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ABSTRACT In this paper, we propose a novel energy efficiency maximization scheme for social-aware device-to-device 
(D2D) communications based on a genetic algorithm (GA). The proposed scheme incorporates both social and physical 
parameters of users to model the energy efficiency maximization problem. The formulated problem considers the spectral 
reuse, spectral efficiency, and the transmit power constraints of both cellular and D2D users to satisfy their quality of service 
requirements. Moreover, an algorithm based on the self-adaptive penalty function is applied to convert the constrained 
problem into an unconstrained problem. Next, GA is utilized to maximize the unconstrained problem. The feasibility of the 
proposed scheme is shown by computing its time complexity in terms of big-O notation. Moreover, the convergence of the 
proposed scheme is analyzed by comparing the maximum and average values of the overall energy efficiencies for different 
iterations. Likewise, the performance is evaluated in terms of overall energy efficiency and system throughput for various 
D2D scenarios. To demonstrate the efficiency of the proposed scheme, the results are compared with those for a static 
penalty-based GA algorithm. Furthermore, to demonstrate the significance of combining the two types of parameters (i.e., 
social and physical), the performance of the proposed scheme is compared with schemes based on only social or physical 
parameters. 

INDEX TERMS social-aware, energy efficiency, genetic algorithm, self-adaptive penalty function 

I. INTRODUCTION 
The enormous growth in demand for multimedia and 

other social networking services and applications has 
significantly increased the network load on the current 
cellular communication system [1] [2]. Since the number of 
interconnected devices is expected to exceed three times the 
global population by the year 2023, this trend will continue 
[3]. Despite advancements in networking and radio access 
technologies, the current cellular communications system is 
struggling to fulfill its rapidly increasing requirements [4]. 
This has motivated the need to offload cellular traffic in the 
5G system. Device-to-device (D2D) communications have 
emerged as a promising offloading solution as it enables the 
direct sharing of data between neighboring cellular devices 
with little assistance from the base station (BS) [5] [6]. This 
significantly alleviates the burden on the BS by offloading 
the traffic from proximity applications to direct 
communications. 

The social network assisted D2D communications have 
gained a significant research attention in the recent times 

[7]. Because the profiles of humans on social networking 
applications reflect their real-life behavior, this information 
may be exploited for the improvement of D2D 
communications [8]. Therefore, most recent studies have 
exploited the social network information of users along 
with their physical parameters to enable D2D 
communications between users who have social friendships 
or similar interests [9]. This significantly improves the 
willingness of users to share data of common interest within 
their social circle. 

A major concern that arises in social-aware D2D 
communications is the energy consumption of devices [10]. 
As the cellular devices used for D2D communications have 
limited battery power, D2D communications may drain the 
battery rather quickly [11]. Moreover, advancements in the 
battery technology have not kept pace with the high power 
requirements of such devices [12]. Hence, D2D 
communications require energy efficient peer discovery, 
relay selection, cluster formation, medium access control, 
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and transmission power allocation to realize the future 5G 
communication systems [13]. This can be achieved by 
designing protocols that incorporate the energy efficiency 
optimization at the mentioned dimensions while ensuring 
the quality of service (QoS) requirements [14]. Therefore, 
studying the energy efficiency optimization problem in 
social-aware D2D networks and addressing the 
aforementioned challenges and issues are vital. 

A. RELATED WORKS 
The studies on the energy efficiency of social-aware 

D2D communications can be divided into different 
categories based on their goals, including peer discovery, 
relay selection, cluster formation, medium access control, 
and transmit power allocation. Prasad et al. presented a 
social-application based peer discovery method to improve 
the energy efficiency of social-aware D2D communications  
[15]. Their method introduced a cloud-based region that 
enabled users of the same interest to probe peer discovery 
when they are in proximity. This cloud-based approach 
enabled the offloading of the discovery process from D2D 
networks as well as LTE core networks. Moreover, their 
method reduced the frequency of peer discovery, which 
significantly improved energy efficiency. Similarly, Zhang 
et al. proposed a neighbor discovery algorithm for social-
aware D2D communications by dividing neighboring users 
into groups based on their community and centrality 
attributes [16]. Their method improved peer discovery, 
energy efficiency, and data transmission by selecting the 
optimal beacon probe rate. In addition, Wang et al. proposed 
a social-aware D2D neighbor discovery method based on the 
overlapping communities in social networks [17]. The 
proposed method exploited the connection status between 
D2D users to determine the overlapping communities. The 
overlapping nodes played the role of communication bridges 
to enhance data sharing between different communities. 
Moreover, the dynamic selection of beacon detection rates 
improved the neighbor discovery, power consumption, and 
energy efficiency. Although these methods significantly 
improved the energy efficiency of social-aware D2D 
communications, obtaining optimal beacon probe and 
detection rates in these methods remains a challenging task. 

Social-aware relay selection is another domain for 
improving the energy efficiency of D2D communications. 
Addressing this issue, Li et al. proposed a social-aware relay 
selection scheme based on the social and physical 
parameters of D2D users in [18]. They aimed to select 
trustworthy D2D users to act as relays and forward data to 
their friends in a social circle. Moreover, they proposed a 
dynamic transmit power adjustment algorithm to improve 
the energy efficiency of the system. A similar D2D relay 
selection algorithm based on distance from source and 
destination and social trust was also proposed in [19], 
wherein the QoS and the power consumption parameters of 
D2D users were considered when performing relay 
selection. These previous studies demonstrated a significant 
improvement in the energy efficiency of social-aware D2D 
communications, but they may not be suitable for scenarios 
with less number of friend users in proximity. 

The energy efficiency of social-aware D2D 
communications can be significantly improved by clustering 
D2D users and assigning resources to the cluster head 
supervising the D2D transmissions of its cluster members. In 
this regard, Wang et al. proposed a cluster formation 
algorithm for social-aware D2D communications [20]. The 
problem was formulated as a multi-objective problem based 
on the Chinese restaurant process (CRP) and enhanced CRP. 
The method allowed new nodes to join a cluster to improve 
its link data-rate. The results revealed an improvement of the 
proposed algorithm in terms of energy efficiency in 
comparison to existing algorithms. A similar social-aware 
D2D clustering and resource algorithm was proposed in 
[21]. The algorithm divided the D2D users into various 
multicast groups and selected a cluster head to assist the 
multicast group. Moreover, the study proposed an energy-
efficient power control and resource allocation scheme by 
considering the QoS requirements. However, the cluster 
head selection in a distributed manner based on social and 
physical parameters can lead to a privacy concern in social-
aware D2D communications. Zhang et al. proposed a 
clustering and resource allocation scheme for social-aware 
D2D communications to improve the energy and spectral 
efficiencies in [22]. They exploited the redundancy in user 
demand to form D2D clusters and perform multicast 
transmission inside the clusters. They also proposed half- 
and full-duplex transmission strategies to manage channel 
sharing between cellular devices and D2D links. However, 
the performance of the proposed scheme degraded in dense 
D2D scenarios. 

In contrast to the work proposed in [20], [21] and [22], 
the work in [11] and [23] addressed the social-aware D2D 
energy efficiency in terms of the medium access control 
(MAC) protocol. In particular, the work in [11] focused on 
designing a socially cooperative D2D (SCD2D) MAC to 
improve the D2D energy efficiency. This method reduced 
power consumption by enabling cooperation among sociable 
D2D nodes without hampering the completion time of 
content exchange. However, interference mitigation was not 
considered in the design of the SCD2D MAC protocol. In 
[23], virtualization was introduced with social-awareness for 
designing an energy efficient virtual MAC protocol for D2D 
communications. The protocol allowed multiple network 
operators to share resources by performing resource 
optimization for both cellular and D2D users. Moreover, the 
network energy efficiency was formulated as a multi-
objective problem, which was solved to improve the energy 
efficiency. Although these previous studies provide adequate 
guidelines toward designing an energy efficient cooperative 
MAC protocol for social-aware D2D communications, the 
domain requires further research to resolve practical 
concerns related to the exploitation of virtualization and 
social-awareness while designing a MAC protocol for D2D 
communication. 

An efficient way to improve the energy efficiency of 
social-aware D2D communications is to optimize the 
transmit power allocation of D2D nodes [24] [8]. For this 
purpose, in [24], the authors focused on maximizing the 
energy efficiency of D2D users by optimizing the transmit 
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power and sub-channel allocation. The method jointly 
allocated the transmit powers and sub-channels to the D2D 
users using penalty function and dual-decomposition 
methods, respectively, while guaranteeing the QoS for 
cellular users. The results demonstrated performance 
improvement in terms of energy efficiency. However, this 
method did not incorporate the social parameters of users. 
The authors in [8] aimed to solve the problem of energy 
efficiency maximization by considering both social and 
physical parameters of users. They used a genetic algorithm 
(GA) with a static penalty-based constraint handling method 
to maximize the energy efficiency of cellular and D2D users. 
The algorithm improved the overall energy efficiency and 
system throughput while fulfilling the QoS of both types of 
users. However, the static penalty function method is involes 
careful tuning of the penalty coefficients, which either 
requires the prior knowledge of the problem or a large 
number of iterations to obtain the optimal results.  

B. CONTRIBUTIONS 
In this study, we aim to maximize the energy efficiency of 
cellular and D2D users using a self-adaptive penalty-based 
GA. Differing from the studies discussed in the previous 
subsection, we propose a social-aware energy efficiency 
scheme based on GA with a self-adaptive penalty function 
algorithm for constraint handling. The proposed algorithm is 
easy to implement and does not require knowledge of the 
problem or tuning of the penalty coefficients (as needed in 
the static penalty function method). Moreover, it efficiently 
adapts the penalty values according to the number of 
feasible and infeasible individuals in the population. To the 
best of our knowledge, no similar work has been presented 
in literature. The major contributions of this paper are as 
follows.  

1) In our previous study related to social-aware D2D peer 
selection, we computed the “cumulative closeness 
coefficient” (i.e., Δ), which combines the social and physical 
parameters of D2D users [4]. Herein, we use the computed Δ 
to derive the signal-to-noise plus interference ratio (SINR) 
and data rate for D2D users [25]. Moreover, we utilized the 
“social closeness coefficient” (i.e.,  ) proposed in [4] to 
calculate the power consumption coefficient of cellular 
(i.e.,  ) and D2D (i.e.,  𝑝 ) users [26]. We use these 
parameters to derive the energy efficiencies for cellular and 
D2D users. We compute the overall energy efficiency of the 
system by adding the energy efficiency of cellular and D2D 
users. 
2) We formulate the objective function (function to be 
maximized) as a constrained maximization problem of the 
overall energy efficiency with constraints for the spectral 
reuse, spectral efficiency, and transmit powers for cellular 
and D2D users. 
3) To solve the problem using GA, we convert the 
constrained problem to an unconstrained problem using a 
self-adaptive penalty function algorithm. We derived a final 
objective function for the overall energy efficiency. Then, 
we utilize the GA to maximize the overall energy efficiency 
problem. 

4) We perform extensive simulations of the proposed 
scheme. The feasibility of the proposed scheme is shown in 
terms of convergence between the maximum and average 
values of the objective function. Moreover, the performance 
is compared with the static penalty-based GA in terms of 
overall energy efficiency and system throughput for various 
scenarios [8]. Finally, the importance of combining social 
and physical parameters is shown in terms of overall energy 
efficiency and system throughput with respect to the 
distance between D2D users. 
C. PAPER ORGANIZATION 
The remainder of the paper is organized as follows: the 
system model is described in Section II, the algorithm 
description and formulation is presented in Section III, and 
the numerical results followed by the conclusions and future 
work are given in Sections IV and V, respectively. 
 
II. SYSTEM MODEL 
In this section, we describe the system model for the 
proposed scheme, which consists of the system architecture, 
and the network model. 

A. SYSTEM ARCHITECTURE 
We consider two types of parameters, i.e., social parameters 
and physical parameters in our proposed scheme. 
Accordingly, we divide the system model into two layers, 
i.e., a social proximity layer (SPL) and a physical proximity 
layer (PPL) (Fig. 1). The SPL describes the social 
parameters of the users based on their profile on the social 
network database. The human users have different levels of 
interaction with each other via social networks. These social 
network interactions significantly affect the willingness of 
the users to perform D2D communications. The social 
parameters utilized in our proposed scheme include Social 
Friendship Index, Social Closeness Index, and Interest 
Similarity Index. We follow the definitions of these 
parameters done in [4]. 

 
Figure 1. Proposed two-layer D2D architecture with Social Proximity 

Layer and Physical Proximity Layer 

Likewise, the PPL characterizes the physical and 
network parameters of the users, ensuring physical 
proximity of users, which is a basic requirement for D2D 
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communications. We exploit the physical parameters 
defined in [4], which include Encounter Duration, Distance 
between D2D Users, and Number of D2D Users. The BS 
can obtain the social parameters of users from the social 
network database while it can estimate their physical 
parameters [4]. 

B. NETWORK MODEL 
We consider a single-cell network composed of cellular and 
D2D users. The system works in a centralized manner, 
wherein the proposed algorithm runs at the BS. We assume 
a set of cellular users as ΩC = {C1, C2,…, CM}, such that an 
arbitrary cellular user is denoted by Cm ϵ ΩC (where m = 1, 
2,…M). Likewise, the set of D2D users is defined as ΩD = 
{D1, D2…, DN}, such that an arbitrary D2D user is denoted 
by Dn ϵ ΩD (where n = 1, 2,…, N). Because D2D 
communications occur between pairs of D2D users, we 
assume a set of D2D pairs as ΩDD = {DD1, DD2,…, DDP}, 
where P = . Hence, DDp is an arbitrary D2D pair with Di 
as the D2D transmitter and Dj as the D2D receiver, such 
that 1 ≤ i,j ≤ N (where i ≠ j). The cellular users perform 
communications using the BS, whereas D2D users are 
capable of performing communications with or without the 
assistance of the BS. Both the cellular and D2D users use 
LTE-A air interface for their communications. We model 
the channels in our proposed system using the Rayleigh 
fading model.  

The cellular users communicate using orthogonal sub-
channels, whereas the D2D pairs reuse the same sub-
channels allocated to the cellular users. Therefore, the 
cellular users do not interfere with each other. Furthermore, 
the BS mitigates interference among D2D users by ensuring 
the reuse of the cellular resource by only one D2D pair in a 
slot. Nevertheless, there is a potential for interference 
among cellular and D2D users as they share the same 
spectrum resource. Hence, we consider the interference 
between cellular users and D2D pairs.  

When a D2D user wants to perform D2D 
communications, it sends a request to the BS. The BS selects 
a D2D peer among the available D2D users based on both 
social and physical parameters using the method proposed in 
[4]. It assigns the uplink spectrum channel to the D2D pair 
(DDp) and computes the allowable transmit power and other 
QoS parameters according to the constraints of the D2D 
transmitter (i.e., D

i
).  

III. ALGORITHM DESCRIPTION AND FORMULATION 
This section first presents the motivation and overview of 
the GA used for the energy efficiency optimization in our 
proposed scheme. Moreover, we define various GA-related 
terms used in the upcoming sections. We then briefly 
describe the self-adaptive penalty function algorithm used 
for handling the constraints in our proposed scheme. 
Furthermore, we define a few terms related to the self-
adaptive penalty algorithm and describe the problem 
formulation for the proposed scheme. 

A. GA MOTIVATION AND OVERVIEW 
GA is a widely used nature-inspired algorithm based on 
biological evolutionary steps, such as natural selection, 
crossover, and mutation. It is a powerful but easy tool for 
solving various continuous, discrete, and nonlinear 
optimization and search problems [27]. It provides an 
implicit parallelism that enables it to efficiently solve 
problems with a wide range of search space and obtain 
optimal solutions [28]. Although the proposed energy 
efficiency maximization problem for social-aware D2D 
communications can be solved using the traditional 
Lagrangian method, it may lead to high computational 
complexity [29]. Hence, we used GA to solve the proposed 
problem. The algorithm starts by generating a set of initial 
solutions, which is termed the population. Each solution in 
the population is called an individual. These individuals 
undergo the process of selection, crossover, and mutation to 
generate a new set of individuals. The individuals are 
compared based on their fitness values. The individuals with 
better (maximum or minimum) fitness are selected to 
produce subsequent generations of the population while those 
with lower fitness values are discarded from the population. 

B. SELF-ADAPTIVE PENALTY FUNCTION ALGORITHM 
Since our proposed model comprises inequality constraints 
related to the spectral reuse, spectral efficiency, and transmit 
power of cellular and D2D users, we cannot directly use GA 
as it will lead to infeasible solutions. Therefore, we use a self-
adaptive penalty function algorithm to convert the 
constrained problem into an unconstrained problem. This 
method overcomes the problem of tuning the penalty 
coefficients, which is found with the static penalty function 
method. Moreover, it utilizes the information from infeasible 
individuals (i.e., those individuals that fail to satisfy one or 
more constraints) to obtain the optimal solution. 

As the proposed method is based on the principle of the 
penalty algorithm, it penalizes the infeasible individuals 
according to their violation of constraints (i.e., not satisfying 
the constraints). For this purpose, it computes the penalty 
factor (i.e., 𝑃 ) as a part of the final objective function. 
Furthermore, the algorithm computes the distance parameter 
(i.e., 𝑑 ) for each individual in the population to achieve two 
goals. First, it guides the algorithm to find feasible 
individuals when all the individuals in the current population 
are infeasible. Second, if the current population has feasible 
individuals, it directs the algorithm to search for the optimal 
individuals. The distance parameter and penalty factor are 
added to obtain the final (unconstrained) objective function. 
Then, GA is applied to the computed final objective function 
to maximize the energy efficiency of cellular and D2D users.  

C. PROBLEM FORMULATION 
We divide the formulation of the proposed algorithm into 
the following steps.  
1) OVERALL ENERGY EFFICIENCY AND SYSTEM 
THROUGHPUT DERIVATION 
Energy efficiency is defined as the number of bits 
transmitted per unit power [30]. The underlying goal of our 
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study is to improve the overall energy efficiency of cellular 
and D2D communications while satisfying their 
transmission power and spectral efficiency constraints. For 
this purpose, we first compute the data rates for cellular and 
D2D users using Shannon’s theorem. The data rate between 
Cm and BS (i.e., 𝑅 ) is given by 𝑅  =𝑊 𝑙𝑜𝑔 (1 +  ),  (1) 

where 𝑊  is the cellular bandwidth and   is the 
SINR between Cm and BS, which is computed as 

 =      .   (2) 

Here, 𝑃  is the transmit power of Cm, ℎ  is the 
Rayleigh fading coefficient for cellular channel, 𝐷  is 
the distance between Cm and BS,  is the path loss 
coefficient, 𝜎  is additive white Gaussian noise power, and 𝐼 is the interference at Cm calculated as 

         𝐼 =  ∑  𝑝 𝑃 𝑝 ℎ 𝑝 𝐷 𝑝 . (3) 

Here,  𝑝  is the spectrum reuse coefficient between 
Cm and the D2D pair DDp [31]. It reflects the reuse of the 
cellular spectrum by the D2D pair and satisfies 
 𝑝 ϵ{0,1}. We assume that  𝑝 = 1 when DDp 
reuses the spectrum resource of Cm, otherwise  𝑝 = 0. 
Hence, interference occurs between Cm and DDp when 
 𝑝 = 1. Moreover, 𝑃  is the transmit power of DDp 

(i.e., Di), ℎ  is the Rayleigh fading coefficient for the 
D2D channel, and 𝐷  is the distance between Di and Dj. 
Likewise, the data rate for DDp is computed as 𝑅 = 𝑊 𝑙𝑜𝑔 (1 +  ),  (4) 

where 𝑊  is the D2D bandwidth and   is the SINR 
received at Dj from Di, which is computed as 

 =  2   𝑝 ,  (5) 

It has been reported that combining the social parameters of 
D2D users with the physical parameters significantly 
improves the performance of D2D communications  [7]  
[9]. There are various methods to integrate the social and 
physical parameters of D2D users [4] [8] [25]. One method 
to do this is to compute a joint social-physical metric and 
utilize it to determine the SINR for D2D communications 
[4] [25]. We follow the mentioned method in our scheme 
and compute a joint social-physical metric called 
“Cumulative closeness coefficient” (denoted by Δ ) for 
each D2D pair DDp [4]. The  Δ  is utilized in (5) to 

compute the SINR for DDp [25]. The computed SINR is 
utilized to calculate the data rate for D2D communications 
in (4). The calculated data rate is used in (8) when 
computing the energy efficiency of DDp and in (11) when 
calculating the throughput. 

The parameter 𝐼 𝑝  (5) is the interference at the D2D 
receiver Dj due to Cm and is calculated as 𝐼 𝑝 = ∑  𝑝 𝑃 ℎ 𝑝 𝐷 𝑗 .  (6) 

We use the Δ  parameter while computing   [25] in 
(5), which is the “cumulative closeness coefficient” 
between two D2D users (i.e., D

i and D
j
) of pair DDp. It is 

obtained by adding the social closeness coefficient ( ) 
and the physical closeness coefficient ( ), as proposed 
in [4]. The parameter   between the two users reflects 
their closeness based on the social parameters obtained 
from the social network database. Likewise, the parameter 
  shows their closeness based on the physical 
parameters. Both   and   are computed using the 
“technique for order preference by similarity to ideal 
solution” (TOPSIS) [32]. The social and physical 
parameters used to compute the social and physical 
closeness coefficients, respectively, are defined in [4]. 
We derive the energy efficiency expression for Cm (i.e., 𝜀 𝑚) and DDp (i.e., 𝜀 𝑝) as 

𝜀 𝑚 = 𝑅𝐶𝑚−𝐵𝑆  − 𝜀 ,  (7) 

𝜀 𝑝 =  𝑝 𝑝  − 𝑝𝜀 𝑝,   (8) 

where 𝑃  and 𝑃 𝑝  are the powers dissipated in cellular 
and D2D circuits, respectively. Because energy efficiency is 
based on the power consumption of the device, which 
comprises the transmit power as well as the power 
dissipated in the circuit of the device, we incorporate 𝑃  
and 𝑃 𝑝  when computing 𝜀 𝑚  and 𝜀 𝑝 , respectively. 
Moreover, 𝜀  and 𝜀 𝑝 are the initial energy efficiencies 
of Cm and DDp, respectively, as introduced in [8]; their 
values are given in Table II. The parameters   and  𝑝 
are the power consumption coefficients for Cm and DDp, 
respectively, and are modeled as an exponential decay 
function [25]: 

 = 𝑝 = 𝑒  𝑝 , (9) 

where 𝜂  is the influence factor of the social closeness 
coefficient, which influences the exponential decay 
function, as defined in [25]; its value is given in Table II. 
Moreover,  𝑝  is the social closeness coefficient 
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between Cm and DDp, as defined in [4]. The stronger the 
social friendship between the two users is (i.e., the higher 
the value of  𝑝), the lower are the values of   and 
 𝑝. Hence, their multiplication with 𝜀  and 𝜀 𝑝 in (7) 
and (8), respectively, will further decrease the subtraction 
terms, resulting in higher values of 𝜀 𝑚  and 𝜀 𝑝 . The 
overall energy efficiency denoted by 𝜀  incorporates the 
energy efficiencies of all the cellular users in Ω

C
 and D2D 

pairs in Ω
DD

, and it is computed as given in [8]: 

𝜀 = ∑ 𝜀 +  ∑  𝑝 𝜀 𝑝 . (10) 

Next, we calculate the system throughput for the cellular 
users in both Ω

C
 and D2D pairs in Ω

DD
, as given by [8]: 

𝜏 = ∑ 𝑅 +  ∑  𝑅 .  (11) 

2) INITIAL MAXIMIZATION PROBLEM FORMULATION 
We assume the ε problem in (10) as the initial objective 
function, which can be formulated as a maximization 
problem given by max

 𝑝, ,  𝜀,  (12) 

⎩⎪⎨
⎪⎧  𝐶1: ∑ 𝐶𝑚−𝐷𝐷𝑝ϵ {0,1}𝑀𝑚=1 ,  𝐶2: 𝑆𝐸𝐶𝑚 ≥  𝜇𝐶𝑚 ,                  𝐶3: 𝑆𝐸𝐷𝐷𝑝 ≥  𝜇𝐷𝐷𝑝,            𝐶4: 0 ≤ 𝑃𝐶𝑚 ≤ 𝑃𝐶𝑚𝑚𝑎𝑥 ,  𝐶5: 0 ≤ 𝑃𝐷𝐷𝑝 ≤ 𝑃𝐷𝐷𝑝𝑚𝑎𝑥 .       

  (13) 

Here, 𝑆𝐸 and 𝑆𝐸 are the spectral efficiencies of Cm and 
DDp, respectively, defined as the number of bits transmitted 
successfully per unit time per Hz [33]. In addition, 𝜇  and 𝜇 denote the minimum data rates for cellular and D2D 
communications, respectively, while  𝑃  and 𝑃  
denote the maximum allowed transmit powers of Cm and 
DDp, respectively. The constraint 𝐶1 ensures that at most 
one D2D pair must reuse the spectrum of a cellular user to 
avoid interference between D2D pairs. Because the energy 
and spectral efficiencies conflict with each other [34], we 
take the spectral efficiency constraints in C2 and C3 to 
guarantee the spectral efficiency of Cm and DDp, 
respectively, while fulfilling their QoS requirements. 
Moreover, C4 and C5 regulate the transmit powers of Cm 
and DDp to satisfy their communication requirements and 
control interference between cellular users and D2D pairs.  
3) FORMULATION OF CONSTRAINT-FREE OBJECTIVE 
FUNCTION 
The problem formulated in (12) has constraints, as given in 
(13). Therefore, it cannot be directly solved using GA as 
GA cannot handle the constraints [8]. Therefore, we employ 

the self-adaptive penalty function method for constraint 
handling in the formulated problem [35] [36]. For this, we 
first need to compute 𝜀  and 𝜀  from (10):  𝜀 =  𝑚𝑖𝑛 (𝜀),   (14)                                 𝜀  = 𝑚𝑎𝑥 (𝜀).   (15) 
Using 𝜀  and 𝜀  from (14) and (15), respectively, we 
normalize the ε problem in (10) to scale its values between 
0 and 1: 

                           ‖𝜀‖ = .   (16) 

Following the approach of the self-adaptive penalty function 
method in [36], we calculate the distance parameter (i.e., 𝑑 ) 
for each individual in the population from the optimal point 
based on their normalized values and constraint violation. 
The calculation method of 𝑑  differs based on the number of 
feasible individuals (population members that satisfy all the 
constraints) in the population, as given by 

𝑑 = ∑ , if all population is infeasible   (‖𝜀‖) + ( ∑ ) ,                otherwise (17) 

where k = 1, 2,…, K represents the number of constraints. 
In our formulated problem, K = 5, as given in (13). The 
parameter 𝑣  is the maximum value among all the 
constraint violations and 𝑣  represents the violation of the 
kth constraint, which is given by 𝑣 = 𝑚𝑎𝑥 (0, 𝑔 ),   (18) 

where gk is the kth inequality constraint. The expression ∑  in (17) represents the sum of normalized 
constraint violations divided by the number of constraints. 
(17) clearly denotes that the distance parameter will be 
equal to the sum of normalized constraint violations divided 
by the number of constraints when there are no feasible 
individuals in the current population. Hence, individuals 
with a smaller constraint violation are better than those with 
a larger violation. This guides the algorithm to quickly 
approach feasible solutions. In the case where some feasible 
individuals are present in the population, the distance 
parameter is equal to the squared root of the normalized 
objective function and the sum of normalized constraint 
violations divided by the number of constraints. This guides 
the algorithm to approach the optimal solution. The 
mechanism to compute 𝑑  is summarized in Algorithm I. 

Algorithm I: Pseudocode to compute 𝒅𝜺 
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    Input: Population size 𝑁, 𝜀 , 𝜀 , 𝜀 , ∑ ,  
            𝑟  ∀𝑗, 𝑗 = 1, 2, … , 𝑁 
    Output: 𝑑  ∀𝑗, 𝑗 = 1, 2, … , 𝑁 
    Begin 

1.        If 𝑟 = 0 then 
2.            For 𝑗 = 1 to 𝑁 
3.            𝑑 ← ∑  
4.            End For 
5.        Else 
6.            For 𝑗 = 1 to 𝑁 
7.            ‖𝜀 ‖←  

8.            𝑑 ←𝑆𝑞𝑟𝑡(( 𝜀 ) + ( ∑ )  
9.            End For 
10.      End If 
11. End 
 
Next, we compute the self-adaptive penalty factor Pε, which 
is determined by the number of feasible individuals in the 
population: 𝑃  =  (1 − 𝑟 )𝜆 +  𝑟 𝜆 ,    (19) 

where 𝑟  is the ratio of the number of feasible individuals in 
the population to the size of the population, whereas 𝜆  and 𝜆  are the self-adaptive penalty coefficients computed as 

𝜆 =  0,                              if  𝑟 = 0∑ ,          otherwise, (20) 

𝜆 =  0,                            if 𝑟 ≠ 0‖𝜀‖,                      otherwise.   (21) 

Equation (19) shows that coefficient 𝜆  has a greater impact 
than coefficient 𝜆  when few feasible individuals are 
present in the population. In contrast, the impact of 𝜆  is 
dominant when the number of feasible individuals in the 
population is greater than that of infeasible individuals. The 
mechanism to compute 𝑃𝜺  is summarized in Algorithm II. 

Algorithm II: Pseudocode to compute 𝑃𝜺  

    Input: Population size 𝑁, 𝜀 , 𝜀 , 𝜀 , ∑ ,  
            𝑟  ∀𝑗, 𝑗 = 1, 2, … , 𝑁 
    Output: 𝑑  ∀𝑗, 𝑗 = 1, 2, … , 𝑁 
    Begin 

1.        For 𝑗 = 1 to 𝑁 
2. If 𝑟 = 0 then 
3.                 𝜆 ← 0 
4.     𝜆 ← ‖𝜀 ‖ 
5.             Else 

6.     𝜆 ← ∑  
7.     𝜆 ← 0 
8.             End If 
9.                 𝑃𝜺 ← 1 − 𝑟 𝜆 + 𝑟 𝜆  
10.      End For 
11. End 
 
The self-adaptive penalty function algorithm utilizes the 
information from the infeasible solution to guide the 
algorithm toward the optimal solution. This is done by 
computing the distance parameter (i.e., 𝑑 )  and self-
adaptive penalty factor (i.e., Pε). Hence, the final constraint-
free objective function (i.e., 𝜀′) is computed by adding (17) 
and (19): 

 𝜀′ = 𝑑𝜀 +  𝑃𝜀.   (22) 

Finally, we obtain the problem without constraints. 

TABLE I 
LIST OF SYMBOLS 

Symbol Description 

Ω
C
 / Ω

D
/ Ω

DD Set of cellular users/D2D users/D2D pairs 
Cm/Dn/DDp 𝐷𝑖 / 𝐷𝑗 
SPL/PPL 

Arbitrary cellular user/D2D user/D2D pair 
D2D transmitter/receiver 
Social/Physical proximity layer 𝑅 / 𝑅  𝑊  /𝑊  

  /  

Data rate for cellular user/D2D pair 
Bandwidth of cellular user/D2D pair 
SINR of cellular user/D2D pair 𝐷  /𝐷  Distance between Cm and BS/D2D pair users ℎ / ℎ  𝐼 / 𝐼  

   
 
σ2 

Rayleigh fading coefficient for cellular/D2D 
channel 
Interference to cellular user/D2D pair 
Spectrum reuse coefficient between Cm and 
D2D pair DDp 
Additive White Gaussian Noise 𝑃 /𝑃  Transmit power of Cm and DDp (i.e., 𝐷𝑖) Δ  

 𝜀 /𝜀 / 𝜀 
β 𝑃 /𝑃  
 /   

Cumulative closeness coefficient between 𝐷𝑖 and 𝐷𝑗 
Energy efficiency of Cm/DDp /overall 
Path loss coefficient 
Circuit dissipated power for Cm/DDp 
Power consumption coefficient for Cm/DDp 𝜀 /𝜀  

  

η 
 
τ 

Initial energy efficiency for Cm/DDp 
Social closeness coefficient between Cm and 
DDp 
Influence factor of social closeness 
coefficient 
System throughput 𝑆𝐸 /𝑆𝐸  𝜇 /𝜇  
Spectral efficiency of Cm/DDp 
Minimum required data rate for Cm /DDp 

C1–C5 𝑃 /𝑃  𝜀 /∥ 𝜀 ∥/𝜀  

Constraints for the objective function 
Maximum transmit power of Cm /DDp 
Initial/Normalized/Final objective function 

dε 
rf Distance parameter 

Ratio of the number of feasible solutions to 
the population size λ1/ λ2 𝑣 /𝑣  𝑃  

Self-adaptive penalty coefficients 
kth/Maximum constraint violation 
Self-adaptive penalty factor 
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4) APPLYING GA TO THE CONSTRAINT-FREE PROBLEM 
To maximize the overall energy efficiency, we apply GA to 
the final objective function computed in (22), which can be 
expressed as max  , , 𝑝 𝜀 .  (23) 

Algorithm III summarizes the steps of the proposed scheme. 
Its working mechanism is described using a flowchart in 
Fig. 2. Table I lists the symbols used in the paper. 

The proposed algorithm starts by randomly initializing 
the population of a solution set Ss =  , 𝑃 , 𝑃 𝑝 . 
For all the population members, it computes 𝑑  and 𝑃  using 
the methods given in Algorithms I and II, respectively. The 𝜀′  value is calculated using the computed 𝑑  and 𝑃 . GA 
operators, such as selection, crossover, and mutation, are 
then used to generate a new population. The current 
population is updated by comparing the new population 
with the older one until the algorithm reaches the final 
iteration. 
 
 Algorithm III: Pseudocode for the proposed scheme 

   Input: Population size 𝑁, Number of Iterations 𝑇,   
            Mutation Probability 𝑃 , Crossover Probability 𝑃 ,  

                  Ss =  𝑝 , 𝑃 , 𝑃 , ∀𝑗, 𝑗 = 1, 2, … , 𝑁 

   Output: Ss with maximum value for 𝜀  
   Begin 

1.     Generate an initial population (Ss) randomly 
       //Constraint Handling based on Self-Adaptive    
       Penalty Function Algorithm 

2.         For 𝑗 = 1 to 𝑁 
3.             Evaluate 𝑑  and 𝑃  for current   
                Population and compute 𝜀                                            
4.         End For 
5.         Compute 𝑟  
          //Genetic Algorithm 

6.         For 𝑗 = 1 to 𝑁 
7. 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 ← 0 
8. While (𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 < 𝑇) 
9.       Select parents for generating  
                      offspring from 𝑆  
10.       Generate offspring through mutation and  
                      crossover 
11.                 Evaluate 𝑑  and 𝑃  for generated  
                      offspring solution and compute 𝜀  
12.                 Update population in 𝑆    
13.                 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 ← 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 +1   
14.       End While 
15.       End For 
16. End 
 

 
Figure 2. Flowchart diagram to illustrate the mechanism of proposed 
scheme 

IV. NUMERICAL RESULTS 
In this section, we present and discuss the numerical results 
obtained from the simulations of the proposed scheme to 
validate its performance. We assume a hexagonal single-
cell environment of a radius 500 m with cellular and D2D 
users for our simulations, as shown in Fig. 3. The social and 
physical parameters described in Section II are assigned 
numerical values according to their definitions in [4]. Then, 
the algorithm proposed in same paper is used to compute Δ . On the basis of Δ  and other parameters listed in 
Table II, the proposed algorithm computes the SINR, data 
rate, energy efficiency, and throughput. Finally, the self-
adaptive penalty based GA is applied to maximize the 
overall energy efficiency.  

 
Figure 3. Simulation model for the proposed scheme 
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TABLE II 
 SIMULATION PARAMETERS 

Parameter Value 
Network 
Cell radius 
User distribution 
Number of cellular users 
Number of D2D pairs 
β 

Single Cell 
500 m 
Uniform 
2–20 
1–5 
3 

Q 𝜀 /𝜀  𝑃 / 𝑃  

3 
1 Kbps/W 
0.01 W 

η 10 

σ2 −101 dBm 

D2D channel Bandwidth 
Cellular channel Bandwidth 

15 KHz 
180 KHz 𝜇  𝜇  
50 Kbps 
 
5 Kbps 𝑃 /𝑃  

BS Transmit power 
Population size 
Maximum number of 
iterations 
Crossover probability 
Mutation probability 

30 dBm 
46 dBm 
100 
100 
 
0.7 
0.1 

 

The feasibility of the proposed scheme is analyzed in terms 
of time complexity and the convergence between the 
maximum and average values of the energy efficiencies 
regarding the number of iterations. The performance is also 
shown in terms of overall energy efficiency and system 
throughput for various scenarios. The comparisons with the 
state-of-the-art algorithm are performed in two ways. First, 
the proposed algorithm is compared with the static penalty-
based GA algorithm [8] in terms of overall energy 
efficiency and system throughput for different numbers of 
cellular and D2D users. Second, the impact of combining 
the social and physical parameters is investigated by 
comparing the proposed scheme with schemes based only 
on the social or physical parameters. 

The time complexity of our proposed scheme depends on 
the TOPSIS algorithm (from [4]), self-adaptive penalty 
algorithm, and GA. The maximum time complexity of 
TOPSIS algorithm is O(n2), which results from the 
normalization and weight assignment [37]. Moreover, we 
divide the self-adaptive penalty algorithm in two sub-
algorithms (Algorithm I and II). The time complexity of each 
of these sub-algorithms is O(n). Finally, the time complexity 
of GA (i.e., Algorithm III) is O(n2). Hence, the maximum 
time complexity of our proposed scheme is O(n2), which is 
considered feasible for less number of inputs [38]. 

To demonstrate the feasibility of our proposed scheme, 
we perform simulations for 50 iterations. The average of the 
energy efficiency values is taken after every five iterations 
and compared with the maximum overall energy efficiency 
value achieved during those iterations. Fig. 4 shows that the 

maximum value of the overall energy efficiency converges 
at ~25 iterations. Moreover, the average value approaches 
the maximum value at ~30 iterations, which shows the 
feasibility of the proposed algorithm for solving the energy 
efficiency maximization problem. 

 
Figure 4. Convergence analysis of the proposed scheme 

 
Figure 5. Impact of increasing the number of cellular users on the 
overall energy efficiency 

Figure 5 shows the impact of increasing the number of 
cellular users on the overall energy efficiency of the 
proposed scheme. The number of D2D pairs is kept 
constant at five. The overall energy efficiency with the 
number of cellular users is increased. This is because more 
cellular users contribute to improve the overall energy 
efficiency. Moreover, the number of channels available for 
reuse by the D2D pairs is increased. Hence, a D2D pair 
obtains a better reuse channel in cases where there are more 
cellular users. This increases the energy efficiency of the 
cellular and D2D users and ultimately the overall energy 
efficiency. The initial rate of increase in the overall energy 
efficiency for the proposed scheme is faster than that of the 
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static penalty-based GA algorithm as the chances for a D2D 
pair to avail a better reuse channel are increased. However, 
with further increases in the number of cellular users, the 
growth rate in the overall energy efficiency slows down as 
the number of available channels for reuse by the D2D pairs 
exceeds the number of required channels. Therefore, some 
of the channels remain unused. In the case of the static 
penalty-based GA algorithm, the energy efficiency also 
increases but the rate of increase is uneven because it 
requires tuning of the penalty coefficients to obtain the 
optimal solution. Furthermore, the overall energy efficiency 
of the proposed scheme is much better than that of the static 
penalty-based GA scheme. The reason for this is that the 
proposed algorithm efficiently uses the information 
available from the infeasible solutions to guide the 
algorithm toward feasible solutions and ultimately the 
optimal solution. Furthermore, it limits the transmit power 
of the cellular and D2D users while fulfilling the QoS 
requirements. In addition, the proposed scheme uses the 
TOPSIS algorithm to combine the social and physical 
parameters of the D2D users and utilize it to compute the 
SINR as described in Section III.C.1. Then, it utilizes the 
SINR to calculate data rate and ultimately the overall 
energy efficiency, which further improves its performance.  

 

Figure 6. Impact of increasing the number D2D pairs on the overall 
energy efficiency 

Figure 6 shows the impact of increasing the number of 
D2D pairs on the overall energy efficiency of the proposed 
scheme and the static penalty-based GA scheme. The 
number of cellular users is kept constant at five. The figure 
clearly shows that the overall energy efficiency increases 
for both schemes because the number of cellular channels 
reused by the D2D pairs also increases. Moreover, no 
interference occurs between the D2D pairs as both schemes 
ensure the allocation of a cellular channel to (at most) one 
D2D pair. In the beginning, the static penalty-based GA 
algorithm scheme has slightly better energy efficiency as it 
may rarely obtain the optimal penalty coefficients in few 
computations. However, the energy efficiency of the 

proposed scheme rapidly increases with the number of D2D 
pairs as more D2D pairs contribute to the overall energy 
efficiency improvement. Furthermore, as stated earlier, the 
proposed scheme utilizes the TOPSIS algorithm to 
incorporate the social and physical parameters of the D2D 
users and exploit it to compute the SINR, data rate, and the 
overall energy efficiency, which adds to the improvement in 
overall energy efficiency. 

Figure 7 depicts the impact of increasing the number of 
cellular users on the system throughput of the proposed and 
static penalty-based GA schemes. The number of D2D pairs 
is kept constant at five. The graph demonstrates that the 
system throughput increases with the number of cellular 
users because a greater number of reuse cellular channels is 
available for the D2D pairs. The initial rate of increase in the 
system throughput is higher for the proposed scheme as the 
D2D pairs tend to obtain better reuse channels for their 
communications. Moreover, the proposed scheme utilizes the 
information from infeasible solutions to direct the algorithm 
toward the optimal solution. In contrast, the static penalty-
based GA algorithm scheme requires tuning of the penalty 
coefficients, leading to suboptimal results. Likewise, the 
integration of social and physical parameters of D2D users 
using the TOPSIS algorithm by the proposed scheme 
improves the SINR, data rate, and system throughput.  

 

Figure 7. Impact of increasing the number of cellular users on the 
system throughput 

Figure 8 illustrates the impact of increasing the number of 
D2D pairs on the system throughput for the proposed and 
static penalty-based GA schemes. The number of cellular 
users is kept constant at five. The figure shows that the 
system throughput increases with the number of D2D pairs 
because the number of cellular channels reused by the D2D 
pairs is increased. The proposed scheme shows a monotonic 
increase as it achieves the optimal result using information 
from the infeasible solution without the need to adjust the 
penalty coefficients (as required in the static penalty-based 
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GA algorithm scheme). The system throughput of the static 
penalty-based GA algorithm scheme also rapidly increases 
when the number of D2D pairs is three, becoming closer to 
the proposed scheme at five D2D pairs, which is the 
maximum. However, the overall performance trend shows 
that at best it can get closer to the proposed scheme when 
both schemes achieve the optimal solution. 

 

Figure 8. Impact of increasing the number of D2D pairs on the system 
throughput 

 
Figure 9. Impact of increasing the D2D distance on the overall energy 
efficiency 

Figure 9 demonstrates the impact of increasing the 
distance between D2D users on the overall energy efficiency 
of the proposed scheme. Moreover, the influence of 
combining the social and physical parameters of the users is 
shown by comparing the performance of the proposed social-
aware scheme with two schemes based on only one type of 
parameter: physical or social. The distance between D2D 
users is changed within the range of 10–50 m while the 
number of cellular users and D2D pairs are each maintained 

as five. The figure shows that the overall energy efficiency 
decreases with increasing distance between D2D users, 
because when the distance increases, the path losses increase 
and higher transmission power is required, consequently 
decreasing the overall energy efficiency. Because the 
proposed scheme efficiently integrates both the physical and 
social parameters of users, its performance is significantly 
better than the schemes based on one type of parameter only. 
Furthermore, it is clear that physical parameters have greater 
impact on the performance of D2D communications than 
social parameters. However, the incorporation of social 
parameters definitely improves the performance. 

Figure 10 depicts the impact of increasing the distance 
between D2D users on the system throughput of the proposed 
scheme. Similar to the results in Fig. 9, the proposed 
algorithm is compared with two algorithms, each based on 
one type of parameter (i.e., social or physical). The numbers 
of cellular users and D2D pairs are each kept at five. The 
figure shows that the throughput graph declines with 
increasing D2D distance for both schemes. This is because 
the increase in the distance negatively affects the SINR, data 
rate, and ultimately the system throughput. However, the 
throughput of the proposed social-aware scheme is much 
better than that for single-parameter schemes as it efficiently 
exploits both types of parameter. 

 
Figure 10. Impact of increasing the D2D distance on the system 
throughput 

V. CONCLUSIONS AND FUTURE WORK 
Herein, we propose a novel algorithm for energy efficiency 
maximization in social-aware D2D communications. We 
exploit both social and physical parameters of D2D users to 
formulate their energy efficiencies and compute the overall 
energy efficiency of the system by adding the energy 
efficiency of cellular and D2D users. Furthermore, we derive 
an objective function with constraints for the spectral reuse, 
spectral efficiency, and transmit power of cellular and D2D 
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users. A self-adaptive penalty function method is used to 
handle the constraints in the problem. Moreover, we use GA 
to maximize the overall energy efficiency. The results are 
obtained in terms of algorithm convergence, time complexity, 
overall energy efficiency, and throughput for different 
scenarios to demonstrate the feasibility of the proposed 
scheme and its efficiency over the static penalty-based GA 
algorithm. Furthermore, the importance of combining the 
social and physical parameters of users is demonstrated in 
terms of the overall energy efficiency and system throughput. 
The proposed method is easy to implement and does not 
require the tuning of the penalty coefficients. In the future, 
we aim to extend this study to unmanned aerial vehicle-
assisted social-aware D2D communications. 
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