University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Genetic algorithm based scheduler for computational grids.

Mona Aggarwal
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Aggarwal, Mona, "Genetic algorithm based scheduler for computational grids." (2005). Electronic Theses
and Dissertations. 2207.

https://scholar.uwindsor.ca/etd/2207

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2207?utm_source=scholar.uwindsor.ca%2Fetd%2F2207&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

GENETIC ALGORITHM BASED SCHEDULER
FOR
COMPUTATIONAL GRIDS

by

Mona Aggarwal

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2004
© Mona Aggarwal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04978-2
Our file  Notre référence
ISBN: 0-494-04978-2
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Computational grids can be used to solve grand challenge problems of scientific research and to
handle peak processing demands in large organizations. For managing these tasks, grids may
use distributed and heterogeneous compute resources, including commodity machines and

supercomputers.

This thesis deals with highly scalable distributed resource management architecture for the
global grid. The main component in the architecture is the grid scheduler. A scheduler must use
the available resources efficiently, while satisfying competing and mutually conflicting goalis.
Genetic Algorithm is used to obtain the best schedule for mapping of tasks to compute-nodes.
The grid workload may consist of multiple jobs, with quality-of-service constraints. Each job
has tasks with arbitrary precedence constraints and arbitrary processing time. A Directed

Acyclic Graph (DAG) represents each such job.

The thesis presents the design, implementation and test results for a genetic based grid
scheduler. It attempts to minimize make-span, idle time of the available computational
resources, turn-around time and the specified deadlines by the users. The architecture is
hierarchical and the scheduler is usable at either the lowest or the higher tiers. It can also be
used in both the intra-grid of a large organization and in a research grid consisting of large

clusters, connected through a high bandwidth dedicated network.

iii
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Chapter 1

1 Computational Grids
1.1 Introduction

“A computational grid is a hardware and software infrastructure that provides dependable
consistent, pervasive and inexpensive access to high-end computational capabilities” [Foster,

1998].

Today the users visualize a grid in a number of different ways. A number of academic-research
organizations have connected the clusters at Universities, through high-speed dedicated
networks, for high performance computing as well as for grid research. In general a cluster
consists of homogeneous, dedicated and tightly coupled workstations that may be used to
process high-performance jobs. A grid, on the other hand, consists of heterogeneous and
intermittently available workstations. Whereas a cluster is expected to be located at a single
laboratory, the workstations on a grid are widely distributed geographically. Moreover a grid is
expected to be used for a wide variety of applications. The resources on the grid may include

many data repositories, code repositories and compute-nodes.

A scheduler system will be the interface between a user and the grid resources. Scheduling of
jobs on a grid or a cluster is the task of mapping jobs to the available compute-nodes. On a grid,
which is dynamic, heterogeneous and geographically spread out and which caters to highly

diverse applications, scheduling is a NP-complete problem [Buyya, 2000b].

Grids have evolved from a natural progression of parallel processing systems and distributed

processing systems.

Parallel processing systems can be classified into two types:
e Shared Memory Processing systems

¢ Clusters of workstations connected through an interconnection network.

Centralized systems designed to cater to the needs of a large number of users are usually multi-

processor systems with a shared memory. A distributed system consists of heterogeneous
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systems connected in parallel. A grid is a dynamic and geographically spread-out distributed

system.

Figure 1-1 shows the general framework of a computational grid with Domain Resource
Managers (DRM) located at different places in the world. Similarly the clients may also belong
to any place on the globe. Buyya et al [Buyya, 200b] call the Resource Management System as

the Grid Resource Broker.

% Grid Information Server

Grid Resource Broker
JiRewsta e dlsrovedy Ak scldiding)

s
A - ]

Client-1 Client-2 Client-H

Global user applications

Global available resources

Figure 1-1 General Framework of a Computational Grid [Buyya, 2000b, pp: 1]

1.2 Grid Scheduling

Grid scheduling is used to “efficiently and effectively manage the access to grid resources by
the users” [Buyya, 2002a]. According to [Casavant, 1988], the scheduling problem consists of
three main components.

e Consumer(s).

e Resources(s).

¢ Policy.
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scheduler

Consumers Resources

Policy

Figure 1-2 Scheduling systems [Casavant, 1988, pp: 142]

The policy may specify the objectives that a scheduling system may satisfy. It may also specify,
at the implementation level, the method of mapping jobs to resources. Example of such a policy
may be First Come First Serve (FCFS), Shortest Job First and Deadline Sort etc. The policy
chosen for implementing a scheduler would affect both users (called consumers by Casavant)

and the resource providers.

There are some common objectives that a scheduler has to satisfy for a parallel, distributed or
for grid system. According to [Wright, 2001], a scheduler is designed to satisfy one or more of

the following goals:

e Maximizing system throughput.
e Maximizing resource utilizations.
¢ Maximizing economic gains.

e Minimizing the turn-around time for an application.

Scheduling has to take into account the objectives of the service provider, the needs of the user
and the requirefnents of the applications. In addition a scheduler can also be designed to follow
a specific or an adaptable scheduling policy. Optimization of scheduling process can be

attempted when performance goals and scheduling policies have been defined.

1.3 Resource Management System (RMS) in Grids

A scheduler is a component of the resource management system on a grid. Figure 1-3 shows the
architecture of a general RMS. Resource Information from the sensors of the service-provider

forms one input of RMS. The other input is the Resource Requests from the users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Discovery
_ Ziaie Esimation Scheduiing b oo Cueses —MM|  Execuion Mansger
e ion Dissemination F——
Resource Breker l
{ Resaurce Reg ) Reguest Interp —
Resource Management
System

Figure 1-3 Resource Management System Abstract Structure (Buyya, 2002a, pp: 5)

The resource information inter-acts with the Discovery module of RMS. The State Estimation
system converts the information, through the Naming system to a Resource Information
database. The Resource Monitoring system maintains the Historical Data and the present
Resource Status databases. The Dissemination system may be used to convey the resource
information to users on the grid. The Request Interpreter may format the request, or in some
cases like the TITAN system [Spooner, 2003a], it may generate estimates of execution time for
each task of the job request. The Resource Broker will negotiate for the resources. It may use
Resource Reservation module to save information about the reserved resources in the
Reservations database. The Scheduling system will map the jobs to resources and add them in
the Job Queues. Then the Execution Manager sends the job for execution to the allocated
resources. The Job Monitor continuously monitors the job, as it is being executed. It stores the

state of the job at checkpoints in the Job Status database.

[Foster, 1998] defines the responsibilities of a resource management system on the grid as the
“discovery of available resources for an application, mapping the resources to the application
subject to some performance goals and scheduling policies and loading the application to the

resource in accordance with the best available schedule.”

In addition a resource management system must provide the facility of checkpointing so that a
job can be migrated, along with its state, to a different node. Migration may be required in case
a pre-emptive scheduling policy is considered due to failure of some nodes or some part of the
network. Facilities of suspension of processing, resuming the processing or aborting a job are

also usually provided in such systems.
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1.3.1 The Resource Information Service

The resource information service in a grid may be centralized, decentralized or hybrid. A
centralized service contains information about the whole of the grid. Thus theoretically it may
be able to lead to optimized scheduling. A basic disadvantage at the centralized information
service is a single point of failure. An example of a centralized information service is the

Globus Meta Directory Service (MDS) given by Foster. [Foster, 1997a].

The Decentralized information service will store information about a node at the node itself.
Querying the node can provide the necessary information to a scheduler. But the querying
process may have a large overhead. Network Weather Service [Wolski, 2003a] is an example of

a decentralized resource information service.

The hybrid scheme is a hierarchical scheme where at the highest level of a group, the
information is stored in a centralized entity. Centralized entity contains information about the
resources of the entire system. But the information about each resource or a group of resources

is stored in a decentralized manner.

1.4 Globus Architecture for Grid Scheduling

Globus Architecture is being studied widely and nearly every scheduler is being designed to be
compatible with it. So it is important to define certain parts of the Globus architecture, since
these parts are used as a component of the scheduler architecture in most of the cases. In this
section, the architecture of the Globus Resource Manager, which includes the allocation

component, is described.

Globus uses Grid Resource Allocation Manager (GRAM) as the Local Resource Manager
(LRM) [Foster, 1999]. Information Service and the database store the information about the
resources including the nodes and the network. Globus Meta Directory Service (MDS) [Foster,
1997a] and Network Weather Service [Wolski, 2003a] are examples of services that can be used

by an Information Service.
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Figure 1-4 shows the Globus Architecture for Reservation and Allocation (GARA). GARA
provides for dynamic discovery, advance and immediate reservation, and management of
resources for networks, processors and disk memories. An application has to use the resources
at multiple sites. At each site a Grid Resource Allocation Manager (GRAM) is used as the Local
Resource Manager (LRM) [Foster, 1999]. A Co-allocation agent is used to map multiple
resources to an application. Such an agent uses one or more GRAMC(s). The resource

Information Service can be provided by an MDS or a NWS system.

j{.v‘/ / / e T g ""_f"‘-f/
G2
!

\J \ T
TESOUTCE SPec: reg handles{~, X handles}
what, where, what »
‘ ‘ | i1es. handles?
f computation spge
fnformation| Resource ¢ Co-reservatio Co-allocation
-service | discovery

{reateResery,

Figure 1-4 GARA Resource Management Architecture (Czajkowski, 1997, pp: 12)

Figure 1.5 provides the major components of GRAM. The Figure shows that a GRAM client
obtains information from MDS. The GRAM Reporter sends information about the resource to
MDS. The GRAM Client uses the Gatekeeper to load a task to the local resource set. The
Gatekeeper uses the Grid Security Infrastructure (GSI) for authentication and other security
services. The JobManager parses the tasks by using the Resource Scripting language (RSL)
library and conveys it to the Local Resource Manager for final allocation to the local resources.
The GRAM Client is able to obtain the status of the job through the Gatekeeper and the
JobManager.
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In the new upgrades to the Globus tool-kit, a Lightweight Directory Access Protocol (LDAP)
has been developed as the standard interface for both MDS and NWS. This makes it possible

10 lovate resources

(" GRAM C;;Cm}.....3.\;3.1;}.&.@‘}.15‘31%.&1?.1.cal.k:z._...__.( MDS )]
T x

Update MDS witli

GRAM c"'iient APY calls rescurce statg

to request resource allocation information;
and procgss creation e
Ve SiE howndary —
S { GRAM Reporter)
-7 - Query current status
{  Gatekeeper ) of resource
Create ( Local Resource Manager)
Authentication R st '\HOLatL &
« create processes
Globus Security (_ Job Manager
Infrastructure v 3 % %
Vo] O i"OCCS‘s
Parse \,cmm)l

RSL Library

=D

Figure 1-5 Major Components of GRAM Implementation (Foster, 1999, pp: 4)

for GARA to use either MDS or NWS as the source for resource Information Service.

However the Globus system does not include a scheduler. The scheduler developed in this

thesis may be used along with the Globus RMS or with the components being designed by our

research group.

1.5 Globus Tool-kit: An Emerging Standard

The Globus tool-kit is becoming pervasive and is being developed by Global Grid Forum as a

standard for the global grid.

Globus [Foster, 1998] tool-kit specifications provide for:

e Authentication.

Thus the Globus tool-kit can be used to run a single job on a system, belonging to the grid.

Discovery of currently available resources.
Selection of a set of resources.

Staging of the job to use those resources.
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1.6  Schedulers for the Global Grid

For a global grid, a scheduler will have the characteristics of being hierarchical and non-

preemptive type.

An open worldwide market of grid resources has lead to a user having a choice of being able to
use resources from a number of resource providers. Hence the scheduling process will have to
consider the perspective of the user. However a resource provider can provide services at low
cost to the consumers, only if the scheduler is able to maintain the throughput at a high level.

Thus a scheduler is required to satisfy the goals of both the user and the service provider.

1.7 Problem Statement

In this thesis we will address the problem of designing a Genetic Algorithm based grid
scheduler. We propose an algorithm, which satisfies the mutually conflicting goals of the users
and the resource provider. The algorithm can handle multiple independent jobs with arbitrary
precedence constraints among job’s tasks and arbitrary processing times. The design is

hierarchical and can be used at the lowest and the higher tiers.

1.8 Contributions

The contribution of this thesis is summarized as follows:

Development of a Genetic Algorithm based grid scheduler:

e It makes the best effort to satisfy the requirements of both the Resource Provider and the
User conflicting goals.

e It has the ability to handle multiple independent jobs having arbitrary precedence
constraints and arbitrary execution times.

e Itis able to handle a wide variety of jobs efficiently.

¢ It supports dynamic availability of resources.

o The scheduler can be used at both the lowest tier or at the higher tiers of the hierarchical

structure.
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1.9 Organization of the Document

The literature survey is given in chapter 2. We start with the schedulers for clusters. We define
the Globus grid architecture and the grid schedulers that have been developed. After describing
the TITAN scheduler, the existing schedulers are compared. In chapter 3, we describe the
design of our algorithm. Since it is based on the theory of Genetic Algorithm (GA), we describe
the general process of search for a solution using GA, before proposing our design. Chapter 4
includes testing, validation and an empirical selection of parameters, based on experimentation.
By using these parameters, we test the algorithm with multiple standard jobs and we present the

results of these tests.
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Chapter 2

2 Current Schedulers for Computational Grids

2.1  Introduction

The idea of connecting the computers in a network so that they can communicate with each
other was practically implemented in 1969 by Len Kleinwck in his laboratory at UCLA. The
concept of time-sharing in a computer was developed in the 1970s. This allowed multiple jobs

to be processed by multiple virtual computers in parallel.

Parallel-processing is the use of multiple CPUs to solve problems, which require a computing
power, not easily available in a single CPU machine. The parallel processing can be through
multi-CPUs on a single machine or through multiple autonomous computers connected in
parallel. Since the seventies, compute-processors have been connected in parallel to provide
adequate computing power for grand challenge problems, for meeting the computing needs of a
large number of users and for high availability. Such a parallel system of computing machines
can be called a cluster, if with appropriate middleware; the system can be used, as a whole, to

process a single or multiple application(s) efficiently. The cluster may consist of

SMPs, massively parallel machines, mainframes or commodity machines. A homogeneous
cluster consists of all machines with the same hardware and software configuration. On the

other hand a heterogeneous cluster may consist of a variety of hardware and software platforms.

With the worldwide availability of Internet, an application can be processed through local
computers working jointly with remote computers. So a heterogeneous distributed cluster is
obtained through an interconnection of geographically distributed and heterogeneous
computers, connected through a network [Liu, 2004]. Computers in a cluster are dedicated to
the jobs, required to be processed by the cluster and they are tightly coupled. A grid consists of
a set of non-dedicated and geographically distributed machines, connected through high-speed

network. A grid may be required to handle a wide variety of applications.

For scheduling of tasks on a cluster, a number of heuristic algorithms have been studied during

the last three decades.

10
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Grid scheduling is the process of developing a schedule for mapping tasks of jobs, such that the
objectives of the scheduling process are satisfied. The first set of grid scheduling algorithms

was developed as generalizations of cluster scheduling algorithms.

In this Chapter we shall begin Section 2.2 by giving briefly the evolution of the idea of a grid,
Section 2.3 will define the characteristics of a cluster. Section 2.4 describes three approaches,
which have been used in the cluster scheduling heuristic algorithms. Two of the three have been
found to be of direct use in developing grid schedulers. In Section 2.5 we shall describe a
number of research projects relating to grid scheduling. A comparison of the well-known grid

schedulers is given in a tabular form in Section 2.12.

2.2 Evolution of Grid Computing and Grid Schedulers

In 1997 Foster discussed the idea of multiple nodes at geographically distributed locations
[Foster, 1997a]. At the end of 1997, Foster and Kesselman [Foster, 1997b] presented Globus, a
toolkit. In the paper, the authors said that the toolkit was for networked virtual supercomputers.
The Globus toolkit was a part of their work on the development of Adaptive Wide Area
Resource Environment (AWARE). In 1998, Foster and Kesselman [Foster, 1998] borrowed the

term grid from electrical power systems and applied it to computational grids.

In 2000, Buyya [Buyya, 2000a] developed Nimrod-G as a scheduler based on the economic
principles. He suggested that grid applications could be scheduled on the basis of the cost of

available resources and the needs of the application.

In 2000 IEEE Computer Society’s Technical Committee on Cluster Computing held its first
Grid 2000 workshop in Bangalore. In 2001, researchers from all over the world met in
Amsterdam to form the Global Grid Forum (GGF). [Web-GlobalGrid].

In 2002 Condor-G {Frey, 2002] for grids was developed on the basis of Condor, which had
been developed for efficient management of compute-resources under a single domain in 1988.
Condor-G attempted to maximize the use of grid resources. Scheduling, through Condor-G,
satisfied the goals of the resource providers. However it did not take into account the ease of use
for a user. It also failed to work for QoS, as perceived by the users for their applications.
Berman et al presented in 2001 the GrADS [Berman, 2001] scheduler. Its objective was to
provide ease-of use to a user of grid services. AppLeS [Berman, 2003] is a scheduler, which

explicitly satisfies the goals of an application.

11
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Today every country is trying to use the computational and data grids to strengthen research in
high-performance systems. Many large grid projects, which connect universities and research

laboratories, are being built in all the developed countries.

2.3 Cluster Scheduling

“Cluster is a widely-used term meaning independent computers combined into a unified system
through software and networking. At the most fundamental level, when two or more computers
are used together to solve a problem, it is considered a cluster. Clusters are typically used for
high availability for greater reliability or High Performance Computing (HPC) to provide
greater ~ computational power than a  single computer can  provide.”

[http://www.beowulf.org/overview/].

A cluster consists of machines connected together through a high-speed network. A cluster
consists of dedicated and tightly-coupled workstations. A cluster is managed by a single
administrative entity. A cluster has a server, which interacts with the users called clients. The
server also has information about the computer nodes called the agents in the cluster. A client
may be connected to the server through the Internet. The client has to inform the server about
the requirements of the application. The inter-dependency of the processes of the application
has also to be specified, by the client, either through a script or through a GUI interface for

application building. A cluster can run both sequential and parallel jobs.

According to [Abawajy, 2003], “The key to making cluster computing work well is the
middleware technologies that can manage the policies, protocols, networks, and job scheduling
across the interconnected set of computing resources.” The two main goals of cluster scheduling

are to maximize the utilization and throughput.

These schedulers allow the administrator to set the following parameters:

e To set multiple queues for different job classes.
¢ To set priorities and scheduling policies for each queue.

¢ To treat interactive jobs differently from non-interactive jobs.

12
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2.4  Grid Scheduling Approaches

First-Come-First-Serve (FCFS)

The job arrival times and the arrival rates may vary for a grid. A grid scheduler that follows the
FCFS policy will allocate the jobs to compute nodes in the order of their arrival. The jobs,
which arrive when all the resources are in use, will wait in a Wait queue. “This strategy is
known to be inefficient for many workloads as a large number of jobs waiting for execution can
result in unnecessary idle time of some resources” [Schwiegelshohn, 2000b]. Zhang, [Zhang,

2003] have used three approaches to improve the performance of schedulers.
Backfilling

A scheduling process would map tasks to compute-nodes and put the tasks in a queue according
to a priority set by it. Backfilling is the method, which attempts to use a node, during its
unutilized time gap, for processing lower priority (smaller) tasks in the queue, rather than
keeping the nodes idle. The node may have been allocated, after the gap-time, to a higher
priority task. If the node is not released by the lower priority tasks, the mapping according to the
schedule cannot be possible. To avoid such an eventuality, backfilling requires that the lower
priority task should be completed before the higher priority tasks that have been mapped by the

scheduler to the same node, are scheduled to start.

If a task requires more time than the estimate provided by the user, the job is terminated. Such a
policy will ensure that the users will not under-estimate the time required for execution of the

tasks, while submitting the metadata about the job.

Gang scheduling or Coscheduling

For implementing gang -scheduling, the available machines are time sliced to provide at least as
many virtual machines as the number of tasks that can be run in parallel. In some cases the same
task may be run in multiple virtual machines. The number of virtual time slices created on a

machine is called the Multi-Programming Level (MPL) of the system. This technique reduces

wait time. But it increases apparently the execution time. The advantage of the gang scheduling

13
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method is that its performance does not depend upon the accuracy of the estimates of task

execution times. The disadvantage is that it introduces context-switching overhead.

Migration

In this approach, if a compute node is overloaded, some of the tasks in its waiting queue can be
migrated to those processors, which are lightly loaded. Migration provides flexibility of
adjusting the schedule to avoid fragmentation. Co-allocation in space is important in some

architecture to guarantee proper communication among tasks.

[Zhang, 2003] have shown that the three approaches jointly improve the scheduling process in
clusters. A grid uses the idea of space sharing and nearly all grid-scheduling algorithms use the

concept of backfilling.

2.5 Existing Grid Schedulers

The grid scheduling systems are at an early stage of development. As the use of grids progresses
from research grids to a worldwide grid, resource-scheduling systems will have to become more

efficient.

The grid scheduling systems of today are based on the scheduling systems for clusters
developed during the eighties and the nineties. PBS in its various versions has been developed
over the last decade. It aims at minimizing the overall turnaround time by using techniques like

backfilling.

Condor was developed in 1998 [Litzkow, 1988] to manage local resources. Even though the
managed resources are non-dedicated and heterogeneous, a compute-node is used for remote
scheduling only when a user is not using it directly. As soon as a user begins using a compute-
node, the remotely scheduled task is migrated to another node. Condor aims at high throughput
computing. It makes no effort at load balancing and it assumes that the jobs are always available

in the queue.

14
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When Condor was being developed, Foster was developing [Foster, 1997a} the concept of

multi-cluster systems, which evolved into the idea of a Grid in 1998 [Foster, 1998].

In 1999 Maheswaran et al [Maheswaran, 1999] developed the scheduling heuristics for
independent jobs for use on a cluster. Abramson [Abramson, 2000] proposed NIMROD
scheduler. It used the economic model for parameter-sweep applications. However NIMROD

assumes that all the resources are under the control of NIMROD.

By 2001 Globus tool-set had become known and the Globus team started working with the
Condor team to develop Condor-G [Frey, 2002]. However the end-user is required to specify a
list of GRAM servers, through which the users want their job to run. Condor-G does not try to

use the best resources available for executing the job.

Buyya generalized NIMROD to work with Globus tool-kit. He christened it as NIMROD/G
[Buyya, 2002c]. NIMROD/G requires users to specify a deadline for each job. The jobs are
prioritized, based on the deadline. It uses the Globus Security Infrastructure for authentication.

But both NIMROD and NIMRODY/G also continue to require complete control of resources.

Two other major projects on scheduling architectures were developed during 2000-2002 at San
Diego Super Computing center and at University of California. AppLeS [Casanova, 2000] at
SDSC was designed for parameter sweep applications such that many simulations may use the
same input. Moreover an output file from one simulation can be used as the input file for the

next. Thus AppLeS optimizes input-output operations.

GrADS [Berman, 2001] attempts to schedule parameter sweep applications without knowing
about the estimated runtime. It stops long-running jobs and starts shorter ones to improve the

turn-around time.

In 2000 Buyya, in a theoretical work [Buyya, 2000b], enumerated heuristic methods, which
may be used to get the best possible schedules out of the large solution space for even middle
sized systems. However it was in 2003 that the first major project at Warwick University
reported some results [Spooner, 2003a]. The project is called TITAN. The scheduler in TITAN

architecture attempts to obtain optimum scheduling through Genetic Algorithm.

Many of the available grid schedulers are centralized. They assume that the jobs are received at
a central point and the scheduling process is controlled by the scheduler, which has complete
information about all the machines. Condor, Nimrod and GrADS are examples of the
centralized schedulers. However it is distributed architectures for resource management, which

can be scalable to global levels.

15
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The schedulers have been developed from the perspective of efficient resource usage [Condor
and Condor-G [Frey, 2002]) or from the perspective of applications (AppLeS [Berman, 2003],
GrADS [Berman, 2001]) or from the perspective of a grid as market (Nimrod and Nimrod-G
[Buyya, 2000a]).

Since the goals of a user and the service provider are not fully compatible, the available
schedulers are either user-centric or resource provider-centric. The economy-based schedulers
mimic the market model, with the assumption that the market should benefit both the user and
the service-provider. For meeting the diverse goals, required by a user and a service-provider,

the TITAN architecture, has developed, at the leaf level, a genetic scheduler.

2.6 Condor

The Condor High Throughput Computing System is a combination of dedicated and
opportunistic scheduling. “Opportunistic scheduling involves placing jobs on non-dedicated
resources under the assumption that the resources might not be available for the entire duration

of the jobs” [Wright, 2001]. Condor respects site autonomy. It does not provide co-allocation.

Central Manager

Figure 2-1 Architecture of a condor pool with no jobs running (Wright, 2001, pp: 4)

As shown in Figure 2-1, the architecture of Condor uses a daemon called the collector, for
centrally maintaining the list of Condor resources. Periodic updates are sent to the collector by

Condor daemons on computing machines. The collector runs on the machine called the Central

16
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Manager. The Central Manager contains a negotiator, which tries to find a match between
resource requests, and resource offers [Wright, 2001]. Each computational resource within the
pool is represented by a demon called startd. Another demon called Schedd, handles the user
jobs. All the jobs are submitted to Schedd. The main functionality of Schedd is to maintain a job

queue, to publish resource request and to negotiate for available resources.

Condor, assumes that jobs, to be processed by a grid, would be independent and non-real time
jobs. Resources are assumed to be independent workstations. The information about the
computing resources only specifies the availability of the resource. When it is used for grid
processing, the resource is not to be used for processing local jobs. Thus it is not time-shared.
However as soon as a local job is loaded on a resource, the job, brought through the grid, will be

pre-empted (i.e. it would be moved to another resource available in the pool).

Checkpointing is used for storing the state of processing of every job so that, if required, the job
can be moved. Condor does not take into account the overhead of transferring a job. Condor
scheduling is designed to increase the utilization of workstations within a single domain

[Wright, 2001].

Both Condor and Condor-G use matchmaking algorithm, which allocates an available resource
to a job. If the resource should become unavailable during processing, the job is migrated to

another compute-node that may be available.

2.7 Condoer

Condor-G is a combination of Condor and Globus toolkit [Frey, 2002}. The Globus toolkit
supports resource discovery and resource access in multi-domain systems. Condor-G allows a
user to harness multi-domain resources as if they all belong to a single domain. It also uses

authentication, authorization and secure file transfer facilities provided by the Globus tool-kit.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Job Submission Machine Job Execution Site

Site Job Schaduler
{pee Sorator, 169, Londaver, BIE o2 )

Figure 2-2 Remote execution by Condor-G on Globus-managed resources (Frey, 2002, pp: 4)

As shown in the Figure 2-2, Condor-G uses Globus GASS (Global Access to Secondary
Storage) file server, G.S.I (Grid Security Infrastructure) and GRAM (Grid Resource Allocation
and Management) protocol. The user accesses Condor-G scheduler from the user desktop. A
local Grid-Manager daemon is created along with a GASS server. The Grid Manger gets
authenticated with the Globus tool-kit at the job execution site. A Globus Job Manager daemon
is created at the job-site. The Grid Manager and the Job Manager cooperatively get the job

processed by using the available grid resources.

The Condor-G scheduler at the user’s desktop maintains a persistent job queue, so that failure of
any part of the Grid would make available to the user the status of the job and state of the

processed part up to the last checkpoint.

2.8 AppLeS Scheduler

AppLeS stands for Application Level Scheduler [Berman, 2003]. It has been designed for
meeting performance goals, which are specified by the application. Each application has its own
scheduling agent. The agent monitors available resources and generates a schedule for the

application.
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The resource discovery and prediction is implemented through Network Weather Service
[Wolski, 1999b]. The user has to specify the necessary information about the application and

the performance goal that the scheduler attempts to meet.

A number of possible schedules are developed along with the expected performance index for
each case, as a part of the process of obtaining the final schedule. The schedule, which
maximizes the performance goal, is selected and implemented. The scheduler adaptively learns

from every cycle of implementation to refine its working.

(6) Schedule
Adaptation

{1} Resouree N (2} Resource N (3) Schedule | . {4) Schedule n (3) Application

Discovery Selection Generation Selection Execution

Figure 2-3 Steps in the AppLeS methodology (Berman, 2003, page: 2)

AppLeS Scheduler uses the architecture of a central server and multiple agents. Jobs, which can
be partitioned into as many parts as the number of available compute resources, are considered.
The scheduler works for a class of problems, which are flexibly partitionable. For long running

jobs, which require file sharing, a heuristic XSufferage has been developed.

“The Sufferage heuristic is based on the idea that better mappings can be generated by assigning
a machine to a task that would “suffer” most in terms of expected completion time if that
particular machine is not assigned to it.” [Maheshwaran, 1999]. If the calculation of sufferage

value takes into account the data transfer costs, the heuristic is called Xsufferage.
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2.9 Nimrod-G Resource Broker

Nimrod-G was developed at Monash University, Australia. Nimrod mimics the model of a
market for a single domain {Buyya, 2000a]. Nimrod-G has been designed by modifying Nimrod

for operation with Globus tool kit as shown in figure 2-4.

Additional services used implicitly:

| 3 Resqurcfeﬂm___\ « GSI (authentication & authorization)
location Hos A
/\ « Nexus (communication)
AN Berver
\\m ........ —\—"
Resource

atlocation

File access

Root node Gatekeeper node Computational node

Figure 2-4 Nimrod/G and Globus Components Interactions (Buyya a, 2000, pp: 4)
The resource discovery and job allocation over a grid have been implemented through the

Globus tool-kit whereas Nimrod handles the market mechanism.

Each Nimrod application has a specified budget and a deadline, before which it should be
completed. Each resource has a price, which must be paid if the resource is to be used. The
scheduler is designed to complete the application within the deadline at the minimum cost.
Similarly each resource tries to maximize the gain by providing its services. If the budget or the
deadline should be exceeded, the user is informed about it. Every application in Nimrod-G has
an associated Job Wrapper, which acts as a mediator between the resource and the application.

Mediator is also used for sending the required information to the Resource Accounting system.

Nimrod-G is part of a framework called Grid Architecture for Computational Economy
(GRACE). GRACE includes a global scheduler called a broker. The broker works with other
components like bid-manager, directory-server, and Globus tool-kit to maximize the

performance goals.
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2.10 GrADS Scheduler

The Grid Application Development Software (GrADS) project aims at making it simple for
users to use grid resources [Berman, 2001]. After the application has been prepared in the
GrADS program preparation system, it is delivered to the Scheduler/Service Negotiator system.
The scheduler is a part of the GrADS execution environment. To improve the performance of a

new application, GrADS can preempt an executing application, if the resource is overloaded.

Performance T '
Fsadback Perormance | Realiime

Contract §
Vilation &

Seicé
Negotiator

urble
Cbject
Program

Negatiation

[1akY e~

Dynamic
GrADS (g Ferormance | Optimizer
Libraties Canfract
ierative
funtime process
GrADS Program GrADS Exscution
Preparation System Environment

Figure 2-5 GrADS Program Preparation and Execution Architecture (Berman, 2001, pp: 8)

When the object containing the job with a performance contract is delivered to the
Scheduler/Service Negotiator, it will broker the allocation and scheduling of grid resources for
the job. Thereafter the dynamic optimizer is activated to adapt the program to the available

resources. It will also insert sensors for monitoring the status of the job.

The real time monitor verifies that the requirements of the performance contract are satisfied. In
case there is a violation, the execution may be interrupted. Either the optimizer may adapt the
program or new resources may be negotiated or both the steps be taken to ensure compliance
with the performance contract. Thus the closed loop system of GrADS scheduler ensures
Quality of Service (QoS). To estimate the available resources when the job is to be executed,

GrADS uses a predictive algorithm.
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Grid Application Development Software (GrADS) Scheduler [Casanova, 2003] deals with
independent jobs only. The Candidate Machine Group algorithm prepares ordered lists of
machines and matches metadata of job requirements with the ordered list to obtain a mapping of

resources to jobs.

2.11 Genetic Algorithm for Grid Schedulers

In the early 1970s, John Holland introduced the concept of genetic algorithms. Genetic
algorithms use biologically derived techniques such as inheritance, mutation, natural selection,
and recombination. The goal is to search for nearly the best solution in an efficient manner, out

of a solution space, which is very large. [Holland, 1975]

Genetic algorithms are used to find approximate solutions to difficult-to-solve problems through

application of the principles of evolutionary biology to computer science.

The grid scheduling algorithms can be designed to satisfy the goals of the resource provider or
the users of grid services. AppLeS or GrADS are examples of such schedulers. Genetic
algorithms are used to determine efficiently schedules, which attempt to meet the goals of both
the resource provider and the user. In addition the weights can be used to change the behavior
of the scheduler on-the-fly. A GA-based scheduler is also able to adapt to minor changes in the

problem space, without using up a great deal of overhead.

2.11.1 TITAN GA-based Scheduler

The TITAN architecture “employs a Performance Analysis and Characterization Environment
(PACE) for the predictor and task distribution brokers to meet user-defined deadlines and

improve resource usage efficiency” [Spooner, 2003a).

Iterative heuristic algorithms are applied for performance prediction for job schedulers in Grid
environments. Workload managers, Distribution Brokers and Globus Interoperability providers
comprise the TITAN system's hierarchy, with Globus forming the highest level in the hierarchy.

The lowest level consists of schedulers for managing physical resources as shown in Figure 2-6.
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Figure 2-6 The TITAN architecture (Spooner, 2003a, pp: 3)

The Genetic Algorithm approach has been found to be less sensitive to the number of
processing nodes and to minor changes in the characteristic of the resource. Moreover it can
take into account a large number of objectives of the resource system. The genetic algorithm is
able to converge fast to balance the three objectives of makespan, idle time and the QoS metric

of deadline time.

System architecture of the Scheduler

The GA-based local scheduler in the TITAN system is for a homogeneous cluster. The
scheduler uses the Globus (MDS) to learn about the available resources. Advertising &
Discovery Agents (ADA) and PACE are able to predict the metadata about the job so that the

scheduler can efficiently map the jobs to available resources. However PACE is able to handle

relatively simple type of jobs.
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Types of Jobs

All the tasks must run in parallel on a pre-defined number of machines. Moreover all the tasks
should be of the same duration and should run simultaneously. No dependencies among the

tasks can be handled by the system.
Genetic Algorithm Representation

The scheduler uses Chromosome, consisting of a permutation of the given set of tasks.

ty = DT 50 I 1T

Figure 2-7 Chromosome Representation (Spooner, 2002b, pp:8)

Crossover Operation

The crossover process consists of merging a portion of one chromosome with the remaining
portion of a second chromosome, and then re-ordering to eliminate illegal duplicate values of

the same tasks as shown in the figure 2-8.
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Figure 2-8 Crossover Operation (Spooner, 2002b, pp: 8)
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Mutation Operation

The mutation process involves swapping randomly two of the tasks in a chromosome as shown

in figure 2-9.

& [T'Bs Ih I’ﬁ:T’_’! (Tﬂsj«%! (Tﬂ]]
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Figure 2-9 Mutation Operation (Spooner, 2002b, pp: 8)

Fitness Function
The fitness function takes into account makespan, idle times of nodes and the deadlines of a

task.

Experimental Results

The experiments, reported for the scheduler, have been conducted using 32 jobs and a 16-node
cluster. Population sizes of 20, 40 and 60 were used. It was found that population size of 40
converges after about 1000 generations. Upto generation 600, makespan dominates. Beyond
600, deadline drives the fitness function. A Pentium 800 MHz PC was able to compute 100

iterations/sec.

2.12 Comparison of Schedulers

The characteristics of the well-known schedulers, available in the public domain, are given in
Table 1. Schedulers can be compared on the basis of the following features.

¢ User-Centric

¢ Service-Centric

e Metrics

e Pre-emptive

¢ Multiple-Domain

e Application Type

e Algorithm
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GrADS Condor-G Nimrod-G AppLeS TITAN
User-Centric YES NO YES YES YES
Resource- NO YES NO NO YES
Provider
Centric
Minimize Maximizing Minimize the | Minimize Minimize the
Metrics Total Throughput Cost; Execution Makespan
Turnaround Meet the Time and IdleTime;
Time Deadlines to meet the
Deadlines
Pre-emptive YES YES NO YES NO
Multiple- NO YES YES NO YES
Domain
Application lterative Parallel Task Farming | Task Parallel —
Type /mesh- Application | Farming rigid jobs
based (Parameter | Application
studies) (Parameter
studies)
= Genetic-
A Deadline Algorithm
. d Budget = Deadline-
. Candidate an )
Algorithm Machine Matchmaking 8ontstll:_a|ned XSufferage | gort di
Group ost-?Ime cadline
Optimization Sort with
Algorithm Node
Limitation

Table 1 Comparison of Schedulers Characteristics

2.13 Conclusion

The chapter describes the well-known schedulers and compares their characteristics. The

architecture has been described only to the extent it is relevant for the scheduling algorithms. In

the next chapter, a description of the algorithm developed, as a part of this thesis, has been

presented.
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Chapter 3

3 A new GA Based Scheduler

3.1 Introduction

Every grid scheduler is designed for specific resource management architecture. The
architecture describes the generalized method of acquisition of meta-data of the jobs and
collection of information about the available resources. Scheduling is the process of mapping
the tasks of a set of jobs to compute-nodes efficiently. The architecture includes the methods of
staging the jobs according to the schedule, of monitoring the processing of tasks and of

rescheduling the tasks, if required.

This thesis deals with highly scalable distributed resource management architecture for the
global grid. The main component in the proposed architecture is the Genetic Algorithm based
scheduler. We shall be able to show that the scheduler is able to use the available resources
efficiently, while satisfying competing and mutually conflicting goals. The grid workload may
consist of multiple jobs, with quality-of-service constraints. A Directed Acyclic Graph (DAG)
represents each job. Each task may have arbitrary precedence constraints and arbitrary
processing time. The scheduler has been designed to be compatible with other tools being

developed by our grid research group.

This chapter presents the design and implementation of the scheduler. The scheduler attempts to
minimize make-span, idle time of the available computational resources, turn-around time and
the specified deadlines by the users. The architecture is hierarchical and the scheduler is usable
at either the lowest or the higher tiers. It can also be used in both the intra-grid of a large
organization and in a research grid consisting of large clusters, connected through a high

bandwidth dedicated network.
Section 3.2 describes the architecture of the resource allocation system in which the scheduler is
expected to operate. A grid scheduler should be able to handle a wide variety of jobs. Most of

the published work on schedulers shows tests with a specific type of problem, as discussed in

section 2.5. Standard jobs with up to 3000 tasks with arbitrary precedence constraints have been
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used. These are briefly described in section 3.4. The objectives of the grid scheduling process
determine the fitness function, which is described in section 3.8. Section 3.11 describes the
process of generation of new population, including the process of Roulette wheel method,
developed for the scheduler. The processes of crossover, mutation and elitism are described in
the next three sections. The chapter ends with a description of the complete simulation process

and a statement of the different modules, which constitute the scheduler.

3.2 The Hierarchical Architecture of Resource Allocation Systems

A global grid would have a dynamic, geographically distributed, heterogeneous and non-
dedicated set of resources. The resources can be distributed over a set of domains of variable
size. Each domain can be called as a Resource Allocation System (RAS). The RASs can be

hierarchically organized.

Each RAS, at the leaf level, will be directly dealing with available resources. So it has
information about the resources. During negotiations with the users, the scheduler of the RAS
can generate the schedules for all the jobs, for which meta data is available. The scheduler is
able to work out the extent to which it is possible to meet the goals specified by the user and the
resource provider. If the requirements of some users are met, they can decide to have the jobs
processed through the RAS. On receipt of the actual jobs and their meta-data, it may have to
recalculate the schedules, if the deals for some of the jobs do not work out. Then the Allocator

allocates the jobs to the resource set.

In case RASs are organized hierarchically, the RAS at the highest tier can negotiate with the

users, on the basis of the resource set information by the RASs at the lower tiers.
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Figure 3-1 A Hierarchical Architecture of Resource Allocation System (s)

The scheduler at the highest tier works out the schedules and sends all the jobs or some jobs to a
RAS at the leaf level. The RAS at the leaf level is also provided with the meta- data about each
full job. If the need for rescheduling the schedule arises, due to the non-availability of some
compute-node in the domain of the leaf level RAS, the local scheduler can generate. If the
rescheduling schedule satisfies the user requirements, it is required to update the resource

availability data at all the connected RASs.

3.3 A Resource Allocation System

A resource Allocation system consists of components, which are able to negotiate with the users
and obtain the jobs. The jobs can then be staged to the resources for processing. The main

component in an RAS is the scheduler.

The job acquisition system consists of the Negotiating Agent and the associated job queue and
database for the meta-data of the jobs. The Negotiating Agent obtains the meta-data of the job
and the requirements of the user. The Resource Information repository contains information
about the free time available for each compute-node in the resource set. It also has information
about the characteristic of each compute node. The scheduler uses the meta-data of the jobs

along with the information about the availability of resources to generate the schedules for each
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task. It develops mappings of the tasks of jobs to the available resources in such a way that the
requirements of the user and the goals of the resource providers are satisfied. It also obtains the
values of the turn-around time for each job and information about whether it would be able to
meet the specified deadline. For the resources, it works out the session completion time, cailed
the makespan, and the idle time of the nodes. The negotiating agent conveys the information,
generated by the scheduler about a job, to its user. If the user finds that the RAS is able to meet
the user requirements, the job can be given to the RAS. If the acquired jobs are less than the

jobs that were considered for scheduling, a new schedule can be generated.

A

Negotiating |------- . R
Agent Monitor “— E

| S.

JOB Queue > JOB 3 ’ ‘

JGBmeta-da;a R
c .

| E

Allocator —————ns

E

T

Resource
Information System

Figure 3-2 A Resource Allocation System

The Allocator in the RAS uses the mapping, generated by the scheduler, to stage the tasks of all
the acquired jobs to the available resources. The Monitor obtains the final results, when a job
has been processed and sends them to the user through the negotiating agent. If a resource, on
which a task has been allocated, should become unavailable during processing, a scheduler may
reschedule the new schedules. If these satisfy the requirements set by the users, the allocator
again allocates the remaining tasks to the resources. If it is found that the revised schedule is not

able to meet the user requirements, the negotiating agent informs the user.
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3.4 The Directed Acyclic Graph (DAG) Model for a Job

A grid is supposed to handle a wide variety of jobs. Many users will have their own objectives.
Common objectives can be minimization of the turn-around time for their jobs. Some jobs can
have stringent deadlines. Similarly a resource provider would want a high throughput and a
minimum idle time for compute-nodes. A scheduler has to map the tasks to resources in such a
way that the objectives of both the user and the service provider can be satisfied. As discussed
in the previous chapter, most of the schedulers have been shown to handle a class of problems

only. The parameter sweep problem has been solved by a number of available schedulers.

[Kasahara, 2002] has compiled a set of standard jobs for testing and comparing scheduling and
load balancing algorithms on clusters. For this purpose, the set consists of jobs described by
Standarad Task Graphs (STG). Each node of a STG graph represents a task of the job. The
weight of the node specifies the computational time required by the task. An edge of the graph
shows the dependency of one task on the other. Figure 3-3 shows an example of the DAG

model for a job.

w(n2) w(n3)

Figure 3-3 A DAG Model for a Job

STG job set has been compiled for comparing the heuristic algorithms for scheduling “n”
computational tasks of a job on “m” processors. The tasks have arbitrary precedence constraints
and arbitrary processing time. The motivation for generating STG set, according to [Kasahara,
2002] was as follows:
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“The performance of scheduling algorithms has been either evaluated using randomly generated
graphs or by task graphs modeled from actual application programs. However these task graphs
are not typically available to other researchers. Therefore fair performance comparisons of the
algorithms under the same conditions has been impossible. To allow researchers to evaluate
their algorithms under the same conditions, we propose a Standard Task Graph set, covering

previous task graph generation methods.”

A parameter sweep type of job can be considered a degenerate case of a STG job. If therefore a
scheduler can be designed, developed and tested using a set of STG jobs, it should be able to
handle all types of jobs.

Each STG job can be represented by either a graph of the type shown in Figure 3-3 or by a file
of the type shown in Figure 3-4. Since readable graphs of such large jobs are difficult to draw
on even reasonably large sheets of paper, Kasahara Laboratory provides only files of STG jobs

of 50 to 3,000 tasks. Our scheduler accepts meta data about jobs through such files.

Job File
total no of tasks

no processing time no of parents parentl parent 2 ..... parent n

0 0 0

1 10 1 0

2 20 1 1

3 40 2 1 2

n p(n) parents()  ciiceeccicicenriiseniccconnne

Figure 3-4 The Job File for a Standard Task Graph (STG) - (DAG model)
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3.5 A Genetic Algorithm based Scheduler

The solution space for mapping of jobs to a cluster of a smaller number of dedicated compute-
nodes is so large that it has been possible to develop cluster schedulers only on the basis of
some heuristic algorithm. The grid scheduler is required to map dynamically available and non-
dedicated resources to the tasks of the jobs. The compute-nodes may be large in number and
may be distributed geographically. Moreover a grid is required to handle a wide variety of jobs.

Thus the solution space for a grid scheduler is likely to be much larger than that of any cluster.

A GA based search can obtain a near-optimum value in a reasonable amount of time, even when

the solution space is very large.

In a grid environment, the goals of the user and the resource provider can be conflicting i.e. the
goals are such that when one attempts to improve one performance criterion, the other
performance criterion may be degraded. A GA based search can try to reconcile conflicting

objectives by attempting to satisfy requirements of all the stakeholders.

Hence a GA based scheduler for grid applications has been chosen for the proposed
architecture. Grid scheduling is essentially an optimization problem. It is required to schedule
jobs, while satisfying multiple objectives. Weights can be used with every objective to change
the behavior of the scheduler on-the-fly. Thus it can allow the scheduler to prioritize on multiple

objectives. A GA-based scheduler can adapt easily to minor changes in the problem space.

Under TITAN project [Spooner a, 2003], a GA based grid scheduler has been designed.

However it is able to handle only highly degenerate cases of the generalized STG jobs.

3.6 The Genetic Algorithm

The genetic algorithm begins with the first generation of a population of individuals, called
chromosomes. For each chromosome an appropriate fitness function is defined. For each
chromosome of the population of the new generation, the value of fitness is calculated. A
convergence criterion, which determines whether the required solution has been obtained, has to
be defined for each problem. The criterion is a fitness function. We verify whether the

convergence criterion has been reached. If it is, the process ends and the best solution,
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obtainable through the genetic algorithm, is available. Otherwise the algorithm generates a new
population of chromosomes. This is called the next generation. For generating the new
population, the processes of selection, crossover, mutation and elitism are used.

After obtaining the new population, the fitness value for each chromosome of the new
population is calculated. The standard deviation is also calculated and it is used as the criterion

for convergence. Figure 3-5 shows the algorithm.

Genetic Algorithm ()
{

Initialize population; /*an initial population of permutation randomly generated*/
Evaluate population; /*check fitness of each chromosome against fitness function*/
do until termination criterion not reached

{
Generate the next population;
/* apply genetic operators */
Perform crossover operation;
Perform mutation operation;
Evaluate population;
}
end do

Figure 3-5 Genetic Algorithm

3.7 The Chromosome

A Chromosome represents a schedule of independent jobs, submitted to the RAS. In general
each job is represented by a DAG. Thus each job has many tasks, with multi-level precedence
constraints. A new chromosome can be generated by permuting the jobs in a given schedule.

The initial population is generated by a random permutation of jobs as shown in figure 3-7.

Position 1 213145 |6

J31J6 |J5(J2(J1]J4

Figure 3-6 Representation of a Chromosome

J3 |J1 [J6 |J5 |J4|J2
J2 {J5 [J1 [J3 |J6|J4
J6 (J2 (J4 [|J1 |J5|J3

Figure 3-7 Sample of a Population of Chromosomes
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3.8 Fitness Function

The fitness function is a measure of the quality of the schedule. The quality is defined in terms

of the objective. The objectives of a user and the resource provider may differ.

Thus the user may have the following goals:
e Minimization of turn-around time

e Satisfying the deadline for the job, submitted by the user.

A resource provider may have the following goals:
e Minimization of the session completion time, also known as the makespan.

e Minimization of the idle time of the compute-nodes.

A resource allocation system has to try to schedule a number of jobs together during a
processing session. Multiple jobs lead to a better utilization of the compute-nodes, since the
scheduler may be able to allocate the idle gap times of compute-nodes, left out due to
precedence constraints of one job, to the tasks of other jobs. Hence the fitness function

represents cumulatively the objectives of a number of users.

Since the jobs can be of unequal size, for obtaining a cumulative result of multiple jobs and for
obtaining a measure of multiple objectives, the raw measured values have to be normalized.
One characteristic of a job, which helps in normalization, is the critical time of a job. This is the
minimum time in which a job can be processed, if all the required resources are made available,

without any delay.

In general the two objectives of the user and the two objectives of the resource provider are the

four components of the fitness function.
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3.9 The First Component: Turn-around time

€6 97

A session can have “p” independent jobs. Let tjgpend (1) be the turn-around time of the i-th job and

let Tje be the cumulative value of the turn-around time for the p jobs. Let tgt be the end time of

the last task for a given schedule.

P
Ti= D fiotena(D) e (3.1
i=1

The normalized value of the cumulative turn-around time is as follows:

Tjen = Tje [ty * p) .................. 3.2)

3.10 The Second Component: Deadline time

Let tjohaiine(i) be the deadline time of the i-th job and let T4(i) be the delay in meeting the

deadline time requirement for the i-th job.

Deadline-Time: Algorithm

BEGIN
Calculate Job_end_time for each job
Obtain deadline_time given by the user for each job
Total_deadline_time = 0;
for all the jobs deadline time is calculated
If (Job_end_time > deadline_time_given) /* deadline has not been met */

Total_deadiine_time = ( Job_end_time — deadline_time_given)

end for

END
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Initialize Tg(i) to O fori from 1 to p.
If(tjobend (l) > tjobdline(i))y
Tdt(i) = (tjobend (l) - tjobdline(i)) ........................ (33)

p

Tae =D @) (3.4

i=l
Let Ty and Ty, be the cumulative deadline delay and the normalized cumulative deadline delay

respectively. Let tst be the end time of the last task for a given schedule.

Ton=Tal(tx* D) oo (3.5)

3.11 The Third Component: Makespan

Let t.(i) be the critical time of the i-th job and let Tc be the Max (t.(i)) over all the jobs, being

scheduled. Let tgt be the end time of the last task for a given schedule.

If @ be the makespan for the session,
o=1-(T./ty) (3.6)

3.12 The Fourth Component: Node Gap Time

This is a measure of the idle time of a node. The idle time arises due to the unutilized gaps,

which have to be left to satisfy the precedence constraints of tasks of the jobs.

Let ‘m’ be the number of gaps in the j-th node and let ‘n’ be the number of compute-nodes. Let
t,(j, k ) be the start time of the k-th gap of the j-th node and let t,(j, k ) be the end time of the
k-th gap of the j-th node.

Tee = Z( (tee( J, k) — tas( j,k))) ......................... (3.7)
1

p=1 k=

If Tgen be the normalized cumulative idle time of all the n nodes,

Ten=Tee/ (st *P) oo (3.8)
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3.13 The Fitness Function

The four components can be given weights of o, B, 0 and A, to obtain the fitness function F as

follows:

F=1-((0*®+p* Tien + 0* Ty + A* Tgen) /(0 +B+0+ 1))

The four weights (o.,3,0,A) are used to prioritize any particular component in accordance with

the needs of the jobs or the users or the resource provider.

3.14 Generation of a New Population

After the fitness function for each of the chromosomes of the initial population has been
calculated, the average value of the fitness function and the standard deviation are computed. If
the standard deviation (SD) should reach a sufficiently low threshold and if an acceptable
solution should be available, the process of genetic algorithm is said to converge. Once the
algorithm converges to a solution, the generation of a new population is not required. However
since the initial population has been generated at random, without any consideration of the
quality of the solution, SD is not likely to be below the threshold and the chromosomes
available at this stage are not likely to provide an acceptable solution. Hence the scheduler has
been designed to move immediately to the generation of the first new population, using the
initial population as the basis. (The initial population is called as the existing population in the

next set of paragraphs.)

Selection Methodology

To generate the new population, the method of elitism is used. First a roulette wheel of fitness
functions can be constructed. Random numbers can be generated to select, out of the existing

population, candidates for generating the new population. Using the selection method,

crossover, mutation and elitism can be used jointly to generate the new population.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.15 Crossover Process

A crossover rate (r. ) is chosen such that convergence may occur at a fast rate. This rate has
been chosen for use in grid schedulers, through a large number of experiments. If the size of the
existing population be P, rc * P parents are chosen, through the selection process, to create an

equal number of children for the new population.

The crossover process can produce illegal chromosome, which can contain the duplicates of the
same job(s). We use the described in [Goldberg, 1989], when we generate two child
chromosomes from two parent chromosomes. It has two main steps. In the first step, we
randomly generate a binary mask (M) of length 1 and a random integer j=0 or 1. Then at each
position (i) of M such that M [i] =j (resp. M [i] = 1-j) we copy P, [i] to C; [i] (resp. P, [i] to C,

[i]) [Ngom, 1998]. Figure 3-8 shows an example of the crossover process.

Figure 3-8 Crossover Process

3.16 Mutation Process

A mutation rate (r,, ) is chosen such that convergence may occur at a fast rate. This rate has been
chosen for use in grid schedulers, through a large number of experiments. If the size of the
existing population be P, rm * P chromosomes are chosen, through the selection process, to

create an equal number of chromosomes for the new population.
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The mutation process is used to steer the new population out of a local optimum value. A high
value of (r,) can reverse the progress towards convergence. Hence this value has to be selected

in each case through a careful study.

For mutation process we use randomly generate an integer j for each position (i) and then swap

the elements at positions i and j in the permutation, as shown in the figure 3-9.

Figure 3-9 Mutation Process

3.17 New Chromosome through Elitism

To make the new population equal in number to the existing population, after the processes of
crossover and mutation have been used, the remaining chromosomes are selected out of the
existing population by making them identical with the best existing chromosomes, chosen

through the selection process.
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3.18 The GA-based Grid Scheduling Algorithm

BEGIN

Generate initial population of A individuals
Evaluate individuals according to fithess function
do until fitness value of all individual in the initial population is obtained.
for each individual
assign jobs-sub tasks to the given number of resources such that the earliest
completion time with minimum idle time of resources can be obtained.
Calculate the fitness function
end do
Select the best individuals from the initial population using Roulette wheel method.
do until end criteria is not reached
Generate a new population
perform crossover operation
perform mutation operation
select remaining individual from previous population through policy of elitism
Evaluate individuals according to fitness function
do until fitness value of all individual in the new population is obtained.
for each individual
assign jobs-sub tasks to the given number of resources such that
the earliest completion time with minimum idle time of resources
can be obtained.
Calculate the fitness function
end do
end do
END

3.19 Conclusion

This chapter describes the design of all the components of the scheduling algorithm developed
in this thesis work. The next chapter will describe the testing process for validation and the
results obtained when the validated scheduler was used. Many parts of the algorithm were
adjusted after experiments and the tests were again performed to validate the module under test.

The description of the design and the testing of the scheduler represent the final results.
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Chapter 4

4 Experimental Results and Discussions

4.1 Introduction

The Genetic Algorithm based scheduler in this thesis has been designed so that it can schedule
multiple jobs, with each job having multiple tasks. The tasks may have arbitrary precedence

constraints and arbitrary execution times. A Directed Acyclic Graph can represent such a job.

The algorithm attempts multi-objective optimization for competing criterion. When the goals
are such that when we attempt to improve one performance criterion, the other performance
criterion may be degraded, the GA-based scheduler attempts to obtain a near optimum solution,

while trying to satisfy all the objectives.

The first sets of tests obtain the results of scheduling single jobs with 50 to 3000 tasks with
arbitrary precedence constraints and arbitrary execution times. Even though the jobs are NP
hard [Kasahara, 2002], for specific number of compute-nodes, Kasahara has computed the
optimum values of time, obtained through long computations on powerful computers. We
compare the solutions obtained through our schedulers with the optimum results. We use our
scheduler to run multiple STG jobs. From these experiments we obtain the best values of the

crossover ratio, the mutation ratio and the convergence criterion.

The new version of Gridsim released on 12 November 2004, provides the possibility of space
sharing for NIMROD/G scheduler. We select a problem that can be solved by the NIMROD/G
scheduler on Gridsim. By solving the same problem by the NIMROD/G scheduler and by the

scheduler developed in this thesis, the results can be compared.

After the three level validations, we schedule multiple STG jobs on a variable number of nodes
and show that the scheduler is able to satisfy the multiple objectives and the solution converges

in a reasonable number of generations.
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4.2 The Complete Simulation Process

The complete simulation process, for developing the grid scheduler, requires meta data about
the kind of jobs that may be expected in the most general case on the grid. After acquiring this
information and the information about the available resources from a file, the simulation uses
the Genetic Algorithm to converge to a solution, with the best value of the fitness function. The
chromosome obtained through the process represents the best schedule. The schedule is used to
map the tasks of each job to the available resources. Thereafter the values of the turn-around
time, of the delay, if any, in meeting the deadline, of the makespan and of the idle time of the

resources can be computed.

Get metadata ahout the DAG jobs froim the users. Obtain the
resource information fom theinpt. file.

Initialize the Sirnmilatar

Use Genetic Algonthm to generate the schedules.

Map the tasks f the; os t e Gnd resourcs for each
schedule

Evaluate ses s on completi on time, turn around time, gap time
and deadline delay time.

Figure 4-1 Process Flow of Simulation

After the evaluation of the fitness function, the convergence criterion is tested. If it is not

satisfied, the last three steps are repeated till the process converges to a solution.
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43 Test Environment for Genetic Algorithm-based Grid Scheduler

A GUI has been designed and implemented for conducting the tests. Figure 4-2 shows a screen
shot of the user interface.

Submission of Jobs:

To enter the jobs, as a first step, the users have to enter the number of jobs that they want to use
in the text field against the label “Total Jobs”. Then the meta-data for each job has to be entered
in the standard STG format. For each job, the total number of tasks has to be specified. For each
task, the task #, its execution time and the task numbers of its parents have to be specified. For
each job, a text file, containing the data for all its tasks, has to be prepared in the standard
format. For the STG jobs, the files are available from [Kasahara, 2002}. To enter the files, enter
the file name, the critical path length for the job and the deadline in the respective text fields
and click the “Add” button. The filename of the job, the CP length and the Deadline time will
appear in a single row in the text area of List of Jobs, located in the upper left part of the GUIL
The same process is repeated for each of the jobs. At the end, all the jobs will be seen in the text

area. The “Remove” button can be used to remove a job from the list.

= Genetic Based Scheduler

i it QF ROSORICES

Figure 4-2 Graphical User Interface
On selecting a job in the text area of List of Jobs and on clicking the *“Submit” button in the
lower left part of GUI, the job file can be viewed in the text area of Display Job File, located in

the lower left part of the GUI. On clicking the Clear button, the job file will be closed.
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Entry of Resources:

The resources can be entered, one by one, through the text field and the “Add” button in the
upper right part of the GUI. As a resource is entered, its name will appear in a single row in the
text area of List of Resources, located in the upper right part of the GUI The “Remove” button

can be used to remove a resource from the list.

Entry of Genetic Parameters:

The size of the population of chromosomes, the maximum number of generations, the crossover
ratio, the mutation ratio and the convergence value of the standard deviation are to be entered in

the respective text fields.

With the above data, the scheduler is ready to generate the best schedule, which satisfies all the
objectives in the best way, by providing the highest value of the fitness function. To obtain the

solution, click on the “Schedule’ button.

4.4 Tests with Standard DAG jobs

Kasahara and Tobita [Kasahara, 2002] have diligently obtained the optimum schedule length
(or its range) for mapping DAGs to a specific number of nodes. The DAGs have been worked
out by using random selection method to select both the precedence constraints and the
execution times for tasks in a job. DAGs with 50 to 3000 tasks are available on the web-site
[http://www kasahara.elec.waseda.ac.jp/schedule/index.html]. Each DAG has been mapped to 2
to 16 nodes. For each case the optimum schedule length has been computed by Kasahara.
through the use of high computational power. In practice even for batch mode, a scheduler
cannot use a similar processing power for obtaining the optimum value. Hence the optimum
value (or its range) specified in the STG set is considered to be the best that a scheduler can

ever achieve in practice.

In this work, we have compared the values achieved through our algorithm, with the optimum

values given in the STG set. This validates our algorithm.
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Eight STG jobs with 50 to 3000 tasks were selected for the testing. The tasks in each job have
arbitrary precedence constraints in that every task may have, in general, multiple parents and
multiple children. The tasks have multiple layers and each layer has arbitrary width. Moreover
the execution time of each task varies arbitrarily. The experiments on our schedulers have been
conducted with 2 to 16 nodes. For the STG jobs, [Kasahara, 2002] have provided the optimum
value of schedule length. The schedule length is equal to the makespan, when a single job is run
on the scheduler. So in this experiment, the values of makespan are obtained. These are

compared with the optimum values available from [Kasahara, 2002].

No. of Nodes
S.No. | # of Tasks 2 4 8
1 50 oP , 94
%age Error 2.68 12.76
2 100 OoP ‘
OB |
%age Error .
3 300 OoP 860 436 | 383 | 383
OB |
%age Error
4 500 oP
OB |
%age Error
5 750 opP
OB | 20
%age Error 0.09 1.1 9.24
6| 1000 OoP
OB | 27; i :
%age Error 0.36 3.82 | 0.37
7 2000 opP 5576 2954 | 2821 | 2821
OB |~ 82,
%age Error 1.27 8.02 | 0.106
8 3000 oP 8290 4145 | 2848 | 2848
OB |
%age Error

OP: The optimum value [Kasahara]
OB: The measured makespan obtained by our Algorithm

Table 2: Measured Makespan vs Optimum Value for STG Jobs with 50 to 3000 Tasks

2.77 |
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Table 2 shows the values of makespan, obtained by these experiments on our scheduler for the
cases of 50 to 3000 tasks and with 2 to 16 nodes. It also shows the optimum value for each case
[Kasahara, 2002]. For lower number of nodes, the optimization effort required is rather high.
Therefore in general, a heuristic algorithm will work better for larger number of nodes, than it
does for smaller number of nodes. The case of 2 nodes may be considered as a roughly
degenerate case. When the choice is limited to only two nodes, the optimization process cannot

do much better than the heuristic algorithm. Figure 4-3 shows the results graphically.

COMPARISON OF OPTIMAL VALUES (VS) OBTAINED VALUES
FOR STG JOBS

3000

2500

2000

> OP-2
mOB-2
aorP-4
ooB-4
MOP-8
B0OB-8
BOP-16
DOOB-16

TIME (S) 1500

1000

500

Jm

50

500
NO OF TASKS

1000

Figure 4-3 The measured Makespan versus the Optimum Values

4.5 Tuning the Parameters of the Genetic Algorithm

There are two crucial parameters, which have to be selected for the application at hand. These
are the crossover rate and the mutation rate. To adjust the values, we conducted experiments to
select appropriate values. Ten STG jobs with 50 tasks each were selected. An initial population

of 100 was generated. A large set of values for crossover rate and mutation rate was used. In
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each case, new generations of population were created till convergence was reached with

standard deviation of 6.3 x 107

For mutation ratio, experiments showed that a value of 0.01 would only lead to convergence.
With any higher value, and even with a large set of crossover ratios, convergence could not be

reached. Hence the mutation ratio was set at 0.01.

With this value of mutation ratio, experiments for crossover ratio of 0.7 to 0.8 are shown in
Figure 4-4. 1t is found that with crossover ratio of 0.74 and 0.76, the same value of fitness

function was obtained.

COMPARISON OF FITNESS (VS) CROSSOVER RATE

71.3
712
711

71

FITNESS

70.9

70.8

70.7

70.6 *

0.7 0.72 0.74 0.76 0.78 0.8
CROSSOVER RATE %

Figure 4-4 Fitness versus the Crossover Ratio

To select the number of generations and the size of population, required for getting the
schedule, experiments were conducted with a change in population size from 20 to 150. Figures

4-4 and Figure 4-5 show the results.
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FITNESS COMPARISON FOR SIX DIFFERENT POPULATION SIZES
number of jobs are 10 and number of tasks are 50
=500 tasks

715 -

7

70.5 ¢
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10 20 30 40 50 60 70 80 90 100
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Figure 4-5 Fitness versus # of Generations
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—8—pop-150

Figure 4-5 is a graph of Fitness versus Number of Generations required for convergence. The

graph shows that a population size of 100 or 150 is able to give the same result after 80

generations or more.

Figure 4-6 shows a plot of standard deviation versus the number of generations for

convergence. Population sizes of 20 to 150 are taken. It shows that as the size of population is

increased, the convergence requires a larger number of generations. Thus Figure 4-5 shows that

a population of 100 should converge in 80 generations.

For all other experiments for this work, we have taken the standard values of crossover ratio of

0.76, mutation ratio of 0.01 and a population size of 100.
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Standard Deviation Vs No of Generations
number of jobs are 10 and number of tasks are 50
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Figure 4-6 Standard Deviation versus # of Generations

With these parameters, another experiment for scheduling ten different jobs by using the GA-
based scheduler was conducted. Each of the 10 jobs was a different job. The number of inter-
dependent tasks in each job varied from 50 to 1000. The total number of tasks in the ten jobs
was 3650. Using these complex sets of jobs, the values of fitness function at 10 to 100

generations are plotted in Figure 4-7.

The Figure again shows that Fitness varies very little above 80 generations and it becomes

nearly stable at 100 generations.

We can draw two conclusions from the experiment. The parameters chosen for the crossover
ratio and mutation ratio seem to be appropriate. Secondly a population size of 100 seems to

work for the system.
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Fitness Vs No of Generations
3650 tasks
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Figure 4-7 Fitness versus # of Generations for 10 Jobs of 3650 Tasks

Figure 4-8 shows Fitness versus the number of generations for 35 STG jobs with 10,750 tasks.
The graph again shows that after about 80 generations, the value of fitness stabilizes. So we
choose, for our scheduler, a default value of 100 generations.

Fitness Vs No of Generations
10750 tasks

Fitness Value

10 20 30 40 50 60 70 80 90 100

No of Generations

Figure 4-8 Fitness versus # of Generations for 35 Jobs of 10750 Tasks
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4.6 Comparison with NIMROD/G scheduler through Gridsim

Every scheduler uses architecture, which is unique. Secondly no other scheduler with multiple
jobs, with inter-dependencies among tasks, and with multiple objectives is available. Moreover
comparison with another scheduler is possible only with the kind of problems that the other

scheduler can manage.

The same group of researchers, who have designed Nimrod-G, has designed Gridsim simulator.
It is able to accept independent jobs with space sharing. However the jobs in Nimrod-G cannot
accept any sub-jobs, called tasks. The objective of the Nimrod-G scheduler is to optimize the

cost and deadline time. For simulation, the strategy of the broker is set to “time-optimization”.

A set of independent jobs is scheduled using Nimrod-G scheduler on the Gridsim simulator.
The simulator can give the time used for the experimentation. The same set of jobs is tried on

our scheduler.

A set of 30 different jobs is considered. The jobs are mapped onto a 2 to 8 machine system. The
resultant values of makespan, obtained for both Nimrod-G and our GA based scheduler, are
shown in Table 4. The results show clearly that in every case the GA based scheduler is able to
obtain better results than Nimrod-G results obtained from the Gridsim simulation. This is due to
the use of FCFS policy or its variants by Nimrod-G. “A resource with multiple machines is
treated as a distributed memory cluster and is managed as a space-shared system using FCFS
scheduling policy or its variants.” [Buyya, 2002b]. The GA-based scheduler considers all the
jobs that it is scheduling, as a single set and attempts to find a schedule, which satisfies the
objective. Nimrod-G first schedules the job, which is entered first, even though it is scheduling

10 (or 20 or 30) jobs at the same time. This leads to a worse performance by Nimrod-G.
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Nimrod-G

GA (Avg)

Nimrod-G 617 427 317 262 237 207

198

GA (Avg) 575 290 290 230 195 165

145

2 3 4 5 6 7

8
Nimrod-G 39702 | 27052 | 23502 | 19052 | 15952 | 13653 | 13603
GA (Avg) 36800 | 24600 | 18400 | 14800 | 12350 10500 9500

Table 3 Makespan Values Obtained through Nimrod-G-Gridsim Simulator and GA based

Scheduler
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Figure 4-9 shows the comparison of Nimrod-G and GA-based Scheduler graphically.

o - el IO, LS Bt o O

W Nimrod-G- 10
O Genetic-10
W Nimrod-G-20
0 Genetic-20

Figure 4-9 Comparison of Nimrod-G and GA - based Scheduler

4.7 Conclusion

For the case of scheduling multiple jobs, with arbitrary inter-dependencies among the tasks of
each job, on a distributed system of heterogeneous compute resources, a theoretical optimum
value of session completion time is not available in the literature. In section 4.4 we present in
our work the scheduled length that our scheduler is able to achieve for a set of multiple STG

jobs and a specified goal. This set of results can be considered as an addition to the STG set.
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Chapter 5

5 Conclusion and Future Work

High-speed data networks today girdle the globe. These have made it technically possible for
applications to be processed through computational resources, spread out over large
geographical areas. A large number of compute resources are used intermittently during the
working part of the day only. Thus we have the hardware and network resources to be able to
use compute-resources more effectively through a grid. But we require the middleware and the
creativity to build an architecture that can use these resources. This thesis makes a contribution
to the design of a working grid by designing a scheduler, based on a hierarchical architectural
model. The algorithm of the scheduler has been tested exhaustively and compared with all the

results, available for earlier work.

We have designed a Genetic Algorithm based scheduler for the architecture discussed in
Chapter 3. It is able to schedule multiple jobs with arbitrary precedence constraints and arbitrary
execution times, while satisfying multiple objectives. We have verified its functionally for as
many as 10, 750 tasks, which may be much more than what a scheduler may be called upon to
do at a time. We have also worked out the crossover ratio, the mutation ratio and the size of
population that may be appropriate for the scheduler. We have compared with the only other
scheduler, Nimrod/G, for which a simulator is available and we find that our algorithm is able to
work much better. The paper states [Spooner, 2003a] that the TITAN system is under
development and is, at present, able to handle relatively simple jobs only. The example shown
in the paper considers jobs with independent sub tasks, which have no communication or
precedence constraints with one another. We have taken multiple jobs, which are realistic and
worked out the schedules. We have developed a Fitness function, which is appropriate for grid
scheduling. Our results for the session completion time for multiple STG jobs may be
considered as an addition to the standard optimum time, available for single STG jobs.
Moreover the method developed by us can be used to develop a large database of standard
optimum session completion time and minimum idle time of compute nodes for sets of STG
jobs and for specified number of compute-nodes. Such a database may prove to be of use to

researchers for comparing the characteristics of new scheduling algorithms.
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Future Work

The scheduler has been tested exhaustively. But if the resource allocation system to be handled
should be big, the scheduler may have to handle a much larger number of jobs. In such a case
for faster convergence, a larger computational power may be required. This can be easily
obtained from the grid, if the scheduler can be modified to run on a parallel set of machines

using parallel Genetic Algorithm.

Another open problem is to find a heuristic for efficient optimization of the second level of

dependent jobs of the schedules obtained through Genetic Algorithm.

One requirement in the grids is for resource reservation. This requirement has to be built into a
Resource Allocation System by ensuring that the resource data provided to the scheduler takes
reservations into account. After building such systems, the scheduler will also have to be tuned

to be able to accept this facility.
The scheduler will have to be integrated with other components, which are being studied by our
research group. The whole system can be made compatible with the Globus tool-kit, which is

emerging as the standard. An integrated system, including the scheduler, may prove to be of

great use to the entire grid community.
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Appendix

Grid System Taxonomy

A CLASSIFICATION BASED ON ADMINISTRATIVE DOMAINS

An IntraGrid may be controlled by a single, multi-location organization. Sharcnet is an
example of such a grid. This consists of big clusters at 4 universities connected by a dedicated

Internet.

An Extra Grid may couple two or more grids. ERP systems of today use such grids whereby a

business entity may be connected to its suppliers and its sales organizations.

Global Grid is the kind of grid being conceptualized by the Global Grid Forum. Such a grid
would have a large number of resource providers connected through Internet to the users.
Middleware for such a grid is being developed by a number of research groups of GGF and at

various Universities.
A CLASSIFICATION BASED ON TYPE OF APPLICATION

Grid systems can be classified, into three types [Buyya, 2002a].
e Computational grids
e Data grids

e Service grids

— Distributed Supercomputing

Computational
Grid |
High Throughput
Grid Systems Data Grid
— On Demand
Service Grid Collaborative
L Rultimedia

Figure 1 : Grid Systems Taxonomy (Buyya, 2002a, pp: 3)
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The aggregate computational power of a computational grid is larger than the computational
power of any single constituent of the grid. High Performance computing problems, which

require large computational power, use the grids for parallel computing. [Buyya, 2002a].

A data grid provides large data repositories such that both the data storage as well as the users
may be distributed over a large geographical area. Users may mine the data for studies in
different ways. As an example, the astronomers, as a loose group, have been able to create a
large data grid. Large telescope systems continuously scan the outer space and feed the data into
large data repositories. These are then used by astronomers from around the world. [Buyya,
2002a].

Service grids provide services not available at a single site from a single machine. Examples of

such grids are On Demand computing, Multimedia computing or Collaborative computing.
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