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Abstract
This chapter describes a subarea of machine learning which is actively exploring the use of
genetic algorithms as the key element in the design of robust learning strategies. After charac-
terizing the kinds of learning problems motivating this approach, a brief overview of genetic
algorithms is presented. Three major approaches to using genetic algorithms for machine learn-
ing are described and an example of their use in learning entire task programs is given. Finally,

an assessment of the strengths and weaknesses of this approach to machine learning is provided.

1. Introduction

The explosive growth of interest in machine learning has lead to a rich diversity of

approaches to the design of learning systems. One of the consequences of this diversity is the

formation of subgroups which share common interests such similarity-based learning,

explanation-based learning, neufal net learning, and so on. The advantage of such groups is the
ability to focus intensively on a highly specialized set of issues and make considerable progress in
understanding machine learning in that context. The primary danger of such groups is that the
high degree of specialization can lead easily to a state in which the communication of ideas and

results among subgroups is difficult.

One of the goals of this book {and the two preceding ones) is to provide cogent descriptions
of specialty areas in machine learning in terms that “outsiders’” can understand and assess the
strengths and limitations of a particular approach. This chapter attempts to achieve that goal

for an active subgroup concerned with machine learning from an adaptive systems perspective as



initially proposed by Holland (1975), and with a special interest in the use of genetic algorithms
as a key element in the design of learning strategies. In keeping with present convention, this

approach will be referred to as Genetic Algorithm Based Learning (GABL).

2. An Adaptive Systems Perspective

The casual and imprecise usage of the term “learning” in everyday life seems to confound
attempts to provide a succinct, all-inclusive definition for it. Faced with this difficulty, the
operational workaround of the machine learning research community has been to focus on useful
and interesting aspects of learning without concern for capturing all facets. From an adaptive
systems perspective, that focus is on systems which are capable of making changes to themselves
over time unth the goal of improving their performance on the tasks confronting them in a particu-

lar environment.

This view reflects several biases of the adaptive systems community. Note first the
performance-oriented nature of the definition. There is much less emphasis on evaluating learn-
ing in terms of changes to internal structures and much more emphasis on evaluating learning in
terms of changes in performance over time. This focus on performance is in some sense a prag-
- matic reflection of our own difficulty in dea.ling with complex problems. It is generally beyond
our current abilities to characterize the behavior of a system of any complexity by means of a
static analysis of its internal structure regardless of whether the system was built by hand or
constructed using some automated (learning) techniques. Although we can develop a set of tools
which are capable of catching syntactic and simple semantic problems via a static analysis of the
system, this is invariably complemented by the development of an extensive “test suite” of prob-

lems for empirical validation.
This is closely related to another issue: when does learning stop? The answer from an
adaptive systems perspective is: neverl Consider the construction of a self-improving diagnostic

expert system {rom this perspective. [f such a system is designed to continue learning “in the
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field”. there is less concern about anticipating (and validating) all possible situations before the
system is released. A strong motivation for this point of view comes from the observation that
the world (environment) in which such systems perform is itself very seldom static. Designing
systems to adapt to such environmental changes rather than requiring manual intervention

would seem preferable.

A second bias reflected in the definition of learning given above is the emphasis on self-
modification. The mental image of an adaptive system is that of a “‘black box” whose internal
state is not directly accessible to anything in its environment, including teachers. Advice or any
other form of feedback is presented in terms of an interface language which must be interpreted

and integrated internally by the adaptive system itself.

If one attempts to formalize these ideas, the adaptive system model which generally
emerges is an abstraction of an autonomous robot equipped with a fixed set of detectors (sensors)
and effectors (operators) which are presumed to be useful primitives for improving performance
in the task domain defined by the environment. As has been the case in other machine learning
areas, it is useful (as illustrated in Figure 1) to separate out the problem solving component
(whose performance is to be improved) from the learning component which is charged with
finding ways of improving the performance of fhe problem solver. Notice that both components

have detectors and effectors appropriate to their role.

Since the goal of the learning subsystem is to improve the performance of the problem
solving component, its detectors must provide a means for measuring changes in performance
over time. This is typically formalized by breaking performance into two components: internal
measurements relating to resources used within the robot to accomplish the task, and external
measurements involving task-related aspects such as the number of correct classifications. the
final score of a game. etc. Similarly, the effectors of the learning component are separated into

internal effectors for making changes to the task subsystem to improve performance and external
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Figure 1: Model of an Adaptive System

effectors capable of making changes to the environment needed to activate further evaluation of

the task subsystem.

As an example of such an adaptive system, one might consider a rule-based diagnostic
expert system as the task subsystem augmented with a learning subsystem which continually
monitors the performance of the expert system, making changes (when appropriate} to the rule

base in an attempt to improve diagnostic performance.

~ An obvious and important issue is the extent to which domain-specific knowledge must be
used in the construction of learning algorithms which are capable of effecting significant perfor-
mance improvements. One can easily imagine the two extremes which occur in most areas of Al
-vervy general methods which have a wide range of applicability. but are weak in the sense that

they exhibit intolerably slow rates of learning: and very problem-specific techniques which are



capable of achieving highly efficient learning, but have little use in other problem domains. The
remainder of this chapter will be devoted to exploring a family of learning techniques which fall
somewhere in between these two extremes. The power of these learning strategies comes from
the use of an intriguing class of adaptive search techniques called genetic algorithms which have
been studied since the early 1970s. The next section provides a briel overview of genetic algo-

rithms and can be skipped by an already informed reader.

3. A Brief Overview of Genetic Algorithms

Many Al problems can be viewed as searching a space of legal alternatives for the best
solution one can find within reasonable time and space limitations. Path planning in robotics
and move selection in board games are familiar examples. What is required for such problems
are techniques for rapid location of high quality solutions in search spaces of sufficient size and
complexity to rule out any guarantees of optimality. When sufficient knowledge about such
search spaces is available a priori. one can usually exploit that knowledge to develop problem-
specific strategies capable of rapidly locating “‘satisficing” solutions. If, however, such a priori
knowledge is unavailable, acceptable solutions are typically only achieved by dynamically accu-
mulating information about the problem and using that knowledge to control the search process.
Problems of this character are not hard to find. Robot path planning in an unstructured
environment and games whose strategies involve identifying and exploiting the characteristics of
an opponent are excellent examples. Inferring an acceptable set of classification rules from train-
ing examples without significant amounts of domain knowledge is a familiar example from classi-

cal machine learning problems.

Problems of this type wh: ' ;e exploitation of dynamically accumulating knowledge to
control the search process are . . uduptive search problems. Genetic algorithms are of consid-
erable interest in this context i-- v~ they represent a reasonably general, vet efficient. family of

adaptive search techniques which produce acceptable performance over a broad class of problems.



3.1. Adaptive Search Techniques

To motivate the discussion of genetic algorithms consider for a moment several other stra-
tegies one might employ in dealing with combinatorially explosive search spaces about which lit-
tle can be assumed to be known a priori. One approach might be to employ some form of ran-
dom search. This can be effective if the search space is reasonably dense with acceptable solu-
tions, so that the probability of finding one is reasonably high. However, in most cases such
approaches fail to generate acceptable solutions in a reasonable amount of time because they
make no use of the accumulating information about the search space to increase the probability

of finding acceptable solutions.

An alternative approach is to use some form of hill climbing in which better solutions are
found by exploring only those solutions which are ‘‘adjacent” to the best found so far. Tech-
niques of this type work well on search spaces with relatively few hills, but frequently get

“stuck” on local peaks which are still below an acceptable level of performance.

One way of attempting to avoid some of these problems is to combine these two strategies
in creative ways such as including some random samples in addition to adjacent points while hill
climbing, or restarting hill climbing from a randomly selected point when it appears to be stuck
on a local peak. Although such variations frequently improve the robustness of an adaptive
search strategy, they still can generate unacceptable performance because of their inability to

exploit accumulating global information about the search space.

Statistical sampling techniques are typical alternative approaches which emphasize the
accumulation and exploitation of more global information. Generally they operate by dividing
the space into regions to be sampled. After sufficient sampling, most regions are discarded as
unlikely to produce acceptable solutions. and the remaining regions ﬁre subdivided for further
sampling, resulting in further discarding of regions. and so on. Such strategies are usually suc-

cessful when the space to be searched can be divided into a reasonable number of useful
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subregions. They are much less effective when little is known about the appropriate granularity
of the subregions, or when the required granularity is so fine that the cost of accumulating the

necessary statistics for. say. 100.000 subregions is unacceptable.

Genetic algorithms, introduced initially by Holland (1973), provide an alternative approach
to adaptive search problems that has proven to be a robust and effective strategy over a broad
range of problems. The power of genetic algorithms comes from the fact that they blend in a
natural way elements of the preceding strategies (random search, hill climbing, and sampling)

together with a fourth important idea: competition.

3.2. The Anatomy of a Genetic Algorithm

Genetic algorithms (GAs) derive their name from the fact that they are loosely based on
models drawn from the area of population genetics. These models were developed to explain
how the genetic material in a population of individuals changes over time. The basic elements of
these models consisted of: 1) a Darwinian notion of “fitness” which governed the extent to which
an individual could influence future generations; 2) the notion of “mating” to produce offspring
for the next generation; and 3) the notion of genetic operators which determine the genetic

makeup of offspring from the genetic material of the parents.

These ideas can be used as components of an adaptive search procedure in the following
way. Consider each point in the space to be searched as a legal instance of genetic material.
Assume that for each such point. a fitness measure can be invoked to assess the quality of the
solution it represents. Adaptive searching of the solution space is then achieved by simulating
the dynamics of population development as illustrated in Figure 2.

The process begins by randomlv generating an initial population M(0) of (typically 50-100)
vindividuals whose genetic material represents sample points in the sclution space. Each indivi-

dual m in the population is evaluated by invoking the fitness function u to measure the quality
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Figure 2:  Basic Structure of Genetic Algorithms

of the solution that individualiepraents. A selection probability distribution p is then defined

over the current population M(t) as follows: for each individual m in M), let p(m) =

Rg m! )

J

Intuitively, this defines a probability distribution in which an individual’s chance of

being selected, p(m), is proportional to its observed fitness u{m). Finally, the next generation
M(t+1) is produced by selecting individuals v1a the selection probabilities to produce offspring via

genetic operators.

To get a feeling for how GAs work. note that the selection probabilities are defined in such

a way that the expected number of offspring produced by an individual is proportional to its
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associated performance (fitness) value. This can be seen by considering the process of selecting
individuals for reproduction as N samples from M(t) with replacement using the selection proba-

bilities. The expected number of offspring from individual m, 1s given by

O(m) = N * p(my) = N+ 2T ulm)

2; u(m,') _% * 2 u(m,-)

7

which indicates that individuals with average performance ratings produce on the average one
offspring while better individuals produce more than one and below average individuals less than
one. Hence, with no other mechanism for adaptation, reproduction proportional to performance

results in a sequence of generations M(t) in which the best individual in M(0) takes over a larger

and larger proportion of the population.

However, in nature as well as in these artificial systems, offspring are almost never exact
duplicates of a parent. It is the role of genetic operators to exploit the selection process by pro-
ducing new individuals which have high-performance expectations. The choice of operators is

motivated by the primary mechanisms of nature: crossover, mutation, and inversion.

In order to understand how these genetic operators produce high quality offspring, we need
to briefly discuss how points in the solution space S are represented internally as genetic
material. The simplest genetic algorithms represent a point inSasa single string of length L
taken {rom some alphabet of symbols. Hence a particular solution s;inSis represented inter-
nally as an individual m; =g 8y &, where the symbols 8k play the role of genes. With this
simple representation two basic genetic operators are used: crossover and mutation. The cross
over operation works as follows. \henever an individual m, is selected from the current popula:{
tion M(t) to undergo reproduction. a mate m; is also selected from M[t). Their offspring m is
produced by concatenating segmenrts of m, with segments t’rorﬁ m;. The segments are defined by
selecting at random a small number (typicallv 1 or 2) of crassover points from the L-1 possible

crossover points. Figure 3 illustrates how an offspring might be generated using two crossover
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points.

m, = ABCDEFGH

=> m = ABCdefGH via crossover
mj = abcdefgh

my = ABCdefGH ===> m =AyCdefGH via mutation

Figure 3: Simple Crossover and Mutation Operators

Thus, the strategy employed by crossover is to construct new individuals from existing high-
performance individuals by recombining subcomponents. Notice, however, that crossover will
explore only those subspaces of the search space Sr which are already represented in M(t). If, for
example, every individual in M{t) contains an N in the first gene position, crossover will never
generate a new individual with an M (or any other legal gene value) in that position. A sub-
space may not be represented in M{t) for several reasons. It may have been deleted by selection
due to associated poor performance. It may also be missing because of the limited size of M(t).

In the basic GAs this problem is resolved via the second genetic operator: mutation.

The mutation operator generates a new individual by independently modifying one or more
of the gene values of an existing individual as illustrated in Figure 3. In nature as well as these
artificial systems, the probability of a gene undergoing a mutation is less than .001 suggesting

that it is not a primary genetic operator. Rather, it serves to guarantee that the probability of

searching a particular subspace - = 1s never zero.

3.3. An Analysis of Genetic Algorithms
The behavior of GAs has ta-n formally analvzed in a vartety of ways (see, for example.

Holland (19735), De Jong (1973). or Bethke (1980)). The intent here is to provide the reader with
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a brief intuitive idea of how GAs adaptively search large, complex spaces in a relatively efficient

manner.

A good way to get a feeling f;)r the dynamics of the search process is bofocus attention on
certain groups of hyperplanes defined over the internal string representation of the search space.
For simplicity of notation, assume that each point is S is uniquely represented by a binary string
of length L. Let O- - ... - denote the set of points in S whose binary string representation begins
with a 0. Since we are focusing on only one position in the string (in this case the first position),
0-- .- is called a first-order hyperplane and it contains exactly one half of the points in S.
The hyperplane 1 - - ... - contains the remaining points, and together, they define a first-order
partition of S. Of course, we could just as well have focused on any other position on the string
and derived another first-order partition of S (for example, - 0- ... - and - 1 - ... -). Similarly,

one can study second-order partitions of S by fixing two of the string positions such as {00 - ... -,

0l-..-10- .- 11 -.-}. In general, if the binary striﬁgs are of length L, there are (f{) dis-

tinct Nth-order partitions of S.

The characterization of GAs can now be intuitively stated as follows: for any reasonably
low-order hyperplane partition of S, GAs use their population M(t) of samples from S to bias
subsequent search toward hyperplanes in the partition with higher expected payoff in terms of
the fitness measure u. The power of this approach (this heuristic, if you like) is that this
dvnamic shifting of search occurs simultaneously in all low-order hyperplane partitions of S. As
the search proceeds, the population M(t) reflects this bias in the sense that members of Mt)
increasingly share common subétrings. This growing homogeneity of Mt) indicates a reduction
in the scope of the search {a focus of attention) toward high-payoff hvperplanes. As this homo-
geneity increases, certain positions on the strings become fixed throughout the entire population
\{t!. This has the effect of reducing higher-order partitions into iower-order ones which. in

turn. are now subject to the same payoff bias. resulting in a further reduction in the scope of the



search, and so on.

The overall effect is to produce a search technique which rapidly adapts to the characteris-
tics of S as defined by u in order to home in on high-performance objects in S. Figure 4 pro-
vides a simple way to visualize this adaptive search strategy on a solution space S whose perfor-
mance measure u defines hilly surface over S. The important point here is that GAs make no a
prior: assumptions about the characteristics of this surface. Rather, the initial population con-
sists of a random sample of solution points in S. Using the performance feedback provided by u,

subsequent generations “‘home in’’ on the high performance regions of S.

Note that, although our discussion here has been confined to simple, fixed length string
representations of the solution space and to the simplest forms of genetic operators, similar ana-
lyses have been done for other genetic operators and more complex representations of S. These
characterizations of GAs are supported by a large body of experimental work in which GAs have
been applied to a broad range of problems including difficult global function optimization prob-
lems, NP-hard problems, and model-fitting problems. An excellent coverage of these activities is
provided in the proceedings of the Genetic Algorithms Conferences (Grefenstette (1985), Grefen-
stette (1987), and Schaffer (1989)). However, our interest here is in exploring how GAs can be

used to design systems that learn. The remainder of the chapter addresses this issue.

4. Using GAs for Machine Learning

We can begin to conceptualize how one might exploit the power of GAs in a learning sys-
tem by referring back to the‘ architecture of an adaptive system illustrated in Figure 1. By
clearly separating out the task component from the learning component. one can focus on the
ways in which the learning component can effect changes in the behavior of the task subsystem

30 as to improve performance over time.

In considering what kinds of changes might be made to the task component. there are a
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Figure 4: Adaptive Search via Genetic Algorithms

variety of “strategies of increasing sophistication and complexity  The simplest and most
straightforward approach is to have GAs make changes to a set of parameters which control the

behavior of a pre-developed. parameterized task program. A second and more interesting
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approach is to make changes to more complex data structures such as ‘‘agendas” which control
the behavior of the task subsystem. A third intriguing but difficult approach is to make changes

to the task program itself. Each of these possibilities is explored in more detail in the following

sections.

4.1. Changing Parameters

The primary advantage of this approach to effecting behavioral changes is that it immedi-
ately places us on the familiar terrain of parameter optimization problems for which there is con-
siderable understanding and guidance, and for which the simplest forms of GAs can be used. It
is easy at first glance to discard this approach as trivial and not at all representative of what is
meant by “learning”. But note that significant behavioral changes can be achieved within this
simple framework. Samuel’s checker player is a striking example of the power of such an
approach. ‘If one views the adjustable weights and thresholds as parameters of a structurally

fixed neural network, then much of the neural net learning research also falls into this category.

So, how does one use GAs to quickly and efficiently search parameter spaces for combina-
tions of parameters which improve the performance of the task subsystem? The simplest and
most intuitive approach is to think of the parameters as genes and the genetic material of indivi-
duals as a fixed length string of genes, one for each parameter. Then crossover generates new
parameter combinations from existing good combinations in the current database {population)

and mutation provides new parameter values.

“There is a good deal of experimental and theoretical evidence to support the surprising rate
at which GAs can home in on high performance parameter combinations (see, for example, De
Jong (1973). Brindle {1980}, or Girefenstette (1983a)). Tvpically, even for large search spaces
(e.g.. 10%° points), acceptable combinations are being found after only 10 simulated generations.

To be fair, however, there are several issues which can catch a GA practitioner off guard when

attacking a particular parameter modification problem.
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The first issue has to do with the number of distinct values that genes can have. With
population sizes generally in the 50-100 range, a given population can usually represent only a
small fraction of the possible gene values. Since the only way of generating new gene values is
via mutation, one can be faced with following dilemma. If the mutation rate is wo low, there
can be insufficient global sampling to prevent premature convergence to local peaks. However,
by significantly increasing the rate of mutation one reverts to a form of random search which
decreases the probability that new individuals will have high performance. Fortunately, this
problem has both a theoretical and a practical solution, although it is not usually obvious to the

casual reader.

Holland (1975) has provided an analysis of GAs which suggests that they are most effective
when the number of values a gene can take on is small and that binary (two-valued) genes are in
some sense optimal for GA-style adaptive search. This theoretical result translates rather natur-
ally into what has now become standard practice in the GA community. Rather than represent-
ing a 20 parameter problem internally as strings of 20 genes (with each gene taking on many
values), a binary string representation is chosen in which parameters are represented as groups of
binary-valued genes. Although the two spaces are equivalent in that they both represent the
same parameter space, GAs perform significantly better on the binary representation because, in
addition to mutation, crossover is now generating new parameter values each time it combines

part of a parameter’s bits from one parent with those of another.

The easiest way to illustrate this point is to imagine the extreme case of a system in which

: , ) 330 alu
there is only one parameter to be adjusted, but that parameter can take on 27 distinct values.
Representing this problem intraally as a 1-gene problem renders crossover useless and leaves
mutation as the only mecha:~ * r zenerating new individuals. However. by choosing a 30-gene
binary representation. crossci-r ;:avs an active and crucial role in generating new parameter

values with high performance expectations.
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A second issue that arises in this context is that of convergence to a global optimum. Can
we guarantee or expect with high probability that GAs will find the undisputed best combination
of parameter settings for a particular problem? The answer is “yes and no’! Onme can show
theoretically that every point in the search space has a non-zero probability of being sampled.
However, for most problems of interest, the search space is so large as to make it impractical to
wait long enough for guaranteed global optimums. A much better way to view GAs is as a

powerful sampling heuristic which can rapidly find high quality solutions in large complex spaces.

In summary, one effective approach to machine learning is to restrict the kinds of changes
that the learning component can make to a task program to that of parameter modification, and
use GAs to quickly locate useful combinations of parameter values. The interested reader can

see De Jong (1980) or Grefenstette (1985a) for more detailed examples of this approach.

4.2. Changing Data Structures

However, there are many problems for which such a simple approach is inappropriate in
the sense that “more significant” structural changes to task programs seem to be required. Fre-
quently in these situations a more complex data structure is intimately involved in controlling
the behavior of the task, and so the most natural approach is to have GAs make changes to
‘these key structures. A good example of problems of this tj'pe occur when the task systems
whose behavior is to be modified are designed with top level “agenda” control mechanism. Task
programs for traveling salesman problems, bin packing, and scheduling problems are frequently
organized in this manner as well as systems driven by decision trees. In this context GAs are
expected to select data structures to be tested, evaluated. and subsequently used to fabricate

better ones.

This approach at first glance may not seem to introduce any difficulties as far as using
GAs, since it is usually not hard to “linearize” these data structures. map them into a string

representation which can be manipulated by GAs, and then reverse the process to produce new
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data structures for evaluation, However, there are some issues here as well which the designer of

a learning system must be familiar with in order to make effective use of GAs.

Just as we saw in the previous section on searching parameter spaces, these issues center
around the way in which the space (in this case, a space of data structures) to be searched is
represented internally for manipulation by GAs. It is not difficult to invent internal string
representations for agendas and other complex data structures which have the following pro-
perty: almost every new structure produced by the standard crossover and mutation operators is

an internal representation of an illegal/ data structure!

My favorite example of this is to consider how one might use GAs to quickly find good
agendas (tours) for a traveling salesman who needs to visit N cities exactly once minimizing the
distance traveled. The most straightforward approach would be to internally represent a tour as
N genes and the value of each gene is the name of the next city to be visited. Notice, however,
that GAs using the standard crossover and mutation operators will explore the space of all com-
binations of city names when, in fact, it is the space of all permutations which is of interest. The
obvious problem is that as N increases, the space of permutations is a vanishingly small subset of
the space of combinations, and the powerful GA sampling heuristic has been rendered impotent

by a poor choice of representation.

Fortunately, a sensitivity to this issue is usually sufficient to avoid it in one of several
ways. One approach ié design an alternate representation for the same space for which the tradi-
tional genetic operators are appropriate. This has been done for a variety of problems of this
type including the traveling salesman problem (see. for example, Grefenstette (1985b), Goldberg

(1983b)), or Davis {1983)).

An equally useful alternative is to select different genetic operators which are more
appropriate t “natural representations’. For example. in the case of traveling salesman prob-

lems, a genetic-like inversion operator {which can be viewed as a particular kind of permutation
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operator) is clearly a more “‘natural” operator. Similarly, representation-sensitive crossover and

mutation operators can be defined to assure offspring represent legal points in the solution space.

The kev point to be made here is that there is nothing sacred about the traditional string-
oriented genetic operators. The mathematical analysis of GAs indicates that they work best
when the internal representation encourages the emergence of useful building blocks which can be

subsequently combined with other to produce improved performance. String representations are

just one of many ways of achieving this.

4.3. Changing Executable Code

Perhaps by now the reader is ready to reply that neither of the approaches just discussed
“really” involves learning. Rather, the reader has in mind the ability to effect behavioral
changes in the task system by making changes to the task program itself. I'm not sure that
there is anything fundamentally different between interpreping an agenda and executing a Pascal
program. However, | think that most everyone will agree that, in general, program spaces are
very large and complex. In any case, there is good deal of interest in designing systems which

learn at this level. The remainder of the chapter will discuss how GAs are used in such systems.

4.3.1. Choosing 2 Programming Language

It is quite reasonable view programs written in conventional languages like Fortran and
Pascal (or even less conventional languages like Lisp and Prolog) as linear strings of symbolé.
This is certainly the way they are treated by editors and compilers in current program develop-
ment environments. However. it is also quite obvious that this “‘natural” representation is a
disastrous one as far as traditional GAs are concerned since standard operators like crossover
and mutation seldom produce svntactically correct programs and. of those. even [ewer which are

semantically correct.
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One alternative is to attempt to devise new language-specific “‘genetic’’ operators which
preserve at least the syntactic (and hopefully, the semantic) integrity of the programs being
manipulated. Unfortunately, the complexity of both the syntax and semantics of traditional
languages makes it difficult to develop such operators. An obvious next step would be to focus
on less traditional languages such as “‘pure’” Lisp whose syntax and semantics are much simpler,
leaving open the hope of developing reasonable genetic operators with the required properties.

There have been a number of activities in this area (see, for example, Fujiko (1987} or Koza

(1989)).

However, there is at least one important feature that “pure’” Lisp shares with other more
traditional languages: they are all procedural in nature. As a consequence most reé.sonable
representations have the kinds of properties that cause considerable difficulty in GA applications.
The two most obvious representation problems are order dependencies (interchanging two lines of
code can render a program meaningless) and context sensitive interpretations (the entire meaning
of a section of code can be changed by minor changes to preceding code, such as the insertion or
deletion of a punctuation symbol). A more detailed discussion of these representation problems

is presented in De Jong (1985).

These issues are not new and were anticipated by Holland to the extent that he proposed a
family of languages called classifier languages which were designed to overcome the kinds of
problems being raised here (Holland 1975). What is perhaps a bit surprising is that these
classifier languages are a member of a broader class of languages which continues to reassert its
usefulness across a broad range of activities (from compiler design to expert systems), namely,
production systems {PSs) or rule-based systems. As a consequence. a good deal of time and effort
has gone into studying this class of languages as a suitable language for use in evolving task pro-

grams with GAs.



4.3.2. Learning PS Programs

One of the reasons that production systems have been and continue to be a favorite pro-
gramming paradigm in both the expert system and machine learning communities is that PSs
provide a represencation of knowledge which can simultaneously support two kinds of activities:
1) treating knowledge as data to be manipulated as part of a knowledge acquisition and
refinement process, and 2) treating knowledge as an “‘executable’’ entity to be used to perform a
particular task (see, for example, Newell (1977), Buchanan (1978), or Hedrick (1976)). This is
particularly true of the ‘“data-driven” forms of PSs (such as OPS5) in which the production rules
which make up a PS program are treated as an unordered set of rules whose ‘‘left hand sides”

are all independently and in parallel monitoring changes in ‘“‘the environment’.

It should be obvious that this same programming paradigm offers significant advantages for
GA applications and, in fact, has precisely the same characteristics as Holland’s early classifier
languages. If we focus then on PSs whose programs consist of unordered collections (sets) of
rules, we can then ask how GAs can be used to search the space of PS programs for useful rule

sets.

To anyone whose has read Holland's book (Holland 1973), the most obvious and ““natural”
way 10 proceed is to represent an entire rule set as string {individual), maintain a population of
candidate rule sets, and use selection and genetic operators to produce new generations of rule
sets. Historically, this was the approach taken by De Jong and his students while at the Univer-
sity of Pittsburgh (see, for example. Smith (1980), or Smith (1983)) and has been dubbed “the

Pitt approach’.

However. during that <uire *.me period, Holland developed a model of cognition (classifier
systems) in which each men:'+ ¢ the population represents a rule. and the entire population
corresponds to a single rule ~* . for exampie. Holland (197%)) and Booker (1982)). This

quickly became known as “the \lchigan approach”™ and initiated a continuing {friendly, but
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provocative) series of discussions concerning the strengths and weaknesses of the two approaches.

4.3.2.1. The Pitt Approach

If we adopt the view that each individual in a GA population represents an entire PS pro-
gram, there are several issues which must be addressed. The first is the (by now familiar) choice
of representation. The most immediate “natural” representation which comes to mind is to
regard individual rules as genes, and entire programs as strings of these genes. Then, crossover
serves to provide new combinations of rules and mutation provides new rules. Notice, however,
that we have chosen a representation in which genes can take on many values. As discussed in
the previous section on parameter modification, this can result in premature convergence when
popplation sizes are typically 30-100. Since individuals represent entire PS programs, it is
unlikely that one can afford to significantly increase the size of the population. Nor, as we have
seen, does it help to increase the rate of mutation. Rather, we need to move toward an internal
binary representation of the space of PS programs so that crossover is also involved in construct-

ing new rules from parts of existing rules.

If we go directly to a binary representation, we must now exercise care that crossover and
mutation are appropriate operators in the sense in that they produce new high-potential indivi-
duals from existing ones. The simplest way to guarantee this is to assume that all rules have a
fixed-length, fixed-field format. Although this may seem restrictive in comparison with the flexi-
bility and variability of OPS5 or Mycin rules, it has proven to be quite adequate when working
at a lower sensory level. At this level one typically has a fixed number of detectors and eflectors,
so that condition-action rules quite naturally take the form of a fixed number of detector pat-
terns to be matched together with the appropriate action. Many of the successful classifier sys-

tems make this assumption (see. for example, Wilson {1983) or Goldberg (1985a. 1989)).

[t is not difficult, however, to relax this assumption and allow more flexible rule sets

without subverting the power of the genetic operators. This is achieved by making the operators



“representation sensitive’’ in the sense that they no longer make arbitrary changes o linear bit
strings. Rather, the internal representation is extended to provide “punctuation marks” so that
meaningful changes are made. For example, if the crossover operator chooses to break parent 1
on a rule boundary, it also breaks parent 2 on a rule boundary, and so on. This is the approach

used successfully on the LS systems of Smith (1983) and Schaffer (1985).

A second representation-related issue which arises in the Pitt approach has to do with the
number of rules in a rule set. If we think of rule sets as programs or knowledge bases, it seems
rather silly and artificial to demand that all rule sets be the same size. Historically, however, all
of the analytical results and most of the experimental work was done with GAs which main-

tained populations of fixed-length strings.

One can adopt the same view using the Pitt approach and require all rule sets (strings) to
be the same fixed length. The justification is usually in terms of the advantages of having
redundant copies of rules and having ‘‘workspace” within a rule set for new experimental build-
ing blocks without having to necessarily replace existing ones. However, Smith (1980) was able
to show that the formal results could indeed be extended to variable length strings. He comple-
mented those results with a GA implementation which maintained a population of variable
length strings and which efficiently generated variable length rule sets for a variety of tasks.
One of the interesting side issues of this work was the effectiveness of providing via feedback an
“incentive” to keep down the size of the rule sets by including a “bonus” for achieving the same

level of performance with a shorter string.

With these issues resolved, GAs have been shown to be surprisingly effective in producing
non-trivial rule sets for such diverse tasks as solving maze problems, playing poker. and gait
classification. The interested reader can see, for example. Smith (1983) or Schaffer {1985} for

more details,
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4.3.2.2. The Michigan Approach

A quite different approach to learning PS programs was developed by Holland and his col-
leagues while working on computational models of cognition. In this context, it seemed natural
to view the Eknowledge {experience) of a particular person (cognitive entity) as a collection of
rules which are modified over time via interaction with one’s environment. Unlike genetic
material, this kind of knowledge doesn’t evolve over generations via selection and mating.
Rather, it accumulates “in real time” as individuals struggle to cope with their environment.
Out of this perspective came 2 family of cognitive models called classifier systems in which rules
rather than rules sets are the internal entities manipulated by GAs. There are excellent descrip-
tions of this approach in Machine Learning II (Holland 1986) and in Goldberg’s recent book
(Goldberg 1989). Wilson and Goldberg (Wilson 1989) also provide an excellent critical review of
the classifier approach. So, the details of classifier systems need not be repeated here. Instead, I

want to focus on how the two approaches differ.

[ think it is fair to say that most people who encounter classifier systems after becoming
familiar with the traditional GA literature are somewhat surprised at the emergence of the
rather elaborate “‘bucket brigade’” mechanism to deal with apportionment of credit issues. In
the traditional genetic view apportionment of credit is handled via the emergence of ‘“co-
adapted” sets of gene values in the population. The idea is that combinations of gene values
which work well together have a higher than average likelihood of being represented in subse-
quent generations. As the frequency of a particular combination increases, it is also less likely
that this set will be broken up via crossover since it is clearly the case that, if both parents have
a co-adapted set, so will any offspring produced by crossover. Intuitively, these initially emerg-
ing co-adapted sets get combined with other sets, forming larger sets with improved performance

which replace inferior ones. and so on.

If we now reinterpret these ideas in the context of PS programs, the process of interest 1s
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the emergence of co-adapted sets of rules. Because the Pitt approach maps entire PS programs
into strings, one gets this co-adaption mechanism “for free”. One can observe over time the
emergence in the population of above averaée rule sets, which combine with other sets of rules to
form larger rule sets with improved performance. Because in classifier systems the population

represents a single PS program, co-adapted sets of rules must emerge from some other mechan-

ism, namely the bucket brigade.

Which approach is better in the sense of being more effective in evolving PS programs? It
is too early to tell what the answer might be or even if the question is a valid one. There are
equally impressive examples of classifier systems which have solved problems involving the regu-
lation of gas flow through pipe lines (Goldberg 1985a, 1989), controlling vision systems (Wilson
1985), and inferring boolean functions (Wilson 1987). The current popular view is that the
classifier approach will ﬁrove to be most useful iri an on-line, real-time environment in which
radical changes in behavior cannot be tolerated whereas the Pitt approach will be useful with
off-line environments in which more leisurely exploration and more radical behavioral changes

are acceptable.

What I find exciting and provocative is that there are some recent developments which sug-
gest that it might be possible to combine the two approaches in powerful and interesting ways

(Grefenstette 1988, 1989).

4.3.3. PS Architecture lssues

So far we have been focusing on representation issues in an attempt to understand how
GAs can be used to learn PS programs. The only constraint on production system architectures
that has emerged so far is the observation that GAs are much more effective on PS programs
which consist of unordered rules. [n this section [ will attempt to summarize any other implica-

tions that the use of GAs might have on PS architectural decisions.
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4.3.3.1. The Left Hand Side of Rules

Many of the rule-based expert system paradigms (e.g., Mycin-like shells) and most tradi-
tional programming languages provide an [F-THEN format in which the left hand side is a
boolean expression to be evaluated. This boolean sublanguage can itself become quite complex
syntactically and can raise many of the representation issues discussed earlier. In particular.
variable length expressions, varying types of operators and operands, and function invocations
make it difficult to choose a representation in which the traditional string-oriented genetic opera-
tors are useful. However, genetic operators which "know about” the syntax of the boolean sub-
language can be developed and have been shown to be effective in producing high-level (symbolic)

rule sets. The Samuel system (Grefenstette 1989) is an excellent example of this approach.

An alternate approach used in languages like OPS5 and SNOBOL is to express the "condi-
tions” of the left hand side as patterns to be matched. Unfortunately, the pattern language used
can easily be as complex as boolean expressions and in many cases more complex because of the
additional need to “‘save’ objects being matched for later use in the pattern or on the right hand

side.

As we have seen, the GA implementor must temper the style and complexity of the left
hand side with the need for an effective internal representation. As a consequence, most imple-
mentations have followed Holland’s lead and have chosen the simple {0, 1, #} fixed length pat-
tern language which permits a relatively direct application of traditional genetic operators.
Combined with internal working memory, such languages can be shown to be computationally
complete. However. this choice 15 not without problems. The rigid fixed length nature of the
patterns can lead to very cony i\ and “creative’ representations of the objects to be matched.
Simple relationships like “'spwe-t 2007 may require multiple rule firings and internal memory
in order to be correctly evaluuw'-—+ A~ .iiscussed earlier. some of this rigidity can be alleviated by

the use of context-sensitive genetic cperators (Smith 1983). However. finding a more pleasing
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compromise between simplicity and expressive power of the left hand sides of rules is an active

and open area of research.

A favorite cognitive motivation for preferring pattern matching rather than boolean expres-
sions is the feeling that “partial matching” is one of the powerful mechanisms that humans use
to deal with the enormous variety of every day life. The observation is that we are seldom in
precisely the same situation twice, but manage to function reasonably well by noting its similar-

ity to previous experience.

This has led to some interesting discussions as to how ‘‘similarity” can be captured compu-
tationally in a natural and efficient way. Holland and other advocates of the {0, 1, #} paradigm
argue that this is precisely the role that the “#" plays as patterns evolve to their appropriate
level of generality. Booker and others have felt that requiring perfect matches even with the {0,
1, #} pattern language is still too strong and rigid a requirement, particularly as the length of
the left hand side pattern increases. Rather than returning simply success or failure, they feel A
that the pattern matcher should return a “match score” indicating how close the pattern came
to matching. An important issue here which needs to be better understood is how one computes
match scores in a reasonably general, but computationally efficient manner. The interested

reader can see Booker (1985) for more details.

4.3.3.2. Working Memory

Another PS architectural issue revolves around the decision as to whether to use
“stimulus-response” production systems in which left hand sides only “attend to” external events
and right hand sides consist only of invocations of external “effectors”. or whether to use the
more general OPS3 model in which rules can also attend to and make changes to an internal

working memory.

Arguments in favor of the latter approach involve the observation that the addition of



working memory provides a more powerful computational engine which is frequently required
with fixed length rule formats. The strength of this argument can be weakened somewhat by

noting that in some cases the external environment itself can be used as working memory.

Arguments against including working memory generally fall along the lines of: 1) the appli-
cation doesn’t need the addiﬁonal generality and complexity, 2) concerns about how one bounds
the number of internal actions before generating the next external action (i.e., the halting prob-
lem), or 3) pointing out that most of the more traditional machine learning work in this area

(e.g., Michalski (1983)) has focused on stimulus-response models.

Most of the implementations of working memory provide a restricted form of internal
memory, namely, a fixed format, bounded capacity message list (Holland 1978, Booker 1982).
However, it’s clear that there are plenty of uses for both architectures. The important point

here is that this choice is not imposed on us by GAs.

4.3.3.3. Parallelism

Another side benefit of PSs with working memory is that they can be easily extended to
allow parallel rule firings. In principle, the only time conflict resolution (serialization) needs to
occur is when an “‘external effector” is to be activated. Hence, permitting parallel firing of rules
invoking internal actions is a natural way to extend PS architectures in order to exploit the
power of parallelism. Whether this power is appropriate for a particular application is of course
a decision of tﬂe implementor. An excellent example of a parallel implementation can be found

in Robertson (1988, 1989).

4.3.4. The Role of Feedback

So far. in attempting to understand how GAs can be used to learn PS programs, we have
discussed how PS programs can be represented and what kinds of PS architectures can be used

to exploit the power of GAs. In this section we focus on a third issue: the role of feedback.
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Recall that the intuitive view of how GAs search large, complex spaces is via a sampling
strategy which is adaptive in the sense that feedback from current samples is used to bias subse-
quent sampling into regions with high expected performance. This means that, even though we
have chosen a good representation and have selected an appropriate PS architecture, the
effectiveness of GAs in learning PS programs will also depend on the usefulness of the informa-
tion obtained viar feedback. Since the designer typically has a good deal of freeclém here, it is

important that the feedback mechanism be chosen to facilitate this adaptive search strategy.

Fortunately, there is a family of feedback mechanisms which are both simple to use and
which experience has shown to be very effective: payoff functions. This form of feedback uses a
classical “reward and punishment” scheme in which performance evaluation is expressed in terms
of a payoff value. GAs can use this information (almost) directly to bias the selection of parents
used to produce new samples (offspring). Of course, not all payoff functions are equally useful in
this role. It is important that the function chosen provide useful information early in the search
process to help focus the search. For example, a payoff function which is zero almost everywhere

provide almost no information for reducing the scope of search process.

The way in which pay§3 is obtained differs somewhat depending on whether one is using
the Pitt or Michigan approach.. In classifier systems the bucket brigade mechanism stands ready
to distribute payoff to those rules which are deemed responsible for achieving that payoff.
Because payoff is the currency of the bucket brigade economy, it is important to design a feed-
back mechanism which provides a relatively steady flow of payoff rather than one in which there
are long “dry spells”. Wilson's “animat” environment is an excellent example of this style of
payoff {Wilson 1983).

The situation is somewhat different in the Pitt approach in that the usual view of evalua-
tion consists of injecting the PS program defined by a particular individual into the task subsys-

tem and evaluating how well that program as a whole performed. This view can lead to some
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interesting considerations such as whether to reward programs which perform tasks as well as
others, but use less space (rules) or time (rule firings). Smith (1980) found it quite useful to
break up the payoff function into two components: a task-specific evaluation and a task-
independent measure of the program itself. Although these two components were combined into

a single payoff value, work by Schaffer {1985) suggests that it might be more effective to use a

vector-valued payoff function in situations such as this.

There is still a good deal to be learned about the role of feedback both from an analytical
and empirical point of view. Bethke (1980) has used Walsh transforms as the basis for a formal
understanding of the kind of feedback information which is best suited for GA-style adaptive
search. Recent experimental work suggests that it may be possible to combine aspects of both
the Michigan and Pitt approaches via a multilevel credit assignment strategy which assigns
payoff to both rule sets as well as individual rules (Grefenstette 1988, 1989). This is an interest-

ing idea which will generate a good deal of discussion and merits further attention.

4.3.5. The Use of Domain Knowledge

It is conventional to view GAs as “weak” search methods in the sense that they can be
applied without requiring any knowledge of the space being searched. Howe*{er, a more accurate
view is that, although no domain knowledge is required, there are ample opportunities to exploit
domain knowledge if it is available. We have already seen a few examples of how domain
knowledge can be used. As designers we select the space to be searched and the internal
representation to be used by GAs. As discussed in the previous sections, such decisions require
knowledge about both the problem domain and the characteristics of GAs. Closely related to
representation decisions is the choice of genetic operators to be used. As we have seen. a good
deal of domain knowledge can go into the selection of effective operators. Grefenstette {1987b)

has an excellent discussion of this.
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A more direct example of the use of domain knowledge involves the choice of the initial
population used to start the search process. Although we have described this as a “random’" ini-
tial population, there is no reason to start with an “empty slate” if there is a priori information
available which permits the seeding of the initial population with individuals known to have cer-

tain kinds or levels of performance.

A third and perhaps the most obvious way of exploiting domain knowledge is by means of
the feedback mechanism. As we have seen, the effectiveness GAs depends on the usefulness of
the feedback information provided. Even the simplest form of feedback, namely payoff-only sys-
tems, can and frequently does use domain knowledge to design an effective payoff functic;n. More
elaborate forms of feedback ’such as the vector-valued strategies and multi-level feedback
mechanisms discussed above provide additional opportunities to incorporate domain-specific

knowledge.

In practice, then, we see a variety of scenarios ranging from the use of “vanilla” GAs with
little or no domain-specific modifications to highly creative applications in which a good deal of

domain knowledge has been used.

5. An Example: The LS-1 Family

In the previous section we described three broad classes of techniques for designing genetic
algorithm based learning (GABL) systems. A common theme throughout that discussion was the
representation issue: choosing a representation of the space o bé searched which is both natural
to the application and appropriate for GAs. In this section we illustrate these ideas by present-
ing in more detail one particuir family of GABL systems, the LS-1 family (Smith 1980. 19831
which has been successfully pj it o wide variety of task domains.

31 systems are design!  allow entire task programs to be learned. An LS-1 system

consists of three basic components. a task subsystem. a critic. and a learning subsystem. The
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task subsystem is equipped with a fixed set of detectors (sensors) and effectors {actions) assumed
to be useful for the task to be learned. Task programs consist of production rules whose left
hand sides represent patterns to be matched against the current contents of working memory and
the current external detector values. The right hand sides specify one of two types of actions to
be taken: cfxa.ngm to working memory or activating an external effector. An execution cycle con-
sists of firing n parallel all rules whose left hand side matches something in working memory.
Conflict resolution is only performed when on a given execution cycle more than one request is
made to activate an external effector. Conceptually, task programs have a strong OPS5-like

flavor (unordered, {orward chaining, pattern matching) without the restriction that only one rule

can fire each cycle.

If we want to use GAs to evolve these rule-based task programs, we must choose an inter-
nal representation of the space to be searched. LS-1 uses “the Pitt approach” in which each
individual in a GA population represents an entire task program and, hence, a given population
represeﬁts {tvpically 50-100) competing task programs. Each task program is submitted to the
critic subsystem which, in turn, injects the task program into the task subsystemn and evaluates
the “fitness”” of the task program by observing its behavior c‘m a series of tasks. After the entire
population of task programs has been evaluated, a new generation of task programs is created by
probabilistically selecting parents on the basis of fitness, and using crossover, inversion, and

mutation to produce offspring which are “interesting” variants of their parents.

As discussed in the previous section, there are two ways of guaranteeing that the genetic
operatérs produce viable offspring: 1) by building into the operators specific language and
domain knowledge so that crossover. mutation, and inversion produce only syntactically and
semantically correct rule sets: or 2) restricting the language so that the standard operators
preserve svntactic and semantic integrity. LS-1 adopts the latter strategy. preferring to buy

more domain independence at the cost of a less flexible language. It achieves this by requiring
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that every rule have an identical, fixed length format as follows:

pdl pd2 ... pdn pwl pw2 ... pwm -->> some_action
where the pdi represent patterns to be matched against the n external detector values, and the
pw] represent m patterns to be matched against the contents of working memory. LS-1 uses
Holland's {0, 1, #} pattern language, so that the length of a particular pattern is determined by
the binary representation of the objects to be matched. So, for example, the following rules:

pdl  pd2 pwl action

R1: 00# #l1## 1#1#01#% --> 010

R2: 14 O0011#% ##110##0 --> 110
might represent a situation in which the first pattern of each matches a 3-bit detector, the
second pattern matches a 3-bit detector, the third pattern matches 8-bit working memory cells,

and the right hand side selects 1 of 8 possible actions.

A rule set is therefore represented internally as a variable-length string of fixed-length
rules. The important point is that the standard crossover and mutation operators always pro-
duce viable offspring. If we restrict inversion to occur only at rule boundaries, the same is is

true for it.

So, how does one apply LS-1 to a particular task domain? First, the number and sizes of
each external detector must be chosen (analogous to selecting feature vectors) and the set of legal
operations (effectors) specified. Second, the number of internal detectors and actions on working
memory must be specified (no internal activity corresponds to a stimulus-response system).
Finally, a domain-specific critic must be developed to provide fitness feedback for each rule set

generated during the learning process.

What is surprising is that. even though L3-1 assumes a fairly rigid rule format. there is
considerable empirical evidence of its robustness i rapidly generating high-performance rule sets

(task programs) for problem domains as diverse as maze puzzles. poker playing, human gait
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classification, VLSI layout problems, and network scheduling.

6. Summary and Conclusions

The goal 6f this chapter has been to understand how GAs might be used to design systems
which are capable of learning. The approach has been to visualize learning systems as consisting
of two components: a task subsystem whose behavior is to be modified over time via learning,
and a learning subsystem whose job is to observe the task subs}rstem over time and effect the
desired behavioral changes. This perspective focuses attention on the kinds of structura! changes
a learning subsystem might possibly make to a task subsystem in order to effect behawioral
changes. Three classes of structural changes of increasing complexity were identified: parameter

modification, data structure manipulation, and changes to executable code.

Having characterized learning in this way, the problem can be restated as one of searching
the space of legal structural changes for instances which achieve the desired behavioral changes.
In domains for which there is a strong theory to guide this search, it would be silly not to
exploit such knowledge. However, there are many domains in which uncertainty and ignorance
preclude such approaches and require learning algorithms to discover (infer) the important
characteristics of these search spaces while the search is in progress. This is the context in which
GAs are most effective. Without requiring significant amounts of domain knowledge, GAs have

been used to rapidly search spaces from each of the categories listed above.

At the same time it is important to understand the limitations of such an approach. In
most cases several thousand samples must be taken from the search space before high quality
solutions are‘found. Clearly, there are many domains in which such a large number of samples
is out of tixe question. At the same time, generating several thousand examples can frequently
involve much less effort than building by hand a sufficiently strong domain theory. It is also
true that choosing a good internal representation for the search space to tends to be a more

difficult task as the complexity of the search space increases, thus reducing the effectiveness of
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GAs. Finally, even with a good internal representation, care must be taken to provide an
effective feedback mechanism. If, for example, the only feedback about a task program is ‘‘ves,
it works” or “no, it fails”, there is no information about the quality of partial solutions on

which GAs depend to construct new trial solutions.

Hence, GABL should be viewed as another tool for the designer of learning systems which,
like other more familiar tools such as similarity-based techniques and explanation-based

approaches, is not the answer to all learning problems, but provides an effective strategy for

specific kinds of situations.
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