
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 483643, 31 pages
doi:10.1155/2011/483643

Research Article

Genetic Algorithm for Combinatorial Path
Planning: The Subtour Problem

Giovanni Giardini and Tamás Kalmár-Nagy

Department of Aerospace Engineering, College Station, Texas A&M University, TX 77843, USA

Correspondence should be addressed to Tamás Kalmár-Nagy, mpe2011@kalmarnagy.com

Received 2 May 2010; Revised 21 October 2010; Accepted 24 February 2011

Academic Editor: Dane Quinn

Copyright q 2011 G. Giardini and T. Kalmár-Nagy. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

The purpose of this paper is to present a combinatorial planner for autonomous systems. The
approach is demonstrated on the so-called subtour problem, a variant of the classical traveling
salesman problem (TSP): given a set of n possible goals/targets, the optimal strategy is sought
that connects k ≤ n goals. The proposed solution method is a Genetic Algorithm coupled with a
heuristic local search. To validate the approach, the method has been benchmarked against TSPs
and subtour problems with known optimal solutions. Numerical experiments demonstrate the
success of the approach.

1. Introduction

To build systems that plan and act autonomously represents an important direction in the
field of robotics and artificial intelligence. Many applications, ranging from space exploration
[1–4] to search and rescue problems [5, 6], have underlined the need for autonomous systems
capable to plan strategies with minimal or no human feedback. Autonomy might also be
required for exploring hostile environments where human access is impossible, for example,
volcano exploration [7] or for locating victims in collapsed buildings [8, 9].

For intelligent systems, there are usually two well-separated modes of operation:
the autonomous planning and scheduling of goals and actions [1, 10] and the subsequent
autonomous navigation [11]. Even though autonomous navigation has vastly improved
during the past decades, human instruction still plays a crucial role in the planning and
scheduling phase [12–14].

In order to increase the capability of robotic systems to handle uncertain and dynamic
environments, the next natural step in autonomy will be the deeper integration of these two
operational modes, that is, linking the autonomous navigation system with the planning and

2 Mathematical Problems in Engineering

scheduling component [15, 16], moving the latter onboard the agent. The ultimate objective of
this line of research is to develop a general purpose goal planner for autonomous multiagent
systems. In this context “goals” are possible states of the system (e.g., locations on amap) and
“actions” are transitions between these states. An intelligent planner/scheduler should be
able to achieve a set of goals (planning phase) by computing an optimal sequence of actions
(scheduling phase) so that human operators only have to define the highest-level goals for
the vehicle (also referred to as agent) [17].

For path planning involving many goals/locations, the planning phase turns into a
mission-level planning problem, where construction of a “route” is required [18, 19]. This
planning phase is at a higher level of abstraction than the classic point-to-point navigation:
at this level, goals are given locations on a map, and a plan represents a sequence of these
locations to be visited. On the other hand, the low-level, point-to-point path planning is
considered in the scheduling phase, and it is usually solved once the overall location route
is known [20]. Another important difference between high and low level motion planning
is their time and length scale separation, that is, local navigation occurs at a much smaller
lengths and at a much faster rate than the high level planning. Due to this separation of
scales, high level motion planning usually does not take the dynamics of the vehicle into
account. Instead, low-level motion planning is usually responsible for obstacle avoidance
and local interactions with the environment; the dynamical constraints of the vehicles can
also be taken into account here [21].

Our long-term objective is to realize a multiagent planning system for a team of
autonomous vehicles to cooperatively explore their environment [22]. To achieve this goal,
given a set of locations (also referred to as targets), we require the vehicles to compute
a coordinated exploration strategy for visiting them all. Specifically, the overall planning
problem will be formulated as finding a near-optimal set of high-level paths/plans that
allow the team of agents to visit the given number of targets in the shortest amount of time
(similarly to the task-assignment problem described in [23]). More precisely, givenm agents,
we look for the time-optimal (min-max) team strategy for reaching a set of n given targets
(every target must be visited only once).

The first step to solve this problem is to construct a (near-)optimal strategy for a single
agent to reach a subset of the given locations. Finding this single-agent strategy is what we
call the k-from-n “Subtour Problem”: for a given set of n goals/targets, an optimal sequence of k ≤ n
of these goals is sought.

This problem is a variant of the well-known traveling salesman problem (TSP), where
n different locations/goals must be visited by the agent with the shortest possible path [24–
26].

Since a multiagent strategy is a set of m subtours (see Figure 1), the main motivation
of this paper is to implement a simple algorithm that yields good-quality subtours.

Subtour-type problems have already been studied in the literature. Gensch [27]
modifies the classical Traveling Salesman Problem to include a more realistic scheduling
time constraint. In this variant the salesman must select an optimal subset of the cities (the
subtour) to be toured within the time constraint. Gensch provides a tight upper bound
through Lagrangian relaxation, making the problem amenable to the branch and bound
technique for problems of practical size. Laporte and Martello [28] formulates the selective
traveling salesman problem that requires the determination of a length-constrained simple
circuit with fixed starting point (the so-called depot) on a vertex-and-edge-weighted graph.
They describe an exact algorithm for solving this problem that extends a simple path from
the depot utilizing a breadth-first branch and bound process. Verweij and Aardal [29]

Mathematical Problems in Engineering 3

Multiagent

team plan

Subtour for agent 1

Subtour for agent 2

· · ·

Subtour for agentN

S

Figure 1: Subtours are components of amultiagent plan. In this example, themultiagent plan of four agents
starting from the same position (S) is shown.

consider the merchant subtour problem as finding a profit-maximizing directed, closed
path (a cycle) over a vertex-and-edge-weighted and use linear programming techniques
for its solution. Westerlund in his recent thesis [30] defines the traveling salesman subtour
problem as the optimization problem to find a path from a specified depot on an undirected,
vertex-and-edge-weighted graph with revenues and knapsack constraints on the vertex
weights. This thesis provides a new formulation of the problem whose structure can be
exploited by Lagrangian relaxation and using a stabilized column generation technique
[31].

The objective of this paper is to implement a genetic algorithm-based solver for the
subtour problem. Evolutionary algorithms [32, 33] have already been proposed for the
solution of the TSP and similar combinatorial problems [34–36]. Our method is a Genetic
Algorithm [37–39] boosted with a heuristic local search. The tools used in this paper are
common in the field of evolutionary computation, therefore the main contribution of this
paper is the implementation of a solver for the Subtour Problem that can provide good-
quality ‘motion primitives’ formultiagent planners. Even though the genetic algorithm-based
solution is heuristic in nature, we numerically demonstrate the efficacy of the proposed
approach, benchmarking its results against exact TSP and subtour solutions. Once again, this
work constitutes a starting step for developing a multiagent planner, results on which will be
reported in a separate paper.

The outline of the paper is as follows. First, some basic notation and the formulation
of the subtour problem is introduced in Sections 2 and 3. The basics of Genetic Algorithms
are shortly presented in Section 4. The problem is defined in Section 5, followed by the
genetic algorithm implementation in Section 6. Section 7 presents numerical results to
demonstrate the efficiency of the proposed approach, including some preliminary examples
for a multiagent planner. Conclusions are drawn in Section 8.

2. Notation

Graph theory has been instrumental for analyzing and solving problems in areas as diverse
as computer network design, urban planning, and molecular biology. Graph theory has
also been used to describe vehicle routing problems [40–42] and, therefore, is the natural
framework for this study. The notation used in this paper is summarized below (good books
on graph theory include [43, 44]).

4 Mathematical Problems in Engineering

2.1. Graphs, Subgraphs, Paths, and Cycles

Given V = {v1, . . . , vm}, a set of m elements referred to as vertices (nodes or targets), and
E = {(vi, vj) | vi, vj ∈ V }, a set of edges connecting vertices vi and vj , a graph G is defined
as the pair (V, E). All graphs considered in this work are undirected, that is, the edges are
unordered pairs with the symmetry relation (vi, vj) = (vj , vi).

A complete (also known as fully connected) graph is a graph where all vertices of V
are connected to each other. The complete graph induced by the vertex set V is denoted by
km(V), where m = |V | is the number of vertices. A graph G1 = (V1, E1) is a subgraph of G
(G1 ⊆ G) if V1 ⊆ V and E1 ⊆ E such that

E1 =
{(

vi, vj

)
| vi, vj ∈ V1

}
. (2.1)

A subgraph P = (V1, E1) is called a path in G = (V, E) if V1 is a set of k distinct vertices of the
original graph and

E1 = {(x1, x2), (x2, x3), . . . , (xk−1, xk)} ⊆ E (2.2)

is the set of k − 1 edges that connect those vertices. In other words, a path is a sequence of
edges with each consecutive pair of edges having a vertex in common. Similarly, a subgraph
C = (V2, E2) of G = (V, E)with

V2 = {x1, . . . , xk} ⊆ V,

E2 = {(x1, x2), . . . , (xk−1, xk), (xk, x1)} ⊆ E
(2.3)

is called a cycle. The length of a path or cycle is the number of its edges. The set of all paths
and cycles of length k in G will be denoted by Pk(G) and Ck(G), respectively.

Paths and cycles with no repeated vertices are called simple. A simple path (cycle) that
includes every vertex of the graph is known as a Hamiltonian path (cycle). Graph G is called
weighted if a weight (or cost) w(vi, vj) is assigned to every edge (vi, vj). A weighted graph G
is called symmetric ifw(vi, vj) = w(vj , vi). The total cost c(·) of a path P ∈ Pk(G) is the sum of
the weights of its edges

c(P) =
k∑

i=1

w(xi, xi+1). (2.4)

Analogously, for a cycle C ∈ Ck(G),

c(C) =
k−1∑

i=1

w(xi, xi+1) +w(xk, x1). (2.5)

After having introduced the necessary notation, we are now in the position to formalize the
combinatorial problems of interest.

Mathematical Problems in Engineering 5

x

r(a)

r(t2)
r(t1)

y
t1

t2

a

Figure 2: The locations of the targets T = {t1, t2} and the agent a are specified by the vectors r(t1), r(t2), and
r(a), respectively.

t1

t3

t4

t2

a

(a) Targets and agent

v1

v3

v4

v2

v5

(b) Vertex set V = T ∪ a

v1

v3

v4

v2

v5

(c) Complete graph K5(V)

Figure 3: Given the set of targets T = {t1, . . . , t4} and the agent a, (b) shows the augmented vertex set
V = {v1, . . . , v5} = T ∪ a, where (v5 = a), while (c) shows the complete graph K5(V) generated by the
augmented vertex set V .

3. The Traveling Salesman Problem and the Subtour Problem

Let T = {t1, . . . , tn} be the set of n possible targets (goals) to be visited. The ith target ti is an
object located in Euclidean space and its position is specified by the vector r(ti). The position
of agent a is r(a) (Figure 2).

Let us define the complete graph Kn+1(V) generated by the augmented vertex set V =

T ∪ a (see Figure 3).
The weights associated with the edges are given by the Euclidean distance between

the corresponding locations, that is, w(vi, vj) = w(vj , vi) = ‖r(vi) − r(vj)‖, with vi, vj ∈ V ,
rendering Kn+1(V) a weighted and symmetric graph.

The Subtour Problem is now defined as finding a simple path P ∈ Pk(Kn+1(V)) of length
k, starting at vertex x1 = a and having the lowest cost c(P) =

∑k
i=1 w(xi, xi+1). If k = n, the

problem is equivalent to finding the “cheapest” Hamiltonian path, where all the n targets in
T are to be visited (Figure 4(c)). The general Traveling Salesman Problem, or k-TSP, poses to
find a simple cycleC ∈ Ck+1(Kn+1(V)) of minimal cost starting and ending at vertex a, visiting
k targets. The special case of k-TSP is the classical traveling salesman problem, where C is a
Hamiltonian cycle with minimal cost that visits all the n targets (Figure 4(e)).

The solution of the single agent planning problem is of great interest in our research,
since a collection of Subtours will represent the starting solution for solving the multiagent

6 Mathematical Problems in Engineering

t2

a

t3

t1

t4

(a) Targets and agent

v2

v5

v3

v1

v4

(b) Subtour in P2(K5)

v2

v5

v3

v1

v4

(c) Hamiltonian path inP4(K5)

v2

v5

v3

v1

v4

(d) k-TSP in C4(K5(V))

v2

v5

v3

v1

v4

(e) Classic TSP

Figure 4: (a) Given the set of targets T = {t1, . . . , t4} and the agent a, V = {v1, . . . , v5} = T ∪ a, with v5 = a,
is the augmented vertex set. In (b), a subtour of length 2 (the agent visits the targets associated with the
vertices v2 and v1) is shown, while in (c), the cheapest Hamiltonian path (the agent visits all the given
targets) is depicted. (d) shows the k-TSP with k = 3, and in (e), the optimal solution of the Traveling
Salesman Problem is drawn.

planning problem. The multiagent planning problem [45] can be considered as a variant of
the classical Multiple Traveling Salesman Problem, and can be formulated as follows. Let
T = {t1, . . . , tn} be the set of n targets to be visited and let a denote the unique depot the m
agents share. The augmented vertex set is given by V = T ∪ a and the configuration space of
the problem is the complete graph Kn+1(V).

Let Ci denote a cycle of length ki starting and ending at vertex a (the depot). The
Multiple Traveling Salesmen Problem can be formulated as finding m cycles Ci of length
ki

C = {C1, . . . , Cm},
m∑

i=1

ki = n +m, (3.1)

such that each target is visited only once and by only one agent and the sum of the costs of
all them tours Ci

W(C) =
m∑

i=1

W(Ci) (3.2)

is minimal.

Mathematical Problems in Engineering 7

1

3

4

2

5 Gene

Allele set

3 5 4 1 2

4 2 3 5

1 4 3

Chromosomes

3 5 4 1 2

4 2 3 5

1 4 3

Population

Figure 5: Cast of characters for genetic algorithms: allele set, genes, chromosomes, and population.

4. Solving Combinatorial Planning Problems with Genetic Algorithms

The obvious difficulty with the subtour and the classic traveling salesman problem (TSP) is
their combinatorial nature (they are NP-hard, and there is no known deterministic algorithm
that solves them in polynomial time).

For a TSP with n targets, there are (1/2)(n − 1)! possible solutions, while for a Subtour
Problem with 2 ≤ k ≤ n visited targets, the number of possible solutions is n!/(n − k)!. Even
though the dimension of the “search space” differs significantly for the two problems, a brute
force approach is infeasible when n is large. A variety of exact algorithms (e.g., branch-and-
bound algorithms and linear programming [46–48]) have been proposed to solve the classic
TSP, and methods such as genetic algorithms, simulated annealing, and ant system were
developed [34, 36] to sacrifice the optimality for a near-optimal solution obtained in shorter
time or by simpler algorithms [49]. Greedy algorithms in many cases provide reasonable
solutions to combinatorial problems. Such an algorithm could be connecting targets that are
closest to one another. However, recent results on the nth nearest neighbor distribution of
optimal TSP tours [50] show that this approach might be too simplistic.

The method proposed here is a genetic algorithm [37–39] and is capable of solving the
subtour problem, as well as the classic TSP.

4.1. Genetic Algorithms

A genetic algorithm (GA) is an optimization technique used to find approximate solutions
of optimization problems [38]. Genetic algorithms are a particular class of evolutionary
methods that use techniques inspired by Darwin’s theory of evolution and evolutionary
biology, such as inheritance, mutation, selection, and crossover (also called recombination).
In these systems, populations of solutions compete and only the fittest survive.

4.1.1. Cast of Characters of a Genetic Algorithm

Figure 5 introduces the cast of characters of a GA.
The allele set is defined as the set L = {gi} of l objects called genes. In a genetic

algorithm, a possible solution is represented by a chromosome s (also called plan or
individual), which is a sequence of k genes xi ∈ L (genes are the “building bricks”
chromosomes are made of):

s = (x1, . . . , xk). (4.1)

8 Mathematical Problems in Engineering

Initialization
phase

Evaluation
phase

Selection
method

Genetic
operators

New
population

Evolution phase

Figure 6: Flowchart of a basic genetic algorithm.

The length of a chromosome is the number of its genes. The jth gene in s will simply be
denoted by s(j).

A genetic algorithm works with a population of candidate solutions. A population
composed of p chromosomes si, with i = 1, . . . , p, is Sp = [s1, . . . , sp]. Depending on
the problem, chromosomes can have variable lengths; here, we work with fixed-length
chromosomes.

4.1.2. The Structure of Genetic Algorithms

A GA consists of two distinct components: the initialization and evolution phases. In the
initialization phase (see Section 6.1), a starting population is created—usually randomly—
and is then evolved through a number of generations (see Section 6.2). At every generation
step, some individuals, called parents, are chosen via a selection method and mated, that is,
the parental genes are recombined through the use of genetic operators. The newly generated
chromosomes (also called offspring) are evaluated by a predefined fitness function f(·) and
the weakest (least fit) chromosomes are discarded.

The objective of the GA is to improve the fitness of the chromosomes by evolving
the population according to a set of rules until desirable solutions are found. Figure 6
depicts the schematic representation of a classic GA, where the most important parts of the
algorithm—selection phase, genetic operators, and evaluation phase—are presented. Usually,
some stopping criterion is used to decide when the population contains solutions that are
“good enough”. In this work, the simulations are stopped after a fixed number of iterations,
since the main goal of the paper is to demonstrate our approach.

5. Subtour Problem: Formulation and Coding

In this work, a genetic algorithm (GA) has been designed to solve the subtour problem on
the complete graph Kn+1(V), where V = T ∪ a, T = {t1, . . . , tn} is the set of n targets and a
is the agent. More precisely, the GA attempts to find the shortest possible simple path P ∈

Pk(Kn+1(V)) starting from vertex a for 1 ≤ k ≤ n targets. The GA presented here can also
solve the k-TSP (k = n is the classic traveling salesman problem), finding a simple cycle
C ∈ Ck+1(Kn+1(V)) of low cost for visiting k targets.

Having defined the problem, the next step is to choose a suitable representation of
solutions to the problem in terms of genes and chromosomes. Since the solutions of the
subtour problem are simple paths P ∈ Pk(Kn+1(V)), the set V = T ∪ a is designated as
the allele set, and chromosomes are easily coded as the sequence of targets of the path in
the order they are visited by the agent. The first element of a chromosome is always a, since

Mathematical Problems in Engineering 9

t1

a

t4

t2

t5
t3

(a) Targets and agents

v1

v6

v4

v2

v5

v3

(b) Path in P4(K6(V))

a t1 t3 t5 t2

(c) Chromosome

Figure 7: Order-based representation: the chromosome (possible solution) is coded as the sequence of
visited targets. In (a), the set of targets T = {t1, . . . , t5} and the agent a are shown. In (b), a path visiting 4
targets (P ∈ P4(K6(V))) is illustrated on the vertex set V = T∪a. The associated chromosome is represented
as the sequence of the visited targets, with a = v6, thus s = (a, t1, t3, t5, t2) (see (c)).

the starting point of the agent is r(a). Therefore, a generic chromosome/path is represented
as s = (x1, x2, . . . , xk), with x1 = a and xi ∈ T . An additional constraint on the structure
of the chromosome is imposed by the simplicity of the path (every target should be visited
only once) therefore; the same gene must not appear in the chromosome more than once. The
coding for the k-TSP is similar.

The total cost c(·) of a chromosome/path s = (x1, . . . , xk) is the sum of the weights of
its edges (in other words the distance between targets)

c(s) =
k∑

i=2

‖r(xi) − r(xi−1)‖, (5.1)

while its fitness value is defined as 1/c(s) (the lower the cost, the higher the fitness and vice
versa).

The above representation is called order based, and the fitness of an individual
depends on the order of the genes in the chromosome, as opposed to the traditional
representation where the order is not important [38]. As an example, consider agent a and the
complete graph Km(V) generated by the augmented vertex set V (with |V | = m). A generic
path P = (V1, E1) ∈ Pk(Km(V)), with V1 = {x1, . . . , xk+1}, E1 = {(x1, x2), . . . , (xk, xk+1)} and
x1 = a, is coded in the chromosome s = (x1, . . . , xk+1) (see Figure 7).

A class of genetic operators have been developed for the variants of the k-TSP [38, 51]
and some of these are described in the following (see Section 6.3).

6. Implementation of the Genetic Algorithm

In this section, a fixed-length chromosome implementation of the genetic algorithm (GA)

for solving the subtour problem is described. The two main components of the GA are the
initialization and the evolution phases.

6.1. Initialization Phase

The starting population of chromosomes determines not only the starting point for the
evolutionary search, but also the effectiveness of the algorithm. One of the problems using
GA is that the algorithm could prematurely converge to local minima instead of exploring

10 Mathematical Problems in Engineering

more of the search space. This occurs when the population quickly reaches a state where
the genetic operators can no longer produce offsprings outperforming their parents [52]. It is
important to point out that the size of the starting population also influences the performance
of the algorithm, since a population too small can lead to premature convergence, while a big
one could bring the computation to a crawl.

For the combinatorial problems of interest, a hard constraint is enforced: every gene
(representing a target) must only be present once in every chromosome.

6.2. Genetic Evolution Phase

After the initialization phase, the initial population is evolved. The chromosomes of the ith
generation are combined, mutated and improved through genetic operators (see Section 6.3)
to create new chromosomes (the offsprings). These are then evaluated by the fitness function:
the weakest (least fit) solutions are discarded while the good ones are kept for the i + 1th
generation. The evolution phase consists of three main parts: selection of parents, application
of genetic operators and creation of a new population by evaluation of the offsprings. If
during the selection phase two identical parents are chosen, the recombination process
may result in duplication of chromosomes which may decrease the heterogeneity of the
population. This could lead to the quick reduction of the coverage of the search space and
the consequently fast and irreversible convergence towards local minima far away from the
optimal solution.

This premature convergence is not desirable and different methods have been devised
to get around this problem. For example, in the random offspring generation technique
[51] the genetic operators are applied only if the genetic materials of the parents are
different, otherwise at least one of the offsprings is randomly generated. Other, even more
drastic, solutions have been proposed. In [53] the social disasters technique is applied to
the TSP in order to maintain the genetic diversity of the population. This method checks the
heterogeneity of the population and, if necessary, replaces a number of selected chromosomes
by randomly generated ones.

To counter the effect of premature convergence, we decided to maintain heterogeneity
of the populations by introducing what we call a singular mating pool. This pool is created at
each generation step from the population by removing all duplicates. Consequently, if the
population has n individuals, the singular mating pool is always composed of nSMP ≤ n
solutions. With this method, the probability of mating identical chromosomes is reduced.
However, note that an individual can be selected and mated more than once. The singular
mating pool does not preclude the duplication of individuals, it only reduces its frequency,
resulting in a higher diversity of the solutions and avoiding premature convergence.

For the selection phase the Tournament Selection method [38, 54] is adopted. A
subset of the nSMP chromosomes is randomly chosen from the Singular Mating Pool and
the best chromosome is selected for the so-called mating pool. This process is repeated until
a predefined number of individuals, ntournament, is reached (in our simulations ntournament =

nSMP/2).
From the mating pool two parents are randomly selected, and to these, the genetic

operators are applied with some predefined probability (see Section 6.3). This process is
repeated until nnew offsprings have been generated. These new chromosomes are then added
to the singular mating pool (of size nSMP), returning a new temporary population of size
ntemp = nSMP + nnew. In this work, nnew is chosen such that ntemp = 1.5n. Since the required
number of chromosomes in a population is n, the ntemp − n = n/2 weakest individuals

Mathematical Problems in Engineering 11

Parent B

Parent A

pDXO pmutation p2−opt

Probabilities of application are checked

Offspring B

Offspring A

Crossover
operator

Mutation
operator

Local 2-opt

boosting

nnewntemp
U

Removal of weakest
chromosomes

n

Population
n

Singular mating pool
nSMP Tournament

selection ntournament

Mating

pool

Genetic
operators

Figure 8: Genetic algorithm schema with the singular mating pool technique and the application of the
genetic operators. Note that given two parents, first the crossover operator is applied, followed by the
mutation. The offsprings are then “boosted” with the 2-opt method.

(the ones with the highest cost c, c.f. (5.1)) are discarded. The adopted schema is shown
in Figure 8.

6.3. Genetic Operators

Genetic operators combine existing solutions into new ones (crossover) or introduce random
variations (mutation) to maintain genetic diversity. These operators are applied in a fixed
order (shown in Figure 8)with a priori assigned probabilities. In addition to these operators,
the heuristic 2-opt method to directly improve the fitness of the offsprings is used (see
Section 6.3.4).

Different crossover typologies have been developed for solving the classic TSP,
including the partially matched crossover, order crossover, and cycle crossover operators
[38]. These operators are all based on the constraint that TSP solutions include all
the targets. Since this is not the case for the Subtour Problem, these operators cannot
be directly applied. To overcome these limitations, we modified the classic operators
according to the new problem constraints. In particular, we decided to use a standard
genes recombination mechanism, while changing the rules for keeping the feasibility of the
solutions.

6.3.1. Single Cutting-Point Crossover

With the single cutting-point crossover (applied with probability pXO), both parents are
halved at the same gene, the cutting point (see Figure 9).

12 Mathematical Problems in Engineering

Cutting point

t1 t2 t3 t4 t5

t6 t7 t8 t9 t0

t1 t2 t8 t9 t0

t6 t7 t3 t4 t5

Figure 9: Single cutting-point crossover: parents are halved at the same gene.

Cutting point

Cutting point

t0 t1 t2 t3 t4 t5

t6 t7 t8 t9 t10 t11

t0 t1 t6 t7 t8 t9

t9 t10 t2 t3 t4 t5

Figure 10: Double cutting-point crossover: parents are cut at two different genes.

The cutting point is chosen either randomly or to break the longest edge in the parents
(with plong-cut probability). Once the parents have been halved, two offsprings are created
combining the first (second) half of the first parent with the second (first) half of the second
parent, respectively. Care is taken to avoid duplication of genes (as every target should only
be visited once) and the length of the chromosomes is kept constant. See Appendix A for an
illustrative example.

6.3.2. Double Cutting-Point Crossover

The double cutting-point crossover operator cuts the parents at two different genes (see
Figure 10), with probability pDXO. The locations of the cutting points are chosen either
randomly or to cut the longest edge in the parents (with plong-cut probability). The latter
introduces an improvement over the single cutting-point operator, where only one parent
was cut along its longest edge and this point was also used for the other parent. An important
consequence of having two different cutting points is that the halves will in general have
different number of genes. A simple recombination would thus lead to two offsprings with
different lengths. The technique to maintain the original size of the chromosomes (which is
necessary for producing feasible solutions) is described in Appendix B.

6.3.3. Mutation Operator

After the application of the crossover operator, the mutation operator is applied to the
new chromosomes with pmutation. The mutation operator generates a new offspring by
randomly swapping genes (Figure 11) and/or randomly changing a gene to another one
that is not already present in the chromosome (Figure 12). Note that with the simple TSP,
this second type of mutation would not be possible, because there a chromosome already
contains all possible genes. The probability of the mutation is a parameter of the genetic
algorithm.

Mathematical Problems in Engineering 13

t1

a t4

t2

t5
t3

(a) Before gene swapping

t1

a t4

t2

t5
t3

(b) After gene swapping

Figure 11: Given a chromosome s1 = (a, t1, t4, t3, t2, t5) (shown in (a)), (b) shows the chromosome s2 =
(a, t1, t2, t3, t4, t5) resulting after genes t4 and t2 are swapped.

t1

a
t4

t3

t2

(a) Before gene mutation

t1

a
t4

t3

t2

(b) After gene mutation

Figure 12: Given a chromosome s1 = (a, t1, t2, t3) (shown in (a)), (b) shows the chromosome s2 =
(a, t1, t4, t3) after t2 mutated into t4.

6.3.4. Improving Offsprings

A common approach for improving the TSP solutions is the coupling of the genetic algorithm
with a heuristic boosting technique. The local search method adopted here is the 2-opt
method [55–57] that replaces solutions with better ones from their “neighborhood”.

Let us consider a set T of n targets and the corresponding complete and weighted
graph Kn+1(V) (V = T ∪ a with a being the agent). Let us consider a subtour P ∈ Pk(Kn+1),
with 1 ≤ k ≤ n, coded in the chromosome s = (x1, . . . , xk). The 2-opt method determines
whether the inequality

w(xi, xi+1) +w
(
xj , xj+1

)
> w

(
xi, xj

)
+w

(
xi+1, xj+1

)
, (6.1)

between the four vertices xi, xi+1, xj and xj+1 of P holds, in which case edges (xi, xi+1)

and (xj , xj+1) are replaced with the edges (xi, xj) and (xi+1, xj+1), respectively. This method
provides a shorter path without intersecting edges. Consequently, the order of genes in the
chromosome changes [58] (see Figure 13). This operator is applied with p2-opt probability.

7. Results

A large number of simulations have been performed to test the performance of the
implemented genetic algorithm. In order to evaluate the proposed method and provide
statistically significant results, different problem configurations have been considered,
including randomly generated problems and problemswith known optimal solutions. Unless
otherwise specified, the tests described here are all run for 250 generations with a population
size of 200 chromosomes. The crossover, mutation, and boosting (2-opt) operators are applied
with a pXO = pDXO = 70%, pmutation = 20%, and p2-opt = 50% probability, respectively. Table 1
summarizes the parameters and their default values adopted for the simulations.

14 Mathematical Problems in Engineering

a

t1 t5 t4

t3
t2t6

t7

(a) Before the application of the 2-
opt method

a

t1 t5 t4

t3
t2t6

t7

(b) After the application of the 2-
opt method

Figure 13: In this example the effects of the application of the 2-opt method are illustrated. In (a)
chromosome s2 = (a, t1, t2, t3, t4, t5, t6, t7) is shown. Since edge (t1, t2) crosses (t5, t6), (6.1) is satisfied and (b)
shows chromosome s2 = (a, t1, t5, t4, t3, t2, t6, t7) after edges (t1, t5) and (t2, t6) have been replaced by edges
(t1, t2) and (t5, t6), respectively.

Table 1: Simulation parameters.

Parameter Symbol Value

Population size n 200 chromosomes

Temporary population size ntemp 300 chromosomes

Single cutting point crossover probability pXO 70%

Double cutting point crossover probability pDXO 70%

Mutation probability pmutation 20%

2-opt method probability p2-opt 50%

Probability of cutting the longest edge plong-cut 50%

The speed and optimality of any genetic algorithm depend on many parameters
and the stopping criterion. The below results will demonstrate the efficacy of the proposed
algorithm even without excessive tweaking of the parameters. In addition, it is important
to note that due to the stochastic nature of the GA, convergence to optimal solutions can
not be guaranteed. The fact that for many test problems with known optimal solution, these
solutions were reached lends credence to our approach.

7.1. Avoiding Premature Convergence

Premature convergence was defined previously as fast convergence of the genetic algorithm
towards a local minimum in the search space. Tests have been conducted to illustrate how
the implementation of the singular mating pool technique described in Section 6.2 prevents
premature convergence. All the tests in this Section have been performed on a TSP with 600
targets randomly distributed over the unit square. The GA parameters are reported in Table 1.

The maximum and the minimum fitness values are plotted as the function of the
population age (generation number) in Figure 14(a) for a simulation where duplicates are
not removed from the populations (i.e., without using the singular mating pool technique). It
can be observed that the range of fitness values (the width between the lines corresponding
to the extrema) rapidly approaches zero as the consequence of the decreasing heterogeneity
of successive populations, leading to a final population composed of identical chromosomes.
Moreover, this is a local minimum, since none of the resulting solutions is optimal. It is also
interesting to note what happens when a new, better solution is introduced into a stagnant
genetic pool. In Figure 14(a), solutions seem to have reached a constant fitness value (the

Mathematical Problems in Engineering 15

0

0.5

1
F
it
n
es
s
v
al
u
es

0 50 100 150 200

Number of generations

Maximum fitness values

Minimum fitness values

Optimal fitness value

(a) The singular mating pool is not used

0

0.5

1

F
it
n
es
s
v
al
u
es

0 50 100 150 200

Number of generations

Maximum fitness values

Minimum fitness values

Optimal fitness value

(b) The singular mating pool is used

Figure 14: (a) Simulation without using the singular mating pool. The duplicated chromosomes lead
to premature convergence. (b) Simulation with the singular mating pool technique. With duplicate
chromosomes removed from the populations, the diversity of solutions is maintained.

plateau around the 80th generation), when a better chromosome randomly appears in the
population around the 120th generation.

Since during the evolution the duplicates of this chromosome are not discarded (its
fitness value is better than those of the other solutions), in a small number of generations
they replicate and replace all other individuals.

Figure 14(b) shows the extremal values of fitness in a simulation where the duplicates
are constantly removed from the mating pool; that is, where the singular mating pool method
is used. As a result of this strategy the diversity of the populations is maintained with an
increased coverage of the search space. This makes it more likely for the algorithm to reach a
near-optimal solution (in this case, the optimal result is reached).

To characterize the heterogeneity/diversity of a population, a pairwise comparison of
chromosome edges can be used. Let us consider two chromosomes of length k, si, and sj ,
with edge sets Ei and Ej , respectively (|Ei| = |Ej |). One possible measure of diversity can be
defined as

di,j = 1 −

∣∣Ei ∩ Ej

∣∣
|Ei|

. (7.1)

This edge diversity quantifies how much two chromosomes differ. The exact locations
of identical edges do not influence this diversity measure. The edge diversity of the entire
population Sp is the averaged edge diversities for all pairs

DSp
=

1

n(n − 1)

p−1∑

i=1

p∑

j=i+1

di,j . (7.2)

Clearly, 0 ≤ DSp
≤ 1. We also introduce a “Boolean” diversity. The diversity of two

chromosomes are equal if and only if they have identical edges. The Boolean diversity for

16 Mathematical Problems in Engineering

0

20

40
A
v
er
ag

e
ed

g
e
d
iv
er
si
ty

(%
)

0 10 20 30 40 50 60 70 80 90 100

Number of generations

Without singular mating pool

With singular mating pool

(a) Edge diversity

0

20

40

60

80

100

A
v
er
ag

e
d
iv
er
si
ty

(%
)

0 50 100 150 200 250

Number of generations

Without singular mating pool

With singular mating pool

(b) Boolean diversity

Figure 15: How the application of the singular mating pool technique affects the edge (a) and boolean (b)
diversity (%) of the population.

population Sp is defined as

BSp
=

p−1∑

i=1

p∑

j=i+1

⎧
⎪⎨
⎪⎩

0 if di,j = 0,

1 if di,j /= 0.

(7.3)

Figure 15 shows the average edge and boolean diversity at every generation step for
the simulations used for Figure 14 (with or without the use of the singular mating pool
technique).

The decrease of the edge diversity can be explained by the reduction of the coverage of
the search space: many costly edges are discarded early in the evolution and only considered
again during the search process with low probability. This is why at later generations many
solutions differ only by few edges, but still the population maintains its heterogeneity (as
shown in Figure 15(b)).

In conclusion, to avoid premature convergence it is important to ensure that the
evolving population contains a variety of chromosomes (representing different strategies for
the agent to reach a set of targets). In our work on distributed planning (published in the
sequel), the availability of these different strategies will have special significance.

7.2. Influence of the 2-opt Method on the Performance of Genetic Operators

To evaluate the performance of the different genetic operators and the 2-opt method, various
tests have been performed. A target configuration for n = 100 targets randomly and
uniformly distributed over the unit square is generated. This configuration is kept fixed for
all tests in this section to make comparisons meaningful. The 30-from-100 subtour problem
is then solved with different combinations of the genetic operators, 100 times for each
combination. The application probabilities of the operators are reported in Table 1. To assess
the influence of the various genetic operators, their performances are directly compared and

Mathematical Problems in Engineering 17

Table 2: Simulation cases to test efficiency of different genetic operators. The 2-opt method is not applied.

Crossover type Mutation Mean fitness Variance of fitness

Double point Applied 1 1

Single point Applied 0.93 1.32

Double point Not applied 0.92 1.47

Single point Not applied 0.69 2.12

Table 3: Simulation cases to test efficiency of different genetic operators together with the 2-opt method.

Crossover type Mutation Mean fitness Variance of fitness

Double point Applied 0.993 3.12

Single point Applied 1 1

Double point Not applied 0.994 2.62

Single point Not applied 0.998 1.31

tested without the 2-opt method. The mean values and the variances of the distribution of the
best (highest) fitness values of the final populations are shown in Table 2.

Since the optimal solution is not known, the mean fitness values and the variances of
fitness are normalized by the best result (the highest for the fitness values and the lowest
for the variances of fitness). The comparison of the quantities in Table 2 shows that the
combined application of the double cutting-point crossover and the mutation operator yields
the maximum fitness value and the minimum variance of the solutions. On the other hand,
the worst solutions are obtained with the standalone application of the single cutting point
crossover operator. These results not only demonstrate the improvement introduced by the
double cutting point crossover, but also clearly highlight the importance of the mutation
operator.

With the application of the 2-opt method, the results change, as shown in Table 3.
In this case, the performance of the single cutting-point crossover operator coupled

with mutations is the best. It would be tempting to conclude that this configuration of the
genetic operators is the best; however, in the next section it is demonstrated that the speed
of convergence for this configuration of operators is significantly worse than for the double
cutting-point crossover/mutation combo (here, this fact is hidden as the genetic algorithm is
run for a fixed number of generations).

7.3. Speed of Convergence and Genetic Operators

The results of the previous section clearly demonstrate the efficiency of coupling the genetic
operators with the 2-opt method. The most important improvement introduced by the 2-opt
method is in the speed of convergence that is here intended as the number of generation the
algorithm requires for converging (it is not related to time). In fact, because of its capability
of detecting new local minima at each generation step, the application of the 2-opt method
together with the double cutting-point crossover and the mutation operators helps the GA to
converge faster than without [56]. To quantify the speed of convergence with various genetic
operators and the 2-opt method, the required number of generations for the convergence of
the genetic algorithm is calculated. To facilitate this test, a 100-target TSP with known exact
solution was solved (KroA-100 TSP [59], with optimal path-length of 21282). For different

18 Mathematical Problems in Engineering

Table 4: GA solution of the KroA100 problem [59]. The 2-opt method is always applied and the number
of generations necessary for the convergence of the full population within 1% of the optimal solution is
evaluated with respect to different configurations of genetic operators.

Crossover type Mutation Number of generations Variance

Double Applied 7.7 1

Double Not applied 8.7 1.14

Single Applied 14.3 1.86

Single Not applied 15.8 1.93

Table 5: Comparison of the proposed method with benchmarked solutions of the traveling salesman
problem. Results are averaged over 100 simulations. Rounded distances are used.

Problem TSPLIB Number of targets Optimal tour Genetic algorithm error

Length Minimum Mean Maximum Std

Berlin52 52 7542 0% 0% 0% 0

Eil76 76 538 0% 0.02% 1.4% 0.8

KroA100 100 21282 0% 0% 0% 0

lin105 105 14379 0% 0% 0% 0

ch130 130 6110 0% 0.2% 0.9% 15.9

a280 280 2579 0% 0.2% 1% 8.5

pcb442 442 50778 0.3% 0.9% 1.5% 148.6

att532 532 86729 0.4% 1.1% 2% 340.07

combinations of the genetic operators, Table 4 reports the number of generations (and its
variance) necessary to reach a solution within 1% of the optimal length. For each case, 500
simulations have been performed and the variance of the final results is normalized with
respect to the minimum obtained value. From these results, we conclude that the GA with
double cutting-point crossover coupled with the mutation operator needs the least number
of generations to reach a near-optimal solution (for this example, the local boosting technique
yielded a 25-fold increase in computational speed to reach populations with the same fitness).
Results on the runtime performance for the method were published in [60].

7.4. TSP Tests

Since the TSP is a limiting case of the subtour problem (one agent visiting all the targets,
that is, m = 1, k = n, with the restriction on returning to the starting position) the proposed
algorithm can also be used to solve this classic problem.

The algorithm has been tested with different TSPs from the well-known TSPLIB95
library [59]. This library includes different target configurations for the TSP andmany related
problems (Hamiltonian cycle problem, sequential ordering problem, etc.) together with their
exact solutions. We note that the TSPs in the TSPLIB95 library are solved with a cost function
based on rounded distances between targets. In order to have meaningful comparisons with
the TSPLIB95 problems, our cost function was modified to round off distances.

For every TSPLIB95 instances considered here, 100 simulations have been performed
and the operators are applied with the probabilities reported in Table 1. The results are shown
in Table 5 and demonstrate the suitability of our approach.

Mathematical Problems in Engineering 19

0

2500

5000

Y
co
o
rd
in
at
e

0 2500 5000 7500

X coordinate

(a) att532 problem: optimal solution

(b) Optimal solution (c) GA solution

Figure 16: att532 TSP: comparison between the optimal solution (of length 86729) and the one computed
by our GA (of length 87075, 0.4% longer than the optimal solution).

The att532 problem (532 cities in America) has been a popular benchmark for testing
TSP-solvers. The optimal solution of length 86729 (shown in Figure 18(a)) was found by
Padberg and Rinaldi [61]. Yoshiyuki and Yoshiki [62] consider a real space renormalization
approach for this problem, which provides solutions 37% longer than optimal on the average.
Merz and Freisleben [63] show that while a simple memetic algorithm produces solutions
that are about 20% longer than the optimal one, a recombination-based version of thememetic
algorithm can find the optimal solution! Tsai et al. [64] introduce a smart combination of
local and global search operators (called neighbor-join and edge assembly crossover) and
this method is shown to find the optimal solution to the att532 problem in more than 75%
of the simulations. A moving-frame renormalization group approach by Ugajin [65] yields a
solution that is 17% longer than the optimal one. Yi et al. [66] present a parallel tabu search
algorithm for this TSP and find solutions 6% longer than the optimal on the average (their
best solution is only 3.85% longer than optimal). Chen and Zhang [50] report an enhanced
annealing algorithm utilizing nth-nearest-neighbor distributions of optimal TSP solutions to
solve the att532 benchmark problem, finding solutions that are 28% longer than optimal. Our
GA reaches within 2% of the optimal solution in all simulations. The best solution we found
(only 0.3% longer than optimal) differs from the optimal one in the “dense” region of the
map as illustrated in Figures 16(b) and 16(c).

20 Mathematical Problems in Engineering

Table 6:Comparison of the proposedmethodwith different TSPs solved using the CONCORDE algorithm.
For each case, 100 simulations have been run. Rounded distances are used.

Number of targets Optimal tour Genetic algorithm error

Length Minimum Mean Maximum Std

600 1812 0.7% 1.3% 2.2% 5.6

700 1946 0.9% 2% 2.8% 7.6

800 2087 1.3% 2.1% 2.8% 9.1

1000 2297 4.2% 5.3% 6.7% 11.1

Table 7: Efficacy of the singular mating pool. Results are averaged over 100 simulations. Considered
problem: TSP of 600 cities with optimal tour length equal to 1812.

Singular mating pool
Genetic algorithm error

Minimum Mean Maximum Std

Applied 0.5% 1.3% 2.3% 7.01

Not applied 1.1% 2.1% 3.6% 7.8

Optimal TSP solutions for targets uniformly distributed over the unit square were
obtained using CONCORDE [67] (also using rounded distances). Table 6 summarizes the
results.

Once again, the GA-based approach seems to perform well. The sudden increase in
the errors for the 1000-target problem can be attributed to the relatively low size of the
populations and to the fact that the number of the generations (250) used in these simulations
is fixed (note that the objective of these tests was not to reach the best possible solutions).

Finally, to quantify the influence of the singular mating pool technique, Table 7 shows
the different results obtained with or without its application. These simulations illustrate that
avoiding the replication of the individuals through the application of the singular mating
pool (slightly) improves the solutions. Note that the main purpose of the Singular Mating
Pool is to maintain diversity of possible subtours. This has special significance for building
near-optimal multiagent plans.

The results of this section strengthen our claim that the implemented genetic algorithm
is successful in finding near-optimal solutions for this type of combinatorial problems.

7.5. Subtour Tests

The genetic planner has also been statistically tested in order to demonstrate its capability
to generate near-optimal subtours. To provide reliable averages, for a given configuration
100 simulations have been performed. All the subtour tests have been conducted on the
unit square with a given target configuration and using the cost function (2.4). The double
cutting-point crossover, the mutation operator, and the 2-opt method have been used (with
the probabilities reported in Table 1).

In order to evaluate the optimality of the subtours generated by our genetic algorithm,
a comparison with known optimal solutions is needed. To our knowledge, no benchmark
solutions exist for the subtour problem, so we introduced test cases with regular and random
point configurations on the unit square to evaluate the algorithm.

Mathematical Problems in Engineering 21

0

0.5

1

Y
co
o
rd
in
at
e

0 0.5 1

X coordinate

Figure 17: Example of a subtour problem generated by a 7 × 7 grid (circles), with 9 more added targets
(squares).

Table 8: Comparison between exact and GA solutions for different Subtour Problems based on 100
simulations.

n l
Number of targets Subtour Optimal tour Genetic algorithm error

n2 + l (l + 2)-from-(n2 + l) Length Minimum Mean Maximum Std

7 9 58 11-from-58 0.236 0% 0% 0% 0

11 15 136 17-from-136 0.141 0% 0.2% 12.5% 0.002

21 48 489 50-from-489 0.07 0% 656.6% 2883.4% 0.43

The first set of tests have been conducted by generating maps of targets with a trivial
unique optimal solution. In these tests, n2 targets were selected with constant spacing of 1/n
on the unit square (a uniform grid)with l extra points added between two points of the grid,
following vertical, horizontal or diagonal directions. Figure 17 shows an example depicting
the optimal 11-from-58 solution (n = 7, l = 9).

Different problems have been generated and the results are shown in Table 8.
We note that the proposed method converges to the optimal solution in almost all

the performed simulations. In few cases (the results of the 50-from-489 subtour), however,
only very costly solutions (with high length) are found. This can be attributed to the slow
convergence of the stochastic optimization process. In fact, all the reported tests are runwith a
fixed number of 250 generations which is in some cases not enough to ensure the convergence
of the GA to an optimal (or near-optimal) solution.

To elucidate this point, Figure 18(a) shows the percentage of simulations reaching the
optimal solution of the 50-from-489 problem as the function of population age (number
of generations), while Figure 18(b) shows the distribution of subtour lengths after 250
generations. Note that only few of them are very costly solutions.

The speed of convergence of the algorithm strongly depends on the GA parameters.
In particular, it is influenced by the application of the 2-opt method.

To provide numerical evidence for this claim, 100 simulations have been run on the 17-
from-133 targets problem shown in Figure 19 with different application probabilities of the 2-
opt method. Note that in this case, the l points are added betweenmore than two neighboring
points.

22 Mathematical Problems in Engineering

0

20

40

60

80

100

S
im

u
la
ti
o
n
s
to

re
ac
h

a
n
ea
r-
o
p
ti
m
al

so
lu
ti
o
n
(%

)

0 250 500 1000 1500 2000

Number of generations

(a) Speed of convergence

0

5

10

15

20

25

30

S
im

u
la
ti
o
n
s
(%

)

0 1 10 20 30

Subtour length

(b) Distributions of subtour lengths after 250 gener-
ations

Figure 18: The convergence of the 50-from-489 Subtour Problem is shown. Subtour lengths are normalized
with the optimal one (length = 0.0707). In (a) the speed of converge is shown. Note that the last simulation
converges after 2045 generations. (b) Shows the distribution of the subtour lengths after 250 generations,
considering 100 simulations.

0

0.5

1

Y
co
o
rd
in
at
e

0 0.5 1

X coordinate

Figure 19: Example of a subtour problem generated by a grid of 112 targets (circles), with 12 more added
points (squares).

Table 9: Convergence results for the 17-from-133 problem with different 2-opt method probabilities.

2-opt probability
Simulations converged after 250

generations
Number of generations for full

convergence

0.05 15% 43148

0.2 34% 12180

0.5 84% 728

1 94% 1233

Results are reported in Table 9, while Figure 20 shows the convergence speeds for
different values of the 2-opt application probability.

In general, the frequent use of the 2-opt method restricts the random wandering of
the genetic algorithm over the search space, thereby severely restricting the set of reachable
solutions. If the 2-opt method is only applied with a given probability, much like the other

Mathematical Problems in Engineering 23

0

20

40

60

80

100

S
im

u
la
ti
o
n
s
to

re
ac
h

a
n
ea
r-
o
p
ti
m
al

so
lu
ti
o
n
(%

)

0 250 500 750 1000

Number of generations

1
0.5

0.2

0.05

Figure 20: Convergence for the GA solution of a 17-from-133 subtour problem with different application
probabilities of the 2-opt method.

Table 10: Comparison between exact and GA solutions for different subtour problems based on 100
simulations.

Subtour Optimal length GA solution length Mean error

7-from-30 0.71 0.72 1.4%

6-from-30 0.628 0.63 0.3%

6-from-40 0.53 0.56 5.6%

5-from-50 0.446 0.447 0.4%

operators, the results greatly improve and the number of necessary generations are strongly
reduced.

Note also (see Table 9) that if the 2-opt method is always applied, the number of
generations needed for full convergence can be very high.

Another set of tests have been devised to compare GA subtour solutions to exact
ones in random configurations of targets in the unit square. To find the exact solutions for
these tests, the simplest brute force approach (exhaustive evaluation of combinations) was
used. Figure 21 shows an optimal 7-from-30 subtour with specified starting point (the depot)
and the solution found by the GA. Table 10 summarizes the results for different subtour
problems.

Figure 22 shows a sample subtour for a problem, where the total number of targets is
n = 100 and the shortest path is sought connecting any k = 20 targets (a no depot problem).

As previously described, the Subtour solutions can be used as a starting set of solutions
for solving the more challenging multiagent planning problem. In Figure 23, few preliminary
examples are shown from our work on the multiagent planning problem.

8. Conclusions

This paper describes a genetic goal planner for generating a near-optimal strategy, a subtour,
for visiting a subset of known targets/goals. The importance of this work is to provide the
ability to a single agent to plan a strategy—a subtour—by organizing a sequence of targets
autonomously. This planning capability is a starting step toward a multiagent planning

24 Mathematical Problems in Engineering

0

0.5

1

Y
co
o
rd
in
at
e

a

0 0.5 1

X coordinate

Exact solution

GA subtour

Figure 21: Comparison between the exact 6-from-40 subtour (length = 0.53) and the GA solution (length =
0.58). The fixed starting point (depot) is a.

0

0.5

1

Y
co
o
rd
in
at
e

0 0.5 1

X coordinate

Figure 22: GA-generated 20-from-100 subtour solution of length 1.16. Optimal solution is not known.

system, where agents are able to collectively decide on the overall mission strategy, allocating
and sharing a given number of tasks/goals, with important applications in problems where
there is limited/no human feedback (like planetary space exploration or search and rescue in
collapsed buildings).

The results presented here show the success of the implemented genetic algorithm.
In particular, we demonstrated that the proposed combination of genetic operators (double
crossover with mutation) and local boosting technique (the 2-opt method) provides an
efficient solver for otherwise hard combinatorial problems (TSP, subtour problem).

Mathematical Problems in Engineering 25

0

2

4

6

8

10

12

14

×103

Y
co
o
rd
in
at
e

0 5 10 15 20

×103X coordinate

(a) 76 cities and 5 agents

0

1

2

×103

Y
co
o
rd
in
at
e

0 2 4

×103X coordinate

(b) 100 cities and 5 agents

Figure 23: MAPP examples.

Cutting point

s1

s2

1 2 3 4 5 6 7 8

3 9 8 4 0 5 6 2

(a) Parents s1 and s2 are cut at the same
point

s1

s2

s3

s4

1 2 3 4 5 6 7 8

3 9 8 4 0 5 6 2

1 2 3 4 0 5 6 2

3 9 8 4 5 6 7 8

(b) Two new temporary solutions, s3 and s4, are generated, but some replications can occur

Figure 24: Single cutting-point crossover. For clearness, only the indexes of the targets are reported and
agent a is not shown.

Appendices

A. Single Cutting-Point Crossover

With the single cutting-point crossover operator, parents are halved at the same gene. The
cutting point is chosen either randomly or to break the longest edge in the parents (the
probability of which one of the two methods is applied is specified a priori).

Consider two parents, s1 = (a, t1, t2, t3, t4, t5, t6, t7, t8) and s2 = (a, t3, t9, t8, t4, t0, t5, t6, t2).
Since the first gene in all the chromosomes is always a, for clarity we only show the operations
of the target genes. Figure 24(a) shows the two parents both being cut at the fourth gene.

Once the parent chromosomes are divided, the two offsprings s3 and s4 are created
by combining the first (second) half of s1 with the second (first) half of s2, respectively.
This operator is designed to preserve the length of the chromosomes. However, as shown
in Figure 24(b), a simple recombination of the halves of the parents could result in unfeasible
solutions, since some targets could appear twice in the same chromosome (e.g., target t2 in s3
appears twice, so does target t8 in s4).

26 Mathematical Problems in Engineering

s4

s1

s3

3 9 8 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 0 5 6 2

3 9 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 0 5 6 8

s4

s1

s3

Figure 25: Single cutting-point crossover: new feasible solutions. For clarity, only the indices of the targets
are reported and agent a is not considered.

Cutting point

Cutting point

s1

s2

1 2 3 4 5 6 7 8

3 7 5 4 0 1 6 9

(a) Double cutting-point crossover: parents
are cut at two different points

s3

s4

s2

s1

3 7 5 4 0 1 6 9

1 2 3 4 5 6 7 8

1 2 1 6 9

3 7 5 4 0 3 4 5 6 7 8

(b) Double cutting-point crossover: halves have different
size

Figure 26:Double cutting-point crossover: a simple recombination is not possible, since the new offsprings
s3 and s4 can have different lengths. For clearness, only the indexes of the targets are reported and agent a
is not shown.

To restore the feasibility of the solutions, the replicated genes in the offsprings must be
replaced by ones not already present in these chromosomes. To achieve this, the following
replacement method has been devised. Without loss of generality, let us suppose that in
both chromosomes s3 and s4 only genes that originate from parent s2 need to be replaced.
Therefore, when a gene is replaced, it is replaced by the corresponding gene in parent s1.
This method is applied iteratively, until two feasible solutions (without gene repetitions) are
obtained.

In the example shown in Figure 25, genes are substituted as follows. At first, since
s3(8) = s3(2) = 2, gene s3(8) is replaced by the corresponding gene s1(8) = 8. At the same
step, since s4(3) = s4(8) = 8, gene s4(3) is replaced by the corresponding gene s1(3) = 3.
At the end of this first iteration, the new offspring s4 is still unfeasible (s4(1) = s4(3) = 3).
Therefore, a new step is performed and s4(1) is replaced by s1(1) = 1. Note that only the
genes that came from parent s2 have been replaced.

This way, the substitutions are executed without introducing new targets, and thus,
the genetic material of the parents is preserved.

B. Double Cutting-Point Crossover

With the double cutting point crossover operator the cutting points of the parents can
be different (see Figure 26(a)). The cutting points can be selected in two different ways,

Mathematical Problems in Engineering 27

s1

s3

s4

1 2

3 4 5 6 7 8

1 2 3 4 5 6 7 8

Figure 27: Double cutting-point crossover: at first, the offsprings s3 and s4 are filled with the genes of the
parent s1. For clearness, a is not considered, since it is always at the beginning of the chromosomes.

Table 11: The first (second) half of the chromosome s3 (s4) is filled with the first (second) half of parent s1.

s1 = (x1, . . . , xi, xi+1, . . . , xk)

⇓

s3 = (x1, . . . , xi, still empty)

s4 = (still empty xi+1, . . . , xk)

Table 12: Parent s2 is cut at gene j and the temporary chromosome s̃2 is derided from switching the halves
of s2.

s2 = (x1, . . . , xj , xj+1, . . . , xk)

⇓

s̃2 = (xj+1, . . . , xk , x1, . . . , xj)

depending on preassigned probabilities plong-cut: they are chosen either randomly or to
cut the longest edge in the parents. An important consequence of having two different
cutting points is that the halves of the parents may have a different number of genes. Thus,
a simple swapping recombination would result in offsprings with different lengths (see
Figure 26(b)).

Since the length of the chromosomes is fixed (the number of targets in the subtour is
given) to obtain feasible solutions, the offsprings are filled with the following ad hoc method.
Consider two parents, s1 and s2, and their offsprings s3 and s4. Suppose that parent s1 is cut at
the ith gene, while parent s2 is cut at the jth gene. In the implemented method, at first, parent
s1 fills the offsprings s3 and s4 with its halves such that the first (second) half of the offspring
s3 (s4) is the same as the first (second) half of s1 (see Figure 27 and Table 11).

Similarly to the example for the single cutting-point crossover, genes coming from
parent s1 will not be changed. For completing s3 and s4, only genes of parent s2 are used. For
a better explanation of the process for filling the remaining halves of the offsprings, let us
introduce the temporary chromosome s̃2; that is simply obtained by switching the halves of
s2 (obviously considering the cutting point j), as reported in Table 12.

The implemented method is based on both s2 and s̃2. At first, the second half of s3 is
filled using only the parent s2: starting from its first gene, and skipping the already present
genes, offspring s3 is completed (see Figure 28). Then, offspring s4 is filled in the same way
but using the temporary chromosome s̃2.

28 Mathematical Problems in Engineering

s2

s3

s4

s̃2 1 6�� 9 3 7 5 4 0

1 9 3 4 5 6 7 8

1 2 3 7 5 4 0 6

3 7 5 4 0 1�� 6 9

Figure 28: Double cutting-point crossover: the second halves of the offsprings s3 and s4 are filled with the
parent s2 and the temporary chromosome s̃2. As usual, the starting position is not considered, since it is
always at the beginning of the chromosomes.

Acknowledgments

The authors would like to thank the reviewers for their careful reading of the paper and their
constructive criticism.

References

[1] E. T. Baumgartner, “In-situ exploration of Mars using rover systems,” in Proceedings of the AIAA Space
2000 Conference, Long Beach, Calif, USA, 2000.

[2] S. Hayati, V. Volpe, P. Backes et al., “Rocky 7 rover: a Mars sciencecraft prototype,” in Proceedings of
the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2458–2464, Albuquerque, NM,
USA, 1997.

[3] Mars Exploration Rover Missions, http://marsrovers.nasa.gov/home/.
[4] Sojourner Rover Home Page, http://mpfwww.jpl.nasa.gov/rover/sojourner.html.
[5] A. Birk and S. Carpin, “Rescue robotics—a crucial milestone on the road to autonomous systems,”

Advanced Robotics, vol. 20, no. 5, pp. 595–605, 2006.
[6] S. Sariel and H. Akin, “A novel search strategy for autonomous search and rescue robots,” in RoboCup

2004: Robot Soccer World Cup VII, D. Nardi, M. Riedmiller, C. Sammut et al., Eds., vol. 3276/2005, pp.
459–466, Springer, New York, NY, USA, 2005.

[7] G. Muscato, F. Russo, and D. Caltabiano, “Localization and self-calibration of a robot for volcano
exploration,” in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, 2004.

[8] S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff, “High fidelity tools for rescue robotics: results
and perspectives,” in RoboCup 2005: Robot Soccer World Cup IX, vol. 4020 of Lecture Notes in Computer
Science, pp. 301–311, 2006.

[9] A. Jacoff, E. Messina, and J. Evans, Experiences in Deploying Test Arenas for Autonomous Mobile Robots,
NIST Special, Gaithersburg, Md, USA, 2002.

[10] H. Kitano, “RoboCup-97: robot soccer world cup I,” Lectures Notes in Computer Science, vol. 1395 of
Lecture Note in Artificial Intelligence, Springer, Berlin, Germany, 1998.

[11] T. Kalmár-Nagy, R. D’Andrea, and P. Ganguly, “Near-optimal dynamic trajectory generation and
control of an omnidirectional vehicle,” Robotics and Autonomous Systems, vol. 46, no. 1, pp. 47–64,
2004.

[12] M. Ai-Chang, J. Bresina, L. Charest et al., “Mapgen: mixed-initiative planning and scheduling for the
mars exploration rover mission,” IEEE Intelligent Systems, vol. 19, no. 1, pp. 8–12, 2004.

[13] P. Maldague, A. Ko, D. Page, and T. Starbird, “APGEN: a multi-mission semi-automated planning
tool,” in Proceedings of the 1st International NASA Workshop on Planning and Scheduling (AIAA ’97), A.
press, Ed., 1997.

Mathematical Problems in Engineering 29

[14] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams, “Remote agent: to boldly go where no AI
system has gone before,” Artificial Intelligence, vol. 103, no. 1-2, pp. 5–47, 1998.

[15] K. H. Low, W. K. Leow, and M. H. Ang Jr., “A hybrid mobile robot architecture with integrated
planning and control,” in Proceedings of the International Conference on Autonomous Agents, pp. 219–
226, ACM Press, Bologna, Italy, 2002.

[16] R. Sherwood, A. Mishkin, S. Chien et al., “An integrated planning and scheduling prototype
for automated Mars rover command generation,” Jet propulsion laboratory, california institute of
technology, NASA, 2001.

[17] S. M. LaValle, Planning Algorithms, Cambridge University Press, Cambridge, UK, 2006.

[18] A. Sipahioglu, A. Yazici, O. Parlaktuna, and U. Gurel, “Real-time tour construction for a mobile robot
in a dynamic environment,” Robotics and Autonomous Systems, vol. 56, no. 4, pp. 289–295, 2008.

[19] P. Tompkins, A. Stentz, and D. Wettergreen, “Mission-level path planning and re-planning for rover
exploration,” Robotics and Autonomous Systems, vol. 54, no. 2, pp. 174–183, 2006.

[20] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski, “Adaptive evolutionary planner/navigator
for mobile robots,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 18–28, 1997.

[21] K. Savla, F. Bullo, and E. Frazzoli, “On traveling salesperson problems for dubins’ vehicle: stochastic
and dynamic environments,” in Proceedings of the 44th IEEE Conference on Decision and Control, and the
European Control Conference (CDC-ECC ’05), vol. 2005, pp. 4530–4535, 2005.

[22] G. Giardini and T. Kalmár-Nagy, “Centralized and distributed path planning for multi-agent
exploration,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, vol. 3, pp. 2701–
2712, 2007.

[23] M. G. Earl and R. D’Andrea, “A decomposition approach to multi-vehicle cooperative control,”
Robotics and Autonomous Systems, vol. 55, no. 4, pp. 276–291, 2007.

[24] G. Gutin and A. Punnen, The Traveling Salesman Problem and Its Variations, vol. 12 of Combinatorial
Optimization, Kluwer Academic, Dordrecht, The Netherlands, 2002.

[25] Traveling Salesman Problem, http://www.tsp.gatech.edu/.

[26] D. S. Johnson and L. A. McGeoch, “The traveling salesman problem: a case study,” in Local Search in
Combinatorial Optimization, pp. 215–310, John Wiley & Sons, Chichester, UK, 1997.

[27] D. H. Gensch, “An industrial application of the traveling Salesman’s subtour problem,” IIE
Transactions, vol. 10, no. 4, pp. 362–370, 1978.

[28] G. Laporte and S. Martello, “The selective travelling salesman problem,”Discrete Applied Mathematics,
vol. 26, no. 2-3, pp. 193–207, 1990.

[29] B. Verweij and K. Aardal, “The merchant subtour problem,” Mathematical Programming, vol. 94, no.
2-3, pp. 295–322, 2003, The Aussois 2000 Workshop in Combinatorial Optimizatio.

[30] A. Westerlund, Decomposition schemes for the traveling salesman subtour problem, Ph.D. thesis,
Linkopings University, Linkopings, Sweden, 2002.

[31] A. Westerlund, M. Göthe-Lundgren, and T. Larsson, “A stabilized column generation scheme for the
traveling salesman subtour problem,” Discrete Applied Mathematics, vol. 154, no. 15, pp. 2212–2238,
2006.

[32] T. Bäck, Evolutionary Algorithms in Theory and Practice, The Clarendon Press Oxford University Press,
New York, NY, USA, 1996.

[33] T. Bäck, D. Fogel, and Z. Michalewicz, Handbook of Evolutionary Computation, Institute of Physics
Publishing, Bristol, UK, 1997.

[34] A. E. Carter, Design and application of genetic algorithms for the multiple traveling salesperson assignment
problem, Ph.D. thesis, Department of Management Science and Information Technology, Virginia
Polytechnic Institute and State University, Virginia, Va, USA, 2003.

[35] A. E. Carter and C. T. Ragsdale, “A new approach to solving the multiple traveling salesperson
problem using genetic algorithms,” European Journal of Operational Research, vol. 175, no. 1, pp. 246–
257, 2006.

[36] J. Kubalı́k, J. Kléma, and M. Kulich, “Application of soft computing techniques to rescue operation
planning,” in Proceedings of the 4th IEEE International Conference on Intelligent Systems Design and
Application, vol. 3070 of Lecture Notes in Artificial Intelligence, pp. 897–902, Budapest, Hungary, 2004.

[37] K. Bryant, Genetic algorithms and the traveling salesman problem, Ph.D. thesis, Department of
Mathematics, Harvey Mudd College, Claremont, Calif, USA, 2000.

30 Mathematical Problems in Engineering

[38] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley,
Boston, Mass, USA, 1989.

[39] K. Katayama, H. Sakamoto, and H. Narihisa, “The efficiency of hybrid mutation genetic algorithm
for the travelling salesman problem,” Mathematical and Computer Modelling, vol. 31, no. 10–12, pp.
197–203, 2000.

[40] The VRP, http://neo.lcc.uma.es/radi-aeb/WebVRP/.
[41] F. Pereira, J. Tavares, P. Machado, and E. Costa, “GVR: a new genetic representation for the vehicle

routing problem,” in Proceedings of the Artificial Intelligence and Cognitive Science, Lecture Notes in
Computer Science, pp. 95–102, 2002.

[42] T. K. Ralphs, L. Kopman, W. R. Pulleyblank, and L. E. Trotter, “On the capacitated vehicle routing
problem,” Mathematical Programming, vol. 94, no. 2-3, pp. 343–359, 2003, The Aussois 2000 Workshop
in Combinatorial Optimizatio.

[43] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London, UK, 1976.
[44] R. Diestel, Graph Theory, vol. 173 of Graduate Texts in Mathematics, Springer, Berlin, Germany, 3rd

edition, 2005.
[45] S. Hong and M. W. Padberg, “A note on the symmetric multiple traveling salesman problem with

fixed charges,” Operations Research, vol. 25, no. 5, pp. 871–874, 1977.
[46] E. Balas and P. Toth, “Branch and bound methods,” in The Traveling Salesman Problem, pp. 361–401,

Wiley, Chichester, UK, 1985.
[47] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete

Mathematics, John Wiley & Sons, Chichester, UK, 1986, A Wiley-Interscience Publicatio.
[48] S. Tschoke, R. Luling, and B. Monien, “Solving the traveling salesman problem with a distributed

branch-and-bound algorithm on a 1024 processor network,” in Proceedings of the 9th IEEE Symposium
on Parallel and Distributed Processing, pp. 182–189, 1995.

[49] S. R. Thangiah, “Vehicle routing with time windows using genetic algorithms,” in Application
Handbook of Genetic Algorithms: New Frontiers, L. Chambers, Ed., vol. 2, pp. 253–277, CRC Press, Boca
Raton, Fla, USA, 1995.

[50] Y. Chen and P. Zhang, “Optimized annealing of traveling salesman problem from the nth-nearest-
neighbor distribution,” Physica A: Statistical Mechanics and its Applications, vol. 371, no. 2, pp. 627–632,
2006.

[51] M. Rocha and J. Neves, “Preventing premature convergence to local optima in Genetic Algorithms
via random offspring generation,” in Proceedings of the 12th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems: Multiple Approaches to Intelligent
Systems, Cairo, Egypt, 1999.

[52] M. Affenzeller and S. Wagner, “SASEGASA: an evolutionary algorithm for retarding premature
convergence by self-adaptive selection pressure steering,” in Computational Methods in Neural
Modeling, vol. 2686 of Lecture Notes in Computer Science, pp. 438–445, Springer, New York, NY, USA,
2003.

[53] V. Kureichick, A. N. Melikhov, V. V. Miaghick, O. V. Savelev, and A. P. Topchy, “Some new features in
genetic solution of the traveling salesman problem,” in Proceedings of the 2nd International Conference of
the Integration of Genetic Algorithms and Neural Network Computing and Related Adaptive Computing with
Current Engineering Practice, I. Parmee and M. J. Denham, Eds., Adaptive Computing in Engineering
Design and Control 96, Plymouth, UK, 1996.

[54] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, Mass, USA, 1996.
[55] M.Matayoshi, M. Nakamura, andH.Miyagi, “A genetic algorithmwith the improved 2-opt method,”

in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3652–3658,
2004.

[56] J. L. Bentley, “Experiments on traveling salesman heuristics,” in Proceedings of the 1st Annual ACM-
SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia,
Pa, USA, 1990.

[57] H. Sengoku and I. Yoshihara, “A fast TSP solver using GA on JAVA,” in Proceedings of the 3rd
International Symposium on Artificial Life, and Robotics (AROB ’98), 1998.

[58] J. Watson, C. Ross, V. Eisele et al., “The traveling salesman problem, edge assembly crossover, and 2-
opt,” in Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, Springer,
Amsterdam, Netherlands, 1998.

[59] Reinelt, “TSPLIB. A traveling salesman problem library,” ORSA Journal on Computing, vol. 3, no. 4,
pp. 376–384, 1991.

Mathematical Problems in Engineering 31

[60] G. Giardini and T. Kalmár-Nagy, “Performance metrics and evaluation of a path planner based on
genetic algorithms,” in Proceedings of the Performance Metrics for Intelligent SystemsWorkshop (PerMIS
’07), pp. 84–90, ACM Press, New York, NY, USA, 2007.

[61] M. Padberg and G. Rinaldi, “Optimization of a 532-city symmetric traveling salesman problem by
branch and cut,” Operations Research Letters, vol. 6, no. 1, pp. 1–7, 1987.

[62] U. Yoshiyuki and K. Yoshiki, “New method of solving the traveling salesman problem based on real
space renormalization theory,” Physical Review Letters, vol. 75, no. 9, pp. 1683–1686, 1995.

[63] P.Merz and B. Freisleben, “Memetic algorithms for the traveling salesman problem,”Complex Systems,
vol. 13, no. 4, pp. 297–345, 2001.

[64] H. Tsai, J. Yang, and C. Kao, “Solving travelling salesman problems by combining global and local
search mechanisms,” in Proceedings of the Congress on Evolutionary Computation, vol. 2, 2002.

[65] R. Ugajin, “Method to solve the travelling salesman problem using the inverse of diffusion process,”
Physica A. Statistical Mechanics and its Applications, vol. 307, no. 1-2, pp. 260–268, 2002.

[66] H. Yi, L. Guangyuan, and Q. Yuhui, “A parallel tabu search algorithm based on partitioning principle
for TSPs,” IJCSNS, vol. 6, no. 8, pp. 146–150, 2006.

[67] Concorde TSP Solver, http://www.tsp.gatech.edu/concorde.html.

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

