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Abstract. In the paper we propose a genetic algorithm based on insertion heuristics for the vehicle
routing problem with constraints. A random insertion heuristic is used to construct initial solutions
and to reconstruct the existing ones. The location where a randomly chosen node will be inserted
is selected by calculating an objective function. The process of random insertion preserves stochas-
tic characteristics of the genetic algorithm and preserves feasibility of generated individuals. The
defined crossover and mutation operators incorporate random insertion heuristics, analyse individ-
uals and select which parts should be reinserted. Additionally, the second population is used in the
mutation process. The second population increases the probability that the solution, obtained in the
mutation process, will survive in the first population and increase the probability to find the global
optimum. The result comparison shows that the solutions, found by the proposed algorithm, are
similar to the optimal solutions obtained by other genetic algorithms. However, in most cases the
proposed algorithm finds the solution in a shorter time and it makes this algorithm competitive with
others.
Key words: vehicle routing problem, constraints, heuristics, genetic algorithms, feasibility.

1. Introduction

The vehicle routing problem (VRP) is a well known combinatorial problem that attracts re-
searchers to investigate it applying the existing and newly created optimization algorithms.
Traditionally, VRP is defined as a routing problem with a single depot, a set of customers,
multiple vehicles and the objective in order to minimize the total cost while servicing ev-
ery customer. A set of constraints can be defined for the VRP problem. In literature we can
find different kinds of VRP problems that are grouped according to specific constraints.
The well known VRP constrained problems are: VRP with capacity limitations (CVRP),
where vehicles are limited by the carrying capacity; VRP with time windows (VRPTW),
where a customer can be serviced within a defined time frame or time frames; VRP with
multiple depots (MDVRP), where goods can be delivered to a customer from a set of
depots; VRP with pick-up and delivery (VRPPD), where rules are defined to visit pick-
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up places and later to deliver goods to the drop-off location. Many researches on different
heuristic approaches can be found for the solution of the above mentioned problems (Yeun
et al., 2008).

In this research we deal with one of metaheuristic algorithms – genetic algorithms.
Having constraints in the problem definition, the aim is to find the solution that does not
violate any constraint. Such a solution is called a feasible solution or feasible individ-
ual. Due to a stochastic characteristic, genetic algorithms generate solutions in the whole
search space including the infeasible space. For a constrained problem, the feasible search
space is smaller than the whole search space. The search for the feasible solution in a
stochastic way can continue very long until the acceptable solution has been found. The
common genetic algorithm approaches involve additional repair and improvement meth-
ods that are designed for a specific constraint to keep the generated solutions in the feasible
search space.

In order to generate solutions in the feasible search space, we propose a genetic algo-
rithm (GA) that is based on insertion heuristics. The random insertion heuristic is con-
sidered to preserve a stochastic characteristic of the genetic algorithm and to generate
solutions in the feasible space by checking compliance to the defined constraints in the in-
sertion process. Infeasibility is still allowed in the proposed algorithm, because the random
insertion approach can create infeasible initial solutions in a highly constrained problem.
The defined GA individual includes feasible partial routes and a set of customers that
have not been serviced due to constraint violations. In literature we can find the usage of
insertion heuristics in the initialisation phase of GA as it belongs to a group of solution
construction algorithms. The novelty of the proposed approach is the usage of insertion
heuristics in crossover and mutation operators. Differently from other genetic algorithms,
the proposed algorithm operators do not construct offspring directly. However, evaluating
the information from previous generation, the parts of solutions that should be preserved
for the next generation and the weak parts that should be reconstructed are identified in
the proposed operators. The crossover and mutation operators are defined to identify such
weak parts of the solution. New crossover operators are defined to intersect two solutions
in the defined ways and extract a subset of customers. The extracted parts are reinserted
back using the defined insertion. The second population is used in the mutation process
where the usage of the second population increases the probability that the solution, ob-
tained in the mutation process, will survive in the first population and increases the proba-
bility to find the global optimum. In contrast to other approaches, the proposed algorithm
does not involve additional local search methods to improve the solution; therefore it does
not depend on the local search limitations and can be easily extended with additional con-
straints.

The rest of the paper is organized as follows. Section 2 describes a VRP problem and
constraints, reviews genetic algorithms and the common feasibility handling approaches.
Section 3 presents an overview of insertion heuristics and their usage in genetic algo-
rithms. The new approach is introduced and described in Section 4, while Section 5
presents experimental results. The last section concludes the paper.
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2. Genetic Algorithms for Solving VRP

The vehicle routing problem has got much attention in recent years. Due to usefulness in
real life and innovation in the transportation sector as well as logistics, VRP continues to
draw researchers’ attention. A number of different exact and heuristic methods have been
studied to solve the VRP problem that is known to be NP-hard. Although exact methods
give the optimal solution, their computation time considerably increases with the increas-
ing size of the problem. In Dzemyda and Sakalauskas (2011) we can find a survey of
heuristic methods for solving problems that are known to be NP-hard. Local searches and
heuristic approaches often produce a near optimal solution within a reasonable computa-
tion time. These methods may be sensitive to data sets given or require additional training
data during the learning process. Metaheuristic is another approach for solving a complex
problem that may be too difficult or time-consuming by traditional techniques. In this re-
search we deal with one of metaheuristic approaches – genetic algorithms that have been
successfully applied to solve many combinatorial problems. The standard genetic algo-
rithm has limitations in the constrained environment. However, it is able to incorporate
other techniques within its framework to produce a hybrid that provides better efficiency
(Yeun et al., 2008). In this research the focus is given only to genetic algorithm approaches
for solving VRP with constraints.

2.1. VRP and Constraints

Traditionally a vehicle routing problem is described as the undirected graph G = (N,E),
where N = {n0, n1, . . . , nk} is a set of nodes, d = {n0} is a depot node, N\d is a subset
of nodes that represent k customers, E is a set of arcs, and V = {v1, . . . , vt } is a set of
vehicles. Usually G is treated as a complete graph, in this case, the set E = {eij }, where
i 6= j , 0 6 i 6 k, 0 6 j 6 k. The objective of VRP is to minimize the total number of
required vehicles and the total travelling distance (Solomon, 1987; Berger et al., 1998;
Tan et al., 2001a, 2001b; Jung and Moon, 2002; Zhu, 2003; Berger and Barkaoui, 2004;
Alvarenga et al., 2005; Ombuki et al., 2006; Tan et al., 2006; Hasle and Kloster, 2007;
Yeun et al., 2008; Garcia-Najera and Bullinaria, 2011; Vaira and Kurasova, 2013).

In the VRP problem the Euclidean distance between two nodes in the graph is usually
treated as the shortest path value. However, when dealing with real life data, the Euclidean
distance between two nodes adds additional inaccuracy to the results. Path calculation can
be related to graph data, travelling time or vehicle parameters. Detailed reviews on the
existing shortest path algorithms are described in Vaira and Kurasova (2010, 2011).

Various constraints can be added to the VRP. The defined constraints usually refer to
real life situations. Let us define a single constraint c ∈ C, where C is a set of all constraints
that should not be violated in the final solution.

The most known constraints on the VRP problem are capacity constraints and time
window constraints. The capacity constraints Cc ⊆ C are carriage limitations applied to
each vehicle. In literature a capacitated vehicle routing problem (CVRP) is defined with
equal capacities for all vehicles. However, in real life vehicle fleet with different capacities
can be used to solve the delivery problem.
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Time window constraints Ctw ⊆ C define time frames when a customer can be ser-
viced. The problem dealing with time windows constraints is called VRPTW. Single-sided
and double-sided windows are specified in terms of time frames that are widely considered
in literature. However, real life situations can give a multiple time frame representation,
where a customer can be serviced in one of the defined time frames:

1. [t1, ∞) defines a time frame constraint when a vehicle has to arrive no earlier than
the time t1 If a vehicle comes too early, it has to wait until time t1.

2. (∞, t2] defines a time frame constraint when a vehicle has to arrive to a customer
no later than the time t2.

3. [t1, t2] defines a double sided time frame constraint, where t1 6 t2. The constraint
includes the limitation from both previously defined constraints.

4. (∞, t1] ∪ [t2, t3] ∪ [t4,∞) defines multiple time frames, where ti−1 6 ti . The mul-
tiple time frame constraints can include any of previously defined time window
constraint. However, the single constraint from the group needs to be satisfied.

The time window constraint can be added to the depot node to define the overall trav-
elling time limit for a single vehicle. The maximum number of vehicles can be treated as
an additional constraint cv ∈ C, where cv defines the limit of vehicles in the solution.

Real time situations can give another type of constraints where goods need not only
to be brought from a depot to a customer, but also to be picked up from a number of
customers and brought back to depot or to any other customer. This problem is known as
a pick-up and delivery problem (VRPPD). The set Cpd ⊆ C defines pick-up and delivery
constraints within the problem, where each c ∈ Cpd is a constraint that defines the delivery
of a certain amount of goods from the starting node ns to the target node nt . In Fig. 1
the filled circle represents a depot, the empty circles represent customers, the dotted lines
represent possible pick-up and delivery constraints, and the solid lines represent a possible
routing solution for two vehicles.

Let us define the function Fc(x) that evaluates violation of constraints in the solution
and fc(x) that evaluates violation of the single constraint c ∈ C:

Fc(x) =
∑

c∈C

fc(x),
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fc(x) =

{

0 constraint is satisfied,

z, where z ∈ R and z > 0 otherwise.

The objective of the traditional VRP is to find a solution x that minimizes the functions
fv(x) and fd (x) in the defined order and satisfies the equation Fc(x) = 0:

fv(x) =
∣

∣{r1, . . . , rs}
∣

∣, fd (x) =

s
∑

j=1

dl(rj ),

rj = (nj1
, . . . , njm), nji 6= n0, rj is a single route with m nodes,

x = {r1, . . . , rs}, s 6 cv, Nj = {∀nji ∈ rj }, |Nj | = m,

N1 ∩ · · · ∩ Ns = ∅, {n0} ∪ N1 ∪ · · · ∪ Ns = N,

dl(rj ) = l(n0, nj1
) +

m
∑

i=2

l(nji−1
, nji ) + l(njm , n0),

l(nji−1
, nji ) is a distance between nodes

2.2. Genetic Algorithm and Feasibility Handling

2.2.1. Main Genetic Algorithm Principles

Genetic algorithm approaches are based on the concept of natural selections and genetics.
A single solution within a genetic algorithm is described as an individual. In the iterative
process new offspring are created from the previous generation by applying stochastic
transition operations. “Only the fittest survive” is the main principle of the genetic al-
gorithm. One of the main reasons that distinguishes this approach from sequential local
search methods is the maintenance of a large population of candidate solutions instead
of producing a sequence of single solutions deterministically (Reid, 2000). The main
steps of the genetic algorithm are initialisation, fitness function evaluation, selection of
individuals for a new generation, crossover and mutation. The iterative process is per-
formed until one of the stop criteria is met. The stop criterion can be either the maximum
time defined for calculation or maximum number of iterations without improvement of
the current best solution found (Reid, 2000; Hong et al., 2002; Jung and Moon, 2002;
Yeniay, 2005).

The classical genetic algorithm paradigm operates with the encoded form of solutions
called chromosomes. A single chromosome describes a solution x ∈ S, where S is the
whole search space. Chromosomes usually have the form of a string in an appropriate
alphabet (Reid, 2000). The encoded chromosomes do not exploit any useful information
about a particular problem domain. However, the standard genetic operators that operate
on encoded lines can be applied to such an approach. In Blanton and Wainwright (1993)
a possible expression of the VRPTW solution is described where it is expressed as a se-
quence of customers in the chromosome in the way they are visited. In Potvin and Bengio
(1996) the author has proposed a genetic algorithm that applies genetic operators to solu-
tions directly, thus avoiding coding issues.
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The fitness function f (x) evaluationallows us to identify the value of each individual.
The individual with the best fitness value is treated as the best currently known solution
in the population. The selection operator identifies population members that will be used
in the reproduction for generating a new offspring by examining the fitness value of each
individual in the population.

The crossover operator generates a new offspring from two chosen individuals. Thus,
the offspring inherits some characteristics from each parent. It is intended to construct a
new offspring by combining the fragments of old solutions that previously have shown
good characteristics (Reid, 2000). The traditional crossover operators, i.e. a partially
mapped crossover or two-point crossover, can be used when the problem is encoded as
a line of characters. In Blanton and Wainwright (1993) two merge crossovers are pro-
posed for the encoded VRP problem, where the new crossover operators are superior to
the traditional ones.

The mutation operator generates a new offspring from a single chosen individual. Mu-
tation should increase the probability to find the global optimum instead of the local one.
The mutation and crossover operators are applied with the defined probabilities that can
vary depending on a problem. A number of guidelines can be found for mutation and
crossover probabilities, as well as the studies to define optimal probabilities (Hong et al.,
2002). Some researches can be found on the adaptive probabilities for crossover and mu-
tation operators. In Zhang et al. (2004, 2007), a fuzzy logic is considered for adjusting
the probabilities. Initially the evolutionary algorithms had only selection and mutation,
while the genetic algorithms also utilize the crossover operator (Reid, 2000). Both oper-
ators play an important role in genetic algorithms due to the success of recombination of
the existing solutions into a new one.

2.2.2. Constraint Handling

When dealing with constraints, a stochastic approach to find optimal solutions can com-
pute very long, until an acceptable solution has been found (Reid, 2000). The search space
that contains only feasible solutions can be defined as SF ⊆ S, where each x ∈ SF does not
violate any of the defined constraints. The search space that contains all other solutions
is the infeasible search space SU = S\SF . The solution x belongs to the feasible search
space SF , if Fc(x) = 0.

Highly constrained problems are those where the feasible search space is very small.
Thus the probability to generate solutions in such a space for crossover and mutation op-
erators can be adequately small (Reid, 2000). It is the waste of computation time when
infeasible solutions are generated and later eliminated. The author in (Reid, 2000) dis-
cusses the possibility of having feasible solutions generated in crossover and mutation
operations. In order to handle feasibility in the genetic algorithm, the creation of infeasi-
ble solutions is usually allowed, but they are additionally penalized with a modification
of the objective function or correction with an additional repair algorithm (Reid, 2000;
Yeniay, 2005; Lukasiewycz et al., 2008a, 2008b).

The penalty function p(x) transforms a constrained problem into an unconstrained
one. There are two main ways of penalty function application:
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• additive: fp(x) = f (x) + p(x), where p(x) = 0, if none of the constraints is vio-
lated, and p(x) > 0, otherwise;

• multiplicative: fp(x) = f (x)p(x), where p(x) = 1, if none of the constraints is
violated, and p(x) > 1, otherwise (Yeniay, 2005).

Various penalty functions are considered on the basis of their application characteris-
tics. Some of them can dramatically change the fitness value or completely remove from a
population list. The death penalty has the penalty function p(x) = +∞ for each x ∈ SU .
Although it will not allow to have infeasible solutions, it is expected to work well when
the feasible search space is a reasonable part of the whole search space (Michalewicz,
1995a). However, for highly constrained problems the algorithm can suffer a degradation
when trying to search for feasible solutions and if the feasible solution is found, the search
may prevent to find a better one (Yeniay, 2005). For example, adaptive penalties update
the parameters for each generation according to information gathered from the popula-
tion. There are a number of different penalty approaches (Yeniay, 2005). Although penalty
functions help to identify infeasible solutions and keep individuals with the best charac-
teristics in the population, they affect the generation of feasible solutions only indirectly
and still allow the generation of infeasible solutions. The Pareto fitness ranking scheme for
evolutionary multiobjective optimization is proposed in Ombuki et al. (2006), Tan et al.
(2006), Garcia-Najera and Bullinaria (2011) to assign the relative strength of individuals
in the population. The ranking mechanism assigns the smallest rank to non-dominated
individuals and the dominated individuals are ranked according to the individuals in the
population and the defined criteria. In contrast to traditional genetic algorithms, Pareto
ranking attempts to assign a single fitness score to a multiobjective problem. However, in
literature there can be found Pareto ranking in the genetic algorithm treated as equivalent
to the penalty approach (Michalewicz, 1995b). In Alvarenga et al. (2005) the author has
proposed to use 10 hierarchical criteria to rank individuals in the population.

In paper of Michalewicz (1995a) the author discusses the advantages and disadvan-
tages of having feasible and infeasible solutions in genetic algorithms and how they influ-
ence the results. The discussion is carried out on the issue how the feasible and infeasible
solutions can be compared. In general, two evaluation functions ff (x), where x ∈ SF , and
fu(x), where x ∈ SU , are considered. Different evaluation functions ff (x) and fu(x) are
defined because of the ability to compare the solutions in two distinct search spaces. How-
ever, the relation between these two functions can be designed via the extended function
q(x), where fu(x) = ff (x) + q(x), and q(x) can be either the penalty function already
discussed or the cost for repairing the solution. Good results are reported, when the penalty
function is designed so that feasible results are always treated better than infeasible results.
The repair can be designed in two different ways:

• An individual is repaired for evaluation only, where fu(x) = ff (y), and y is
a repaired (i.e. feasible) version of x . It is the so-called Lamarckian approach
(Michalewicz, 1995a; Zhu, 2003; El-Mihoub et al., 2006). The weakness of such
an approach is that it depends on the problem and a specific repair algorithm has to
be designed (El-Mihoub et al., 2006).
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• An individual is repaired and the previous individual is replaced by its repaired
version. It is called a Baldwinian approach (Michalewicz, 1995a; Zhu, 2003;
El-Mihoub et al., 2006). This method has the same limitation as the previous one.
The question of replacement is also widely considered. In some researches the fixed
percent of the repaired individuals replace the previous one or this can be dependent
on the problem or even on the evolution process.

In Jung and Moon (2002) the author has proposed to use 2D chromosomes for VRP
encoding to handle additionally the position of nodes in the 2D Euclidean space. The de-
scribed crossover operator uses a 2D partitioning to interchange routes between two chro-
mosomes, where each route represents the travelling path of a single vehicle. However, the
repair algorithm is considered to connect separate fragments of the route by taking into
account additional decision variables. Local search methods such ascrossover, or-opt and
relocation with additional modifications that check time constraints are used in the mu-
tation operator to improve the solution. Local improvement methods or repair algorithms
are very helpful for a single constrained optimization. However, identification of the parts
for solution improvement can be quite complex because of constraints. A problem can
arise when the improvement of one objective can lead to a degradation of others.

In Tan et al. (2006) the author uses individuals that are composed of a set of routes
where each route contains a list of customers. A crossover is defined to exchange the
routes between individuals. If the newly added route contains the customer that has already
been visited in another route, the customer is removed from the previous one and left in
a newly added route (Tan et al., 2006). If individuals selected for crossover are feasible,
the offspring, generated from parent individuals, will remain feasible. However, a set of
transitions is proposed for feasibility handling in the mutation operator, where constraint
violation is evaluated after each transition. If mutation transitions generate an infeasible
solution, the original routes are restored (Tan et al., 2006). Such an approach does not
help generate feasible solutions, but it helps to avoid infeasibility.

In Alvarenga et al. (2005) the author has proposed a crossover where feasible routes
from the parent individuals are inserted in the offspring. At first the routes with the max-
imum number of customers are inserted. After all feasible routes have been inserted in
the offspring, the insertion of the remaining customers is tested in the existing routes. If
some customers are still not included to any route, a new route is created and a stochastic
push-forward insertion heuristic is used to insert customers (Alvarenga et al., 2005).

In literature we can find approaches of using genetic algorithms in a two-phase ap-
proach, where in the first phase genetic algorithms are used to solve a single objective and
in the second phase different algorithms are used to continue the optimization process
(Berger and Barkaoui, 2004; Alvarenga et al., 2005; Ombuki et al., 2006). The fluctuating
population size is also considered to keep infeasible solutions in the solution set. It is pro-
posed because some parts of infeasible solutions can still remain significant for crossover
and mutation operators (Reid, 2000).

The author in Berger and Barkaoui (2004) has proposed parallel two-population co-
evolution genetic algorithms, Pop1 and Pop2, for VRPTW. The first population, Pop1,
has the objective to minimize the travel distance to a fixed number of vehicles. On the
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other hand, Pop2 works to minimize the violated time window in order to find at least one
feasible individual. In Pop2 the vehicle number is limited to the number obtained by Pop1
minus one. Each time a feasible individual is found, the population Pop1 is substituted
by Pop2 and the fixed number of vehicles considered in both populations is decreased by
one.

Different mutation and crossover operators can produce different offspring and thus
affect the performance of the genetic algorithm. Dynamic genetic algorithms are consid-
ered in Hong et al. (2002). Since the efficiency of different genetic operators can depend
on different problems and also on different stages of the genetic algorithm, the proposed
dynamic genetic algorithm is designed to choose different operators as well as to dynam-
ically adjust their application probabilities.

In Reid (2000) the author discusses feasibility handling in a two-point crossover where
a set of crossovers with different boundary indices is considered. Probability function is
defined to find a feasible crossover for a linear constraint problem. However, for a highly
constrained problem where a feasible space is very small as compared to the full search
space, only a half-feasible crossover with a single boundary point is discussed. In order
to handle feasibility in the mutation process, the proposed mutation operator is based on
the crossover operator where the selected individual is crossed with a randomly generated
individual (Reid, 2000).

Most of the feasibility handling approachesdeal with the population control to preserve
feasible individuals. The common approaches like penalty methods or repair algorithms
can help rank individuals for the next generation by identifying the infeasible ones. How-
ever, the crossover and mutation operators are still organized to generate solutions in the
whole search space. It is still time consuming to get an acceptable solution. In literature
we can find approaches to define the feasibility preserving operators. Limitations still ex-
ist where the constraint violation is evaluated after each step and the original solution is
restored in an unsuccessful case. Repair algorithms usually take into account a specific
problem or specific constraints.

The aim of this research is to propose a genetic algorithm with operators designed to
generate solutions in the feasible search space for the VRP problem with constraints.

3. Insertion Heuristics

Insertion heuristics are popular methods for solving a variety of vehicle routing and
scheduling problems. Insertion heuristics were first introduced for a travelling salesman
problem (TSP) and belong to a group of route construction algorithms (Rosenkrantz et al.,
1977; Campbell and Savelsbergh, 2004). The main principle of an insertion heuristic is
to start from a single node that is usually called a seed node and that forms the initial
route from depot. Other nodes are inserted one by one evaluating certain functions to a
select a node and the place in the route for insertion. The well-known insertion heuristic
approaches used in TSP are categorized by the methods used for the node selection to
be inserted: random insertion, nearest insertion, farthest insertion and cheapest insertion.
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For the farthest and nearest insertion each next node is selected for insertion according
to the distance to the already constructed route where the functions for maximization and
minimization are defined respectively. The node is inserted by evaluating the cost function
c(ni, nk, nj ) = l(ni , nk) + l(nk, nj ) − l(ni , nj ) where ni , nj are the nodes in the current
constructed route, nk is the node to be inserted, and l(ni , nj ) is the distance function. In
the random insertion heuristic a node is randomly selected from a set of nodes that are
still not included to any route. The place in the route where a randomly selected node has
to be inserted is determined by minimizing the same cost function c(ni, nk, nj ). In con-
trast to the random insertion heuristic the cheapest insertion heuristic selects the node for
insertion by minimizing the defined function for all nodes and all places in the route.

Solomon (1987) has proposed three types of insertion heuristics. The most successful
of them is called I1. The first route is initialised with the seed node which is the far-
thest one from the depot. Nodes are inserted into the first route until reaching the limit
of capacity constraints. If still there are unrouted nodes, a new route is created and the
insertion process is repeated until all the nodes are inserted. Two subsequently defined
criteria C1(ni , nu, nj ) and C2(ni, nu, nj ) are used to select the node nu for insertion be-
tween the nodes ni and nj . The first function determines detour and delay values. The
second function generalizes a regret measure over all routes to estimate what could be
lost later if the node is not immediately inserted in its best place. The criterion function
C1 depends on the coefficients (α1, α2,µ) and the overall insertion method efficiency de-
pends on them (Potvin and Dubé, 1994). The author in Potvin and Rousseau (1993) has
proposed a parallel version of insertion heuristic I1.

Insertion heuristics are popular because they are easy to implement and they show good
characteristics in creating feasible solutions (Campbell and Savelsbergh, 2004). However,
they still depend on the methods of selecting the nodes and the place in the route for inser-
tion. In this paper the usage of the insertion heuristic together with the genetic algorithm
approach, seeking for better efficiency, is considered. As already mentioned, the inser-
tion heuristic is usually used in the initialisation of solutions in the genetic algorithm. In
Potvin and Bengio (1996), Jung and Moon (2002), the authors have proposed the usage
of Solomon insertion heuristics to create the initial population that is used in the genetic
algorithm. The existence of adjustable weights in criteria functions of I1 allows to gener-
ate the initial set of different solutions. A similarity of insertion heuristics can be found
in or-opt and relocation algorithms used in the mutation operation, proposed in the paper
(Jung and Moon, 2002) where the constraint violation is evaluated for the nodes before
inserting them in different parts of the solution. In the literature a random node insertion is
also considered for creating the initial population for genetic algorithm (Tan et al., 2006).

In Alvarenga et al. (2005) the author has proposed a genetic algorithm where stochas-
tic push forward insertion heuristic (PFIH) is used to initialise the population as well as
to insert unserviced customers in to route in the crossover operator. In the original push-
forward insertion heuristic the first customer in each new route is defined deterministi-
cally. Customers then are chosen one by one minimizing the travel distance. The original
PFIH is deterministic, but in the stochastic PFIH a random choice is used to define the
first customer for each new route. Stochastic PFIH is used for initialisation to produce
distinguished individuals for GA (Alvarenga et al., 2005).
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In Potvin and Dubé (1994) the genetic algorithm approach is defined to find the best
values of coefficients (α1, α2,µ) for Solomon insertion heuristic I1. The coefficient values
in the range [0,1] are mapped to values [0,127] and encoded in 7 symbol substrings as a
binary expression and a single point crossover operator is used. The author argues that the
results of insertion heuristics can be greatly improved by a careful search for coefficients.

The usage of insertion heuristics in the crossover operator of the genetic algorithm
is proposed in Ombuki et al. (2006). In the first step a route is chosen randomly in the
opposite solution as a reference. Each node that belongs to that route is extracted in the
current solution and reinserted back by evaluating constraint violation. If a feasible inser-
tion is not found, an additional route is added to the solution. The route selected from the
opposite solution is used only to define which nodes should be extracted. However, such
a crossover approach does not share any information between solutions.

From the overview of insertion heuristic usage in genetic algorithms for the VRP prob-
lem we can see that usually the insertion heuristics takes place in the initialisation step
of GA to create the initial set of solutions. There are some approaches to use insertion
heuristics in genetic algorithm operators, but the insertion heuristics used are still treated
as the methods to support the main algorithm. The author in Campbell and Savelsbergh
(2004) describes the benefits of insertion heuristic in handling constraints and in generat-
ing feasible solutions. In contrast to insertion heuristics, genetic algorithms are designed
to intensify the search towards an optimal solution. However, genetic algorithms require
additional approaches to handle the constraints discussed in Section 2.2.2.

4. New Approach for VRP with Constraints

We propose a genetic algorithm based on insertion heuristics without considering any
additional local search methods for the improvement. The definition “genetic algorithm”
can describe either a general approach or a set of the specific genetic operators. In this
paper the proposed version of genetic algorithm for VRP with constraints will be called
“new genetic algorithm” further on to distinguish it from other approaches.

Genetic algorithms and insertion heuristics combine together their best characteristics
in search for the optimal solution. It is generally accepted that any genetic algorithm for
solving a problem should have basic components, such as a genetic representation of so-
lutions, the way to create the initial solution, the evaluation function for ranking solutions,
genetic operators, values of the parameters (i.e. population size, probabilities for apply-
ing genetic operators, etc.). In Sections 4.1–4.4 there are described all components of the
proposed genetic algorithm in more detail.

4.1. Incorporating Insertion Heuristics

As already mentioned in Section 3, in some genetic algorithm approaches the insertion
heuristic is used in the initialisation step, where Solomon I1 method has been used with
random coefficients for the criterion function. Although such a random insertion is possi-
ble, randomization is limited by the defined criterion function. Random insertion heuristic



166 G. Vaira, O. Kurasova

is chosen in the proposed algorithm to maintain stochastic characteristics of the genetic
algorithm.

Let us assume that we have a set of nodes N = {n0, . . . , nk}, where N\{n0} are the
nodes that should be visited by a single vehicle and n0 is the depot. The constructed partial
solution is x0 = ({n0}, r0 = ∅, Nr0 = N\{n0}), where r0 is the empty set of arcs, Nr0 is
a set of unvisited nodes.So the solution contains only the depot n0.

In the first iteration the random selected node nr1 from Nr0 is inserted into a
partial solution x0. The new constructed partial solution is x1 = ({n0, nr1}, r1 =

{(n0, nr1), (nr1, n0)}, Nr1 = Nr0\{nr1} = N\{n0, nr1}). Two new arcs, (n0, nr1) and
(nr1, n0), have been created in the solution. Assume that the route is feasible and it can
be agreed that it would be the shortest route for a single customer problem {n0, nr1}.

In the second iteration a random node nr2 is selected from Nr1. For the newly se-
lected node there exist two possible places for insertion in the solution x1: either in the
arc (n0, nr1) or in the arc (nr1, n0). Assume that both insertions are feasible and the
arc (nr1, n0) has a lower insertion cost than the arc (n0, nr1). So the newly constructed
partial solution is x2 = ({n0, nr1, nr2}, r2 = {(n0, nr1), (nr1, nr2), (nr2, n0)}, Nr2 =

N\{n0, nr1, nr2}). The newly constructed partial solution is feasible and optimal.
In the third iteration another random node nr3 is selected from Nr2 and a new optimal

solution x3 is created.
In each next iteration k a random node nrk is selected from Nr(k−1). If there exists

such an arc in rk−1, where the inserted node does not violate any constraints and produces
a new feasible partial solution xk ,the added node nrk removes the existing arc (ni , nj )

and adds two new arcs (ni , nrk) and (nrk, nj ). If we find the optimal partial solution in
the iteration k − 1, the solution created in iteration k is not necessarily optimal, because
two new arcs (ni , nrk) and (nrk, nj ) are created and there can exist a shorter path to some
nodes in the route rk .

The random insertion heuristic with only one minimization objective, i.e. travelling
salesman problem (TSP) with the total travelling path minimization, has a complexity
O(k2) to construct a single solution where the complexity of search for the best arc to
insert a single node is O(k). When adding additional constraints, the computation time is
affected. Solving VRPTW problem by the insertion heuristic has the complexity O(k3).
The handling time window constraint involves additional check for any violations occur-
ring in a partial route after inserting a new node. So, for each node to be inserted the
best arc search has the complexity O(k2), where the insertion complexity for all nodes is
O(k3).

As already mentioned, when solving the problem with constraints by the genetic al-
gorithm, the constraint violation is checked per solution, usually in the form of penalty or
repair cost. In the proposed algorithm the constraint violation is evaluated in the insertion.
For each randomly selected node a feasible insertion needs to be determined, where fea-
sible insertion means finding such an arc of a partial solution, where the inserted node as
well as all the previously added nodes do not violate any constraints. The partial solution
with a new inserted node should remain feasible. Let us define the function hc(n, a) that
evaluates the violation for the certain constraint c with the newly inserted node n in arc a.
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The function hc is similar to the function fc, where fc evaluates the whole solution for
constraint violation, but hc is applied to a single node insertion only. The function hc is
defined here as follows: hc(n, a) = 0, if the constraint c ∈ C is satisfied, and hc(n, a) > 0,
otherwise. Insertion of the node n into the arc a is feasible, if Hc(n, a) = 0, where

Hc(n, a) =
∑

c∈C

hc(n, a).

Subject to the insertion order and the constraint set, a partial route can be constructed
in such a way that no additional nodes can be inserted without violating constraints. So a
random insertion heuristics does not always guarantee the creation of a feasible solution,
but the feasibility can be preserved in a partial solution. An infeasible insertion would
require an additional function definition in order to determine which arc is less infeasible
than others. However, such an approach would involve the definition of constraint hierar-
chy and any decision variables for ranking constraint or different penalty approaches for
the evaluation of the constraint violation.

In order to avoid any additional complexities we define the solution x of the genetic
algorithm as follows:

x =
(

R = {r1, . . . , rt }, U = {n1, . . . , nu}
)

,

ri = (Ni ,Ai), Ni = {n0, ni1 , . . . , nip },

Ai =
{

ai1 = (n0, ni1), ai2 = (ni1 , ni2), . . . , aip = (nip−1
, nip ), aip+1

= (nip , n0)
}

,

Nv = {N1 ∪ · · · ∪ Nt }\n0

where each route ri ∈ R represents a vehicle travelling path and U is a set of unassigned
nodes left due to constraint violation. The single route ri is represented as a graph, where
each arc ai is the shortest path between two nodes. Set U is part of the solution x , where
Nv ∪U = N and Nv ∩U = ∅. If set U is empty, then the solution x is feasible or infeasible,
otherwise.

In the proposed algorithm the insertion is carried out as follows. An initial solution
has an empty route list (R = ∅) and an empty unassigned node list (U = ∅). The node
nr is randomly selected from the set N . All arcs are checked for feasible insertion of the
selected node. All the arcs that pass the constraint violation check are then evaluated by
the insertion cost function c(ns, nr , nt ), where the path length is the cost.The arc with the
smallest value c(ns, nr , nt ) is chosen for the insertion of the node nr . If no arcs pass the
violation check, a new route is started. If the maximum number of routes is reached, the
node nr is added to an unassigned node list U . The following pseudo-code describes the
insertion process:

Nu = N

R = ∅

U = ∅

while Nu 6= ∅
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nr = select a random node from Nu

A = get all arcs from R

for each constraint c ∈ C

remove arcs from A where insertion of nr violates constraint c

end for

if A = ∅ and |R| < cv

ri = new route({n0, nr })

add ri to R

else if (A 6= ∅)

find a ∈ A, a = (ns, nt ) by minimizing the function c(ns, nr , nt )

insert nr to a

else

add nr to U

end if

end while

Figure 2 shows the insertion steps where a filled circle represents the depot node n0,
the arrows and empty circles represent the route ri , a dotted circle represents the node nr

selected for insertion and the dotted arrows show possible insertion arcs. The maximum
vehicle number constraint cv ∈ C check is integrated in the insertion process.

Capacity constraints Cc ⊆ C define the maximal allowed amount of goods that can
be assigned to a vehicle. As in the VRP problem, the load increases by assigning a new
node to the route. Let us define the function dc(nj ) that evaluates the load of the single
node nj . The condition c >

∑

dc(nj ), ∀nj ∈ ri and c ∈ Cc, should not be violated in
the VRPTW problem. The check of this constraint has the complexity O(1) for a single
node insertion. In the VRPPD problem the load varies during travelling and the function
dc(nj ) represents loading or unloading at a specified node nj , where dc(nj ) > 0 if goods
are loaded and dc(nj ) < 0 if goods are unloaded. Node insertion to one place can involve
capacity violation in other places. The check for capacity constraint has the complexity
O(k) for a single node insertion. The function gc(ai) calculates the current capacity space
available in the arc ai . The function gf c(ai) is used to determine the maximal capacity
available for the node insertion in the arc ai without involving the constraint violation in
the subsequent parts of the route.�� � �

(a) (b) (c) (d)

Fig. 2. Node insertion process: (a) current solution constructed; (b) arcs where the feasible insertion of a node
is possible; (c) search for the minimal insertion cost; (d) solution with the inserted node.
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(a) (b)

Fig. 3. Arrival at a customer with time window constraint: (a) arrival too early, (b) arrival in the time window.

gf c(ais ) =

{

min{gf c(ais+1
), gc(ais )} if ais+1

exist,

gc(ais ) otherwise,

gc(ais ) = c −

is
∑

j=0

dc(nj ), c ∈ Cc, nj ∈ ri .

Time window constraints Ct ⊆ C have characteristics similar to capacity constraints
in the VRPPD problem: adding a new node in one place can involve a constraint violation
in other places of the current route. Figure 3 represents two possible situations of arrivals
at customers. If a vehicle arrives at a customer in the defined time window, the available
time is equal to the time left to the end of window (Fig. 3(b)). If a vehicle arrives too early,
the waiting time is added to the available time (Fig. 3(a)).

The time window constraint evaluation does not increase the complexity of a single
node insertion and it still remains O(k). The function gf t (ai) is used to determine the
maximal amount of time available for the node insertion in the arc ai without involving a
constraint violation in subsequent parts of the route. The constraint cis ∈ Ctw defines the
end value of the time window.

gf t (ais ) =

{

min{gf t (ais+1
), gt (ais )} if ais+1

exist,

gt (ais ) otherwise,

gt (ais ) = cis −
(

ta(nis

)

+ tw
(

nis )
)

, cis ∈ Ctw, nis ∈ ri ,

ta(nis ) =

{

tt (n0, nis ) if s = 1,

ta(nis−1
) + tw(nis−1

) + ts(nis−1
) + tt (nis−1

, nis ) otherwise,

ts(nis ) – service time, tt (nis−1
, nis ) – travel time, tw(nis ) – waiting time.

The pick-up and delivery constraints Cpd ⊆ C connect pick-up and delivery nodes with
a logical relation. In order to determine the arcs for a feasible insertion of node nr , the
opposite node nop (pick-up or delivery node) has to be examined. If nop is not yet assigned
to the route, all arcs in the partial solution remain competitive for the insertion of the
node nr . If nop has already been assigned to the route, the following rules are applied:

• if nr is a delivery node, arcs where the insertion of node nr is possible, are in the
same route as the node nop and after the node nop;

• if nr is a pick-up node, arcs, where the insertion of node nr is possible, are in the
same route as the node nop and before the node nop.
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In the initialisation of the genetic algorithm an initial population with the above de-
scribed random insertion process is created, where the creation of single solution has
complexity O(k2). The insertion process still allows to generate infeasible solutions where
unassigned node set U is not empty. In the proposed algorithm a feasible solution is al-
ways treated better than the infeasible solution. The following pseudocode shows how a
better solution xmin is identified from the two solutions xi and xj :

If fu(xi) 6= fu(xj ), where fu(xi) = |Ui |, Ui ∈ xi

if fu(xi) < fu(xj )

xmin = xi

else

xmin = xj

else if fv(xi) 6= fv(xj )

if fv(xi) < fv(xj )

xmin = xi

else

xmin = xj

else

if fd (xi) < fd(xj )

xmin = xi

else

xmin = xj

Sections 4.2, 4.3, 4.4 present the proposed genetic algorithm and genetic operators
with a defined feasible insertion.

4.2. Genetic Algorithm

In the proposed genetic algorithm crossover and mutation operators are defined in the “re-
move and reinsert” approach. The approach is similar to a single point relocation method
where the node is extracted and inserted into a different place. However, reinsertion of a
single node in a different place can be unsuccessful, because the constructed routes have
reached constraint limits and cannot be extended by an additional node. If a single node
has been chosen for reinsertion, there is a large probability that the node will be inserted
in the same place from which it has been removed. In order to enable the node reinsertion,
multiple nodes have to be extracted. The crossover and mutation operators that follow the
idea of node reinsertion are defined in Sections 4.3 and 4.4.

In the proposed algorithm the mutation operator is applied with probability MP = 0.1

and the crossover operator is applied to all individuals selected for mating. In the crossover
operator new offspring are generated from two selected parent solutions where the first one
is selected from the best individuals and the second one is selected randomly from the
whole population. The new offspring are added to the population and the worst individ-
uals are removed from the population to keep the same population size in each iteration.
The defined mutation operators are based on a random insertion and can produce indi-
viduals that will not survive. In order to increase the probability of the mutation operator
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to generate individuals that will survive, a second population is created. The following
pseudo-code represents the proposed genetic algorithm:

Pop1 – initial population of size PS1

(create a set of solutions using the feasible insertion method)
while number of iterations without improvement < IL1 and time < T L1

sort(Pop1) – sort individuals with a defined comparison function
remove (|Pop1| − PS1) worst individuals from Pop1

for i = 1 . . .PL1

xp11 = Pop1[i] – select first parent
xp12 = Pop1[ri], where ri = random(1, |Pop1|), ri 6= i – select second parent
xc11 = crossover(xp11, xp12) – generate offspring
xc12 = crossover(xp12, xp11)

add xc11 and xc12 to Pop1

if random(0,1) < MP – apply the mutation operator with probability MP

(xmp1,Nmp1) – create partial solution xmp1 and list Nmp1 by mutatingxp11

Pop2 – create population of size PS2 by inserting Nmp1 to xmp1

while number of iterations without improvement < IL2

sort(Pop2) – sort individuals with a defined comparison function
remove (|Pop2| − PS2) worst individuals from Pop2

for j = 1 . . .PL2

xp21 = Pop2[j ] – select the first parent
xp22 = Pop2[rj ], where rj = random(1, |Pop2|), rj 6= j

xc21 = crossover(xp21, xp22)

xc22 = crossover(xp22, xp21)

add xc21 and xc22 to Pop2

if random(0,1) < MP

xm2 = generate offspring by mutating parent xp21

add xm2 to Pop2

end if

end for

end while

xm1 = select the best individual from Pop2

add xm1 to Pop1

end if

end for

end while

the best solution is first solution in Pop1.

Crossover and mutation operators are randomly selected from operators defined in
Sections 4.3 and 4.4. In the mutation operator the new population is created in two steps.
Firstly, the mutation operator is applied to the solution xp11 to create a partial solution
xmp1 with some routes left as well as the set of nodes Nmp1 that needs to be reinserted
back. Then Pop2 is created by copying the partial solution xmp1 and inserting Nmp1 using
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a random insertion. Computation of Pop2 stops when the best solution is not improved
initerations IL2. The stop criterion in Pop2 intentionally does not include the maximal
time limit. The value IL2 is chosen to be small to avoid redundant computation in Pop2.
The values used in the experimental evaluation are as follows: PS1 = 100, PL1 = 10,
IL1 = 50, TL1 = 5 min, MP = 0.1, PS2 = 20, IL2 = 5, PL2 = 2.

4.3. Crossover Operator

In the genetic algorithm the crossover operators generate new solutions from the chosen
parent solutions xi and xj . We propose crossover operators which intersect two solutions
in the defined logical ways. The output of such a process is the set of routes Roffspring

and the set of extracted nodes Ntemp. All unassigned nodes are inserted back using the
defined random insertion. The aim of the crossover is to identify the parts of solution
that more probably are optimally constructed than other parts of solution. The benefit of
crossover operators that are based on the common part search between parent solutions
is shown in Vaira and Kurasova (2013). Two different crossovers are defined to increase
the probability of convergence to the global optimum where each crossover produces an
offspring by focusing on different information obtained from parents.

In the proposed genetic algorithm, two crossover operators are defined. Each of them
produces a single offspring partial solution xoffspring from the parent solutions xi and xj .
The first crossover operator intersects two sets of arcs Ai∈ xi and Aj ∈ xj :

Ntemp = Ui

xoffspring – offspring solution
for each arc ai ∈ Ai

if ai exist in Aj

add ai to xoffspring

else

add node ns ∈ ai to Ntemp, where ns is the starting node of arc ai

end if

end for

insert nodes from Ntemp to xoffspring using the defined random insertion

The second crossover operator intersects the routes Ri ∈ xi and Rj ∈ xj according to
the visited node sets Ni and Nj :

Ntemp = Uj

xoffspring – offspring solution
for each route rs ∈ Rj

Rtemp = ∅ – temporary set of routes
for each node n ∈ rs , n 6= n0

rt = find route in Ri , where n ∈ rt

if rt not found

add n to Ntemp

else if rt (tmp) ∈ Rtemp
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assign node n to rt (tmp)

else

rt (tmp) = new route ({n0, n})

add rt (tmp) to Rtemp

end if

rbest = select a route with the maximal number of nodes visited from Rtemp

assign all nodes n ∈ Rtemp\rbest to Ntemp

end for

insert nodes from Ntemp to xoffspring using the defined random insertion

The second crossover examines all nodes in each route and groups them into partial
routes according to the attendance in the routes from the opposite solution. The partial
route with the maximum number of nodes is selected to preserve the path. All other partial
routes are discarded by adding nodes to the unassigned node list Ntemp. In the worst case
the crossover operators have a complexity of O(k2). Figure 4 represents behaviour of
both crossover operators, where (a), (b) show two parent solutions, (c) shows the offspring
obtained by the first crossover, (d) shows the offspring obtained by the second crossover.
Dotted circles show unassigned nodes Ntemp that will be inserted back. Dotted lines in (c)
connect intersected arcs, and in (d) intersected node sets displayed as grey circles.

4.4. Mutation Operator

Mutation operators deal with a single solution xi . The proposed mutation operators are
similar to the defined crossover operators. The designed mutation operators extract a sub-
set of nodes from the solution in the defined ways and reinsert them back by applying a
random insertion. By extracting a set of nodes we aim to preserve one part of the solution
and reorganize the other one. A set of mutation operators that are applied by selecting one
of them randomly is defined.

The first mutation operator selects a node set for extraction randomly with the limit
of 0.5z|N |, where z is a random number in the range (0,1). The complexity of random
extraction is O(k).

The second operator picks up a random node nr from xi and extracts the set of nodes
closest to nr by minimizing the distance function l(nr , ni), where ∀ni ∈ Ri :

�

(a) (b) (c) (d)

Fig. 4. Crossover operators: (a), (b) two parents; (c) intersection of the first crossover (d) intersection of the
second crossover.
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xm = xi4

Ntemp = Um

Um = ∅

nr = select a random node from xm

extract nr from xi

add nr to Ntemp

while not limit reached

nri = find the nearest node to nr in xm

extract nri from xm

add nri to Ntemp

end while

insert nodes from Ntemp to xm using the defined random insertion

The number of extracted nodes is limited to 0.5z|N |, where z is a random number in
the range (0,1). The complexity of the second mutation operator is O(k2).

The third mutation operator extracts random routes with the limit of 0.5z|Ri| routes,
where Ri ∈ xi . The complexity of the described method is O(k).

The fourth mutation operator extracts nodes with the longest detour. The search se-
lects nodes with maximal values of the function lr(nr ) = l(nr−1, nr ) + l(nr , nr+1) −

l(nr−1, nr+1). The number of extracted nodes is limited to 0.5z|N |, where z is a ran-
dom number in the range (0,1). In the worst case the complexity of the fourth mutation
operator is O(k2). The fourth mutation operator is combined with other mutation oper-
ators where initially the first mutation operator is applied and then the fourth mutation
operator is applied with probability 0.1.

The fifth mutation operator searches for nodes visited around the same time. This
mutation operator is similar to the second mutation operator. At first, a random node

Fig. 5. Mutation operators: (a) initial solution; other cases show the nodes extracted in (b) the first, (c) the
second, (d) the third, (e) the fourth, and (f) the fifth mutation operators.
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nr is selected, afterwards other nodes are selected by minimizing the function tr (ni) =

|ta(nr ) − ta(ni)|, where ∀ni ∈ Ri , Ri ∈ xi . The fifth mutation operator is applied when
time constraints are defined in the problem. The complexity of the fifth mutation operator
is O(k2).

In Fig. 5, the behaviour of mutation operators is presented where a filled circle shows
a depot, empty circles show visited nodes and dotted circles show the extracted nodes.

5. Experimental Evaluation

The proposed algorithm is tested using two problem sets. The first set includes the well-
known Solomon instances of the VRPTW problem where all instances have 100 cus-
tomers, distributed over the geographical area (Solomon, 1987). 56 VRPTW instances
are categorized as:

• set C – customers are located in geographical clusters;
• set R – customers are randomly distributed;
• set RC – some customers are randomly distributed and some customers are located

in clusters.

Problem instances are also split into Class 1 (R1, C1, RC1) and Class 2 (R2, C2,
RC2), where Class 1 defines problems with a small vehicle capacity and narrow time
windows. Class 2 defines problems with a large vehicle capacity and large time windows.
Each Solomon problem instance defines the central depot, the maximum vehicle number,
limits of vehicle capacity, demands for each node and also the maximum travel time for a
single vehicle.

The second set of instances is defined for the VRPPD problem (Li and Lim, 2003).
VRPPD instances LC1, LC2, LR1, LR2, LRC1, LRC2 are generated from Solomon prob-
lem sets C1, C2, R1, R2, RC1, RC2 respectively. Problem instances have 100 customers.
VRPPD instances include the central depot, time window constraints, pick-up and deliv-
ery nodes and the maximal travel time for a single vehicle. For both, VRPPD and VRPTW
problems, the distance between nodes is taken as a travelling time value.

The proposed algorithm is implemented using the Java programming language. All
computations are performed by the personal computer (Intel Core 2 Duo 2.2 GHz CPU,
4 GB RAM). In the experimental evaluation, parameter values in the genetic algorithm are
defined as follows: PS1 = 100, PL1 = 10, IL1 = 50, TL1 = 5 min, MP = 0.1, PS2 = 20,
IL2 = 5, PL2 = 2. All the obtained results are compared with the best results obtained
by other genetic algorithms in following papers: [1] (Solomon, 1987); [2] (Berger et al.,
1998); [3] (Ho et al., 2001); [4] (Tan et al., 2001a); [5] (Tan et al., 2001b); [6] (Jung
and Moon, 2002); [7] (Bent and Hentenryck, 2003); [8] (Li and Lim, 2003); [9] (Zhu,
2003); [10] (Berger and Barkaoui, 2004); [11] (Alvarenga et al., 2005); [12] (Ombuki
et al., 2006); [13] (Tan et al., 2006); [14] (Hasle and Kloster, 2007): [15] (Garcia-Najera
and Bullinaria, 2011).

In Tables 1–6, the results of VRPTW instances are summarized. The first column de-
fines the problem instance name; three next columns present the best known solutions, the
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Table 1
Results of problem set R1.

Problem Best distance/vehicles Average distance/vehicle Average
CPU time of
the proposed
algorithm

Best
solution

Best GA
solution

Best solution of
the proposed
algorithm

Best GA
solution

Solution of
the proposed
algorithm

R101 1645.79/19 1650.8/19 [15] 1650.8/19 1693.23/19.6 [12] 1650.8/19 42.5
R102* 1486.12/17 1487.31/17 [15] 1486.12/17 1525.46/18.2 [12] 1487.04/17 27.27
R103 1292.68/13 1299.18/13 [15] 1296.29/13 1281.32/13.8 [12] 1234.48/13.8 31.48
R104 1007.24/9 999.82/10 [15] 982.02/10 1035.10/10 [12] 989.96/10 48.09
R105* 1377.11/14 1377.11/14 [15] 1377.11/14 1430.86/14.9 [12] 1385.56/14 52.85
R106 1251.98/12 1263.21/12 [15] 1252.03/12 1298.27/12.8 [12] 1259.28/12 59.64
R107 1104.66/10 1164.14/11 [6] 1117/10 1115.87/11 [12] 1127.04/10 70.20
R108 960.99/9 960.99/9 [10] 968.97/9 990.39/10 [12] 970.18/9 51.8
R109 1194.73/11 1156.05/12 [15] 1245.32/11 1244.87/12.5 [12] 1175.5/11.8 21.12
R110 1118.59/10 1119/10 [10] 1119/10 1146.11/11.9 [12] 1091.95/10.9 43.66
R111 1096.72/10 1084.76/11 [12] 1096.74/10 1132.51/11 [12] 1107.13/10 75.04
R112 982.14/9 953.63/10 [6] 962.03/10 1022.51/10.3 [12] 977.05/10 52.71

Table 2
Results of problem set R2.

Problem Best distance/vehicles Average distance/vehicle Average
CPU time of
the proposed
algorithm

Best
solution

Best GA
solution

Best solution of
the proposed
algorithm

Best GA
solution

Solution of
the proposed
algorithm

R201 1252.37/4 1253.32/4 [15] 1253.23/4 1313.23/4 [12] 1262.83/4 17.32
R202 1191.7/3 1081.6/4 [15] 1195.3/3 1114.77/4 [12] 1196.60/3 27.76
R203 939.50/3 959.75/3 [15] 947.09/3 974.51/3 [12] 966.71/3 14.92
R204 825.52/2 760.82/3 [12] 846.42/2 777.37/3 [12] 849.17/2 60.68
R205 994.42/3 1030.92/3 [15] 1029.1/3 1070.66/3 [12] 1052.89/3 31.00
R206 906.14/3 919.73/3 [12] 918.75/3 949.25/3 [12] 932.26/3 26.07
R207* 890.61/2 821.32/3 [12] 890.61/2 848.30/3 [12] 911.02/2 88.19
R208* 726.82/2 736.47/2 [15] 726.82/2 747.98/3 [12] 734.53/2 37.43
R209 909.16/3 921.37/3 [15] 913.14/3 955.46/4 [12] 931.54/3 40.72
R210 939.34/3 954.12/3 [10] 954.12/3 999.02/3 [12] 969.81/3 29.89
R211 885.71/2 906.19/2 [10] 900.88/2 823.34/3 [12] 929.60/2 80.99

best known solutions obtained by other genetic algorithms and the best solution obtained
by the proposed algorithm, respectively. In the last three columns there are presented the
published best average results obtained by other genetic algorithms, the proposed algo-
rithm average results and the average CPU time used in calculation.

Table 7 shows the best results, that are averaged over categories (C, R, RC). The
columns show the results from different articles as well as the average results obtained
by the proposed algorithm.

In Tables 8–13, the results of VRPPD instances are presented. The first column shows
instance names, in the second column the best known results are presented; the third
column presents the best results, obtained by the proposed algorithm, and the last two
columns show the average results and average CPU time obtained by the proposed algo-
rithm.
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Table 3
Results of problem set C1.

Problem Best distance/vehicles Average distance/vehicle Average
CPU time of
the proposed
algorithm

Best
solution

Best GA
solution

Best solution of
the proposed
algorithm

Best GA
solution

Solution of
the proposed
algorithm

C101* 828.94/10 828.94/10[6] 828.94/10 828.94/10[6] 828.94/10 12.2
C102* 828.94/10 828.94/10[6] 828.94/10 828.94/10[6] 828.94/10 13.1
C103* 828.06/10 828.06/10[6] 828.06/10 828.06/10[6] 828.06/10 15.25
C104* 824.78/10 824.78/10[6] 824.78/10 824.78/10[6] 824.78/10 16.4
C105* 828.94/10 828.94/10[6] 828.94/10 828.94/10[6] 828.94/10 12.55
C106* 828.94/10 828.94/10[6] 828.94/10 828.94/10[6] 828.94/10 12.86
C107* 828.94/10 828.94/10[6] 828.94/10 828.94/10[6] 828.94/10 12.85
C108* 828.94/10 828.94/10[6] 828.94/10 828.94/10[6] 828.94/10 13.24
C109* 828.94/10 828.94/10[6] 828.94/10 828.94/10[6] 828.94/10 14.67

Table 4
Results of problem set C2.

Problem Best distance/vehicles Average distance/vehicle Average
CPU time of
the proposed
algorithm

Best
solution

Best GA
solution

Best solution of
the proposed
algorithm

Best GA
solution

Solution of
the proposed
algorithm

C201* 591.56/3 591.56/3 [6] 591.56/3 591.56/3 [6] 591.56/3 12.34
C202* 591.56/3 591.56/3 [6] 591.56/3 591.56/3 [6] 591.56/3 12.57
C203* 591.17/3 591.17/3 [6] 591.17/3 591.17/3 [6] 591.17/3 13.29
C204* 590.6/3 590.6/3 [6] 590.6/3 590.6/3 [6] 590.6/3 15.03
C205* 588.88/3 588.88/3 [6] 588.88/3 588.88/3 [6] 588.88/3 12.68
C206* 588.49/3 588.49/3 [6] 588.49/3 588.49/3 [6] 588.49/3 12.85
C207* 588.29/3 588.29/3 [6] 588.29/3 588.29/3 [6] 588.29/3 12.86
C208* 588.32/3 588.32/3 [6] 588.32/3 588.32/3 [6] 588.32/3 12.88

The average results are obtained by executing the proposed algorithm 10 times for each
problem instance when each time a new initial population is created.

The asterisks at the problem names in Tables 1–6 show which instance solution found
by the proposed algorithm is equal to the best known solution. The results are compared
in the same way as they have been defined in the objective: firstly, the vehicle numbers
found are compared and afterwards the travelling distances found are compared. The best
solutions of other genetic algorithms are compared to the best solutions found by the pro-
posed algorithm and the best average results are compared with the average results found
by the proposed algorithm. Better values are in bold in Tables 1–6.

The proposed algorithm shows very good results for the problem set C, where the
average results are equal to the best known values and the computation time is very small.
The results show that for other problem sets R and RC the best values are found only in
some cases. However, the results obtained by the proposed algorithm in comparison with
other genetic algorithm approaches show that the same or better results are obtained for
51 out of 56 problem instances for the best solutions, and the same or better results for 56
out of 56 problem instances comparing with the best average results published.
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Table 5
Results of problem set RC1.

Problem Best distance/vehicles Average distance/vehicle Average
CPU time of
the proposed
algorithm

Best
solution

Best GA
solution

Best solution of
the proposed
algorithm

Best GA
solution

Solution of
the proposed
algorithm

RC101 1696.94/14 1636.92/15 [12] 1697.43/14 1668.52/15.4 [12] 1649.63/14.8 76.94
RC102* 1554.75/12 1470.26/13 [13] 1554.75/12 1536.04/13.8 [12] 1547.69/12.4 63.34
RC103 1261.67/11 1267.86/11 [13] 1273.81/11 1350.15/12 [12] 1280.27/11 84.99
RC104 1135.48/10 1136.81/10 [6] 1135.83/10 1184.29/10.4 [12] 1141.37/10 46.27
RC105 1629.44/13 1629.44/13 [10] 1540.18/14 1618.63/15 [12] 1556.01/14 88.91
RC106 1424.73/11 1424.73/11 [10] 1376.26/12 1450.3/12.8 [12] 1390.15/12 38.35
RC107 1230.48/11 1235.37/11 [15] 1230.95/11 1227.81/12.03 [6] 1232.78/11 58.62
RC108* 1139.82/10 1141.34/10 [12] 1139.82/10 1135.81/11 [6] 1151.75/10 88.54

Table 6
Results of problem set RC2.

Problem Best distance/vehicles Average distance/vehicle Average
CPU time of
the proposed
algorithm

Best
solution

Best GA
solution

Best solution of
the proposed
algorithm

Best GA
solution

Solution of
the proposed
algorithm

RC201 1406.91/4 1423.73/4 [12] 1417.45/4 1492.67/4 [12] 1435.06/4 30.06
RC202 1365.65/3 1162.54/4 [15] 1367.09/3 1212.49/4 [12] 1415.48/3 105.47
RC203 1049.62/3 1058.33/3 [15] 1058.33/3 1152.64/3 [12] 1088.31/3 44.42
RC204* 798.46/3 801.90/3 [15] 798.46/3 826.19/3 [12] 812.77/3 28.03
RC205* 1302.42/4 1304.93/4 [15] 1302.42/4 1378.44/4 [12] 1330.06/4 20.93
RC206* 1146.32/3 1203.7/3 [12] 1146.32/3 1164.33/3.3 [12] 1159.36/3 43.09
RC207 1061.14/3 1093.25/3 [12] 1070.85/3 1052.13/3.7 [12] 1080.66/3 77.18
RC208* 828.14/3 834.88/3 [15] 828.14/3 938.24/3 [12] 851.43/3 28.13

Table 7
Travel distance and the number of vehicles, averaged over categories.

[4] [5] [3] [9] [12] [10] [11] [15] Solution of
the proposed
algorithm

C1 861/10.1 860.62/10.1 833.32/10 828.9/10 828.48/10 828.38/10 828.38/10 828.38/10 828.38/10
C2 619/3.3 624.47/3.3 593/3 589.86/3 590.6/3 589.93/3 590.9/3 591.74 589.86/3
R1 1227/13.2 1314.79/14.4 1203.32/12.6 1242.7/12.8 1220.92/12.5 1221.1/11.92 1224/11.92 1187.32/13.08 1213.66/12.08
R2 980/5 1093.37/5.6 951.17/3.2 1016.4/3 938.75/3.1 975.43/2.73 1012/2.73 897.95/4 961.44/2.73
RC1 1427/13.5 1512.94/14.6 1382.06/12.8 1412/13 1386.35/12.12 1389.89/11.5 1417/11.5 1348.22/12.63 1370.01/11.75
RC2 1123/5 1282.47/7 1132.79/3.8 1201.2/3.7 1132.12/3.38 1159.37/3.25 1195/3.25 1036.65/5.63 1126.75/3.25

The values in bold in Table 7 show the minimal value compared at first according to
the vehicle number found and then according to the shortest distance found. The results
show that for problem sets C1 and C2 the proposed algorithm finds solutions that are equal
to the best results. The proposed algorithm finds solutions that are better than other ones
for problem sets R2 and RC2, where problems have large time windows. Better results
were obtained in [10] for problems with narrow time windows, R1 and RC1.
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Table 8
Results of problem set LR1.

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of the
proposed algorithm

LR101 1650.8/19 [8] 1650.8/19 1650.8/19 15.315
LR102 1487.57/17 [8] 1487.57/17 1487.57/17 17.115
LR103 1292.68/13 [8] 1292.68/13 1292.68/13 17.661
LR104 1013.39/9 [8] 1013.39/9 1013.39/9 44.836
LR105 1377.11/14 [8] 1377.11/14 1377.11/14 15.959
LR106 1252.62/12 [8] 1252.62/12 1252.62/12 14.673
LR107 1111.31/10 [8] 1111.31/10 1111.31/10 20.001
LR108 968.97/9 [8] 968.97/9 968.97/9 16.577
LR109 1208.96/11 [14] 1208.96/11 1208.96/11 46.617
LR110 1159.35/10 [8] 1159.35/10 1167.55/10.7 50.68
LR111 1108.9/10 [8] 1108.9/10 1108.9/10 35.007
LR112 1003.77/9 [8] 1003.77/9 1003.77/9 41.956

Table 9
Results of problem set LR2.

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of the
proposed algorithm

LR201 1253.23/10 [14] 1253.23/10 1253.23/10 13.59
LR202 1197.67/3 [8] 1197.67/3 1213.39/3.3 26.806
LR203 949.40/3 [8] 949.40/3 949.40/3 15.59
LR204 849.05/2 [8] 849.05/2 849.05/2 20.18
LR205 1054.02/3 [8] 1054.02/3 1054.02/3 16.68
LR206 931.63/3 [8] 931.63/3 931.63/3 14.40
LR207 903.06/2 [8] 903.06/2 921.41/2.3 29.76
LR208 734.85/2 [8] 734.85/2 734.85/2 17.75
LR209 930.59/3 [14] 930.59/3 939.92/3.1 16.6
LR210 964.22/3[8] 964.22/3 999.74/3 22.09
LR211 911.52/2 [14] 911.52/2 911.52/2 31.3

Table 10
Results of problem set LC1.

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of the
proposed algorithm

LC101 828.94/10 [8] 828.94/10 828.94/10 12.245
LC102 828.94/10 [8] 828.94/10 828.94/10 12.458
LC103 1035.35/9 [7] 1035.35/9 1057.70/9 32.96
LC104 860.01/9 [14] 860.01/9 839.31/9.5 27.353
LC105 828.94/10 [8] 828.94/10 828.94/10 12.38
LC106 828.94/10 [8] 828.94/10 828.94/10 12.477
LC107 828.94/10 [8] 828.94/10 828.94/10 12.454
LC108 826.44/10 [8] 826.44/10 826.44/10 12.609
LC109 1000.6/9 [7] 1036.41/9 896.72/9.7 26.813
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Table 11
Results of problem set LC2.

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of the
proposed algorithm

LC201 591.56/3 [8] 591.56/3 591.56/3 12.265
LC202 591.56/3 [8] 591.56/3 591.56/3 12.307
LC203 585.56/3 [8] 591.17/3 591.17/3 12.479
LC204 590.60/3 [14] 590.60/3 590.60/3 13.166
LC205 588.88/3 [8] 588.88/3 588.88/3 12.432
LC206 588.49/3 [8] 588.49/3 588.49/3 12.546
LC207 588.29/3 [8] 588.29/3 588.29/3 12.516
LC208 588.32/3 [8] 588.32/3 588.32/3 12.475

Table 12
Results of problem set LRC1.

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of the
proposed algorithm

LRC101 1708.80/14 [8] 1708.80/14 1708.80/14 18.2
LRC102 1558.07/12 [14] 1558.07/12 1558.07/12 20.383
LRC103 1258.74/11 [8] 1258.74/11 1258.74/11 19.47
LRC104 1128.40/10 [8] 1128.40/10 1128.40/10 16.787
LRC105 1637.62/13 [8] 1637.62/13 1637.62/13 23.077
LRC106 1424.73/11 [14] 1424.73/11 1424.73/11 36.105
LRC107 1230.15/11 [8] 1230.14/11 1230.14/11 19.488
LRC108 1147.43/10 [14] 1147.43/10 1168.4/10.7 25.531

Table 13
Results of problem set LRC2..

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of the
proposed algorithm

LRC201 1406.94/4 [14] 1406.94/4 1406.94/4 42.016
LRC202 1374.27/3 [8] 1374.27/3 1392.59/3.6 37.966
LRC203 1089.07/03 [8] 1089.07/03 1089.07/03 18.329
LRC204 818.66/3 [14] 818.66/3 818.66/3 15.961
LRC205 1302.20/4 [8] 1302.2/4 1302.20/4 29.366
LRC206 1159.03/3 [14] 1159.03/3 1159.03/3 21.527
LRC207 1062.05/3 [14] 1062.05/3 1062.05/3 22.121
LRC208 852.76/3 [8] 852.76/3 852.76/3 18.563

The numbers in bold in Tables 8–13 for the VRPPD problem show where the best
solutions, obtained by the proposed algorithm, are equal to the best known solutions. The
results for VRPPD instances show that the solutions, found by the proposed algorithm,
are equal to the best known solutions for 54 out of 56 problem instances and the average
results found are equal to the best known solutions for 45 out of 56 problem instances. For
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VRPTW and VRPPD instances the minimal computation time is for problem set C, where
customers are located in clusters. It is worth mentioning that the results, obtained by the
proposed algorithm, were identified on average in 38.97 seconds for VRPTW instances.
The results obtained in Alvarenga et al. (2005) were found in 15 minutes by Pentium IV
2.4 GHz and in Berger and Barkaoui (2004) the presented results were found in 30 minutes
by Pentium 400 MHz.

6. Conclusions

The proposed new genetic algorithm is based on insertion heuristics for the vehicle routing
problem with constraints, where the insertion is combined with genetic algorithm opera-
tors. As the results show, the proposed genetic algorithm finds solutions that in most cases
are better than the ones found by other genetic algorithms. Although the solutions are not
equal to the best known solutions in all cases, they are found in a reasonably short time.
That makes the proposed algorithm competitive with other known algorithms.

The proposed algorithmcan be applied to any problem that can be expressed as a graph.
Mutation and crossover operators of the proposed genetic algorithm are based on a random
insertion heuristic. The operators are not designed to a certain specific problem and can be
applied to different problems. It allows to apply the proposed algorithm in general cases.
The proposed algorithm has been applied to two different problems (VRPTW, VRPPD).
However, no additional improvement/repair algorithms or local search algorithms are used
here.

In order to apply the proposed algorithm to problems with additional constraints, the
check of constraints can be easily added to the node insertion process. As the experimen-
tal results show, properly defined genetic algorithm operators with the feasibility check
allow to obtain good solutions in some acceptable computation time. Different selection
methods of nodes for reinsertion could be investigated further. Methods could be investi-
gated for ranking the population as well as for selecting arcs in the node insertion process.
Various improvement methods can be considered to improve the results. However, the pro-
posed algorithm does not include improvement methods with a view to present the results
obtained only by the genetic algorithm with a feasible insertion.
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Genetinis algoritmas krovinių gabenimo uždaviniams spręsti,
paremtas leistinu įterpimu

Gintaras VAIRA, Olga KURASOVA

Šiame straipsnyje yra pasiūlytas genetinis algoritmas krovinių gabenimo uždaviniams spręsti, ku-
ris yra paremtas įterpimo euristika. Atsitiktinio įterpimo euristika yra naudojama pradinių sprendi-
nių sukonstravimui bei esamų sprendinių rekonstravimui. Pasiūlyti genetinio algoritmo kryžminimo
bei mutacijos operatoriai yra apjungti su atsitiktinio įterpimo euristikos metodu ir taip išlaiko sto-
chastines genetinio algoritmo savybes. Skirtingai nuo kitų genetinių algoritmų, pasiūlyto genetinio
algoritmo operatoriai nekonstruoja naujo sprendinio iš parinktų sprendinių dalių, tačiau, įvertinus
ankstesnės generacijos sprendinius, identifikuoja tas sprendinio dalis, kurios turėtų išlikti, ir tas da-
lis, kurios turėtų būti perkurtos. Mutacijos operatoriuje yra sukuriama antra sprendinių populiacija
ir vykdomas genetinis algoritmas. Gauti sprendiniai skiriasi nuo paprastos mutacijos sugeneruotų
sprendinių tuo, kad šiems sprendiniams gauti buvo atliekama optimizacija. Tokie sprendiniai pir-
moje populiacijoje turi didesnę tikimybę būti parinkti sekančios generacijos kūrimui taip padidinant
diversifikavimą visame genetiniame algoritme. Skirtingai nuo kitų genetinių algoritmų, pasiūlyta-
me algoritme nėra naudojami papildomi lokalios paieškos, pagerinimo ar taisymo metodai, kurie
galėtų apriboti naujų sąlygų įtraukimą į algoritmą. Eksperimentiniai rezultatai rodo, kad sprendiniai
rasti pasiūlytu algoritmu yra panašūs į kitų genetinių algoritmų rezultatus. Tačiau, daugeliu atveju
pasiūlytas genetinis algoritmas suranda sprendinį per trumpesnį laiką.


