
Research Article

Genetic Algorithm for Traveling Salesman Problem with
Modified Cycle Crossover Operator

Abid Hussain,1 Yousaf Shad Muhammad,1 M. Nauman Sajid,2

Ijaz Hussain,1 Alaa Mohamd Shoukry,3,4 and Showkat Gani5

1Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan
2Department of Computer Science, Foundation University, Islamabad, Pakistan
3Arriyadh Community College, King Saud University, Riyadh, Saudi Arabia
4KSAWorkers University, El Mansoura, Egypt
5College of Business Administration, King Saud University, Muzahimiyah, Saudi Arabia

Correspondence should be addressed to Yousaf Shad Muhammad; yousuf@qau.edu.pk

Received 1 June 2017; Revised 17 July 2017; Accepted 7 August 2017; Published 25 October 2017

Academic Editor: Silvia Conforto

Copyright © 2017 Abid Hussain et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the �ttest idea. �ese
methods do not ensure optimal solutions; however, they give good approximation usually in time.�e genetic algorithms are useful
for NP-hard problems, especially the traveling salesman problem. �e genetic algorithm depends on selection criteria, crossover,
and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such
as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling
salesman problem tominimize the total distance.�is approach has been linked with path representation, which is themost natural
way to represent a legal tour. Computational results are also reported with some traditional path representation methods like
partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found
improvements.

1. Introduction

Genetic algorithms (GAs) are derivative-free stochastic
approach based on biological evolutionary processes pro-
posed by Holland [1]. In nature, the most suitable individuals
are likely to survive and mate; therefore, the next generation
should be healthier and �tter than previous one. A lot
of work and applications have been done about GAs in
a frequently cited book by Golberg [2]. GAs work with
population of chromosomes that are represented by some
underlying parameters set codes.

�e traveling salesman problem (TSP) is one of the
most famous benchmarks, signi�cant, historic, and very hard
combinatorial optimization problem. TSP was documented
by Euler in 1759, whose interest was in solving the knight’s
tour problem [3]. It is the fundamental problem in the

�elds of computer science, engineering, operations research,
discrete mathematics, graph theory, and so forth. TSP can be
described as the minimization of the total distance traveled
by touring all cities exactly once and return to depot city.�e
traveling salesman problems (TSPs) are classi�ed into two
groups on the basis of the structure of the distance matrix as
symmetric and asymmetric. �e TSP is symmetric if ��� = ���,
∀�, �, where � and � represent the row and column of a distance
(cost)matrix, respectively, otherwise asymmetric. For � cities,
there are (� − 1)! possible ways to �nd the tour a�er �xing
the starting city for asymmetric and its half for symmetric
TSP. If we have only 10 cities, then there are 362,880 and
181,440ways for asymmetric and symmetric TSP, respectively.
�is is the reason to say TSP is NP-hard problem. TSP has
many applications such as variety of routing and scheduling
problems, computer wiring, and movement of people, X-ray

Hindawi
Computational Intelligence and Neuroscience
Volume 2017, Article ID 7430125, 7 pages
https://doi.org/10.1155/2017/7430125

https://doi.org/10.1155/2017/7430125


2 Computational Intelligence and Neuroscience

crystallography [4], and automatic drilling of printed circuit
boards and threading of scan cells in a testable Very-Large-
Scale-Integrated (VLSI) circuits [5].

Over the last three decades, TSP received considerable
attention and various approaches are proposed to solve the
problem, such as branch and bound [6], cutting planes [7],
2-opt [8], particle swarm [9], simulated annealing [10], ant
colony [11, 12], neural network [13], tabu search [14], and
genetic algorithms [3, 15–17]. Some of these methods are
exact, while others are heuristic algorithms. A comprehensive
study about GAs approaches are successfully applied to the
TSP [18]. A survey of GAs approaches for TSP was presented
by Potvin [17]. A new sequential constructive crossover
generates high quality solution to the TSP by Ahmed [19].
A new genetic algorithm for asymmetric TSP is proposed
by Nagata and Soler [20]. �ree new variations for order
crossover are presented with improvements by Deep and
Adane [21]. Ghadle and Muley presented modi�ed one’s
algorithm with MATLAB programming to solve TSP [22].
Piwonska associated a pro�t based genetic algorithm with
TSP and obtained good results to be tested on networks
of cities in some voivodeships of Poland [23]. Kumar et
al. presented the comparative analysis of di�erent crossover
operators for TSP and showed partially mapped crossover
gives shortest path [24]. A simple and pure genetic algorithm
can be de�ned in the following steps.

Step 1. Create an initial population of P chromosomes.

Step 2. Evaluate the �tness of each chromosome.

Step 3. Choose P/2 parents from the current population via
proportional selection.

Step 4. Randomly select two parents to create o�spring using
crossover operator.

Step 5. Apply mutation operators for minor changes in the
results.

Step 6. Repeat Steps 4 and 5 until all parents are selected and
mated.

Step 7. Replace old population of chromosomes with new
one.

Step 8. Evaluate the �tness of each chromosome in the new
population.

Step 9. Terminate if the number of generations meets some
upper bound; otherwise go to Step 3.

�e selection criteria, crossover, and mutation are major
operators, but crossover plays a vital role in GAs. A lot of
crossover operators have been proposed in literature and
all have their signi�cant importance. In this article, we also
proposed a new crossover operator for TSP which is moved
within two selected parents as previous cycle crossover oper-
ator. In Section 2, we present crossover operators for TSP and
proposed a new crossover operator for path representation in

Table 1: Summary of crossover operators for TSP.

Representation Crossover operators Proposed year

Binary Classical + repair operator 1991

Path

Partially mapped crossover 1985

Order crossover 1985

Cycle crossover 1987

Heuristic crossover 1987

Order based crossover 1991

Position based crossover 1991

Adjacency

Alternative edge crossover 1985

Heuristic crossover 1 1985

Heuristic crossover 2 1989

Heuristic crossover 3 1987

Ordinal Classical operators 1985

Matrix
Intersection crossover 1987

Union crossover 1987

Section 3; computational experiments and discussion are in
Section 4 and conclusion is in Section 5.

2. Crossover Operators for TSP

In literature, there are many representations to solve the TSP
using the GAs. Among these binary, path, adjacency, ordinal,
and matrix representations are important. �e further types
of these representations are given in Table 1. We are limiting
our self only with the path representation which is most
natural and legal way to represent a tour and skip the others
representations.

2.1. Path Representation. �e most natural way to present
a legal tour is probably by using path representation. For
example, a tour 1 → 4 → 8 → 2 → 5 → 3 → 6 → 7
can be represented simply as (1 4 8 2 5 3 6 7).

Since the TSPs in combinatorial with the path repre-
sentation and the classical crossover operators such as one-
point, two-point, and uniform crossovers are not suitable,
we choose only partially mapped, order, and cycle crossover
operators from path representation which are mostly used in
literature and also we can compare our proposed crossover
operator with these operators.

2.1.1. Partially Mapped Crossover Operator. �e partially
mapped crossover (PMX) was proposed by Goldberg and
Lingle [25]. A�er choosing two random cut points on parents
to build o�spring, the portion between cut points, one
parent’s string is mapped onto the other parent’s string
and the remaining information is exchanged. Consider, for
example, the two parents tours with randomly one cut point
between 3rd and 4th bits and other cut point between 6th and
7th bits are as follows (the two cut points marked with “|”):

�1 = (3 4 8 | 2 7 1 | 6 5) ,

�2 = (4 2 5 | 1 6 8 | 3 7) .
(1)



Computational Intelligence and Neuroscience 3

�e mapping sections are between the cut points. In this
example, the mapping systems are 2 ↔ 1, 7 ↔ 6, and 1 ↔ 8.
Now two mapping sections are copied with each other to
make o�spring as follows:

�1 = (× × × | 1 6 8 | × ×) ,

�2 = (× × × | 2 7 1 | × ×) .
(2)

�en we can �ll further bits (from the original parents),
for those which have no con�ict as follows:

�1 = (3 4 × | 1 6 8 | × 5) ,

�2 = (4 × 5 | 2 7 1 | 3 ×) .
(3)

Hence, the �rst × in the �rst o�spring is 8 which comes
from �rst parent but 8 is already in this o�spring, so we check
mapping 1 ↔ 8 and see again 1 existing in this o�spring,
again checkmapping 2 ↔ 1, so 2 occupies at �rst ×. Similarly,
the second × in �rst o�spring is 6 which comes from �rst
parent but 6 exists in this o�spring; we check mapping 7 ↔ 6
as well, so 7 occupies at second ×. �us the o�spring 1 is

�1 = (3 4 2 | 1 6 8 | 7 5) . (4)

Analogously, we complete second o�spring as well:

�2 = (4 8 5 | 2 7 1 | 3 6) . (5)

2.1.2. Order Crossover Operator. �e order crossover (OX)
was proposed by Davis [26]. It builds o�spring by choosing
a subtour of a parent and preserving the relative order of bits
of the other parent. Consider, for example, the two parents
tours are as follows (with randomly two cut points marked
by “|”):

�1 = (3 4 8 | 2 7 1 | 6 5) ,

�2 = (4 2 5 | 1 6 8 | 3 7) .
(6)

�e o�spring are produced in the followingway. First, the bits
are copied down between the cuts with similar way into the
o�spring, which gives

�1 = (× × × | 2 7 1 | × ×) ,

�2 = (× × × | 1 6 8 | × ×) .
(7)

A�er this, starting from the second cut point of one parent,
the bits from the other parent are copied in the same order
omitting existing bits. �e sequence of the bits in the second
parent from the second cut point is “3 → 7 → 4 → 2 →
5 → 1 → 6 → 8.” A�er removal of bits 2, 7, and 1, which are
already in the �rst o�spring, the new sequence is “3 → 4 →
5 → 6 → 8.” �is sequence is placed in the �rst o�spring
starting from the second cut point:

�1 = (5 6 8 | 2 7 1 | 3 4) . (8)

Analogously, we complete second o�spring as well:

�2 = (4 2 7 | 1 6 8 | 5 3) . (9)

2.1.3. Cycle Crossover Operator. �e cycle crossover (CX)
operator was �rst proposed by Oliver et al. [27]. Using this
technique to create o�spring in such a way that each bit with
its position comes from one of the parents. For example,
consider the tours of two parents:

�1 = (1 2 3 4 5 6 7 8) ,

�2 = (8 5 2 1 3 6 4 7) .
(10)

Now it is up to us how we choose the �rst bit for the o�spring
to be either from the �rst or from the second parent. In our
example, the �rst bit of the o�spring has to be 1 or 8. Let us
choose it be 1:

�1 = (1 × × × × × × ×) . (11)

Now every bit in the o�spring should be taken from one of
its parents with the same position, it means that further we
do not have any choice, so the next bit to be considered must
be bit 8, as the bit from the second parent is just below the
selected bit 1. In �rst parent this bit is at 8th position; thus

�1 = (1 × × × × × × 8) . (12)

�is turnout implies bit 7, which is the bit of second parent
just below the selected bit at 7th position in �rst parent. �us

�1 = (1 × × × × × 7 8) . (13)

Next, this forced us to put 4 at 4th position as

�1 = (1 × × 4 × × 7 8) . (14)

A�er this, 1 comes which is already in the list; thus we have
completed a cycle and �lling the remaining blank positions
with the bits of those positions which are in second parent:

�1 = (1 5 2 4 3 6 7 8) . (15)

Similarly the second o�spring is

�2 = (8 2 3 1 5 6 4 7) . (16)

But there is a drawback that sometimes this technique
produces same o�spring, for example, the following two
parents:

�1 = (3 4 8 2 7 1 6 5) ,

�2 = (4 2 5 1 6 8 3 7) .
(17)

A�er applying CX technique, the resultant o�spring are as
follows:

�1 = (3 4 8 2 7 1 6 5) ,

�2 = (4 2 5 1 6 8 3 7) ,
(18)

which are the exactly the same as their parents.



4 Computational Intelligence and Neuroscience

3. Proposed Crossover Operators

We are going to propose a new crossover operator which
works similarly as CX, so we suggest it as CX2. At the same
time it generates both o�spring from parents using cycle(s)
till last bit. We di�erentiate CX2 in the following steps.

Step 1. Choose two parents for mating.

Step 2. Select 1st bit from second parent as a 1st bit of �rst
o�spring.

Step 3. �e selected bit from Step 2 would be found in �rst
parent and pick the exact same position bit which is in second
parent and that bit would be found again in the �rst parent
and, �nally, the exact same position bit which is in second
parent will be selected for 1st bit of second o�spring.

Step 4. �e selected bit from Step 3 would be found in �rst
parent and pick the exact same position bit which is in second
parent as the next bit for �rst o�spring. (Note: for the �rst
o�spring, we choose bits only with one move and two moves
for second o�spring’s bits.)

Step 5. Repeat Steps 3 and 4 till 1st bit of �rst parent will not
come in second o�spring (complete a cycle) and process may
be terminated.

Step 6. If some bits are le�, then the same bits in �rst parent
and in second o�spring till now and vice versa are le� out
from both parents. For remaining bits repeat Steps 2, 3, and
4 to complete the process.

According to the previous steps, we derive two cases for
CX2. First case of CX2 will be terminated within Step 5 and
second will take all six steps.We provide detailed examples of
both cases in next subsections.

3.1. CX2: Case 1. Consider the two selected parents as men-
tioned in Step 1:

�1 = (3 4 8 2 7 1 6 5) ,

�2 = (4 2 5 1 6 8 3 7) .
(19)

Using Step 2,

�1 = (4 × × × × × × ×) . (20)

As using Step 3 which selected 4 in Step 2, where 4 is found
at second position in �rst parent and the bit at this position in
second parent is 2. For searching again, 2 is at fourth position
in �rst parent and 1 is at same position in second parent, so 1
is selected for second o�spring as follows:

�2 = (1 × × × × × × ×) . (21)

To follow Step 4, the previous bit was 1 and it is located at 6th
position in �rst parent and at this position bit is 8 in second
parent, so

�1 = (4 8 × × × × × ×) . (22)

And for two moves below 8 is 5 and below 5 is 7, so

�2 = (1 7 × × × × × ×) . (23)

Hence similarly,

�1 = (4 8 6 2 5 3 1 7) ,

�2 = (1 7 4 8 6 2 5 3) .
(24)

We see that the last bit of second o�spring is 3 which was the
1st bit of �rst parent. Hence proposed scheme is over within
one cycle.

3.2. CX2: Case 2. Consider the two selected parents as
mentioned in Step 1:

�1 = (1 2 3 4 5 6 7 8) ,

�2 = (2 7 5 8 4 1 6 3) .
(25)

Now using Step 2 of the scheme,

�1 = (2 × × × × × × ×) . (26)

A�er this, Step 3 calls us to locate the position of bit 2 in �rst
parent, which is at 2nd and 7 is at same position in second
parent, again searching bit 7 in �rst parent and located at 7th
position and 6 is at the same position in second parent, so we
choose bit 6 for second o�spring:

�2 = (6 × × × × × × ×) . (27)

Continue Steps 4 and 5 as well:

�1 = (2 1 6 7 × × × ×) ,

�2 = (6 7 2 1 × × × ×) .
(28)

�e Step 5 is �nished because bit 1 has come in second
o�spring which was in 1st position of �rst parent. Now before
applying Step 6, we match �rst o�spring’s bits with second
parent or vice versa and leave out the existing bits with their
position in both parents as follwos:

�1 = (∙ ∙ 3 4 5 ∙ ∙ 8) ,

�2 = (∙ ∙ 5 8 4 ∙ ∙ 3) .
(29)

Now �lled positions of parents and “×” positions of o�spring
are considered 1st, 2nd, and 3rd positions, and so forth, so we
can complete Step 6 as well:

�1 = (2 1 6 7 | 5 3 8 4) ,

�2 = (6 7 2 1 | 8 4 5 3) .
(30)

Hence the scheme is over with e�cient work.
To apply this crossover operator, we made a MATLAB

code for genetic algorithms and have given pseudo-code in
Algorithm 1.



Computational Intelligence and Neuroscience 5

� ← No. of Edges
�← Population Size
� ← No. of Generations
� ← Random Population
For each 1 ≤ � ≤ �
{
For each 1 ≤ � ≤ �
{
Distance← square-root((�1 − �2)2 + (�1 − �2)2)
}
}
For each 1 ≤ � ≤ �
{
�(�, :) ← Rand perm(�)
}
For each 1 ≤ generation ≤ G
{
For each 1 ≤ � ≤ �
{
Sum1← Distance(�(�, 1), �(�,�))
For each 1 ≤ � ≤ � − 1
{
Sum2 ← Distance(�(�, �), �(�, � + 1)) + Sum2
}
�(� + 1) ← Sum1 + Sum2
}
� ← Sort(�)
� ← 0.8 ∗�
� ← 0.1 ∗�
Length← Length(�)/2
For each 1 ≤ � ≤ Length
{
C1← zeros(�)
C2← zeros(�)
�1 ← �(�(2 ∗ � − 1), 1 : �)
�2 ← �(�(2 ∗ �), 1 : �)
St1← 0
St2← 0
Where (Length(C1) ∼= Length(P1))
}
�1(St1)← �2(St1)
While (St1 < �)
{
Ind1← �nd(P1 == C1(St1))
Val1← P2(Ind1)
�2(St2)← Val1
St1← St1 + 1
Ind2← �nd(P2 == C2(St2))
Val2← �1(Ind2)
C1(St1)← Val2
St2← St2 + 1
}
}
�(� + 2 ∗ � − 1, 1 : �) = �1
�(� + 2 ∗ �, 1 : �) = �1
For each 1 ≤ � ≤ (� + 0.8 ∗�)
{
Sum1← Distance(�(1), �(2))
For each 1 ≤ � ≤ � − 1
{
Sum2← Distance(�(�), �(� + 1)) + Sum1

Algorithm 1: Continued.

}
�(� + 1) ← (Sum1 + Sum2)
R← Sort(�)
� ← �(1 : �)
� ← min(�)
Plot(�)
}
}

Algorithm 1: Pseudo-code of proposed algorithm CX2.

Table 2: Transition distance between cities.

City 1 2 3 4 5 6 7

1 0 34 36 37 31 33 35

2 — 0 29 23 22 25 24

3 — — 0 17 12 18 17

4 — — — 0 32 30 29

5 — — — — 0 26 24

6 — — — — — 0 19

7 — — — — — — 0

Table 3: Comparison of three crossover operators (30 runs).

Crossover Optimum
Average
value

Best value Worst value

PMX 17/30 159.7 159 165

OX 14/30 160.3 159 163

CX2 24/30 159.2 159 162

4. Computational Experiments and Discussion

We use genetic algorithm in MATLAB so�ware to compare
the proposed crossover operator with some traditional path
representation crossover operators. Our �rst experiment has
7 cities and we impose the transition distance between cities
in Table 2. To solve this problem using GAs, the genetic
parameters are set as population size, � = 30; maximum
generation, � = 10; crossover probability, �� = 0.8; mutation
probability,�� = 0.1. In this experiment, the optimal path and
optimal value are 6 → 1 → 5 → 3 → 4 → 2 → 7 and 159,
respectively.

Table 3 summarizes the results and shows that the
performance of CX2 is much better than the two existing
crossover operators with 30 runs.

4.1. Benchmark Problems. We perform the proposed cross-
over operator CX2 along two traditional crossover operators
PMX and OX on twelve benchmark instances which are
taken from the TSPLIB [28]. In these twelve problems, the
�v33, �v38, �53, kro124p, �v170, rbg323, rbg358, rbg403, and
rbg443, are asymmetric and gr21, fri26, and dantzig42 are
symmetric TSPs.�e experiments are performed 30 times (30
runs) for each instance.�e common parameters are selected
for GAs, that is, population size, maximum generation,
crossover, and mutation probabilities are 150, 500, 0.80, and



6 Computational Intelligence and Neuroscience

Table 4: Comparison results among three crossover operators.

Instance � Optimum
value

Results PMX OX CX2

Best 2962 3005 2995

gr21 21 2707 Worst 3322 3693 3576

Average 3127 3208 3145

Best 1056 1051 1099

fri26 26 937 Worst 1294 1323 1278

Average 1133 1158 1128

Best 1708 1804 1811

�v33 34 1286 Worst 2399 2366 2322

Average 2012 2098 2083

Best 2345 2371 2252

�v38 39 1530 Worst 2726 2913 2718

Average 2578 2617 2560

Best 1298 1222 0699

dantzig42 42 699 Worst 1606 1562 0920

Average 1425 1301 0802

Best 13445 13826 10987

�53 53 6905 Worst 16947 16279 13055

Average 14949 14724 12243

Generation = 500.

0.10, respectively, for less than 100 size instances and results
describes in Table 4. Only two changes for more than 100 size
instances, that is, population size and maximum generation
are 200 and 1000, respectively, and results are described in
Table 5. Both tables demonstrate comparison of proposed
crossover operator with two existing crossover operators with
best, worst, and average results. �ese results show that the
solution quality of the proposed algorithm and with existing
crossovers operators are insensitive to the number of runs but
number of generations are sensitive, especially in Table 5.

In Table 4, CX2 is performing with other two operators,
for instance, gr21 and �v33, on average basis. Proposed
operator gives best average results for instances fri26, �v38,
dantzig42, and �53. For instance dantzig42, the proposed
operator CX2, gives exact optimum value (best known value)
sixteen out of thirty times. But for this instance, PMX andOX
do not give us an exact value for any run and also we found
that the best tour generated with CX2 is 75 and 86 percent
shorter than the OX and PMX best tours, respectively. For
instance �53, we found 22 and 26 percent shorter distance
than PMX and OX best tours respectively. More interesting
aspect about CX2 is that the worst values of dantzig42 and
�53 are much better than others best values.

In Table 5, the results show that all crossover operators
work on similar pattern and also found less variations among
best, worst, and average values. PMXandOXperform slightly
better than CX2 in the instance for rbg323 and for all
others instances; the performance of CX2 falls between other
two operators except �v170. For instance, for �v170, CX2
performsmuchbetter than other twowith 108 and 137 percent

Table 5: Comparison results among three crossover operators.

Instance � Optimum
value

Results PMX OX CX2

Best 090231 097122 092450

kro124p 100 36230 Worst 118386 122497 121513

Average 100335 103457 101229

Best 13346 15202 6421

�v170 171 2755 Worst 19314 19708 8416

Average 16775 17569 7019

Best 4123 3998 4212

rbg323 323 1326 Worst 5147 5385 5342

Average 4434 4602 4654

Best 5380 5630 5404

rbg358 358 1163 Worst 5915 5948 6004

Average 5532 5830 5622

Best 6231 6196 6257

rbg403 403 2465 Worst 6653 6629 6671

Average 6536 6386 6455

Best 6754 6932 6854

rbg443 443 2720 Worst 7209 7351 7388

Average 6905 7121 6981

Generation = 1000.

shorter distance of best tours values from PMX and OX,
respectively.

Finally, the overall results summarize that the proposed
approach CX2 performs better on some aspects similar to
existing PMX and OX crossover operators.

5. Conclusion

Various crossover operators have been presented for TSPwith
di�erent applications by using GAs. �e PMX and OX along
with proposed crossover operator CX2 are mainly focused
in this article. At �rst, we apply these three operators on a
manual experiment and found that CX2 performs better than
PMX and OX crossovers. Also, for a global performance, we
take twelve benchmark instances from the TSPLIB (traveling
salesman problem library). We apply all three crossover
operators on these benchmark problems.We observe that the
proposed operator works over 20, 70, and 100 percent for
�53, dantzig42, and �v170 problems, respectively, compared
to the other two operators. We see that, for large number of
instances, the proposed operator CX2 is performing much
better than PMX andOXoperators.We suggest that CX2may
be a good candidate to get accurate results or may be a fast
convergent. Moreover, researchers will be more con�dent to
use it for comparisons.

Conflicts of Interest

�e authors declare that there are no con�icts of interest
regarding the publication of this paper.



Computational Intelligence and Neuroscience 7

Acknowledgments

�e authors extend their appreciation to the Deanship of
Scienti�c Research at King Saud University for funding this
work through Research Group no. RG-1437-027.

References

[1] J. H. Holland, Adaptation in Natural and Arti�cial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Arti�cial Intelligence, University ofMichigan Press, Oxford, UK,
1975.

[2] D. E. Golberg, Genetic algorithms in search, optimization and
machine learning, Addison-Wesley Publishing Company, 1989.

[3] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and
S. Dizdarevic, “Genetic algorithms for the travelling salesman
problem: a review of representations and operators,” Arti�cial
Intelligence Review, vol. 13, no. 2, pp. 129–170, 1999.

[4] R. G. Bland and D. F. Shallcross, “Large traveling salesman
problems arising from experiments in x-ray crystallography:
a preliminary report on computation,” Operations Research
Letters, vol. 8, no. 3, pp. 125–128, 1989.

[5] C. Ravikumar, “Parallel techniques for solving large scale trav-
elling salesperson problems,”Microprocessors andMicrosystems,
vol. 16, no. 3, pp. 149–158, 1992.

[6] G. Finke, A. Claus, and E. Gunn, “A two-commodity network
�ow approach to the traveling salesman problem,” vol. 41, pp.
167–178.

[7] P. Miliotis, “Using cutting planes to solve the symmetric
Travelling Salesman problem,”Mathematical Programming, vol.
15, no. 1, pp. 177–188, 1978.

[8] S. Lin and B. W. Kernighan, “An e�ective heuristic algorithm
for the traveling-salesman problem,” Operations Research, vol.
21, pp. 498–516, 1973.

[9] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence,
morgan kaufmann publishers, Inc., San Francisco, CA, USA,
2001.

[10] S. Kirkpatrick andG. Toulouse, “Con�guration space analysis of
travelling salesman problems,” Le Journal de Physique, vol. 46,
no. 8, pp. 1277–1292, 1985.

[11] M. Dorigo and L. M. Gambardella, “Ant colony system: a coop-
erative learning approach to the traveling salesman problem,”
IEEETransactions on Evolutionary Computation, vol. 1, no. 1, pp.
53–66, 1997.

[12] M.Dorigo, V.Maniezzo, andA. Colorni, “Ant system: optimiza-
tion by a colony of cooperating agents,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no.
1, pp. 29–41, 1996.

[13] S. Bhide, N. John, and M. R. Kabuka, “A Boolean Neural
Network Approach for the Traveling Salesman Problem,” IEEE
Transactions on Computers, vol. 42, no. 10, pp. 1271–1278, 1993.

[14] F. Glover, “Arti�cial intelligence, heuristic frameworks and tabu
search,” Managerial and Decision Economics, vol. 11, no. 5, pp.
365–375, 1990.

[15] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolu-
tion Programs, Springer, New York, NY, USA, 1996.

[16] C. Moon, J. Kim, G. Choi, and Y. Seo, “An e�cient genetic
algorithm for the traveling salesman problem with precedence
constraints,” European Journal of Operational Research, vol. 140,
no. 3, pp. 606–617, 2002.

[17] J.-Y. Potvin, “Genetic algorithms for the traveling salesman
problem,” Annals of Operations Research, vol. 63, pp. 339–370,
1996.

[18] M. Gen and R. Cheng, Genetic Algorithms and Engineering
Design, John Wiley & Sons, London, UK, 1997.

[19] H. Z. Ahmed, “Genetic algorithm for the traveling salesman
problem using sequential constructive crossover operator,” in
Proceedings of the International Journal of Biometrics & Bioin-
formatics (IJBB), vol. 3, p. 96, 2010.

[20] Y. Nagata and D. Soler, “A new genetic algorithm for the
asymmetric traveling salesman problem,” Expert Systems with
Applications, vol. 39, no. 10, pp. 8947–8953, 2012.

[21] K. Deep and H. M. Adane, “New variations of order crossover
for travelling salesman problem,” International Journal of Com-
binatorial Optimization Problems and Informatics, vol. 2, no. 1,
2011.

[22] K. P. Ghadle and Y. M. Muley, “Travelling salesman prob-
lem with MATLAB programming,” International Journal of
Advances in Applied Mathematics and Mechanics, vol. 2, no. 3,
pp. 258–266, 2015.

[23] A. Piwonska, “Genetic algorithm �nds routes in travelling
salesman problem with pro�ts. Zeszyty Naukowe Politechniki
Bia lostockiej,” Informatyka, pp. 51–65, 2010.

[24] N. Kumar, R. K. Karambir et al., “A comparative analysis of pmx,
cx and ox crossover operators for solving traveling salesman
problem,” International Journal of Latest Research in Science and
Technology, vol. 1, 2012.

[25] D. Goldberg and R. Lingle, “Alleles, Loci and the Traveling
Salesman Problem,” in Proceedings of the 1st International
Conference on Genetic Algorithms and �eir Applications, vol.
1985, pp. 154–159, Los Angeles, USA.

[26] L. Davis, “Applying adaptive algorithms to epistatic domains,”
IJCAI, vol. 85, pp. 162–164, 1985.

[27] I.M.Oliver,D. J. d. Smith, andR.C. J.Holland, “Study of permu-
tation crossover operators on the traveling salesman problem,”
in Genetic algorithms and their applications: proceedings of the
second International Conference on Genetic Algorithms: July 28-
31, 1987 at theMassachusetts Institute of Technology, Cambridge,
MA, USA, 1987.

[28] G. Reinelt, http://www.iwr.uni-heidelberg.de/group/comopt/
so�ware.

http://www.iwr.uni-heidelberg.de/group/comopt/software
http://www.iwr.uni-heidelberg.de/group/comopt/software


Submit your manuscripts at

https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


