufficiently large for the preceding to occur.)

The gênerai genetic algorithm can be described as follows (Grefenstette,
1986):

k = 0
Initialize P(k)-the population at génération k
Evaluate P(k)
While termination condition not satisfied, Do
Begin

Select P(k)
Recombine P(k)

End

It should be noted here that the genetic algorithm, and GABBA, our
GA-based optimization algorithm, may be better described as a "heuristic"
rather than an "algorithm", especially in the vernacular of opérations research
analysts. We will continue to use "algorithm" sùice it is standard practice
in the GA field, and also fits well within the use of the word by computer
scientists.

4. THE GABBA ALGORITHM

4.1. Basic Parameters

The Genetic Algorithm Based Bi-level programming Algorithm (GABBA)
is best described as an adaptive reproductive plan based on some principles
of the genetic algorithm. In order to solve the bi-level linear program, the
leader's décision vector is reproduced according to a modification of the GA,
and the follower's décision vector is obtained by solving the second level
linear programming problem. The fitness test also involves a modification of
traditional GA tests. GABBA is described in detail in the next subsection.
In this subsection, we will highlight the basic parameters of GABBA.

GABBA's reproductive plan is controlled by the operators, population size,
number of structures in the previous génération's population to reproduce,

Recherche opérationnelle/Opérations Research

GENETIC ALGORITHM APPROACH TO BI-LEVEL LINEAR PROGRAMMING 9

precentage of alleals in each structure to reproduce, number of new structures
to produce randomly every génération, and sélection strategy. It does not
exploit cross-over. It could be argued that cross-over is a special case of
mutation, since it could be reduced to multiple mutations. Many argue
that crossover is essential in GA, as it is responsible for propagating the
characteristics of best structures, like real-life genetic processes (this was
argued by a référée; see also Holland [1975]). It can be argued that, in
gênerai, using mutations primarily does not allow each successive génération
to be strongly connected to the parent génération. This is not true in our case,
because we use mutations to change only part of the parent characteristics.
Inspite of the fact that we do not use cross-over, all our attempts at producing
populations of solutions, reducing population size etc. places us closer to a
GA than a pseudo random search algorithm.

We should note here that, unlike in most pure genetic algorithms, GABBA
does not encode its structures as 0-1 bit strings, but rather as a string of
base-10 digits. The new code is more intuitive for adapting reproductive
plans to mathematical programming.

In GABBA, the population size N is the number of vectors z, where
z-{x, y) is the overall solution; L e. both leader and follower décision vectors
to the problem. In relation to the définition of the bi-level programming
problem given in section 2, z E Z c R

nl+n2
. Individual members in

the population (which we will call structures), are represented as points
(Le. vectors) in («l+n2)-dimensional space. We represent the population at
génération (itération) k, by P(k). As in traditional genetic algorithms, we
will call each component of the structure an alleaL We provide an example
to clarify the notation:

Example 1 : Suppose we have the following population.

Population #

1
2
3

2.2
5.6
7.8

X2

3,1
3.7

10.9

There are 3 structures, and for structure #2, the alleals are 5.6 and 3.7.
Structures #2 itself will be given by the 2-dimensional vector (5.6, 3.7). •

In GABBA, ail structures are defined by alleals of base-10 numbers. the
base-10 adaptive process is fundamental to GABBA, and is presented in

vol. 28, n° 1, 1994

1 0 R. MATHIEU, L. PITTARD, G. ANANDALINGAM

detail here. Each alleal is defined to have a head and a tail. The point that
séparâtes the head from the tail is determined by a parameter, SCALE, where

SCALE = 10n, nel

where I is the set of positive real integers. For example, if our alleal is
12345.67, and SCALE=10.0, the head of the alleal is 1234*.**, and the
tail of the alleal is ****5.67.

When optimizing a function using this base-10 scheme, the information to
be passed on to the next génération is contained in the head. When creating a
new species from an old species, the head of the previous génération is kept,
and a random number, generated using a uniform distribution on the interval
(0, SCALE) becomes the new tail. For example, if 1234*.** is passed to
the new génération, and a random tail of 9.81 is generated, the new species
becomes 12349.81. Thus, we keep generating tails at a given SCALE level
untü "good" solutions are obtained. After we détermine what are "good"
solutions based on the problem objective, the SCALE value is modified so
that new solutions are more précise than the old ones. One heuristic to révise
the SCALE parameters, after détermination of "good" solutions, could be:

(new) SCALE = (old) SCALE/10. (16)

The population is generated within feasible lower and upper bounds. Thus
the alphabet for each alleal is all base-10 numbers between the lower and
upper bounds; this is different from traditional uses of GAs, where the
alphabet is made up of the binary code (0, 1). If the SCALE is changed
according to équation (16), we will have as many macro-iterations in GABBA
as the order of magnitude that the alphabet spans.

The sélection strategy is based on obtaining, at génération, the N most
fit structures (Le. solutions with the highest value of F(x, y), the leader's
objective). Candidates for sélection include the N structures from the previous
génération, NP offspring structures newly created by mutation of structures
in the previous génération, and NR new structures produced randomly. Note
that not all NR candidates for mutation will produce feasible solutions. Thus
overall there will be slightly less rïian (N+NP+NR) candidates from which
to select the N best for the next génération.

4.2. The Algorithm

We will now present GABBA in detail. In order to keep the description
concise, we will adopt the following notation:

Recherche opérationnelle/Opérations Research

GENETIC ALGOMTHM APPROACH TO BI-LEVEL LINEAR PROGRAMMMG 1 1

I, set of positive real numbers;
int(y), integer value of positive real number y;

U[a, b], uniform distribution between a and b;

x(k), y(k), leader and follower décision vectors at génération k;

Xi, ï-th component of the leader's décision vector x;

X= {xi, ..

yu i-th component of the follower's décision vector y;

X
K y> J-th structure of leader and follower décision vector;

x\, yj, i-th component of j-th structure of vectors x and y ;

F (k), the value of the leader's objective given by équation (1) for x=xJ,

y=y at the k-th génération;

P(k), the population at génération t P(k)={x(k), y(k)}.

Note that in the case of the décision vectors and their components, although
we suppress k, the génération index» it should be understood that we are
considering these vectors at the appropiate génération.

The reader should note that, as given by Définition 2 in section 2, whenever
we refer to the follower's rational reaction set RR(x), we mean that the
following linear program is solved, for given x, (say x), using a standard
algorithm based on the simplex method:

P5 Maxy dy

s. t. By < p — Ax

y>0

The GABBA algorithm proceeds as follows:

Step 0 (Initialization):

Let £=0, F * (- l) = - o o .

Set parameters:

(a) JNT-population size;
(b) JVP-mimber of current solutions (Le. structures) in population
P(k) to undergo mutation;
(c) iVZ-number of décision variables (Le. alleals) x to undergo
mutation;

vol. 28, n° 1, 1994

1 2 R. MATHIEU, L. PITTARD, G. ANANDALINGAM

(d) JVR-number of new random solutions created during each itération;

(e) e-degree of accuracy required.

Step 1 (Set Bounds):
Generate an upper bound (and lower bound) for each Xi € x by
solving the following problem for j= l , ..., n\:

P6 Max (Min) Xi

s.t. Ax + By <p

x = (#i,..., xni)

x, y > 0

Set SCALE =10w, nel, such that

SCALE > Max (xu x2, ..., xnl)

Step 2 (Generate Initial Population):

J = l

Generate population P(k), which contains N vectors

^ = {a J ,y (a J)} , j = t, ..., JV,

as follows:

(2.1) x{ ~ t/[Min a '̂, Max arj], Î = 1, ..., ni ,
(2.2) Solve P5:

ia) If feasible, obtain y (x
j
) G RR (x

j
)

lf j=N, go to Step 3.
Else, set J = J + 1.
Go To Step 2.1.

(b) If infeasible, discard JK/, go to Step 2.1.

Step 3 (SCALE Modification):

Sort array Pik) according to Level 1 objective:

[i.e. Fi(k) > FJ-iÇk), Vj].

Let 7? = (x>,y>) = aigF>(k), j = 1,..., iV.

Store F*(k) = Max F> (ife), and {x* (k), y* (jfe)} = arg F* (jfe).

Recherche opérationnelle/Opérations Research

GENETIC ALGORITHM APPROACH TO BI-LEVEL LINEAR PROGRAMMING 1 3

mN

Let Fm{k) = Y,Fj (k)/m.N.

If F*(k)=F*(k-l) and

Then SCALE=SCALE/10.

Step 4 (Stopping Criterion):

If SCALE<e, Then STOP.

Satisfactory solution is {x* (k), y*(k)}.

Otherwise, Go to Step 5.

Step 5 (Mutated Structures):

3 = 0

Let z{ = {xi, y (x>)}, j = 1, ...,NP.

(Note NP<N, and {z{} C {«>})

Mutate the NP vectors z\ as follows:

(5.1)7=7+1.

Obtain x
J
' by mutating NX randomly selected alleals of x such

that

x
3
- = int {^/SCALE} * SCALE + w,

with
w ~ U [0, SCALE]

(5.2) Solve P5

(i) if solution feasible, y (x
jt
) € RR (x^),

If j=NP, go to Step 6.

Else, go to Step 5.1.

(ii) if solution infeasible, discard x-',

Go to Step 5.1.

Step 6 (New Random Structures):

3=0

Let 4 = {x), y(xi)}, j = 1, ...,NR<N.

Generate NR vectors z\ as folows:

(6.1) ;=; +1

x\ ~ t/[Min x\, Max a^], i = l,..., ni,

vol. 28, n° 1, 1994

1 4 R. MATHIEU, L. PITTARD, G. ANANDALINGAM

(6.2) Solve P5:

(i) If feasible, obtain y{x%) G RR (x
j
).

If j=RN, go to Step 7.

Else go to Step 6.1

(ii) If infeasible, discard x', go to Step 6.1.

Step 7 (Sélection):
From N, {x, y (x) } structures from P (&), and NP or less, {x

1, y (x*)}
structures from mutation, and JVR, {xf^yixf')} population from
random structures.

Select

P(k+ 1)= {N structures that have highest value of F(.)}

Go to Step 3.

4.3. Convergence and Stopping Rules

Many probabilistic search techniques have been proposed in the opérations
research literature (see Rinooy Kan and Timmer [1987]). All these methods
consider the problem to be solved if, for some e>0, an element of the
following set has been identified:

Az(e) = {zeZ: \\z - z*\\ < e} (20)

AF (e) = {zeZ: \F (z) - F(z*)\ < e} (21)

In step 5 of GABBA, we use the set Az (e) for each SCALE level of the
algorithm. Clearly at very large values of SCALE, it dominâtes e and we
move to the next level only when z exactly equals 2*. At lower values of
SCALE, the stopping value e would tend to dominate.

Generally one cannot guarantee absolutely that the probabilistic methods
would provide a solution z e A. Under conditions on the sampling
distributions and the curvature of F(.), it can be proved that an element
of A is sampled almost surely as the sample size increases. One option to
absolutely guarantee success would be to use the probabilistic technique in
the first stage for locating régions where good local optima exist, and to use
traditional OR techniques at the second stage to find the actual optima. We
do not do this in this paper.

Recherche opérationnelle/Opérations Research

GÊNETIC ALGORITHM APPROACH TO BI-LEVEL UNEAR PROGRAMMING 15

5. COMPUTATIONAL RESULTS

5.1. Preliminaries

A random bi-level linear programming problem generator was constructed
in order to test GABBA against other algorithms. The problems generated
were of size (3, 7, 4), (5, 10, 6), (6, 14, 8), and (8, 17, 10), where (nu

«2, m) represents the number of the level 1 décision variables, the level 2
décision variables, and the constraints respectively. The problems contained
both positive and négative coefficients in the objectives and constraints. The
coefficients matrix was kept Ml by allowing only a small percentage of
O's. In all 15 random problems were generated for each problem size. The
problems were run on an AT&T PC6300 Plus microcomputer with Intel
80286 microprocessor, and 80287 math coprocessor.

5.2. Bard's Grid Search Technique

The performance of GABBA was tested against Bard's [1983] grid search
technique. The choice of the grid search technique was based on the fact that
neither it nor GABBA guarantee global optimality, and the former technique
has had much publicity in the literature (see LeBlanc and Boyce, 1985), and
is generally acknowledged as an efficient algorithm.

Bard [1983] showed that bi-level linear programs can be solved by
obtaining a maximal À (say Amax) that solves the foUowing straightforward
linear program:

P(x, y, A) = Max A (ax + by) + (1 - A) (dy))

s. t. Ax + By < p J

and provides a y > 0 that is feasible for the problem:

Q(y) = M a x dy s . t . B y < p - A x (23)

Bard's procedure is to iteratively solve the problem P (x, y, A) for varying
values of A, where new values of A are found from sensitivity analysis
concepts, and arranged on a grid. (See Bard [1983] for details.) The modified
grid search (MGS) algorithm used in this paper follows the gênerai principle
in Bard's [1983] paper, but uses upper and lower bounds on A at each
itération so as to converge to Amax quickly. The algorithm is stopped when
there is no change in the A's.

5.3. Computational Results

Performance was measured on the basis of computational effectiveness,
measured by CPU time, and quality of solution, measured by two means:

vol. 28, n° 1, 1994

16 R. MATHIEU, L. PITTARD, G. ANANDALINGAM

(i) the percent of time that one of the algorithms succeeded in producing a
better solution (L e. a higher level 1 objective at the end of it's exécution),
and (ii) the sum of absolute déviation of the best solutions of each defined by

M

A = £ {̂ m(MGS) - i^(GABBA)} (24)
m=l

where F^ is the best value of F obtained from the n-th problem, and M is the
total number of problems. Note that if the absolute déviation A is positive, it
means that the solutions produced by the Grid Search technique were better
than those produced by GABBA in an overall sensé. Conversely, if A was
négative, then GABBA was better overall than the Grid Search technique.

For problems of two sizes, GABBA was run for varying setting of NR

(number of décision vectors to obtain from new random génération) and NX

(number of alleals to undergo mutation). The results are shown in tables I
and II and the parameter settings are shown in table m. The settings of NP

(number of current structures to undergo mutation), N (population size), and
the SCALE modification heuristic (see Step 1 above) were held constant.
Specifically, we set #=100 (also «i=50), and NP=4Q. Also, the stopping
criterion e was set at 10"4. From the results in tables I and Et, it is not clear
what the best GABBA algorithm is. When measured in terms of average
cpu time (in seconds), GABBA1 seems to be best in both problem instances.
However, compared to the grid search technique, GABBA1 only yields a
better near optimal solution in 33.3 per cent of the time for problem size
(3, 7, 4), and 50.0 per cent of the time for problem size (5, 10, 6). GABBA5
yields the near optimal solution 67 per cent of the time for problem size
(5, 10, 6) but has ahnost a 70 per cent higher cpu time compared to GABBA 1.
We decided that the probability of reaching a near optimal solution was more
important than cpu time. Hence, GABBA5, with NR = 0.5N, NX=0.5n,

NP = 0AN, and N=2n, was chosen for all subséquent analyses.

It should be noted however, that although we have experimented with
some of the parameters of GABBA, we have not optimized them in the
sense of Grefenstette's [1986] paper. The vast number of computer runs
required for optimizing parameters was beyond our research budget. The
more important reason for not performing the numerous computations was
that expérimentation seemed to show that the optimal parameter setting were
very sensitive to problem size, and other problem characteristics. Thus, a
strict optimization of parameters may not have been possible.

The fairly simple bi-level linear programming technique based on Genetic
Algorithms provided reasonably good results. Although the grid search

Recherche opérationnelle/Opérations Research

GENETIC ALGORTTHM APPROACH TO BI-LEVEL LINEAR PROGRAMMING

TABLE I

GABBA results for different parameter settings. Problem size (3, 7, 4)

17

Algorithm

Grid Search . . .
GABBA1
GABBA2
GABBA3
GABBA4
GABBA5
GABBA6
GABBA7
GABBA8
GABBA9

E [cpu]

4.24
17.13
26.61
26.56
20.13
24.81
24.77
20.88
24.81
24.76

Var [cpu]

11.34
56.31

135.30
134.63
105.40
176.70
176.79
105.41
177.58
176.95

% Better -

n. a.
33.3%
38.0%
38.0%
44.0%
40.0%
40.0%
44.4%
40.0%
40.0%

A

n. a.
0.556
0.435
0.435
0.160
0.181
0.181
0.160
0.181
0.181

TABLE n

GABBA results for different parameter settings. Problem size (5, 10, 6)

Algorithm

Grid Search . . .
GABBA1
GABBA2
GABBA3
GABBA4
GABBA5
GABBA6
GABBA7
GABBA8
GABBA9

E [cpu]

13.68
47.76
67.19
82.68
52.87
80.48
82.55
70.02
99.83

110.77

Var [cpu]

72.89
388.17

1531.58
1562.97
764.01

2,092.73
1,880.62
1,071.84
2,832.03
3,163.03

% Better

n. a.
50.0%
38.0%
38.0%
44.0%
67.0%
57.0%
40.0%
57.0%
57.0%

A

n. a.
-0.029

0.144
0.295
0.153

-0.057
0.075
0.247

-0.026
0.063

algorithm took less time to solve the problems of different size, GABBA
yielded a better solution most of the time (table IV). In problems of size
(6, 14, 8), GABBA was 73 out of 100 times better than the grid search
technique. This means that GABBA would be more likely to reach a global
optimum than would grid search, or, by the same token, any other technique
proposed to solve bi-level linear programs (see Bialas and Karwan, 1984).
Of course, as in most pseudo-random search techniques, the computation
time was very long. This is a major disadvantage of these methods.

One reason for the slowness could be the fact that we did not exploit cross-
over. In addition, the stopping rule for GABBA was more stringent than
for the grid search method. These modifications are left for future research.
However, we can conclude that genetic algorithms have a great potential for
solving bi-level programming and other nonconvex programming problems.

vol. 28, n° 1, 1994

18 R. MATHIEU, L. PITTARD, G. ANANDALINGAM

TABLE m

Parameter settings for the different algorithms

Algori thm

G A B B A 1
G A B B A 2
G A B B A 3
G A B B A 4
G A B B A 5
G A B B A 6
G A B B A 7
G A B B A 8
G A B B A 9

NR

0.2 N
0.2 N
0.2 N
0.5 N
0.5 N
0.5 N
0.8 N
0.8 N
0.8 N

NX

0.2 m

0.5 m
0.8 «i
0.2»i
o.5m
0.8 m
0.2 m
0.5 m
0.8 «i

Note: Ail results were rounded to the nearest integer.

TABLE IV

GABBA versus grid search

Problem
size

(3, 7, 4)
(5, 10, 6)
(6, 14, 8)
(8, 17, 10)

Grid search
E [cpu]

4.23
13.69
27.27
63.99

GABBA
£[cpu]

24.81
80.48

699.45
3,281.59

GABBA
dominâtes
grid search

(%)

40.0%
66.6%
73.0%
60.0%

A

0.181
-0.057
-0.135
^0.593

6. CONCLUDING REMARKS

In this paper, we reported on the use of GABBA, a technique based
on the genetic algorithm to solve the bi-level linear programming problem.
We found that the technique was easy to use, and was not affected by the
nonconvexity of the problem, of the nonuniqueness of the solution. The latter
properties are very attractive because most algorithms that rely on smoothness
properties of the objective fonctions and feasibility régions {L e. variations
of the steepest descent or ascent) perform quite badly on domains that are
nonconvex. We showed in this paper that by using an intelligent way, based
on the genetic algorithm, to generate new solutions to test for suitability
(or near-optimality), we could overcome much of the barriers to solving
nonconvex programming problems. While, as in most probabilistic search
techniques, we could not guarantee convergence, GABBA found solutions

Recherche opérationnelle/Opérations Research

GENETIC ALGORITHM APPROACH TO BI-LEVEL LINEAR PROGRAMMING 19

that were closer to the global optimum than the well known Kuhn-Tucker
method solved by Bard's [1983] grid search technique.

The main problem with GABBA was that the computational time
was long, especially when we used a microcomputer. Given the recent
révolution in computational power, both memory and speed, and the fact
that microcomputers are readily available to individual researchers, we would
argue that using computer-intensive search techniques would not be an
inefficiënt use of resources. The time spent on obtaining mathematically
elegant proofs of convergence for algorithms that eventually do not yield
the global optimum may be better spent by microcomputers searching for
the solution. This is the basic premise of much of the recent work on the
use of artificial intelligence techniques to solve difficult opérations research
problems such as the travelling salesman problem.

However we should not minimize the importance of establishing theorems
to bound the worst-case performance of an OR heuristic. Most difficult
optimization or décision problems are iVP-complete, and the use of AI based
techniques does not suppress this unpleasant property. It is important to
dérive algorithms with polynomial time complexity to solve these problems.
It is vital to show what the worst case behavior of any proposed algorithm is.
We have not done so in this paper, and leave it as work for future research.

REFERENCES

A. R. ABDULLAH, A Robust Method for Linear and Nonlinear Optimization Based on
Genetic Algorithm Cybernetica, 1991, 34, No. 4, pp. 279-287.

F. A. Al KHAYYAL, Minimizing A Quasiconcave Function Over a Convex Set: A Case
Solvable by Lagrangian Duality, Proceedings, I.E.E.E. International Conference on
Systems, Man, and Cybernetics, Tucson, 1985, AZ, pp. 661-663.

G. ANANDALINGAM, A Mathematica! Programming Model of Decentralized Multi-Level
Systems, J. of the Operational Research Society, 1988, 39, No. 11.

G. ANANDALINGAM and D. J. WHITE, A Penalty Function Approach to Bi-Level Linear
Programming, working paper, Department of Systems, University of Pennsylvania,
August, 1988.

G. ANANDALINGAM and T. L. FRIESZ, Hierarchical Optimization: An Introduction, Annals

of Opérations Research, 1992, 34, pp. 1-11.
J. F. BARD, An Efficient Point Algorithm for a Linear Two-Stage Optimization Problem,

Opérations Research, 1983, July-August, pp. 670-684.
J. F. BARD and J. E. FALK, An Explicit Solution to the Multi-Level Programming Problem,

Computers and Opérations Research, 1982, 9, No. 1, pp. 77-100.
H. P. BENSON, On the Convergence of Two Branch and Bound Algorithms for Nonconvex

Programming, J. of Optimization Theory and Application, 1982, 36, pp. 129-134.
A. D. BETHKE, Genetic Algorithms as Function Optimizers, Ph. D. dissertation,

unpublished, University of Michigan, Ann Arbor, 1981.

vol. 28, n° 1, 1994

20 R. MATHIEU, L. PLTTARD, G. ANANDALÎNGAM

W. F. BiALAS and M. H. HARWAN, On Two-Level Optimization, LE.E.E. Transactions on
Automatic Control, 1982, AC-27, pp. 211-214.

W. F. BiALAS and M. H. KARWAN, Two-Level Linear Programming, Management Science,

1984, 30, No. 8, August, pp. 1004-1020.
W. CANDLER and R. TOWNSLEY, A Linear Two-Level Programming Problem, Computers

and Opérations Research, 1982, 9, No. 1, pp. 59-76.
L. DAVIS (Ed.), Genetic Algorithms and Simulated Annealing, Morgan Kaufman

Publishers, Los Altos, CA, 1987 a.

L. DAVIS, Performance of a Genetic Algorithm on the Network Link Size Problem, paper
presented at the O.R.S.A./T.LM.S. meeting, St. Louis, October, 1987 b.

K. De JONG, Adaptive System Design: A Genetic Approach, LE.E.E., Transactions on
Systems, Man, and Cybernetics, 1986, 16, Jan.-Feb.

J. E. FALK, A Linear Mini-Max Problem, Mathematica!Programming, 1973, pp. 169-188.
C. S. FISK, A Conceptual Framework for Optimal Transportation Systems Planning with

Integrated Supply and Demand Models, Transportation Science, 1986, 20, No. 1,
pp. 37-47.

J. FORTUNY-AMAT and B. MCCARL, A Représentative and Economie Interprétation of a
Two Level Programming Problem, J. of the Operational Research Society, 1981, 32,
pp. 783-792.

T. L. FRIESZ and P. T. HARKER, Multicriteria Spatial Price Equilibrium Network Design:
Theory and Computational Results, Transportation Research, 1983,17b, pp. 203-217.

G. GALLO and A. ULKUCU, Bi-Linear Programming: An Exact Algorithm, Mathematical

Programming, 1977, 12, pp. 173-194.
F. GLOVER, Convexity Cuts and Cut Search, Opérations Research, 1973, 21, pp. 123-134.
F. GLOVER, Future Paths for Integer Programming and Links to Artificial Intelligence,

Computers & Opérations Research, 1986, 13, (5). pp. 533-549.
F. GLOVER, Tabu Search, mimeo, Center for Applied Artificial Intelligence, Graduate

School of Business, Universiry of Colarado, October, 1987.
D. E. GOLDBERG and J. RICHARSDON, Genetic Algorithms with Sharing Multi-Modal

Function Optimization, in Genetic Algorithms and Their Application: Proceedings of
the Second International Conference on Genetic Algorithms, M.I.T., Cambridge, MA,
1987.

J. GREFENSTETTE, Optimization of Control Parameters for Genetic Algorithms, LE.E.E.
Transactions on Systems, Man, and Cybernetics, 1986, 16, (1), January-February,
pp. 122-128.

M. GROTSCHEL and M. W. PADBERG, On the Symmetrie Travelling Salesman Problem
I: Inequalities, II: Lifting Theorems and Facets, Mathematical Programming, 1979,
16, pp. 265-302.

Y. C. Ho, P. B. LUTH and R. MURALIDHARAN, Information Structures, Stackelberg Games,
and Incentive Controllability, LE.E.E. Transactions on Automatic Control, 1981,
AC-31, No. 4, pp. 670-684.

J. H. HOLLAND, Adaption in Natural and Artificial Systems, The University of Michigan,
1975, Ann Arbor, MI, 1975.

S. KiRKPATRicK, Combinatorial Search Using Simulated Annealing, paper presented at the
O.R.S.A./T.LM.S. meeting, St. Louis, October, 1987.

H. KONNO, A Cutting Plane Algorithm for Solving Bilinear Programs, Mathematical

Programming, 1976, 11, pp. 14-27.
V. KUMAR and L. N. KANAL, Some New Insights into the Relationships Among Dynamic

Programming, Branch and Bound, and Heuristic Search Procedures, Proceedings,
LE.E.E. International Conference on Systems, Man, and Cybernetics, 1983, pp. 19-23.

Recherche opérationnelle/Opérations Research

GENETIC ALGORITHM APPROACH TO BI-LEVEL LINEAR PROGRAMMING 2 1

J.-J. LAFFONT and E. MASKIN, The Theory of Incentives: An Overview, in W. HILDENBRAND
Ed., Advances in Economie Theory, Cambridge University Press, Cambride, U.K,,
1982, pp. 31-94.

L. J. LEBLANC and D. E. BOYCE, A Bi-Level Programming Algorithm for Exact Solution
of the Network Design Problem with User-Optimal Flows, Transportation Research
B, 1986, 28, pp. 259-265.

T. H. MATHEISS and D. S. RUBIN, A Survey and Comparison of Methods for Finding
All Vertices of Convex Polyhedral Sets, Mathematics of Opérations Research, 1980,
5, pp. 167-185.

P. M. PARDALOS and J. B. ROSEN, Methods for Global Concave Minimization: A

Bibliographie Survey, SJA.M. Review, 1986, 28, (3), pp. 367-379.
A. H. G. RINNOOY and G. T. TIMMER, Stochastic Global Optimization Methods, part I:

Clustering Methods and part E: Multi-level, Methods Mathematical Programming,

1987, 39, No. 1, pp. 27-78.
J. D. SCHAFFER, Learning Multiclass Pattern Détermination, in Proceedings of the

International Conference on Genetic Algorithms and Their Applications, Robotics
Institute of Carnegie-Mellon University, Pittsburg, PA, 1985.

H. von STACKELBERG, The Theory of the Market Economy, Oxford Univesity Press,
Oxford, 1952.

U. P. WEN and S. T. Hsu, Linear Bi-level Programming: A Review, J. of the Operational
Research Society, 1991, 42, No. 2, pp. 125-133.

vol. 28, n° 1, 1994

