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Abstract Many real problems with uncertainties may often be formulated as Stochastic Programming 
Problem. In this study, Genetic Algorithm (GA) which has been recently used for solving mathematical 
programming problem is expanded for use in uncertain environments. The modified GA is referred as 
GA in uncertain environments (GAUCE). In the method, the objective function and/or the constraint 
are fluctuated according to the distribution functions of their stochastic variables. Firstly, the individual 
with highest frequency through all generations is nominated as the individual associated with the solution 
presenting the best expected value of objective function. The individual with highest frequency is associated 
with the solution by GAUCE. The proposed method is applied to Stochastic Optimal Assignment Problem, 
Stochastic Knapsack Problem and newly formulated Stochastic Image Compression Problem. Then, it has 
been proved that the solution by GAUCE has excellent agreement with the solution presenting the best 
expected value of objective function, in cases of both Stochastic Optimal Assignment Problem and Stochastic 
Knapsack Problem. GAUCE is also successfully applied to Stochastic Image Compression Problem where 
the coefficients of discrete cosine transformation are treated as stochastic variables. 

1. Introduction 

Many real problems with some un~erta~inties may often be fornnila/ted a,s Stochastic Pro- 

gramming Problem [2, 3, 4, 5, 7, 19, 23, 27, 351. From the point,s of support for effec,tive 

dec.ision making in real sit,uaLtions, the stochastic programming problem is very import,a.nt,. 

However, the problem is generally difficult to  solve ajnarlyt,icaslly. We have been longing for 

some flexible method for solving the problem. 

On the other hand, Genetic. Algorithm (GA)[12, 161 has been recently applied for solving 

rnasthema3ticaJl prograxnming problem [g, 10, 12, 13, 17, 24, 25, 28, 29, 301. GA is a kind of 

solution ge,nerator, in addition t,o solution selector. General GA uses t,he st,a>tiona.ry envi- 

ronment a,s one fundanrnentJafl element for selection support, while GA for the nonsta.tiona,ry 

environment has been recently investigated [6, 8, 14, 18, 341. 

Thus, in the present study, for solving Stoc.hastic Programming Problem, t,he environ- 
ment in GA is fluctuated through all generakions, a?cc,ording to the  st,oc:.ha~stic dist,ribut,ion 

functions. For that purpose, Stochastic Optimal Assignment Problem and Stoc.ha,stic Kna,p- 

sa,c,l< Problem [15, 31, 321 are studied first. We can easily generate the solutions for these 

problems. However, we must check whether our solution for each problem is opt,imum or 

not. So, we choose these exa,rnples which can be exa,ct,ly solved with existing method. Then, 

we apply our metshod to Stoc.ha,st,ic Image Compression Problem a,s newly f~rmula~ted  prob- 

lem, because image compression havs been recently receiving big a.t,tention in the field of 

computer and informastion scienc.e. 
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2. GA in Uncertain Environments 

We consider the following generalized stochastic programming problem. 

where 

PO : Maximize E { fo{x, f ) }  

Subject t o  P{ fi(x, f )  <0l > 1 - E (i = l, 2, - v ,  S) 

f  '. random variable vector defined on E C Rn 

fi : R" X R (i = 0 , 1 , - - - , m )  

X : closed 

The expected value should be ma,ximized under some stocha,stic constraint S. We can convert 

the above formulation to the standard minimization type. However, in relation to GA, we 

use the above formulakion in this study. 

On the other hand, GA approach generally assumes the stationary environment for solv- 

ing a mathematical programming problem. GA generates the random individuals associated 

with the solutions at first. Then, a survival ga,me is generally to be played to get a final 

winner, or an acceptable solution for the fixed objective function and the fixed constraint. 

GA is also a solution generator. The winner is the acceptable solution, while the losers also 

have the information, napmely, the individual objective function values. The environment in 

GA consists of the fitness function made from the objective function and the constraint. 

Then, we trea,t the stochastic fluctuakion of the objective function a3nd/or the constraint 

in Stochastic Programming Problem as the sto~ha~stic fluctuation of fitness function in GA. 

Since the fitness function literally expresses the fitness of the individual to the environment, 

the fitness function in GA is fluctuated, according to their stochastic distribution-functions 

for the stochastic variables. Then, we get frequencies of solutions appearing through all 

generations. 

Figure 1 shows the schematic comparison among Stochastic Programming Problem, or- 

dinary GA and GA in Uncertain Environment (GAUCE). In the st~cha~stic progra,mming 

problem, each solution can have the distribution of objective function value, because of the 

~tocha~stic fluctuation of varia-bles in the objective function and/or the constraint. On the 

other hand, GA may be a,ble to present the optimum value, for example, the ma,ximum in 

terms of the fitness function value at the fina,l generation. In GA for ordinary mathemati- 

cal pr~gra~mming problem, each solution hats individ~a~lly the deterministic fitness function 

value made from the objective function value and the constraint. In comparison between 

Stochastic Programming Problem and ordinary GA, it is natural that GA can be extended 

for Stochastic Pr~gra~mming Problem, through flu~tua~ting the fitness function or the envi- 

ronment, according to the stochastic distribution-functions for the variables in the fitness 

function. In each generation of GAUCE, the fitness function or environment is determined 

by random number generated according to the stochastic distribution-functions. Eventu- 

ally, in the way of GAUCE, the frequencies of individuals associated with solutions azre 

investigated through all generations. 

Figure 2 shows the flowchart of GAUCE. Firstly, the initial population is ra8ndomly 

generated. Then, at each generation, the fitness function including the constraint is deter- 

mined by random number generated according to the ~tocha~stic distribution-functions for 

their stochastic variables. Next, the caflculation of fitness function value, selection, crossover 
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Stochastic Programming Problem GA in Uncertain Environment 

Fitness function 

(objective function andfor constraint) 

at every generation 

is fluctuated by stochastic variable. 

3 ;̂̂ . 

Objective function value ' I  I 

l Fitness function value 1 

1 Fitness function value 

Figure 1: Schematic comparison a,mong Stochastic Programming Problem, ordinary GA 

and GA in uncertain environment. 
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Figure 2: Flowchart of GA in uncertain environment 
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and muta,tion asre performed as in the usual way in GA. Then, all individuals and their num- 

bers are stored in a comput,er. These procedures from computing the fitness function to 

storing the information are performed through all generations. The method provides us the 

individuals associated with solutions and their frequencies through all generations. 

However, for specific stochastic programming problem, the design of GA operator is 

indispensable. In this study, the objective is to ma,ximize the expected value. From this 

reason, Roulette Stra,tegy expressed by the following equa,tion is adopted as selection pro- 

cedure. 

where f (Ii) is the fit,ness function value for individual 

for individual i. 

With Roulet,te St,rategy, the suitable individual for 

is selected in proportion to its fit,ness function value. 

i, P(Ii} is the selection probability 

the environment aft the generation 

Moreover, since R.oulette Strategy 

allows sa,mpling with replacement,, the selection pressure is relakively high. Therefore, by 

using R,oulette Strategy, it is expected that the higher the expected value is, the higher the 

individual frequency through all generations is. The hypothesis that the individual with 

highest frequency through all generat,ions present S the good solution in terms of expected 

value should be tested by the numerical experiments. If t,he hypothesis is proved t,o be 

valid, we can get the good solution as the indi~idua~l with highest frequency through all 

generations. 

This method is a*pplied to Stochastic Optimal Assignment Problem, St~cha~stic Kna,psa*ck 

Problem and newly formulated Stochastic Image Compression Problem. 

3. Numerical Experiment and Discussion 

3.1. Stochastic optimal assignment problem 

The Stochastic Optimal Assignment Problem is formulated as follows. 

Pi : Maximize E [E y, 
i=l J'=1 

m, 

- Subject to  ExG = 1 (i = l , - . . , n )  
J'= l 

xij â {O, l} 

where c,; are st,ochastic variables. When a person i is assigned to a job J\ xi, equals 

1. Elsewhere, x~ equals 0. In fact this problem can be solved as deterministic Integer 

Programming Problem. However, the reason why this simple problem is selected is tha,t we 

can evaluate the performance of the proposed method by compaa-ing exact solutions with 

those obtained by t,he proposed method. 
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As GA strategy, ordinal representakion for genotype is used t,o avoid t,he forma,tion of 

fatal gene. Then, one point crossover and one point ~nuta~tion a,re used. As the fitness 
function, the objective func,tion is used. 

The example of gene phenotype, job number and gene genotype by ordina,ry represen- 

tation are shown in Figure 3. In this case, the first person is assigned to the second job, 

the second person is assigned to the t,hird job, then, the third person is assigned to the first 

job. In genotype expression for the indi~idua~l ,  the first person is assigned t,o the second job, 

the second person is assigned to t,he second job in the remainders, then t,he third person is 

assigned t o  the first job in the remainder. 

Phenotype : 010 001 100 

Job number: 2 3 1 

Genotype : 2 2 1 

Figure 3: An exa~nple of phenotype, job number and genotype. 

The one point crossover is performed for a pair of parent-indi~idua~ls with c,erta,in prob- 

ability. The division point is randomly select'ed. At the division point, the chromosome is 

divided into t,wo parts, and then each part of the chromosome is combined with t'hat from 

different parent for gett,ing a, new pair of child-indi~idua~ls. 

Then, one point mutation is a,lso performed wit,h cert a$in probabilit y. The mut, ahion gene 

is randomly selected. The allele of the selected gene is changed to  one of others. 

In this experiment, the populaLt,ion size is 100, the generation size is 1500, the probability 

of crossover is 0.6, and the probability of muta,tion is 0.05. When t,hese conditmions were 

used for the ordinary GA, the individua,l with highest frequency through all generations was 

the same a-S the individ~a~l  associat~ed with opt,imum solution t,o the deterministic Optimal 

Assignment Problem which was previously solved t,o find out t,he optimum solution by the 

branch and bound method. 

The tra,nsformaftion from the st,ochastic problem to t,he deterministic one a,t each gener- 

ation is explained with the simplest example where t,he stochastic va,ria,ble havs two disc,rete 

values, c'[. - 0.5 and c:, + 0.5, wit,h even probability, where c;, axe generated according to 

the uniform dist'ribution over [1,11]. As the first procedure art each generation, the random 

number is generated for each stochastic ~a~r i a~b le ,  according to its distribution function. For 

this purpose, uniform random number bet,ween 0 a,nd 1 is genera*t,ed. 

For every s t~cha~st ic  variable, the genera,t,ion of random number for not only discrete 

distribution but also continuous one is independently performed in t>he usual waly[33]. 

Table 1 shows the summary of numericaJ results, where the accuracy means the ratio of 

cases where the solution wit~h highest frequency corresponds to the optimum one. In the 

small system where n = m = 3. six types of stochastic distribut,ion function are adopted, as 

demonstrated in Table 1. Four types asre discrete, while the others are continuous. One of 

continuous types is t,he normal distribution. Another is made by combining the two normal 

distributions with the ratio of 2 to 1. The representative values of c:j, ( z  = 1 ,2 , .3 , j  = 

1,2 ,3)  are independently gei~era~ted according to the uniform distribution over [l ,l l ] .  Three 

examples of each distribution type are generated for testing, where G AU CE is performed 
5 times for each exa,mple. On the other hand, the expected value is ~a~lculated for every 

case, in order to evaluate the a,ccura,cy of this method. Furthermore, the pr~ba~bil i ty that 

each solution has t'he highest. E',"=1 cijx<j value among all solutions is ca.lcula.ted for the 

discrete dist,ribution case. In the case of t,he discret,e dist'ribut,ion, t,he optimum solution 
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in t,erms of the expected value corresponds to t,he solution having the highest value for 

the pr~ba~bility that the xi C i j X i j  value of the solution is highest among those of all 

solutions. 

Table 1: Summaxy of numerical results. 

Type Stochastic distribution Accuracy 

D1 Cij[probability]; C*ij-0.5 [OS], C*ij+0.5 10.51 515,315,215 

D2 Cij[probability]; C*ij-0.5 [0.25], C*ij [OS], C*ij+0.5 [0.25] 515,515,515 

D3 Cij[probability]; C*ij-0.5 [OS or 0.31, C*ij [OS], C*ij+0.5 [0.3 or 0.51 515,515,515 

D4 Cij[probability]; C*ij-1.0 [0.125], C*ij-0.5 [0.25 or 0.3751, C*ij [0.125], 515,515,515 
C*ij+0.5 [0.375 or 0.251, C*ij+1.0 [0.125] 

C l  Normal distribution with the average of C*ij 115,415,515 

C2 Combination of two normal distributions with each average of 
C*ij-1.0 or C*ij+l and the ratio of 1 to 2 or 2 to 1 

C*ij : value generated with uniform random number of 1 to 11 

As shown in Table 1, in almost all cases, this met,hod gives the optimum solution as the 

individual wit h highest frequency. However, when the expected value difference between 

the highest and the second highest is less than 2.5 %, the solution with t,he second highest 

expected value happens to be selected as the individ~a~l with highest frequency in some cases. 

In these cases, the true optimum solution has the second highest frequency. Figures 4 and 5 

show the relationship between the normalized frequency and the normalized expected value, 

as the typical examples of numerical results for the discrete and ~ont~inuous distributions 

respectively. As shown in the typical example in Figures 4 and 5, this method gives the 

optimum solution as the individual with highest frequency. 

l l 

0.5 1 

Normalized frequency 

Figure 4: An exa,mple of relationship between the normalized frequency and the normalized 

expected value. Stochastic distribution; D4(Ce has 5 discrete values) in Table 1. 
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Normalized frequency 

Figure 5: Another example of relationship between the normalized frequency and the nor- 

malized expected value. Stochastic dist,ribution; C2(Cij haas the combined normal distribu- 

tion) in Table 1. 

Figure 6 shows a,n example of numerical result for bigger system where n = m = 10 

and the normal distribution are used. In this case, the most suitable job for each person is 

randomly selected, and the value of c- for the most suitable job is 30 which is much higher 

tha8n that for others. The c;", value for others is generaked with the uniform distribution 

over [5,11]. Moreover, the pop~la~t ion  size increases to 2500 because of the bigger system. 

In this case, this method also gives the optimum solution as the solution associahed with 

the individual with highest frequency. 

Next, we try to find out an additional merit of this method. In this case, the solution 

rank decision is selected as the first trial. Figure 7 shows the example of rank decision. The 

gene of the solution with highest frequency in the first GAUCE is treated as the fatal gene 

in the second GAUGE. Next, t'he solution with highest frequency in the second GAUCE is 

selected among all remainders. Then, the gene of the solution with highest frequency in the 

second GAUGE is also treated as the fatal gene in the t,hird GAUCE. All ranks are decided 

in the same way in order. In some cases, t'he optimum solution which may often be selected 

as the solution with highest frequency in the  first GAUCE may be not realistic by some 

reason. In such a case, the ranking may be useful. The ranking ability is considered to be 

one advant a,ge of this met hod. 

The rela,t8ion between t,he generation size and the a,ccuracy in the both cases of GAUCE 

and GA is investigated, where the a,ccura!cy means the right answer ratio among 50 nu- 

merical experiments. In t,his case, the discrete stochastic distribution of 2 values with even 

proba,bility is used. In t,he case of GAUGE, the quality of the c,alc,ulation is judged by how 

often the solution with highest frequency coincides with the highest expect,ed value. On 

t,he other ha,nd, in the case of GA, the qualit'y of the calculakion is judged by how often 

the solution with highest frequency coincides with the highest fitness value. In this case, 

the afccura8cy of GAUGE reaches 100 9% act 50th generation, while that of GA reaches 100 

% at 20th generation. The CPU time required by GAUCE and GA until rexhing 100 

% accura,cy on Sun SPARC st,a,t,ion 20 worksta,tion are 0.4 sec. and 0.1 sec. respectively. 

However, to find out opt,imum solution with GA, we must perform GA for every ca,se on 

CD, ( i  = 1 , 2 , 3 , j  = 1,2 ,3)  having discrete st'ochastic distribution of 2 values with even prob- 

ability. We have 2' = 512 cases in this ~roblern.  Therefore, when the calcula,tion time of 

GAUCE is cornpasred with the total calcula,t!ion time for GA ~erforrned for a,ll cases, t,he 
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Condition 
Probability density function 

Normal distribution where 
the average and the standard 
deviation are C*ij. c c . .  

c?. 
1J 1J 

C*ij values 

2 ) Results 

No [Frequency ] Solution Expected value ( ~ a n k )  
.................................................................................................. 

Figure 6: An example 

distribution are used. 

........................................................................................... 

of numerical result for bigger system where n = m = 10 and normal 
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Highest frequency 
best expected value 

Population 

Fatal 

Figure 7: A11 example of order decision, where st30c.hast,ic. di~tribut~ion; D4(Ci,; has -5 disc,ret,e 

values) in Table 1. 
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calculation time for GAUCE is less than 1 % of that for GA. Furthermore, when the number 

of cases is increased, the time shortening by GAUCE is considered to be more rema4rkaJble. 

When cij have continuous sto chast ic distribution-functions, the ~a~lculation time for GA for 

all cases is infinite because the number of cases is infinite. Therefore, ordina,ry GA is not 

appr~pria~te for solving Stochastic Pr~gra~mming Problem. 

Since the expected value is ma,ximized in this study, the Roulette strakegy is select,ed acs 

GA operation. As a result, the solution with highest frequency equals the optimum solut,ion 

in almost all cases. When the expected value differenc,e between the highest and the second 

highest is less than, for example, 2.5%, t,he solution with second highest expected value 

ha,ppens to be selected as the solution with highest frequency in some cases. Moreover, in 

rare cases, the locally optimum solution is selec.ted as the solution wit,h highest frequency. 

However, even in t,hese two kinds of unfavorable cases, we ma,y be able to get the optimum 

solution if we perform GAUCE several t,imes, for example, 2 to 5 times. For the most stxict 

usage, the optimum solut,ion may be obtalined through ~a~lcula~ting the expected values of the 

high rank solutions through 2 to 5 times calcula~tions of GAUCE. Moreover, t'he additional 

advantage is the a,bility of rank decision of solut,ion. This ranking may be useful in some 

cases where the optimum solution is not realistic by some pra,ctica,l reason. The calcula~tion 

time for GAUCE is much less than thak for ordinary GA applied to all cases. 

3.2. Stochastic knapsack problem 

The next example is Stochast'ic Kna,psa,c.k Programming Problem formulaked as follows. 

P2 : Maximize E x c i x i  (Ã ) 

where a, and / or c, are stochastic vaxiables. In this example, the objective function is 

also the maximization of the expected value under some stochastic const,raint,s. In fact the 

expected value is ~alcula~ted a,s t,he constrained expected value. 

As GA ~tra~tegy, genotype equals phenotype. As the fitness function, f ,  the following 

equa,tion is used. 

Two points crossover is performed with a pair of parent-individuals with certain prob- 

ability. The division point is randomly selected. At the division points, the chromosome 

is divided into three parts, and then each part of the chromosome is combined with tha,t 

from different parent, for getting a pair of child-individuals. Then, one point mut,a,tion is 

performed with certain probability. The mutation gene is randomly selected. The allele of 

the selected gene is changed to another. 

Table 2 shows the representakive values for stochastic variables, where the number of 

variables, xi, is 8. These values are used as, for example, the average value of stochastic 
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di~t~ribution function. As constant b value, 121 is used. In this experiment, the popula,tion 

size is 500, the generation size is 1500, the pr~ba~bil i ty of crossover is 0.6, the  pr~ba~bil i ty 

of mutation is 0.1. When these conditions were used for the ordinary GA, the individual 

with highest frequency through all generakions was the same as the individual associated 

with optimum solution to the deterministic Knapsack Programming Problem which was 

previously solved to find out the opt,imum solution by the branch and bound method. 

Table 2: Represent akive values for c, ,a,. 

At each genera,tion, 

dom number generaked 

variables. 

the object,ive function a,nd/or the constraint are determined by ran- 

according to  the stochastic distribution-functions for the stocha,stic 

Table 3 shows the summary of numerical results, where the accuracy means the ratio 

of cases where the solution wit,h highest frequency corresponds to the optimum one. In 

this numerical experiment, three patterns, (A), (B), and (C), as s t~cha~s t i c  conditions are 

adopted, where (A); the objective funct,ion hams stoc,hastic va,ria,bles, (B); the constraint has 

stochastic va,ria,bles, (C); both of them ha,ve st,oc,hacstic varia,bles. In the case of (C), the 

three variables for di. = 1, -, 8) and the three va,ria,bles for ai(i = 1, * ,  8) are randomly 

selected, and treaked as deterministic paEraf1neters for avoiding the trouble from the memory 

shortage in a computer. Each pattern hass some examples of discrete a,nd/or continuous type 

for stochastic distribution function. One continuous type is normal distribution. Another is 

made by combining t,wo normal distribut'ions wit'h the ra,t,e of 2 to 1. For each distribution, 

GAUGE is performed 5 t,imes. On the ot'her hand, the expected va,lue is ca,lcula,ted for 

every case in order to eva,lua,te t,he arccura,cy of this method. Furthermore, the proba,bility 

that each solution has the highest cix; value among all solutions is caflculaJted for the 
discrete distribution case. As shown in Table 3, in a,lmost a,ll this method gives tshe 

optimum solution as t,he individual with highest frequency. In the case of OCl  or CC1 in 

Ta,ble 3, where the objective function or the constraint has the stocha,stic variables with 

normal distribution, the loca,lly optimum solution ha,ppens to be selected a s  t,he solution 

with highest frequency a,t t'he ra.tio of 1/5. In the case of the discrete distribution for both 

(A) and (B), the optimum solution in terms of the expected value corresponds to  the solution 

ha,ving the highest va,lue for the probability t~ha>t the xi cixi value of the solution is highest 

among those of all solutions. On the other hand, in the case of discret,e distribution for (C), 

the optimum solution in terms of the expected value does not correspond to  the solution 
having the highest value for the probability that the c;x; value of the solution is highest 

a,mong those of all solutions. 

Figures 8, 9 and 10 show the example of numerical results for (A), (B) and (C) respec- 

tively. Then, Figures 1 1, 12 and 13 show the relation between the normalized frequency and 

the normalized expected value, linked t'o Figures 8, 9 and 10 respectively. As shown in the 

typical example in Figures 11, 12 and 13, this method gives the optimum solut,ion a>s the 

individua,l wit,h highest frequency. 
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1 ) Condition 
Probability density function 

Combining two normal 
distributions with the rate of 2 
to 1, where the average and the 
standard deviation in each 
normal distribution are C*i - 10 
or C*i + 10. 

Average value for each 
normal distribution 

(Combining ratio) 

2 ) Results 

(1) True values 

No Solution Expected value 

(2) Numerical results by GAUCE 

Frequency Solution 

418875 1  0  0  1  1  1  0  1  

66499 1 0 0 1 1 0 0 1  

57839 1 0 0 0 1 1 0 1  

57714 1 0 0 1 0 1 0 1  

50862 0 0 0 1 1 1 0 1  

9896 1 0 0 0  1 0 0  1  

9539 1 1 0 1 0 1 0 1  

9414 0 0 0 1  1 0 0 1  

9367 1 1 0 1  1 0 0 1  

7692 0 1 0 1  1 1 0 1  

7549 1 0 0 1 0 0 0 1  

7110 0 0 0 1 0 1 0 1  

6086 1 1 0 0 1  1 0 1  

5822 0 0 0 0 1  1 0 1  

5691 1 0 0 0 0 1 0 1  

3839 0  10  1 1  0 0  1  

2656 0 1 0 1 0 1 0 1  

2056 1 1  0 0  1 0 0  1  

1504 1 1 0 1 0 0 0 1  

1366 0 1 0 0 1  1 0 1  

(Lower rank solutions 

are omitted) 

Figure 8: A n~merica~l result for the case thak c; has the combined distribution of two normal 
distribution(OC2 in Table 3). 
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1 ) Condition 
Probability 

Three discrete probabilities, 0.25, 
0.5,0.25, where the values of a, are 

a*, - 10, a*,, a*, + 10, respectively. 

1 i 
a, value 

(Probalility) 

2 ) Results 

(1) True values (2) Numerical results by GAUCE 

No Solution Expected value 
--------------------m----------------- 

Frequency Solution 

369127 0 0 0 1  1 1 0 1  

156950 0 1 0 1 1 1 0 1  

73416 0 0 0 1  1 0 0 1  

35638 0 1 0 1  1 0 0 1  

29038 0 0 0 0 1 1 0 1  

19885 0 0 0 1 0 1 0 1  

14779 0 1 0 0 1  1 0 1  

11068 1 0 0 1 1 1 0 1  

9078 0 1 0 1 0 1 0 1  

6037 0 0 0 0 1 0 0 1  

4044 1 0 0 1 1 0 0 1  

3581 0 1 0 0 1 0 0 1  

3491 0 0 0 1 0 0 0 1  

1770 0 1 0 1 0 0 0 1  

1744 1 0 0 0 1  1 0 1  

1282 0 0 0 0 0 1 0 1  

1129 1 0 0 1 0 1 0 1  

839 1 1 0 1 1 1 0 1  

759 1 1 0 1 1 0 0 1  

684 0 1 0 0 0 1 0 1  

(Lower rank solutions 

are omitted.) 

Figure 9: A numerica.1 result for the case that a, hass three va,lues(CDl in Table 3).  
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1 ) Condition 

Probability 

- 4 
Probability 

A 

Results 

(1) True values 

No Solution Expected value 

[ l ]  00011101 268.000 

[ 21 01011101 260.260 
[ 31 01011001 250.000 

[ 41 00011001 238.000 . 

[ 51 10001 101 226.625 

[ 61 10010101 221.000 

[ 71 01001101 217.000 

[ 81 10001001 215.000 

[ 91 11001001 209.975 

[ 101 10011001 208.500 

(2) Numerical results by GAUCE 

Frequency Solution 

( ~ o w e r  rank solutions 

are omitted) 

Figure 10: A numerical result for the case tmhaft c; and a; have three values, respec- 

tCively(OD2CD2 in Table 3). 
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Table 3: Summary of numerical results. 

Stochastic Type Distribution Accuracy 

Objective OD2 ci[probability]; c*i-10 [OS or 0.31, c*i[[0.2], c*i+10 [0.3 or 0.51 515 
function 

OC1 Normal distribution with the average of c*i 415 

OC2 Combination of two normal distributions with each average of 
c*i-10 or c*i+10 and the ratio of 1 to 2 or 2 to 1 515 

Constraint CD2 ai[probability]; a*i-10 [OS or 0.31, a*i[[0.2], a*i+10 [0.3 or 0.51 515 

CC1 Normal distribution with the average of a*i 415 

Objective 
function ODlCD2 OD1& CD2 515 

c*i, a*i : representative value shown in table 2 

\J l l l 

0.5 1 
Normalized frequency 

Figure 11 : An exa,mple of relationship between the n~rma~lized frequency and the normalized 
expected value, linked to  Figure 8. Stochastic distribution(OC2 in TaJble 3); c; has the 

combined distribution of t,wo normal distribution. 
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Normalized frequency 

Figure 12: An example of relaiionship between the normalized frequency and the normalized 

expect,ed value, linked to  Figure 9. St,ochastic distribution(CD1 in Table 3); a; has three 

values. 

0 0.5 1 

Normalized frequency 

Figure 13: An example of relastionship between the normalized frequency and the normalized 

expected value, linked to Figure 10. St~cha~st~ic  distribution(OD2CD2 in Table 3); c; and a,, 

have three values, re~pect~ively. 
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3.3. Stochastic image compression problem 

The next example is Stochastic Image Compression Problem. For simplicity, the image is 

monochrome and static.. The volume of image is compressed with use of optimized condi- 

tion by this method. When only one image is st,ored, the image compression is not very 

meaningful from the point of redwing the volume for storing. However, since many images 

axe stored in almost all cases, the optimizakion for image compression has been demanded. 

Namely, the optimizaiion for image compression is for the a*ssernbly of images. In this sense, 

the problem is newly form~la~ted a,s the Stoc.ha,stic Programming Problem. Discret'e Cosine 

Transform (DCT) and Huffman coding[38] which are the standard procedure in both Joint 

Phot~gra~phic  Experts Group (JPEG)[22, 26, 36, 381 and Moving Picture Experts Group 

(MPEG)[l ,  11, 21, 20, 381 are used in this study. The basis of image c,ornpression used in 

this study is described in the references[37, 381. 

Firstly, the flowchart of basic image compression used in this study is shown in Figure 

14. The left side in Figure 14 is a flow of image compression for getting coded data, while 

the right side is a flow to get decoded image. As a basic procedure for getting coded 

da,ta,, (1)DCT(8 X 8 pixel), (2)Quajntiza,tion, (3)Entropy coding (for direct current element; 

Huffman coding for difference of DCT coefficient between the DCT block and the next one, 

for alternating current; Huffma,n coding for the run lengt'h code for DCT coefficient arranged 

by zigzag scan from the low frequency element to the high one), atre performed in order[37]. 

In (2)Quantizaftion, the DCT coefficient is divided by the product, of the coeffic,ient for 

quantization and the corresponding value in qua,ntiza,tion table, a,nd then the divided va,lue 

is rounded off to get its integer part called a quamtized da>tum. The product is used as the 

unit-value for quant'ization. Then, (3)Entropy coding is performed for the qua,nt,ized da,taj 

obtained in (2). On the other hand, Entropy decoding, Inverse-quantization and Inverse- 

DCT (IDCT) axe performed in this order for transforming coded data, t'o decoded ima,ge. The 

compression rate is ca,lcula,ted as volume of c.oded da,t'a divided by original image volume. 

The qua,ntiza,tion is a,pproxima,t,ion and is not reversible. Therefore, we ha,ve some error in 

decoded image inevita,bly. The condit,ion of quant,iza,tion is a taxget of ~ptimiza~tion. 

Coding 
l 
l 
1 Decoding 

+ l 
l 

DCT l l 
l l 

l l 
Optimization 1 Inverse qnantization 1 

l A 

Entropy coding l Entropy decoding 
I 

I 

Coded data volume 
Compression rate = 

Original image volume 

Figure 14: A flowchart of ima.ge compression. 

The trade-off rela,tionship between the error in decoded image and the c.ompression rake 

is demonstrated in Figure 15. The q~a~ntiza~tion is a procedure changing DCT coefficient tso 
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the corresponding integer value with unit value. The unit value is the product of the table 

value and the qua,ntiza,tion coefficient. The quantizaiion procedures for certain frequency 

component ( U ,  v) are demonstrated in Figure 15. In case of bigger unit value, the kind of 

quantized data is less, and, consequently, the same integer among quantized daka appears 

more frequently. The Entropy coding presents small bit per data to high frequency data. 

Therefore, in case of bigger unit, coded daka has smaller volume. On the contra,ry, in case 

of bigger unit which results in rougher a,pproximation in the quantization process, error in 

decoded image is bigger. The condition of q~antiza~tion is usua,lly ma,nually adjusted by 

changing the quantization coefficient. Since image compression has been recently receiving 

big attention in the field of information science and related business, we ha,ve been longing - 
for a method for optimizing the quantization condition. 

DCT coefficient 
Normal distribution 

4 4 
1 Quantized data 1 1 Quantized data 

l l 1 Condition A 1 .+ coeff~cient DCT 

H 
Qwantization coeff~cient 

X 
Quantization table value 

Quantized data : 
-.-.-.-.-m-.-.- 

! Concentrated i 
-.-.-.-.-.-.-.d 

+DcT coefficient 

H 

-.-.-.-,-.-.-. 1 Dispersed ! 
-.-.-.-.-.-.-.l 

ntropy 

High frequency ==>> Small bit 

quantized data 

Data volume : small : big 

Error : big : small 

Figure 15: A trade-off relast8ionship between c.oded da,t a volume and error in decoded ima,ge. 

It is well-known that the stochastic distribution of DCT c.oefficient is a,pproxi~na,tely 

normal distribution[38]. Therefore, we newly ma,ke formula for Sto~ha~stic Image Compres- 

sion Problem  sing D CT coeffic.ient as stochastic vaxiable. When only one irna,ge is stored, 
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the image co~npression is not very mea>rlingf~il for reducing volume for storing. However, 

since many images axe stored in almost all cases, the optimization for image corripression 

ha,s been demanded. Namely, the optimiza~tion for i~ria~ge compression is for the assembly 

of images. In this'sense the problem is forrr~ulated as Stochastic Pr~gra~mrning Problem 

with the a,pproxima8t,ion thak the st,ochafstmic dist,ribution function for the DCT coefficient is 

normal distribution. 

The Stocha,stic Ima,ge Cornpression Problem is for~nula~ted as follows, 

where e(xi, Fk(u,  v)) is the error between 0rigiria~1 image and decoded ima,ge, r ( x i ,  Fk(u,  U)) 

is the compression rake obtained as the volume ratio of the origiria,l ima,ge and the coded 

data, m is the number of block for DCT, Fk(u ,  t1) is the st,ocha,stic va,ria,ble expressing 

the coeffic.ient of DCT at block k ,  F;(xi, FL:(u, v)) is t5he representative va,l~ie for q~iant'ized 

Fk(u,  ?I) ,  t,he Q - l va,ria,ble, xi, is used for giving the co~idit,ion for cpia,ritiza,t8ion of the DCT 

coefficient,. 

In e(xi, Fk(u,  v)), the cleno~nina~t~or corresponds t,o the slim total of grey level in origi- 

nal image, and t,he n~imera,tor correspon(1s to *>lie sum tot,a,l .of difference in grey level at  

each pixel between original and decoded irrlages. The denomina,tor in e(xi, Fk(u,  v))  is for 

normaliza,tion. For ca,lc~ila,t,ed graJj: level in original image , IDCT to Fk ( U ,  11) is performed. 

Moreover, for ca,lc~ila,ting gra,y level in deco decl image, t,he process of cl~ia,ntiza,t,ion, inverse 

quantization a,nd IDCT is performed. 

Fc(xi,  Fk ( U ?  U)) correspo~~ds t,o a,n a,pproxima,t,e value for Pk ( U ,  v). The clefference be- 

tween Fk(u,  t)) a,nd Fz(xi7 Fk(u, v ) )  c.orresponds to error in q~ia,ntiza,t'ion. When the unit 

va,l~ie for qua,ntiza,tion is sma,ller, t,he error is sma,ller. The tinit value which is decided by xi 

values is the product of t'he table va,l~ie sad t,he q~ia~ritiza~t!ion c.oefficient . On the contra,ry, as 

demonstrated in Figure 15, r(xi ,  Fk(u,  U)) is bigger? when the unit va?l~ie for ~luantiza~tion is 

sma,ller. r (x i ,  Fk(u ,  1))) is also ca,lc~ilat,ed with the tinit, va,lue which is decided by xi vac1lies. 

For calcula,ting coded data, vol~lme in r (x i ,  Fk(u ,  v ) ) ,  t'he process from q~iaritiza~tion to en- 

tropy coding is performed. Moreover, for calc~~la~t~ecl origina,l image volurrie in r(Xi, Fk(u,  v)), 

IDCT to Fk(Fk(u,  1))) is performed. 

n this exa,mple, the ob~ec.tive f~inct'ion is also the ~na~ximiza,tion of the expected va,hie 

under some st,ocha$stic const,ra,int S. In fact t,he expected value is also c.a,lc~ila~t,ed a,s the 

constrained expect,ed va*111e, a,s rrlentionecl in Sto~lia~stic K~~a,psa,ck Problem. Under the 

constraint ori the compression ratme, the expected value of irlverse value of error between 

original image a,nd decoded irna,ge is rriaxirnized. In t,liis problem, both t'he objective function 

and the c.o~~stra,irit have st,ocha,st,ic ~a~ria~bles.  The average and the sta,nda,rd de~ ia~ t ion  of 

DCT coefficient for every b10c.k with 8 X 8 pixels a,re ~ ~ i e a , s ~ i r e ~ l  for the sa,mpling images. The 

normal dist ,rib~~tion of DCT coefficient' is [let,ermined with t,lie average a,nd the sta,ndazrd 

deviation of DCT c.oefficierlt8 for t)he sa,ml~ling irna,ges. Then7 t,he original irriage is ge~lera~ted 
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with DCT coefficient determined by random number and IDCT to the DCT coefficient. 

Moreover, the header for encoding is ignored for ca,lc~ila~ting the compression rake. 

At each generation of GAUCE, DCT coefficient S are determined by random number. In 

the generation, the error in decoded image and compression rate are calculated for each 

individ~ial. As the fitness function value, the inverse value of error between original image 

and decoded image is used when the constraint on the compression rate is satisfied. On the 

other hand, the fitness function vaJue is 0 when t,he constraint on the compression rate is 

not sa,tisfied. 

Here, if we express the ta,ble for q~antiza~tion and the quantiza,tion coefficient wit,h 0-1 

variables, the number of va,ria,bles is very big. As a, result, the population size and the 

generation size should be very big for getting the optimum solution. In such a case, it might 

take long time to calcularte the process of GAUCE with a, computer. This is mainly beca,use 

both DCT and IDCT require ca,lc~ila~tion in the process of GAUCE. Then, for shortening 

the time for calculation of GAUCE, the condition for quantization of the DCT coefficient is 

formulated as follows. 

where q(u, v)  is the product of the coefficient for q~ia~ntiza~tion and the corresponding value 

for (U,  v)  in q~a~ntization table, and xi E {0, l}, a, p, 7 ,  S, d are positive constant. Here, 

?C corresponds to the coefficient for quantization and ad- + b, d correspond ta the 

va,lues of qua,ntiza,tion table. The formula,e expressed by equation (3.5) are support,ed by 

the fa,ct tha,t it is difficult for human to detect the high frequency component in the image. 

hJoreover, in equation ( 3 . 5 ) ,  t'he table value for ( U ,  v) = (0,O) whic.h is direct current ele- 

ment is sepaxated from those for alternating current element because of difference of coding 

formation between direct and alternating current  element,^. 

The basic paxt of this problem is the sa,me as St~cha~stic Knapsack Problem. Na,mely, 

0-1 ~a~ria~bles, xi, sho~ild be optimized under some stochastic conditions. As GA strategy, 

genotype equals phenotype, where the number of vajriazbles, xi, is 8. h40reover,' two point 

crossover and one point m~ita~tion are used as in the sa,me way as thak mentioned in Stochastic 

Knapsack Problem. The objective function a,nd/or the constraint are determined at each 

generation with random number generated according t,o the stochastic distribution-functions 

for the st~cha~stic va,ria,bles. 

In this experiment, the pop~llation size is 200, the generation size is 100, the probability 

of crossover is 0.6, the probability of mutartion is 0.1. The condition is based on preliminary 

investigat,ion where ordinary GA mTaJs applied to one image. 

In each numerica-l experiment', the original images axe TV news wit,h l00 images having 

160 X 120 pixels. The TV images are transformed into monochrome images. The l00 images 

are stored as the sampling images at the ratme of l image per 0.1 sec.. The a,vera,ge and t,he 

standafrd deviation of DCT coeffic.ient for every block with 8 X 8 pixels are mea,s~ired for the 

sa>mpling images in order t'o determine ~lorma~l distribution for each DCT coefficient. The 
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va,lues of constants, i.e., d = 16, CY = ,8 = 6 = l ,  7 = 0.5, acre decided so that the condition 

expressed by solution includes the region on the star~dard cl~la~nt,iza,tion in JPEG. 

Figure l 6  shows the n~imerica~l results. In the case of b = l ,  opt in~um sol~ition is ap- 

pa,rently 00000000 which gives the smallest ~irlit value for q~iantiza~tion for DCT coefficient, 

becapuse the  condition of b = l meaVns no constraint. For other conditions, we can't find out 

optimum solution a,na,lyt ically. 

(l) No cons t r a in t  

Frequency Solution 

Frequency Solution Frequency Solut ion Frequency Solution 

Figure 16: Solution with top l 0  frequency. 

As shown in Figure 16, all X; values of solution with highest frequency axe 0 when 

no constraint, i.e. b = l ,  for image compression rate is applied. The numerical result 

is clea!rly right. In addition, when the upper limit of image compression is b = 0.2, three 

numeric.a$l result S give the same solution. Na,mely, GAUCE present S t'he same solution as , t  he 

solution with highest frequency every time. In this ca8se, the opt,imum solution can not be 

derived wit11 existing method. However, c,onsidering that  GAUCE is s~iccessfully applied to 

Stochastic Optimal Assignment Problem and Stocha,stic I<napsa,ck Progra,mming Problem, 

GAUCE seems to halve the a,bility for select,irig the optim~im solution or local optimum one 

a,t worst, even when some c~nstra~int '  for image compression rate is a,pplied. Figure 17 shows 

a,n exa,mple of the origina,l ima,ge ancl the decoded image with t,his method in case of b = 0.2. 
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Figure 17: An example of a,pplication; Left,:Origina,l image, Right:Decoded image. 

In this study, for simplicity, the image is'monochrome and static.. The forthcoming papper 

will present the expanded result,s for the color and/or dyna,mic image. 

3.4. Other possible applications 

This method is ampplied to St~chast~ic Optimal Assignment Problem, Stoc.hastic Knatpsajck 

Problem and newly form~la~ted Stocha,stic Image Compression Problem. Moreover, G AUCE 

may be applied to many Sto~hast~ic Pr~gra~mming Problem, for exa,mple, Stocha-stic Schedul- 

ing Problem, Stochastic Traveling Salesman Problem, where GA coding is a,va,ilable. In 

St~cha~stic Scheduling Problem, processing t,imes for operation can be trea,ted as stocl~a,stic~ 

variables. In Stochastic Traveling Salesman Problem, times for t,ratveling between two c.ities 

can be treated as stochastic va,ria,bles. In these cases, GAUCE will be effective for gett,ing 

good solution as that witch highest frequency. 

In this study, the Roulet,te st,rategy is adopted for selecting the good solution in terms of 

the expected value. However, there axe other formulae as Stochastic Programming Problem. 

The solutions which present the highest ~roba~bility for (A) the best solution or (B) the 

objective function value higher than a certain constant will be obtained, when GA opera,tors 

are properly designed. Moreover, the distribution of the ob-jective funct,ion va,lue can be 

analyzed with this method. 

However, in applying this method to Stochastic Pr~gra~mming Problem, t,he objective 

may be limited in some kinds, for exa,mple, expected value ma8ximum and two cases associ- 

ated with (A)  and (B), described avbove. 

The forthcoming patper will present ot,her applic.a,tions of this method. 

4. Conclusions 

A method for solving Stochastic Programming Problem haas been developed wit'h GA in 

uncerta,in environments. This method is successfully applied to Stochast,ic Optimal As- 

signment Problem, Stochastic I<napsa,ck Problem a,nd newly formulated Stochastic Image 

Compression Problem. 

In this study, the Roulet'te st,ra8tegy is a,dopted for selecting the optimum sol~~t , io~l  in 

t,erms of the expected va,lue. As a result, the solution with highest frequency equals the 

optimum solution in almost all cases. When the expected value difference between the 

highest and the second highest is less than, for example, 2.5%, the solution with second 

highest expected va,lue happens to be selected as the solution with highest frequency in 
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some cases. Moreover, in rare cases, the loca,lly optimum solution is selected as the solution 

with highest frequency. 

Moreover, it is found that GAUCE has potential to sea,rch the second, the third best and 

the lower rank solution in terms of the expected value of objective function. This ranking 

may be useful in some cases where the optimum solution is not practical by some reason. 

There are other formulas as Stochastic Programming Problem. The solutions which 

present the highest probability for (A) the best solution or (B) the objective function value 

higher than a certain constant will be obtained by GAUCE, when GA operators are properly 

designed. Moreover, the solution distributions can be analyzed wit h this met hod. GAUCE 

may be applied to  many Stochastic Pr~gra~mming Problem, for example, Stochastic Schedul- 

ing Problem, Stocha,stic Traveling Sa,lesma,n Problem, where G A coding is available. 
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