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Abstract Many real problems with uncertainties may often be formulated as Stochastic Programming
Problem. In this study, Genetic Algorithm (GA) which has been recently used for solving mathematical
programming problem is expanded for use in uncertain environments. The modified GA is referred as
GA in uncertain environments (GAUCE). In the method, the objective function and/or the constraint
are fluctuated according to the distribution functions of their stochastic variables. Firstly, the individual
with highest frequency through all generations is nominated as the individual associated with the solution
presenting the best expected value of objective function. The individual with highest frequency is associated
with the solution by GAUCE. The proposed method is applied to Stochastic Optimal Assignment Problem,
Stochastic Knapsack Problem and newly formulated Stochastic Image Compression Problem. Then, it has
been proved that the solution by GAUCE has excellent agreement with the solution presenting the best
expected value of objective function, in cases of both Stochastic Optimal Assignment Problem and Stochastic
Knapsack Problem. GAUCE is also successfully applied to Stochastic Image Compression Problem where
the coefficients of discrete cosine transformation are treated as stochastic variables.

1. Introduction

Many real problems with some uncertainties may often be formulated as Stochastic Pro-
gramming Problem [2, 3, 4, 5, 7, 19, 23, 27, 35]. From the points of support for effective
decision making in real situations, the stochastic programming problem is very important.
However, the problem is generally difficult to solve analytically. We have been longing for
some flexible method for solving the problem.

On the other hand, Genetic Algorithm (GA)[12, 16] has been recently applied for solving
mathematical programming problem [9, 10, 12, 13, 17, 24, 25, 28, 29, 30]. GA is a kind of
solution generator, in addition to solution selector. General GA uses the stationary envi-
ronment as one fundamental element for selection support, while GA for the nonstationary
environment has been recently investigated [6, 8, 14, 18, 34].

Thus, in the present study, for solving Stochastic Programming Problem, the environ-
ment in GA is fluctuated through all generations, according to the stochastic distribution
functions. For that purpose, Stochastic Optimal Assignment Problem and Stochastic Knap-
sack Problem [15, 31, 32] are studied first. We can easily generate the solutions for these
problems. However, we must check whether our solution for each problem is optimum or
not. So, we choose these examples which can be exactly solved with existing method. Then,
we apply our method to Stochastic Image Compression Problem as newly formulated prob-
lem, because image compression has been recently receiving big attention in the field of
computer and information science.
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2. GA in Uncertain Environments
We consider the following generalized stochastic programming problem.

Py: Mazimize E{fo(wx,€)} (2.1)

Subject to P{fi(x,§) <0} >1—¢ (i=1,2,---,5)
P{ﬁ(w,f)IO}?_l—E (z:5+1,,m)
crcXCR

where

£ . random variable vector defined on = C R"

fi R"x=Z— R (i=0,1,---,m)

X : closed
The expected value should be maximized under some stochastic constraints. We can convert
the above formulation to the standard minimization type. However, in relation to GA, we
use the above formulation in this study.

On the other hand, GA approach generally assumes the stationary environment for solv-
ing a mathematical programming problem. GA generates the random individuals associated
with the solutions at first. Then, a survival game is generally to be played to get a final
winner, or an acceptable solution for the fixed objective function and the fixed constraint.
G A is also a solution generator. The winner is the acceptable solution, while the losers also
have the information, namely, the individual objective function values. The environment in
GA consists of the fitness function made from the objective function and the constraint.

Then, we treat the stochastic fluctuation of the objective function and/or the constraint
in Stochastic Programming Problem as the stochastic fluctuation of fitness function in GA.
Since the fitness function literally expresses the fitness of the individual to the environment,
the fitness function in GA is fluctuated, according to their stochastic distribution-functions
for the stochastic variables. Then, we get frequencies of solutions appearing through all
generations.

Figure 1 shows the schematic comparison among Stochastic Programming Problem, or-
dinary GA and GA in Uncertain Environment (GAUCE). In the stochastic programming
problem, each solution can have the distribution of objective function value, because of the
stochastic fluctuation of variables in the objective function and/or the constraint. On the
other hand, GA may be able to present the optimum value, for example, the maximum in
terms of the fitness function value at the final generation. In GA for ordinary mathemati-
cal programming problem, each solution has individually the deterministic fitness function
value made from the objective function value and the constraint. In comparison between
Stochastic Programming Problem and ordinary GA, it is natural that GA can be extended
for Stochastic Programming Problem, through fluctuating the fitness function or the envi-
ronment, according to the stochastic distribution-functions for the variables in the fitness
function. In each generation of GAUCE, the fitness function or environment is determined
by random number generated according to the stochastic distribution-functions. Eventu-
ally, in the way of GAUCE, the frequencies of individuals associated with solutions are
investigated through all generations.

Figure 2 shows the flowchart of GAUCE. Firstly, the initial population is randomly
generated. Then, at each generation, the fitness function including the constraint is deter-
mined by random number generated according to the stochastic distribution-functions for
their stochastic variables. Next, the calculation of fitness function value, selection, crossover
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and mutation are performed as in the usual way in GA. Then, all individuals and their num-
bers are stored in a computer. These procedures from computing the fitness function to
storing the information are performed through all generations. The method provides us the
individuals associated with solutions and their frequencies through all generations.

However, for specific stochastic programming problem, the design of GA operator is
indispensable. In this study, the objective is to maximize the expected value. From this
reason, Roulette Strategy expressed by the following equation is adopted as selection pro-
cedure.

(1) = LU (2.2)

~
;f(li)

where f(I;) is the fitness function value for individual ¢, P([l;) is the selection probability
for individual .

With Roulette Strategy, the suitable individual for the environment at the generation
is selected in proportion to its fitness function value. Moreover, since Roulette Strategy
allows sampling with replacement, the selection pressure is relatively high. Therefore, by
using Roulette Strategy, it is expected that the higher the expected value is, the higher the
individual frequency through all generations is. The hypothesis that the individual with
highest frequency through all generations presents the good solution in terms of expected
value should be tested by the numerical experiments. If the hypothesis is proved to be
valid, we can get the good solution as the individual with highest frequency through all
generations.

This method is applied to Stochastic Optimal Assignment Problem, Stochastic Knapsack
Problem and newly formulated Stochastic Image Compression Problem.

3. Numerical Experiment and Discussion
3.1. Stochastic optimal assignment problem
The Stochastic Optimal Assignment Problem is formulated as follows.

k(]

Pi: Mazimize E (chia‘wiﬁ‘) (3.1)

i=17=1

Subject to Z:E,-j =1 (i=1,---,n)
7=1

i=1

where c;; are stochastic variables. When a person i is assigned to a job j, z;; equals
1. Elsewhere, z;; equals 0. In fact this problem can be solved as deterministic Integer
Programming Problem. However, the reason why this simple problem is selected is that we
can evaluate the performance of the proposed method by comparing exact solutions with
those obtained by the proposed method.
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As GA strategy, ordinal representation for genotype is used to avoid the formation of
fatal gene. Then, one point crossover and one point mutation are used. As the fitness
function, the objective function is used.

The example of gene phenotype, job number and gene genotype by ordinary represen-
tation are shown in Figure 3. In this case, the first person is assigned to the second job,
the second person is assigned to the third job, then, the third person is assigned to the first
job. In genotype expression for the individual, the first person is assigned to the second job,
the second person is assigned to the second job in the remainders, then the third person is
assigned to the first job in the remainder.

Phenotype : 010 001 100
Jobnumber: 2 3 1
Genotype : 2 2 1

Figure 3: An example of phenotype, job number and genotype.

The one point crossover is performed for a pair of parent-individuals with certain prob-
ability. The division point is randomly selected. At the division point, the chromosome is
divided into two parts, and then each part of the chromosome is combined with that from
different parent for getting a new pair of child-individuals.

Then, one point mutation is also performed with certain probability. The mutation gene
1s randomly selected. The allele of the selected gene is changed to one of others.

In this experiment, the population size is 100, the generation size is 1500, the probability
of crossover is 0.6, and the probability of mutation is 0.05. When these conditions were
used for the ordinary GA, the individual with highest frequency through all generations was
the same as the individual associated with optimum solution to the deterministic Optimal
Assignment Problem which was previously solved to find out the optimum solution by the
branch and bound method.

The transformation from the stochastic problem to the deterministic one at each gener-
ation is explained with the simplest example where the stochastic variable has two discrete
values, ¢f; — 0.5 and ¢; + 0.5, with even probability, where cJ; are generated according to
the uniform distribution over [1,11]. As the first procedure at each generation, the random
number is generated for each stochastic variable, according to its distribution function. For
this purpose, uniform random number between 0 and 1 is generated.

For every stochastic variable, the generation of random number for not only discrete
distribution but also continuous one is independently performed in the usual way[33].

Table 1 shows the summary of numerical results, where the accuracy means the ratio of
cases where the solution with highest frequency corresponds to the optimum one. In the
small system where n = m = 3, six types of stochastic distribution function are adopted, as
demonstrated in Table 1. Four types are discrete, while the others are continuous. One of
continuous types is the normal distribution. Another is made by combining the two normal
distributions with the ratio of 2 to 1. The representative values of ¢;,(7 = 1,2,3,j =
1,2, 3) are independently generated according to the uniform distribution over [1,11]. Three
. examples of each distribution type are generated for testing, where GAUCE is performed
5 times for each example. On the other hand, the expected value is calculated for every
case, in order to evaluate the accuracy of this method. Furthermore, the probability that
each solution has the highest -7, 37, ¢;;x; value among all solutions is calculated for the
discrete distribution case. In the case of the discrete distribution, the optimum solution
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in terms of the expected value corresponds to the solution having the highest value for
the probability that the 37, 37", ¢;;x:; value of the solution is highest among those of all
solutions.

Table 1: Summary of numerical results.

Type Stochastic distribution Accuracy
D1  Cij[probability]; C*ij-0.5 [0.5], C*ij+0.5 [0.5] | 5/5, 3/5, 2/5
D2  Cijlprobability]; C*ij-0.5 [0.25], C*ij [0.5], C*ij+0.5 [0.25] 5/5, 5/5, 5/5
D3  Cij[probability]; C*ij-0.5 [0.5 or 0.3], C*ij [0.5], C*ij+0.5 [0.3 or 0.5] 5/5, 5/5, 5/5
D4  Cijlprobability]; C*ij-1.0 [0.125], C*ij-0.5 [0.25 or 0.375], C*ij [0.125], 5/5, 515, 5/5

C*ij+0.5 [0.375 or 0.25], C*ij+1.0 [0.125]

C1  Normal distribution with the average of C*ij 1/5, 4/5, 5/5

C2  Combination of two normal distributions with each average of 5/5, 4/5, 5/5
C#*ij-1.0 or C*ij+1 and theratioof 1to2or 2to 1

C#*ij : value generated with uniform random number of 1 to 11

As shown in Table 1, in almost all cases, this method gives the optimum solution as the
individual with highest frequency. However, when the expected value difference between
the highest and the second highest is less than 2.5 %, the solution with the second highest
expected value happens to be selected as the individual with highest frequency in some cases.
In these cases, the true optimum solution has the second highest frequency. Figures 4 and 5
show the relationship between the normalized frequency and the normalized expected value,
as the typical examples of numerical results for the discrete and continuous distributions
respectively. As shown in the typical example in Figures 4 and 5, this method gives the
optimum solution as the individual with highest frequency.
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Figure 4: An example of relationship between the normalized frequency and the normalized
expected value. Stochastic distribution; D4(C}; has 5 discrete values) in Table 1.
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Figure 5: Another example of relationship between the normalized frequency and the nor-
malized expected value. Stochastic distribution; C2(C;; has the combined normal distribu-
tion) in Table 1.

Figure 6 shows an example of numerical result for bigger system where n = m = 10
and the normal distribution are used. In this case, the most suitable job for each person is
randomly selected, and the value of ¢f; for the most suitable job is 30 which is much higher
than that for others. The c}; value for others is generated with the uniform distribution
over [5,11]. Moreover, the population size increases to 2500 because of the bigger system.
In this case, this method also gives the optimum solution as the solution associated with
the individual with highest frequency.

Next, we try to find out an additional merit of this method. In this case, the solution
rank decision is selected as the first trial. Figure 7 shows the example of rank decision. The
gene of the solution with highest frequency in the first GAUCE is treated as the fatal gene
in the second GAUCE. Next, the solution with highest frequency in the second GAUCE is
selected among all remainders. Then, the gene of the solution with highest frequency in the
second GAUCE is also treated as the fatal gene in the third GAUCE. All ranks are decided
in the same way in order. In some cases, the optimum solution which may often be selected
as the solution with highest frequency in the first GAUCE may be not realistic by some
reason. In such a case, the ranking may be useful. The ranking ability is considered to be
one advantage of this method.

The relation between the generation size and the accuracy in the both cases of GAUCE
and GA is investigated, where the accuracy means the right answer ratio among 50 nu-
merical experiments. In this case, the discrete stochastic distribution of 2 values with even
probability is used. In the case of GAUCE, the quality of the calculation is judged by how
often the solution with highest frequency coincides with the highest expected value. On
the other hand, in the case of GA, the quality of the calculation is judged by how often
the solution with highest frequency coincides with the highest fitness value. In this case,
the accuracy of GAUCE reaches 100 % at 50th generation, while that of GA reaches 100
% at 20th generation. The CPU time required by GAUCE and GA until reaching 100
% accuracy on Sun SPARC station 20 workstation are 0.4 sec. and 0.1 sec. respectively.
However, to find out optimum solution with GA, we must perform GA for every case on
ciiy (i = 1,2,3,75 = 1,2, 3) having discrete stochastic distribution of 2 values with even prob-
ability. We have 2° = 512 cases in this problem. Therefore, when the calculation time of
GAUCE is compared with the total calculation time for GA performed for all cases, the
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Probability density function

1) Condition

Normal distribution where
the average and the standard
deviation are C*ij.

R/ ¢

C*ij values

N 2 3 4 5 6 7 8 9 10

6321 5044 7.61 6824 9.124 [30000] 11.000 7.494 7.025 8.501
5.864 [JU000F 6800 6460 9913 6120 5896 7.129 5395 9811
6526 9891 7.517 [30000] 10.636 9.487 6318 6539 10586 5393
6.000 7200 5684 8240 7689 799 7431 5998 9.756
9.648 [3UD00} 9213 7310 9.055 8588 9.515 10295 8413 9579
8555 7479 5684 6273 6.503 8777 [30000] 7.941 8845 7.804
9466 9.632 8.053 10731 5.826 10368 [30000] 6352 9281 10715
(U000} 10446 8275 8285 7.74 6500 7541 8341 10.650 10.711
8539 5022 6114 10.576 6.791 [30000] 6.683 7.852 7907 7.533
5662 5.174 [30000] 7.832 10332 9959 7.974 8545 10.155 8713

= \©
S 00N AU AW N =

2 ) Results

No [Frequency ] Solution Expected value  (Rank)
1[ 13270721 6 2 4 5 8 710 1 9 3 238917 ( 1)

2[ 6370391 6 2 458 79 110 3 237.109 ( 5)

3[ 1633851 6 2 4 59 710 1 8 3 236.980 ( 6)

4[ 1130681 6 2 4 59 7 8 110 3 232.298 28

5[ 961011 6 2 4 5810 719 3 236.006 ( 12

6[ 95480] 6 2 4 510 7 9 1 8 3 236.712 ( 7

70 942611 6 2 4 58 710 1 3 9 217.279 ( 54

8[ 64666] 6 2 4 510 7 8 1 9 3 233.838 ( 23

9[ 598971 6 2 458 9 7 110 3 236.673 ( 8)

10[ 445251 6 2 4 58 73 110 9 216.036 ( 80
11] 443681 6 2 4 58 791310 214.403 ( 141)
12[ 328411 6 2 4 5810 917 3 214.063 ( 158)

13[ 314911 6 2 4 5 8 910 1 7 3 216.538 « 70

14[ 272351 6 2 458 71310 9 195.724 ( 436)

§ § §

38758 1 17243956810 77.297 (37759)
387591 1 6103 47 8 9521 100.163 (32378)
38760[ 1 621017 53984 121.798 (23947)
38761 171 6103 7251984 127.622 ( 18824)
38762[ 1 376 51091284 106.564 (27925)
38763[ 1 63 491058172 137.089 ( 15756)

Figure 6: An example of numerical result for bigger system where n = m = 10 and normal
distribution are used.
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Figure 7: An example of order decision, where stochastic distribution; D4(C;; has 5 discrete
values) in Table 1.
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calculation time for GAUCE is less than 1 % of that for GA. Furthermore, when the number
of cases is increased, the time shortening by GAUCE is considered to be more remarkable.
When ¢;; have continuous stochastic distribution-functions, the calculation time for GA for
all cases is infinite because the number of cases is infinite. Therefore, ordinary GA is not
appropriate for solving Stochastic Programming Problem.

Since the expected value is maximized in this study, the Roulette strategy is selected as
GA operation. As a result, the solution with highest frequency equals the optimum solution
in almost all cases. When the expected value difference between the highest and the second
highest is less than, for example, 2.5%, the solution with second highest expected value
happens to be selected as the solution with highest frequency in some cases. Moreover, in
rare cases, the locally optimum solution is selected as the solution with highest frequency.
However, even in these two kinds of unfavorable cases, we may be able to get the optimum
solution if we perform GAUCE several times, for example, 2 to 5 times. For the most strict
usage, the optimum solution may be obtained through calculating the expected values of the
high rank solutions through 2 to 5 times calculations of GAUCE. Moreover, the additional
advantage is the ability of rank decision of solution. This ranking may be useful in some
cases where the optimum solution is not realistic by some practical reason. The calculation
time for GAUCE is much less than that for ordinary GA applied to all cases.

3.2. Stochastic knapsack problem
The next example is Stochastic Knapsack Programming Problem formulated as follows.

P,: Mazimize FE (Z cixi) (3.2)
=1

Subject to P (Z a;r; < b) >1—c

=1

z; € {0,1} (i=1,---,n)

where a; and / or ¢; are stochastic variables. In this example, the objective function is
also the maximization of the expected value under some stochastic constraints. In fact the
expected value is calculated as the constrained expected value.

As GA strategy, genotype equals phenotype. As the fitness function, f, the following
equation is used.

fo= Dlaw if (O air; <b) (3.3)
=1 =1
= 0 if (Zaixi>b)
=1

Two points crossover is performed with a pair of parent-individuals with certain prob-
ability. The division point is randomly selected. At the division points, the chromosome
is divided into three parts, and then each part of the chromosome is combined with that
from different parent, for getting a pair of child-individuals. Then, one point mutation is
performed with certain probability. The mutation gene is randomly selected. The allele of
the selected gene is changed to another.

Table 2 shows the representative values for stochastic variables, where the number of
variables, z;, is 8. These values are used as, for example, the average value of stochastic
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distribution function. As constant & value, 121 is used. In this experiment, the population
size is 500, the generation size is 1500, the probability of crossover is 0.6, the probability
of mutation is 0.1. When these conditions were used for the ordinary GA, the individual
with highest frequency through all generations was the same as the individual associated
with optimum solution to the deterministic Knapsack Programming Problem which was
previously solved to find out the optimum solution by the branch and bound method.

Table 2: Representative values for ¢;,a;.
i1 2 3 4 5 6 7 8
¢ 142 12 45 61 89 32 47 88
a; |39 13 68 20 31 15 71 16

At each generation, the objective function and/or the constraint are determined by ran-
dom number generated according to the stochastic distribution-functions for the stochastic
variables.

Table 3 shows the summary of numerical results, where the accuracy means the ratio
of cases where the solution with highest frequency corresponds to the optimum one. In
this numerical experiment, three patterns, (A), (B), and (C), as stochastic conditions are
adopted, where (A); the objective function has stochastic variables, (B); the constraint has
stochastic variables, (C); both of them have stochastic variables. In the case of (C), the
three variables for ¢;(z = 1, - +,8) and the three variables for a;,(¢ =1, - -, 8) are randomly
selected, and treated as deterministic parameters for avoiding the trouble from the memory
shortage in a computer. Each pattern has some examples of discrete and/or continuous type
for stochastic distribution function. One continuous type is normal distribution. Another is
made by combining two normal distributions with the rate of 2 to 1. For each distribution,
GAUCE is performed 5 times. On the other hand, the expected value is calculated for
every case in order to evaluate the accuracy of this method. Furthermore, the probability
that each solution has the highest >_7; ¢;z; value among all solutions is calculated for the
discrete distribution case. As shown in Table 3, in almost all cases, this method gives the
optimum solution as the individual with highest frequency. In the case of OC1 or CC1 in
Table 3, where the objective function or the constraint has the stochastic variables with
normal distribution, the locally optimum solution happens to be selected as the solution
with highest frequency at the ratio of 1/5. In the case of the discrete distribution for both
(A) and (B), the optimum solution in terms of the expected value corresponds to the solution
having the highest value for the probability that the }-_, ciz; value of the solution is highest
among those of all solutions. On the other hand, in the case of discrete distribution for (C),
the optimum solution in terms of the expected value does not correspond to the solution
having the highest value for the probability that the >, cix; value of the solution is highest
among those of all solutions.

Figures 8, 9 and 10 show the example of numerical results for (A), (B) and (C) respec-
tively. Then, Figures 11, 12 and 13 show the relation between the normalized frequency and
the normalized expected value, linked to Figures 8, 9 and 10 respectively. As shown in the
typical example in Figures 11, 12 and 13, this method gives the optimum solution as the
individual with highest frequency.
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1) Condition

Probability density function
Combining two normal
distributions with the rate of 2
to 1, where the average and the
standard deviation in each

normal distribution are C*i - 10
or C*i+10. i
I =10 ¢ o g
Average value for each
normal distribution
(Combining ratio)
C; Cy Ca Cyq Cs Cg Cy Cg
32 2 35 51 79 22 37 78
(0.667) (0333) (0.667) (0.667) (0333) (0.333) (0.333) (0.667)
52 22 55 71 99 42 57 98

(0333) (0667) (0.333) (0.333) - (0.667) (0.667) (0.667) (0333)

2 ) Results

(1) True values (2) Numerical results by GAUCE
No  Solution Expected value ) Frequency  Solution
[ 1] 10011101  308.66 418875 10011101
[ 2] 11011001  288.66 66499 10011001
[ 31 01011101  285.34 57839 10001101
[ 4] 10011001  273.32 57714 10010101
[ 51 00011101  270.00 50862 00011101
[ 6] 11001101 26634 9896 10001001
[ 71 10001101  251.00 9539 11010101
[ 8 01011001  250.00 9414 00011001
[ 9] 11011100  239.34 9367 11011001
[10] 00011001  234.66 7692 01011101
[11] 11010101  231.66 7549 10010001
[12] 11001001  231.00 7110 00010101
[13] 01001101  227.68 6086 11001101
[14] 00001011 22734 5822 00001101
[15] 10011100  224.00 5691 10000101
3839 01011001
§ § 2656 01010101
2056 11001001
[99] 00100000 45.00 1504 11010001
[99] 00000010 50.34 1366 01001101
[100] 00100000 41.66
[101] 10000000 38.66 (Lower rank solutions
[102] 00000100 35.34 are omitted)

[103] 01000000 15.34

Figure 8: A numerical result for the case that ¢; has the combined distribution of two normal

distribution(OC2 in Table 3). '
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Figure 9: A numerical result for the case that a; has three values(CD1 in Table 3).
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1 ) Condition

Probability
Three discrete probabilities, 0.25,
0.5, 0.25, where the values of a; are
a*; - 10, a*j, a*; + 10, respectively.
a*10 a* a+10 >a.
1 1 1 1
aj value
(Probalility)
A a, A3 Ay ds ag ay ag
29 3 58 10 21 5 61 6
(025) (025  (025) (025) (025)  (025) (0.25)  (0.25)
39 13 68 20 31 15 7 16
(0.5) 035 (05 (05 (03 ©5) 05 (05
49 23 78 30 41 25 81 26
(025)  (025) (025 (025) (025  (025) (0.25)  (0.25)

2 ) Results

(1) True values

No

Solution Expected value

[ 13
[ 2]
[ 3]
[ 4]
[ 5]
[ 6]
[ 7
[ 8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

[172]
[173]
[174]
[175]
[176]

00011101
01011101
01011001
10001101
10011001
00011001
11001001
10010101
01001101
10001001
00001101
11010001
11010101
10011101
01011100

§

11101001
11111000
11001110
11101100
11010111

268.945
266.578
250.000
242.176
239.531
238.000
222.879
222.129
221.000
219.000
209.000
202.207
194.609
194.391
194.000

0.270
0.243
0217
0215
0.069

(2) Numerical results by GAUCE

Frequency Solution

369127
156950
73416
35638
29038
19885
14779
11068
9078
6037
4044
3581
3491
1770
1744
1282
1129
839
759
684

00011101
01011101
00011001
01011001
00001101
00010101
01001101
10011101
01010101
00001001
10011001
01001001
00010001
01010001
10001101
00000101
10010101
11011101
11011001
01000101

(Lower rank solutions

are omitted.)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



~ GA for Solving Stochastic Programming Problem 279

1) Condition

Three discrete probabilities, 0.5(0.3), 0.2, Three discrete probabilities, 0.5(0.3), 0.2,
0.3(0.5), where the values of aj are a*; - 10, 0.3(0.5), where the values of c; are c*; - 10,

. T -
a*;, a*; + 10, respectively. ¢ ¢*j + 10, respectively.

Probability Probability
Pasio gt atio >a,» I c-10 G d+io G
i 1 2 3 4 5 6 7 8
3 21 5 61 6
(0.5) (0.3) 05 (0.5) (0.3)
4 39 13 68 20 31 15 71 16
®) | 1o 02) 1.0 (1L09)  (02) 02) (0.2) 0.2)
23 41 25 81 26
0.3) 0.5) 03)  (03) (0.5)
32 35 51 79 22
(0.5) 0.3) 03) (05 (05
G 2 12 45 61 89 32 47 88
P) {020 a0 (02 02 (02 (02 00 10
52 55 71 99 42
(0.3) (05) 05  (©03) (03)

2 ) Results

(1) True values (2) Numerical results by GAUCE

No Solution Expected value Frequency Solution

[ 11 00011101  268.000 414801 00011101
[ 2] 01011101 260260 125424 01011101
[ 3] 01011001  250.000 77028 00011001
[ 4] 00011001  238.000 . 32378 00001101
[ 5] 10001101  226.625 27070 01011001
[ 6] 10010101  221.000 21419 00010101
[ 71 01001101  217.000 10342 01001101
[ 8] 10001001  215.000 8692 10011101
[ 9] 11001001 209975 7301 01010101
[10] 10011001  208.500 5522 00001001

3750 00010001
§ 2456 10011001
2112 01001001

[142] 11000111 8.137 1467 01010001
[143] 00011111 7.088 1355 00000101
[1441 01011111 3.679
(Lower rank solutions
are omitted)

Figure 10: A numerical result for the case that ¢; and a; have three values, respec-
tively(OD2CD2 in Table 3).
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Table 3: Summary of numerical results.

Stochastic Type Distribution Accuracy
(A) OD1 ci[probability]; c*i-10 [0.25], c*i[[0.5], c*i+10 [0.25] 5/5
Objective 0oD2 ci[probability]; c*i-10 [0.5 or 0.3], c*i[[0.2], c*i+10 [0.3 or 0.5] 5/5
function
0C1 Normal distribution with the average of c*i 4/5
0C2 Combination of two normal distributions with each average of
c*i-10 or c*i+10 and the ratio of 1to 2 or 2 to 1 5/5
B) CD1 ai[probability]; a*i-10 [0.25], a*i[[0.5], a*i+10 [0.25] 5/5
Constraint CD2 ai[probability]; a*i-10 [0.5 or 0.3], a*i[[0.2], a*i+10 [0.3 or 0.5] 5/5
CcC1 Normal distribution with the average of a*i 4/5
© ODICD1 OD1 & CD1 5/5
Objective
function ODICD2 OD1 & CD2 5/5
&
Constraint  Op2CcD1  OD2 & CD1 5/5
OD2CD2 OD2 & CD2 5/5

c*i, a*i : representative value shown in table 2

* *%

0.5

Normalized expected value

01 T T
0.5 1
Normalized frequency

Figure 11: An example of relationship between the normalized frequency and the normalized

expected value, linked to Figure 8. Stochastic distribution(OC2 in Table 3); ¢; has the
combined distribution of two normal distribution.
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2 1 % x
s x
>
- *
L
©
2
»
o
=y
g
= 0.5
g
-
8
Z
0= T T
0.5 1

Normalized frequency

Figure 12: An example of relationship between the normalized frequency and the normalized
expected value, linked to Figure 9. Stochastic distribution(CD1 in Table 3); a; has three
values.

[

=

:;

o 14 » *

8

i *

e *

(0]

e

S

g %

[«

Zz

0.6

I ] I
0 0.5 1

Normalized frequency

Figure 13: An example of relationship between the normalized frequency and the normalized
expected value, linked to Figure 10. Stochastic distribution(OD2CD2 in Table 3); ¢; and «;
have three values, respectively.
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3.3. Stochastic image compression problem

The next example is Stochastic Image Compression Problem. For simplicity, the image is
monochrome and static. The volume of image is compressed with use of optimized condi-
tion by this method. When only one image is stored, the image compression is not very
meaningful from the point of reducing the volume for storing. However, since many images
are stored in almost all cases, the optimization for image compression has been demanded.
Namely, the optimization for image compression is for the assembly of images. In this sense,
the problem is newly formulated as the Stochastic Programming Problem. Discrete Cosine
Transform (DCT) and Huffman coding[38] which are the standard procedure in both Joint
Photographic Experts Group (JPEG)[22, 26, 36, 38] and Moving Picture Experts Group
(MPEG)[1, 11, 21, 20, 38] are used in this study. The basis of image compression used in
this study is described in the references[37, 38].

Firstly, the flowchart of basic image compression used in this study is shown in Figure
14. The left side in Figure 14 is a flow of image compression for getting coded data, while
the right side is a flow to get decoded image. As a basic procedure for getting coded
data, (1)DCT(8 x 8 pixel), (2)Quantization, (3)Entropy coding (for direct current element;
Huffman coding for difference of DCT coefficient between the DCT block and the next one,
for alternating current; Huffman coding for the run length code for DCT coefficient arranged
by zigzag scan from the low frequency element to the high one), are performed in order[37].
In (2)Quantization, the DCT coefficient is divided by the product of the coefficient for
quantization and the corresponding value in quantization table, and then the divided value
is rounded off to get its integer part called a quantized datum. The product is used as the
unit-value for quantization. Then, (3)Entropy coding is performed for the quantized data
obtained in (2). On the other hand, Entropy decoding, Inverse-quantization and Inverse-
DCT (IDCT) are performed in this order for transforming coded data to decoded image. The
compression rate is calculated as volume of coded data divided by original image volume.
The quantization is approximation and is not reversible. Therefore, we have some error in
decoded image inevitably. The condition of quantization is a target of optimization.

Coding ! Decoding

I
[ Original image )4 Er|r0r ------- { Decoded image )
! | f
DCT } IDCT
] i t

Quantization [ == OPtimizatiOIl Inverse quantization

' t

Entropy coding Entropy decoding

A 4

. Coded data volume
Compression rate =

Original image volume

Figure 14: A flowchart of image compression.

The trade-off relationship between the error in decoded image and the compression rate
is demonstrated in Figure 15. The quantization is a procedure changing DCT coefficient to
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the corresponding integer value with unit value. The unit value is the product of the table
value and the quantization coefficient. The quantization procedures for certain frequency
component (u,v) are demonstrated in Figure 15. In case of bigger unit value, the kind of
quantized data is less, and, consequently, the same integer among quantized data appears
more frequently. The Entropy coding presents small bit per data to high frequency data.
Therefore, in case of bigger unit, coded data has smaller volume. On the contrary, in case
of bigger unit which results in rougher approximation in the quantization process, error in
decoded image is bigger. The condition of quantization is usually manually adjusted by
changing the quantization coefficient. Since image compression has been recently receiving
big attention in the field of information science and related business, we have been longing
for a method for optimizing the quantization condition.

DCT coefficient

Normal distribution

Quantizatio N

3 ¥
Quantized data Quantized data
! Condition A B

' I_— DCT DCT

__J l coefficient coefficient

Quantization coefficient |¢—.l

X

Quantization table value

Quantized data :

[ Concentrated || I Dispersed |
. J
ntropy|} !
oding T
High frequency s Small bit

quantized data

! !

Data volume : small : big
Error : big : small

Figure 15: A trade-off relationship between coded data volume and error in decoded image.

It is well-known that the stochastic distribution of DCT coefficient is approximately
normal distribution[38]. Therefore, we newly make formula for Stochastic Image Compres-
sion Problem using DCT coefficient as stochastic variable. When only one image is stored,
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the image compression is not very meaningful for reducing volume for storing. However,
since many images are stored in almost all cases, the optimization for image compression
has been demanded. Namely, the optimization for image compression is for the assembly
“of images. In this sense the problem is formulated as Stochastic Programming Problem
with the approximation that the stochastic distribution function for the DCT coefficient is
normal distribution.

The Stochastic Image Compression Problem is formulated as follows.

Py Maximize E(1/e(xi, Fi(u,v))) (3.4)
Subject to P (r(zi, Fi(u,v)) <b) > 1—¢
(Ele{oal} (7:177’1)7 (}"’:]-aam)a (u:[)sa?)a (020‘77)

7 7 7 7 " it1)u +1jur
Y r Dice Dm0 | Eouco Deme O Cw)(Fr (1 v) = B (i, Fiu(u, v)))cos EATIET o5 CLELT
- 7 7 7 T i um ] v

D ht Dotz 2o im0 2oumo 2avmo C(W)C(0) Tl v)cos AT oo G4

e(zi, Fr(u, v))

u) = % ) (1120) v :{ % , (V:O)
Clu) { Y I T e

where e(z;, Fi(u,v)) is the error between original image and decoded image, r(x;, Fr(u,v))
is the compression rate obtained as the volume ratio of the original image and the coded
data, m is the number of block for DCT, Fj(u,v) is the stochastic variable expressing
the coefficient of DCT at block k, F(xi, Fir(u,v)) is the representative value for quantized
Fi(u,v), the 0 — 1 variable, x;, is used for giving the condition for quantization of the DCT
coefficient.

In e(x;, Fr(u,v)), the denominator corresponds to the sum total of grey level in origi-
nal image, and the numerator corresponds to the sum total.of difference in grey level at
each pixel between original and decoded images. The denominator in e(z;, Fi(u,v)) is for
normalization. For calculated gray level in original image , IDCT to Fj(u,v) is performed.
Moreover, for calculating gray level in decoded image, the process of quantization, inverse
quantization and IDCT is performed.

Fp(z;, Fr(u,v)) corresponds to an approximate value for Fy(u,v). The defference be-
tween Fp(u,v) and F7(z;, Fr(u,v)) corresponds to error in quantization. When the unit
value for quantization is smaller, the error is smaller. The unit value which is decided by x;
values is the product of the table value and the quantization coeflicient. On the contrary, as
demonstrated in Figure 15, r(z;, Fi(u, v)) is bigger, when the unit value for quantization is
smaller. r(x;, Fi(u,v)) is also calculated with the unit value which is decided by z; values.
For calculating coded data volume in r(x;, Fi(u,v)), the process from quantization to en-
tropy coding is performed. Moreover, for calculated original image volume in r(z;, Fi(u,v)),
IDCT to Fy(Fy(u,v)) is performed.

In this example, the objective function is also the maximization of the expected value
under some stochastic constraints. In fact the expected value is also calculated as the
constrained expected value, as mentioned in Stochastic Knapsack Problem. Under the
constraint on the compression rate, the expected value of inverse value of error between
original image and decoded image is maximized. In this problem, both the objective function
and the constraint have stochastic variables. The average and the standard deviation of
DCT coefficient for every block with 8 x 8 pixels are measured for the sampling images. The
normal distribution of DCT coefficient is determined with the average and the standard
deviation of DCT coefficient for the sampling images. Then, the original image is generated
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with DCT coefficient determined by random number and IDCT to the DCT coefficient.
Moreover, the header for encoding is ignored for calculating the compression rate.

At each generation of GAUCE, DCT coefficients are determined by random number. In
the generation, the error in decoded image and compression rate are calculated for each
individual. As the fitness function value, the inverse value of error between original image
and decoded image is used when the constraint on the compression rate is satisfied. On the
other hand, the fitness function value is 0 when the constraint on the compression rate is
not satisfied.

Here, if we express the table for quantization and the quantization coefficient with 0-1
variables, the number of variables is very big. As a result, the population size and the
generation size should be very big for getting the optimum solution. In such a case, it might
take long time to calculate the process of GAUCE with a computer. This is mainly because
both DCT and IDCT require calculation in the process of GAUCE. Then, for shortening
the time for calculation of GAUCE, the condition for quantization of the DCT coefficient is
formulated as follows.

(u ’U) — ’YCd 3 (U,V)Z(O,O) (35>
ALY ~vC(avu?+v2+b) (u,v)# (0,0)

a=2%2,+ 229+ 225 + (3.6)

b= 22174 + 21115 + 20':56 + ,8 (3.7)

C=2"z,+2%5+6 (3.8)

where ¢(u,v) is the product of the coefficient for quantization and the corresponding value
for (u,v) in quantization table, and z; € {0,1}, o, 8,7,6,d are positive constant. Here,
~C' corresponds to the coefficient for quantization and av/u? + v2 + b, d correspond to the
values of quantization table. The formulae expressed by equation (3.5) are supported by
the fact that it is difficult for human to detect the high frequency component in the image.
Moreover, in equation (3.5), the table value for (u,v) = (0,0) which is direct current ele-
ment is separated from those for alternating current element because of difference of coding
formation between direct and alternating current elements.

The basic part of this problem is the same as Stochastic Knapsack Problem. Namely,
0-1 variables, x;, should be optimized under some stochastic conditions. As GA strategy,
genotype equals phenotype, where the number of variables, z;, is 8. Moreover, two point
crossover and one point mutation are used as in the same way as that mentioned in Stochastic
Knapsack Problem. The objective function and/or the constraint are determined at each
generation with random number generated according to the stochastic distribution-functions
for the stochastic variables.

In this experiment, the population size is 200, the generation size is 100, the probability
of crossover is 0.6, the probability of mutation is 0.1. The condition is based on preliminary
investigation where ordinary GA was applied to one image.

In each numerical experiment, the original images are TV news with 100 images having
160 x 120 pixels. The TV images are transformed into monochrome images. The 100 images
are stored as the sampling images at the rate of 1 image per 0.1 sec.. The average and the
standard deviation of DCT coefficient for every block with 8 x 8§ pixels are measured for the
sampling images in order to determine normal distribution for each DCT coefficient. The
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values of constants, i.e., d = 16,0 = 3 = 6 = 1,v = 0.5, are decided so that the condition
expressed by solution includes the region on the standard quantization in JPEG.

Figure 16 shows the numerical results. In the case of & = 1, optimum solution is ap-
parently 00000000 which gives the smallest unit value for quantization for DCT coefficient,
because the condition of & = 1 means no constraint. For other conditions, we can’t find out
optimum solution analytically.

(1) No constraint

Frequency Solution

13295 000000O0O

2023 00000100

1268 00001000

623 00010000

528 00100000

318 01000000O

28 100000O0O

270 00000010

161 00001100

143 00010100

(2) b=0.2
Frequency Solution Frequency Solution Frequency Solution

1931 10010010 31288 10010010 1889 1 0010010
1688 10011010 3015 10010110 1887 10010110
1166 10010110 1676 10011110 1571 10110110
1037 10011110 1437 10110110 1534 10110010
425 10111110 1396 10011010 1032 10111010
420 10110010 949 10110010 860 10011010
357 11010010 948 10111110 837 10111110
354 10111010 645 10111010 644 10011110
338 11011010 557 11010110 536 10100110
250 10110110 435 11010010 531 11111111

Figure 16: Solution with top 10 frequency.

As shown in Figure 16, all x; values of solution with highest frequency are 0 when
no constraint, i.e. b = 1, for image compression rate is applied. The numerical result
is clearly right. In addition, when the upper limit of image compression is b = 0.2, three
numerical results give the same solution. Namely, GAUCE presents the same solution as the
solution with highest frequency every time. In this case, the optimum solution can not be
derived with existing method. However, considering that GAUCE is successfully applied to
Stochastic Optimal Assignment Problem and Stochastic Knapsack Programming Problem,
GAUCE seems to have the ability for selecting the optimum solution or local optimum one
at worst, even when some constraint for image compression rate is applied. Figure 17 shows
an example of the original image and the decoded image with this method in case of b = 0.2.
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Figure 17: An example of application; Left:Original image, Right:Decoded image.

In this study, for simplicity, the image is monochrome and static. The forthcoming paper
will present the expanded results for the color and/or dynamic image.

3.4. Other possible applications

This method is applied to Stochastic Optimal Assignment Problem, Stochastic Knapsack
Problem and newly formulated Stochastic Image Compression Problem. Moreover, GAUCE
may be applied to many Stochastic Programming Problem, for example, Stochastic Schedul-
ing Problem, Stochastic Traveling Salesman Problem, where GA coding is available. In
Stochastic Scheduling Problem, processing times for operation can be treated as stochastic
variables. In Stochastic Traveling Salesman Problem, times for traveling between two cities
can be treated as stochastic variables. In these cases, GAUCE will be effective for getting
good solution as that with highest frequency.

In this study, the Roulette strategy is adopted for selecting the good solution in terms of
the expected value. However, there are other formulae as Stochastic Programming Problem.
The solutions which present the highest probability for (A) the best solution or (B) the
objective function value higher than a certain constant will be obtained, when GA operators
are properly designed. Moreover, the distribution of the objective function value can be
analyzed with this method.

However, in applying this method to Stochastic Programming Problem, the objective
may be limited in some kinds, for example, expected value maximum and two cases associ-
ated with (A) and (B), described above.

The forthcoming paper will present other applications of this method.

4. Conclusions

A method for solving Stochastic Programming Problem has been developed with GA in
uncertain environments. This method is successfully applied to Stochastic Optimal As-
signment Problem, Stochastic Knapsack Problem and newly formulated Stochastic Image
Compression Problem.

In this study, the Roulette strategy is adopted for selecting the optimum solution in
terms of the expected value. As a result, the solution with highest frequency equals the
optimum solution in almost all cases. When the expected value difference between the
highest and the second highest is less than, for example, 2.5%, the solution with second
highest expected value happens to be selected as the solution with highest frequency in
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some cases. Moreover, in rare cases, the locally optimum solution is selected as the solution
with highest frequency.

Moreover, it is found that GAUCE has potential to search the second, the third best and
the lower rank solution in terms of the expected value of objective function. This ranking
may be useful in some cases where the optimum solution is not practical by some reason.

There are other formulas as Stochastic Programming Problem. The solutions which
present the highest probability for (A) the best solution or (B) the objective function value
higher than a certain constant will be obtained by GAUCE, when GA operators are properly
designed. Moreover, the solution distributions can be analyzed with this method. GAUCE
may be applied to many Stochastic Programming Problem, for example, Stochastic Schedul-
ing Problem, Stochastic Traveling Salesman Problem, where GA coding is available.
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