Genetic Algorithm Programming
Environments

Jose Ribeiro Filho, Cesare Alippi and Philip Treleaven
Department of Computer Science — University College London

ABSTRACT

Interestin Genetic algorithms is expandingrapidly. This paper reviews
software environmentsfor programming Genetic Algorithms (GAs). As
background, we initially preview genetic algorithms' models and their
programming.Next we classify GA software environmentsinto three main
categories: Application-oriented, Algorithm-oriented and Tool-Kits.

For each categoryof GA programming environmentwe review their
common features and present a case study of a leading environment.

Keywords— Programming Environments, Genetic Algorithms.

To appear in the IEEE COMPUTER Journal.

Table of Contents

O o1 (oTo [(o i o] o NPT U PPRPPPPPTIN 3
1.1. Classes of Search TEChNIQUES...........cuuuiiiiiiiiiii e e 3
1.2, SUIVEY STTUCTULR......u i iiieii ettt et e et e e e e et e e e e mmmmmas 4

2. GENELIC AIGOMENIMS. ...ttt e e ettt e e e e et mmmmmmmmme e 6
2.1, SeqUENTIAI GASot e e e 8
2.2, Parallel GASo e 10

3. Taxonomy for GA Programming ENVIFONMENTS...........couuuiiiiiiiiiiiiiiii e 12

4. ApPlicatioN-0MNENTEA SYSTEIMIS.......uuuiieeeieiiitii e e e ettt e et e e e e e et e eettb e e e e eeeesnnnas 13

5. AlgOrithm-0rieNted SYSTEIMIS.ttt e e e e e e e smmmman 16
5.1. Algorithm-SpeCifiC SYSIEIMS..........uuuiiiieiiiiiiii e eemme e 16
5.2. AlGOrithm LIBraries.oi oo 19..

O oo I8 £ T PP PPPPPPPTRR 21......
6.1. EAUCALIONAl SYSTEMIS......uiii it 21..
6.2. General-purpose programming SYSIEIMIS.ccuuuuuurireeiiiiiiiiii e e eeerrni e e eeeeees 22

7. FULUIE DEVEIOPMENTScciiiiieii ettt ettt e e et emmmmennnne e e e 27

ACKNOWIBAGEIMENTS......cceiieieiii ettt ettt e e e e et ettt emmmmmmmn e e e e e e enne 28

RETEIEINCES ...t e ettt e e ettt e e e e a e 29....

Appendix A — Sequential GA C LIStNGuuiiieiiiiiiiiie et 30

Appendix B — Developers AAAreSS LiSL.........oocuiiiiiiiiiieeceeeeeeiiiii e 34

1. Introduction

Evolutionis a remarkablegproblemsolving machine GeneticAlgorithmsarean attractive
classof computationaimodelsthat attemptto mimic the mechanism®f natural evolutionto
solve problems in a wide variety of domains.

The theory behind Genetic Algorithms was proposedby JohnHolland in his landmark
book Adaptationin Natural and Artificial Systemgublishedin 1975[8]. In conjunctionwith
the GA theory, he developedhe conceptof Classifier Systemsa machinelearningtechnique.
Classifier Systemsare basically induction systemswith a geneticcomponeng3]. Holland's
goalwastwo-fold: firstly, to explainthe adaptiveprocessof naturalsystemg3] andsecondly,
to design computing systemscapableof embodyingthe important mechanismsof natural
systems [3]. Pioneering work of Holland [8], Goldberg [3], De Jong [2], Grefenstette [5], Davis
[1], Mihlenbein [10] and others is fuelling the spectacular growast

GAs are particularly suitable for the solution of complex optimisation problems,and
consequenthare good for applicationsthat require adaptiveproblem solving strategiek In
addition,GAs areinherentlyparallel, sincetheir searchfor the bestsolutionis performedover
genetic structures(building blocks) which can representa humber of possible solutions.
FurthermoreGAs' computationamodelscanbe easlyparallelised Many parallelmodelshave
been proposedrecently [4,11,17] which attemptto exploit GA's parallelism on massively
parallel computers and distributed systems.

1.1. Classes of Search Techniques

GeneticAlgorithms are onevery importantclassof searchtechniquesSearchtechniques
in general,as illustratedin figure 1 can be groupedinto three broad classed3]: Calculus-
based, Enumerative and Guided Random search.

SEARCH TECHNIQUES

CALCULUS GUIDED RANDOM ENUMERATIVE
BASED \
/\ . Dynamic_
DIRECT INDIRECT Ammeaing EVOLUTIONARY Programming
PN ALGORITHMS
Fibonacci Newton
EVOLUTIONARY GENETIC
STRATEGIES ALGORITHMS
E.S. E.S. E.S. PARALLEL SEQUENTIAL

(Rechenberg (Rechenberg) (Born) /\ /\
& Schwefel)

ASPARAGOS Distributed SGA GENITOR GENESIS

(Gorges- GA (Goldberg) (Whitley) (Greffenstette)
Scheleuter) (Tanese)

Figure 1 - Classes of Search Techniques

N survey of GA applications is beyond the scope of this paper, and the interested reader is referred to [1,3]

Calculus-basedechniquesuse a set of necessary/sufficientonditionsto be satisfiedby the

optimal solutionsof an optimisationproblem. Thesetechniquessub-divideinto indirect and
direct methoddndirect methods looKor local extremaby solvingthe usuallynon-linearsetof

equationgesultingfrom settingthe gradientof the objectivefunctionequalto zero. The search
for possiblesolutions(function peaks)startsby restrictingthe searchto pointswith zeroslope
in all directions.Direct methods suchas Newton and Fibonacci,seekextremaby "hopping"

aroundthe searchspaceandassessinghe gradientof the new point, which guidesthe direction
of the search.This is simply the notion of Hill-Climbing which finds the bestlocal point by

"climbing" the steepespermissiblegradient.However,thesetechniquesan only be employed
on a restricted set of "well behaved" problems.

Enumerativetechniquessearchevery point relatedto an objective function's domain space
(finite or discretised)pnepoint at a time. They are very simpleto implementbut may require
significantcomputation.The domainspaceof many applicationsis too largeto searchusing
these techniques. Dynamic programming is a good example of an enumerative technique.

Guided Randomsearchtechniquesare basedon enumerativetechniquesput use additional
informationto guidethe searchTheyarequite generalon their scope beingableto solvevery
complex problems. Two major sub-classesare: Simulated Annealing and Evolutionary
Algorithms, although both are evolutionary processes.Simulated Annealing uses a
thermodynamievolution procesgo searchminimum energystates EvolutionaryAlgorithms
on the other hand, are basedon natural selectionprinciples. This form of searchevolves
throughoutgenerationsimproving the featuresof potentialsolutionsby meansof biological-
inspired operations hesetechniquesub-divide,in turn, into Evolution Strategiesand Genetic
Algorithms. Evolution Strategieswere proposedby Rechenbergnd Schwefel[12,15] in the
early seventiesThey presentthe ability to adaptthe processof "artificial evolution”to the
requirement®f the local responsesurfac@. This meanghat ESs are ableto adapttheir major
strategy parametersaccordingto the local topology of the objective function [7]. This
represents a significant difference to traditicbak.

Following Holland's original GeneticAlgorithm proposal,many variationsof the basic
algorithm have been introduced. However, an important and distinctive featlr€as is the
population handlingechnique. The origin@A adopted @enerationakeplacement policii]
wherethe whole populationis replacedn eachgenerationConverselythe steady-statgolicy
[1] usedby many subsequenGAs employ a selectivereplacementor the population.It is
possible,for example,to keep one or more individuals within the population for several
generations, while those individuals sustain a better fithess than the rest of the population.

1.2. Survey Structure

Having reviewed searchtechniqueswe next presentour survey of GA programming
environments.The environmentspresentedhere, are those most readily accessiblein the
literature.

To make the paper self-contained,we start by introducing GA models and their
programming.This is followed by our surveyof GA programmingenvironmentsWe have
grouped environmentsinto three major classesaccording to their specific objectives:
Application-oriented,Algorithm-oriented,and Tool Kits. Application-orientedsystemsare
"black box" environmentsiesignedo hide the detailsof GAs and help the userin developing
applications for specific domains, suchFasance Schedulingetc. Theseapplicationdomains
form a natural subdivisioilgorithm-oriented systenaebasedon specificgeneticalgorithm
models, such as the GENESIS algorithm. This class may be further sub-divided into:

2For a formal description on Evolutionary Strategy refer to[6].

Algorithm-specificsystemsvhich supporta singlegeneticalgorithm,andAlgorithm Libraries
which supporta group of algorithmsin a library format. Lastly, Tool Kits are flexible
environmentsfor programminga rangeof GAs and applications.Thesesystemssub-divide
into: Educationalsystemsvhich introduceGA conceptgo noviceusers,andGeneral-purpose
systemdo modify, developandsupervisea wide rangeof geneticoperatorsgeneticalgorithms
and applications.

For eachclassand sub-classa review of the availableenvironmentss presentedvith a
descriptionof their commonfeaturesand requirementsAs a casestudy, one specific system
per classis examinedn moredetail. Finally, we discussthe likely future development®f GA
programming environments.

2. Genetic Algorithms

A Genetic Algorithm is a computationalmodel that emulatesbiological evolutionary
theoriesto solve optimisationproblems.A GA comprisesa set of individual elements(the
populatior) and a set of biologically inspired operatorsdefined over the population itself.
Accordingto evolutionarytheories,only the mostsuitedelementdn a populationarelikely to
survive and generate offspring, thus transmitting their biological heredity to new generations.

In computingterms,a geneticalgorithmmapsa problemon to a setof (binary) strings,
eachstring representinga potential solution. The GA then manipulatesthe most promising
stringssearchingfor improvedsolutions.A GA operategypically througha simple cycle of
four stages:

i) creation of a "population™ of strings,

i) evaluation of each string,

iii) selection of "best" strings, and

iv) genetic manipulation, to create the new population of strings.

Figure 2 showsthesefour stagesusingthe biologically inspiredGA terminology.In each
cycle anewgenerationof possible solutions for a given problem is produced. At the first stage,
aninitial populationof potentialsolutionsis createdasa startingpoint for the searchprocess.
Eachelementof the populationis encodednto a string (the chromosomg to be manipulated
by the geneticoperators In the next stage the performancgor fitnesg of eachindividual of
the populationis evaluated with respecto the constraintdmposedby the problem.Basedon
eachindividual'sfitnessa selectionmechanisnthooses'mates”for the geneticmanipulation
processThe selectionpolicy is ultimately responsiblgor assuringsurvival of the bestfitted
individuals. The combined evaluation/selection process is galfedduction

POPULATION
(chromosomes)

Offspring Decoded

New strings
Generation

Parents

GENETIC
OPERATORS

EVALUATION
(fitness)

Manipulation Reproduction

Mates

SELECTION
(mating pool)

Figure 2 - The GA cycle

The manipulationprocessemploys genetic operatorsto producea new population of
individuals (offspring by manipulating the "genetic information”, referred to as genes
possessed by membepa(entd of the current population. It comprises two operatioagely
crossoverand mutation. Crossoveris responsiblefor recombiningthe geneticmaterial of a
population. The selectionprocessassociatedo recombination,assurethat special genetic

3Although binary strings are typical, other alphabets such as real numbers are also used.

structurescalled "building blocks", are retainedfor future generationsThe building blocks
then representthe most fitted genetic structuresin a population. Nevertheless,the
recombination process alone can not avoid the loss of promising building bldlckpiasence
of othergeneticstructureswhich couldleadto local minima. Also, it is not capableto explore
searchspacesectionsnot representedn the population'sgenetic structures.The mutation
operatorcomesthen into action. It introducesnew genetic structuresin the population by
randomlymaodifying someof its building blocks. It helpsthe searchalgorithmto escapgrom
local minima'straps.Sincethe maodificationintroducedby the mutationoperatoris not related
to anypreviousgeneticstructureof the population,it allowsthe creationof differentstructures
representing other sections of the search space.

The crossover operator takes two chromosomesand swaps part of their genetic
informationto producenew chromosomesThis operationis analogougo sexualreproduction
in nature.After the crossoverpoint has beenrandomly chosen,the portions of the parent
stringsP1 and P2 are swappedo producethe new offspring stringsO1 and O2. For instance,
figure 3 shows the crossover operator being applied to the fifth and sixth elements of the string.

ooooloo @@@@@@ Parents

crossover point crossover point

L 01 0 0] o CDEPREDEDIEDED] o] o TN T
o1 02
Figure 3 - Crossover

Mutation is implementedby occasionallyaltering a randombit in a string. Figure 4
presents the mutation operator being applied to the fourth element of the string.

0®®C1>0®
| o JEDED] o 1 o€

Figure 4 - Mutation

A numberof different geneticoperatorshavebeenintroducedsincethis basicmodelwas
proposed by Holland. Thegre,in generalyversionsof the recombinatiorandgeneticalteration
processesadaptedto the requirementsof particular problems. Examplesof other genetic
operators are: inversion, dominance, genetic edge recombination, etc.

The offspring producedoy the geneticmanipulationprocessoriginatethe next population
to be evaluated.Genetic Algorithms can either replace a whole population (generational
approachpr theirsless-fitedmembersonly (steady-stat@approach)The creation-evaluation-
selection-manipulatiocycle is repeated until a satisfactory solution to the problem is found.

The description of the genetic algorithm computationalmodel given in this section
presentedan overall idea of the stepsneededto designa geneticalgorithm. However, real
implementationsas exemplifiedin the next section,haveto considera numberof problem-
dependenparametersuchasthe populationsize, crossoverand mutationrates,convergence
criteria, etc. GAs are very sensitiveto most of theseparametersand the discussionof the
methods to help in setting them up is beyond the scope of this paper.

2.1. Sequential GAs

To illustrate the implementatiorof a sequentiageneticalgorithmwe will usethe simple
function optimisation example given in Goldberg [3], and examine its programming in C.

The first stepin optimising the function f(x)=x2, over the interval (i.e. parameterset)
[0-31], is to encodethe parameterset x, for example as a five digit binary string
{00000-11111}. Next we need tgenerateur initial populationof 4 potentialsolutions,shown
in table 1, using a random number generator.

Table 1 - Initial strings and fithess values

Initial f(x) strength
Population X (fitness) (% of Total)
01101 13 169 14.4
11000 24 576 49.2
01000 8 64 55
10011 19 361 30.9

Sum_Fitness = 1170 (100.0)

To program this GA function optimisation we declare the population pool@asaywith
four elementsasin figure 5, and then initialise the structureusing a randomgeneratoras
shown in figure 6.

#define POPULATION_SIZE 4 [* Size of the population */
#define CHROM_LENGTH 5 [* String size */
#define PCROSS 0.6 [* Crossover probability */
#define PMUT 0.001 [* Mutation probability — */

struct population

{

int value;
unsigned char string[CHROM_LENGTH];
int fitness;

h
struct population pool[POPULATION_SIZE];

Figure 5 - Global constants and variables declarations in C

initialise_population()

randomise(); /* random generator set-up */
for (i=0; i < POPULATION_SIZE; i++)
encode(i, random(pow(2.0,CHROM_LENGTH));

Figure 6 - Initialisation routine

Having initialised the GA, the next stageis reproduction.Reproductionevaluatesand
selectspairs of strings for mating — for instanceusing a "roulette wheel" method [3] —
accordingto their relative strengthgseetable 1 andthe associatedC codein figure 7). One
copy of stringd1101, two copies 0fi1000 and one copy of stringP011 are selected.

select(sum_fitness)

{
parsum = 0;
rnd = rand() % sum_fitness; [* spin the roulette */

for (i=0; i < POPULATION_SIZE, parsum <= rnd; i++)
parsum += pool[i].fitness; /* look for the slot */

return (--i); /* returns a selected string */

Figure 7 - Selection function
Next we apply the crossover operator, as illustrated in table 2.

Table 2 - Mating pool strings and crossover

Mating . New
Pool Mates Swapping Population
01101 1 0110/[1] 01100
11000 2 1100/[0] 11001
11000 2 11[000] 11011
10011 4 10[011] 10000

Crossoveioperatesn two steps(seefigure 8). Firstly, it determinesvhethercrossovelis
to occuron a pair of stringsby usinga flip function;tossinga biasedcoin. If headgtrue) with
probability pcross the strings are swapped; ttr@ssover_poinbeingdeterminedy a random
numbergenerator If tails (false) the strings are simply copied. In the example,crossover
occurs at the fifth position for the first pair and the third position for the other.

crossover (parentl, parent2, childl, child2)
if (flip(PCROSS))
{ crossover_point = random(CHROM_LENGTH);
for (i=0; i <= CHROM_LENGTH; i++)
if (i <= site)

new_pool[child1].string[i] = pool[parent1].string[i];
new_pool[child2].string]i] = pool[parent2].string[i];

else

new_pool[child1].string[i] = pool[parent2].string[i];
new_pool[child2].string]i] = pool[parent1].string[i];

Figure 8 - The crossover routine

After crossover, the mutation operator is appteethe newpopulation,which may havea
randombit in a given string modified. The mutationfunction in figure 9 usesthe biasedcoin
toss {lip) with probabilitypmutto determine whether to change a bit or not.

mutation ()
for (i=0; i < POPULATION_SIZE; i++)

for (j=0; j < CHROM_LENGTH; j++)
if (flip(PMUT))
pool[i].string[j]= ~new_pool[i].string[j] & 0x01,;
else
pool[i].string[j] = new_pool[i].string][j];

Figure 9 - The mutation operator C implementation

A newpopulationhasnow beengeneratedseetable 3), anda terminationtestis applied.
Terminationcriteria may include: the simulation time being up, the numberof generations
exceededor the convergenceriterion satisfied.In the example ,we might setthe numberof
generationdo 50, and the convergences an averagefitnessimprovementof lessthan 5%,
betweergenerationskor the initial population the averages 293 (i.e. (169+576+64+361)+4),
while for the new population it has improveR9 (i.e. 66%).

Table 3 - Second generation and its fitness values

Initial f(x) strength
Population X (fitness) (% of Total)
01100 12 144 8.2
11001 25 625 35.6
11011 27 729 41.5
10000 16 256 14.7

Sum_Fitness = 1754 (100.0)

A completeC code listing of this simple exampleis given in Appendix A, for the
interested reader.

2.2. Parallel GAs

The GeneticAlgorithms paradigmoffer intrinsic parallelismwhen looking for the best
solution on a large search spaaggdemonstratedn Holland'sschemaheorenf8]. Besideghe
intrinsic parallelism,GAs computationamodelscanalso exploit severallevels of parallelism,
due to the natural independence of the genetic manipulation operations.

A parallel GA is generally formed by parallel componentseach responsiblefor
manipulating sub-populationsThere are two classesof PGAs employing centralised and
distributed selectionmechanismsWith centralisedselectionmechanismsa single selection
operator works on the global population (of sub-populations). Thua@Adnasa synchronous
selection stage.

With distributedmechanismseachparallelcomponenhasits own copy of the selection
operator.In addition,eachcomponentommunicatedts beststringsto a sub-setof the other
componentsThis is supportedoy a migration operator,anda migration frequencydefining
the communication interval. These PGAs have an asynchronousselection stage. The
ASPARAGOSI[4] algorithm is an excellent example of this class.

As anillustration of parallel GAs, figure 10 showsa skeletonC-like program,basedon
the ASPARAGOS algorithm, for the simple function optimisationdiscussedn the previous
section.In this parallel programthe statementdor initialisation, selection,crossoverand

10

mutationremainalmostthe sameas for the sequentiaprogram.For the main loop, PARallel
sub-populations are sep for eachcomponentaswell asvaluesfor the newparametersEach
component then executBEQuentially, apart from theARallel migration operator.

#define MAX_GEN 50
#define POPULATION_SIZE 32
#define SUB_POP_SIZE 8
#define NUM_OF_GAS POPULATION_SIZE/SUB_POP_SIZE
#define NUM_OF_NEIGHBOURS 2
#define MIGRATION_FREQ 5
#define NUM_OF_EMIGRANTS 2
main()
PAR for (i=0; i<SUB_POP_SIZE; i++) /* Parallel execution ~ */
[* over sub-populations */
SEQ { initialise(); }
do;
{
for (j=0; <MIGRATION_FREQ); j++)
SEQ { selection(..) [* evaluate & select */
crossover(..); /* of the standard GA */
mutation(..);

for (j=0; j<NUM_OF_EMIGRANTS; j++)

SEQ { emigrant[j] = select_emigrant(..);}
for (j=0; <NUM_OF_NEIGHBOURS; j++)
PAR { send_emigrants(..);

receive_emigrants(..);

}

}
while (generations <= MAX_GEN);

Figure 10 - Parallel GA with migration

Following this brief review of GAs' conceptsand implementationswe next survey GA
programming environments.

11

3. Taxonomy for GA Programming Environments

For our review of geneticalgorithms programmingenvironmentswe utilise a simple
taxonomy of three major classes:Application-orientedsystems,Algorithm-oriented systems
and Tool Kits.

Application-oriented systemsare essentially'black box" programmingsystems,
hiding the GA implementatiordetails,and are targetedat businesgrofessionals.
Some of these systemssupporta range of applications,such as scheduling,
telecommunicationsetc. (a goodexamplebeingPC/BEAGLE); othersfocuson a
specific domain, such d&mance(as with MEGA).

Algorithm-oriented systemsare programmingsystemswhich support specific
genetic algorithms. They sub-divide into:

« Algorithm-specific systemswhich containa singlegeneticalgorithm;the
classic example beinGENESIS[5].

« Algorithm Libraries— wherea variety of geneticalgorithmsandoperators
are grouped in library; as in Lawrence Da@eGA[1].

Algorithm-orientedsystemsare often suppliedin sourcecode and can be easily
incorporated into user applications.

Tool Kits are programmingsystemsthat provide many programminguitilities,
algorithmsand geneticoperatorghat canbe usedfor a wide rangeof application
domains. These programming systems sub-divide into:

» Educational systems— to help the novice user to obtain a hands-on
introductionon GA conceptsTypically thesesystemssupporta small set
of options for configuring an algorithm. Séa Workbench [9].

« General-purposesystems- to provide a comprehensiveset of tools for
programmingany GA andapplication. Thesesystemanay evenallow the
expert user to customise any part of the software, as in Splicer.

As an illustration of our Taxonomy,table 4 lists the GA programmingenvironments
examinedin the next sections,accordingto their categoriesFor eachcategorywe initially
presenta genericsystemoverview,thenbriefly review examplesystemsandfinally examine
one systemin more detail, as a casestudy. Examplesof parallel environmentdike GAucsb,
PeGAsuS, and GAME are also covered,but there are no commercialparallel environments
currently available. A more comprehensivdist of programmingenvironmentsand their
developers is given in appendix B.

Table 4 - Programming Environments and their categories

Application Algorithm Oriented Tool Kits
rened | Agern | Aoy | ewomona [Sine)
EVOLVER ESCAPADE EnGENEer
OMEGA GAGA EM GA GAME
PC/BEAGLE GAuCsD Workbench MicroGA
XpertRule GENESIS OOGA PeGAsuS
GenAsys GENITOR Splicer

12

4. Application-oriented systems

Application-orientedsystemsare designedor useby businesgrofessionalsvho wish to
utilise geneticalgorithmsin specificapplicationsdomains,without havingto acquiredetailed
knowledge of the workings of genetic algorithms.

As we have seen with expert systems and neural networks,potamntialusersof a novel
computingtechnique suchasgeneticalgorithms,areonly interestedn the applicationsyather
thanthe detailsof the technique For example,a manageiin a trading companymay wish to
optimise itsdelivery schedulingBy usingan application-orienteggrogrammingenvironmentijt
is possibleto configure a particular application for scheduleoptimisation basedon the
Travelling SalesmarProblem(TSP model,without havingto know the encodingtechniquenor
the genetic operators involved.

Overview

A typical Application-orientedenvironmentis analogousto a Spreadsheebr Word-
processingutility. It comprisesa menu-driveninterface (tailored to businessusers)giving
accesdo a suite of parameterisedhodules(targetedat specificdomains).The userinterfaces
provide menusto configure an application, monitor its execution,and, in certain cases,
program an application. Help facilities are also provided.

Survey

Application-oriented systems follow many innovative strategies. Systems, such as
PC/BEAGLE and XpertRuleGenAsys are expertsystemaising GAs to generatenew rulesto
expandtheir knowledgebaseof the applicationdomain.EVOLVER is a companionutility for
Spreadsheets; and systems liK@EGA, are targeted at financial applications.

EVOLVER — is an add-on utility that works within the Excel, WingZ and Resolve
spreadsheeten Macintoshand PC computers.It is being marketedby Axcélis Inc., who

describest as"an optimisationprogramthat extendsmechanism®f naturalevolutionto the
world of businessandscienceapplications".The userstartswith a modelof his systemin the
spreadsheaind calls the EVOLVER programfrom a menu.After filling a dialoguebox with

the information required (e.g. cell to minimise/maximise)the program starts working,

evaluatingthousand®f scenariosautomaticallyuntil it is sureit hasfound an optimal answer.
The program runs in background freeing the user to watkeiforeground Whenthe program
finds the bestresultit notifiesthe userand placesthe valuesinto the spreadshedbr analysis.
This is an excellentdesignstrategygiven the importanceof interfacingwith spreadsheen

business.n an attemptto improve the systemand expandits market, Axcélis introduced
Evolver2.0thatis beingshippedwith manytool-kit-like features.The new versionis capable
to integratewith other applications,besidesspreadsheetdlso it offers more flexibility in

accessingthe "Evolver Engine" from any MS-Windows application capableof calling a
Dynamic Link Library (DLL).

OMEGA — the OMEGA Predictive Modelling System, marketedby KiQ Limited, is a
powerful approachto developingpredictive models.It exploits advancedgeneticalgorithms
techniquegto createa tool which is "flexible, powerful, informative and straightforwardto
use".OMEGA is gearedto the financial domainand can be appliedin the following sectors:
Direct Marketing, Insurance,Investigations(case scoring) and Credit Management.The

13

environmentoffers facilities for automatichandling of data; businessstatisticalor custom
measuresof performance;simple and complex profit modelling; validation sample tests;
advancedconfidencetests;real-time graphics,and optional control over the internal genetic
algorithm.

PC/BEAGLE — producedby PathwayResearch.td, is a rule-finder programthat applies
machine-learningtechniquesto create a set of decision rules for classifying examples
previously extracted from a database. It has a modulgénaratesulesby natural selection
Further details are given in the case study section.

XpertRule GenAsys— is anexpertsystemshellwith embeddedjeneticalgorithms,marketed
by Attar Software. This GA expert systemis targetedto solve schedulingand design
applications.The systemcombinesthe power of geneticalgorithmsin evolving solutionswith
the power of rule-baseprogrammingin analysingthe effectivenessof solutions. Rule-base
programming camlsobe usedto generatéheinitial solutionsfor the geneticalgorithmandfor
post optimisation planning. Some examplesof designand schedulingproblemsthat can be
solvedby this systemincludes:optimisationof designparametersn electronicand avionics
industries, route optimisation in the distribution sector, production scheduling in
manufacturing, etc.

As our case study, we will examin€/BEAGLE.

Case Study— PC/BEAGLE

PC/BEAGLE is a rule-finder programthat examinesa databaseof examplesand uses
machine-learnindechniquedo createa setof decisionrulesfor classifyingthoseexamples,
turning datainto knowledgeIn particular,the softwareanalysesn expressiorvia a historical
database and develops a series of rules to explain when the target expression is false or true.

The system contains six main components that are generally run in sequence:

= SEED (SelectivelyExtracts Example Data) puts external data into a suitable
format, and may append leading or lagging data-fields as well.

« ROOT (Rule Oriented Optimisation Testej tests an initial batch of user-
suggested rules.

« HERB (Heuristic Evolutionary Rule Breede}J generatesdecision rules by
Naturalistic Selection, using GA philosophy (ranking) mechanismsare also
supported).

« STEM (SignatureTable Evaluation Module makesa signaturetable from the
rules produced bMERB.

e LEAF (Logical Evaluatorand Forecaste) usesSTEM outputto do forecastingor
classification.

e« PLUM (ProceduralLanguageUtility Maker) canbe usedto converta BEAGLE
rule-file into a languagesuchas Pascalor Fortran;In this form the knowledge
gained may be used by other software.

PC/BEAGLE acceptgatain ASCII format, with itemsdelimited eitherby commas spaceor

tabs. Rules are producedas logical expressionsThe systemis a highly versatile package
coveringa wide rangeof applications.Insurance weatherforecasting,finance and forensic
science are some examples.

14

The softwarerequirementsare an IBM/PC compatiblecomputerwith at least 256K
bytes RAM andvS-DOSor PC-DOSoperating system version 2.1 or later.

15

5. Algorithm-oriented systems

5.1. Algorithm-specific systems

Algorithm-specific environmentsembody a single powerful genetic algorithm. These
systemdhavetypically two groupsof users:systemdevelopersequiringa general-purposGA
for their applications,and researchergterestedn the developmentand testing of a specific
algorithm and genetic operators.

Overview

In general Algorithm-specificsystemscomein sourcecodeand allow the expertuserto
makealterationsfor specificrequirementsThey presenta modularstructureproviding a high
degree of modifiability. In addition, user interfaces are frequently rudimeoftep,command-
line driven. Typically the codehasbeendevelopedn universitiesandresearctcentresandare
available free over world-wide computer research networks.

Survey

Themostwell known programmingsystemin this categoryis the pioneeringGENESIS[5]
which has beenusedto implementand test a variety of new geneticoperators.In Europe,
probably the earliest Algorithm-specific system was GAGA. For scheduling problems,
GENITOR [19] is anotherinfluential systemthat hasbeensuccessfullyused.GAucsp allows
parallelexecutionby distributing severalcopiesof a GENESISbasedGA into UNIX machines
in a network. FinallyESCAPADE [7] employs a somewhat different approach — being based on
an Evolutionary Strategy (see Section 1.1) — as discussed below.

ESCAPADE — Evolution Strategiescapable of adaptive evolution — this softwarepackage
providesa sophisticatec&nvironmentor a particularclassof EvolutionaryAlgorithms, called
Evolution Strategies ESCAPADE is basedupon KORR, Schwefel'simplementationof a
(K FA) — evolutionarystrategy.The systemprovidesan elaboratedset of monitoringtools to
gatherdatafrom an optimisationrun of KORR. Accordingto the author,it shouldbe possible
to incorporatea different implementationof an ES or evena GA into the systemusing its
runtime support. The program structure is separatedinto several rather independent
componentghat supportthe varioustasksduring a simulationrun. The major modulesare:
ParameterSet-up, Runtime Control, KORR, Generic Data Monitors, Customised Data
Monitors, and Monitoring Support.

During an optimisationrun the monitoring modulesare invoked by the main algorithm
(KORR or someotherES or GA implementation)o realisethe logging of internal quantities.
The systemis not equippedwith anykind of graphicsinterface All parametersor a particular
simulation are passed over as commanddjt®ns.In the output,eachdatamonitorwritesits
data into separate log files.

GAGA — Genetic Algorithms for General Application — was originally programmedby
Hillary Adams,University of York, in Pascal. The programwas later modified by lan Poole
andtranslatedo the C languageby Jon Crowcroft at University CollegeLondon.lt is a task
independentgenetic algorithm. The user must supply the target function to be optimised
(minimised/maximisedand some technical GA parametersand wait for the output. It is
suitable for the minimisation of many "difficult" cost functions.

16

GAucsDh — This softwarepackagewnas developedy Nicol Schraudolphat the University of
California, SanDiego[14]. The systemis basedon GENESIS4.5 andrunson Unix, MS-DOS
CrayOsand VMS platforms;but presumesa Unix environmentlt comeswith an awk script
called wrapper, which provides a higher level of abstractionfor defining the evaluation
function. By supplyingthe codefor decodingand printing the evaluationfunction parameters
automatically,it allowsthe directuseof most"C" functionsas evaluationfunctions,with few
restrictions. The software also includes a Dynamic ParameterEncoding (DPE) technique
developedby Schraudolphwhich facilitates a radical reduction of the gene length while
keeping the desiredlevel of precisionfor the results.It is possibleto run the systemin
backgroundat low priority usingthe go command.This commandcanalsobe usedto execute
GAuUcCsD in remotehosts.The resultsare then copiedbackto the user'slocal directoryanda
reportis producedif appropriatelf the hostis not binary compatible,GAucsD compilesthe
whole systemin the remotehost. Experimentscan be queuedin files, distributedto several
hostsandexecutedn parallel. The excommandwill notify the uservia write or mail whenall
experimentsare completed.The experimentsare distributedaccordingto a specifiedloading
factor (how many programswill be sentto each host) along with the remote execution
arguments to thgocommand. GACSDis clearly a very powerful system.

GENESIS — GENEtic Searchimplementatiorsystem— waswritten by JohnGrefenstettgs]
to promote the study of genetic algorithms for function optimisation. It has been under
developmentsince 1981, and has beenwidely distributedto the researchcommunity since
1985. The software package is a set of routines wiittéme "C" languageTo build their own
geneticalgorithm, the userhasonly to provide a routine with the fithessfunction and link it
with the other routines. It is also possible to modify or add new modules (e.g. ggeestors,
data monitors) and creataldferentversionof GENESIS In fact, GENESIShasbeenusedasa
basefor testandevaluationof a variety of geneticalgorithmsandoperatorslt was primarily
developedo work in a scientific environmentffering a suitablesoftwaretool for researchlt
provides a high modifiability degree and a variety of statistical information on outputs.

GENITOR — GENetic ImplemerTOR — is a modularGA packagecontainingexamplesfor
floating-point, integer and binary representationslts featuresinclude many sequencing
operatorsas well as sub-populationmodelling. This software packageis, in fact, the
implementationof the GENITOR algorithm developedoy Darrel Whitley [19]. The algorithm
presentdwo major differencesfrom standardgeneticalgorithms.The first oneis the explicit
useof ranking.Reproductiverials are allocatedaccordingto the rank of theindividual in the
populationratherthan usingfithessproportionatereproduction.The seconddifferenceis that
GENITOR abandons the generatichapproach and reproduces new genotypes amdandual
basis.It doessoin sucha way that parentsand offspring can, typically, co-exist. The newly
createdoffspring replaceghe lowestrankingindividual in the populationratherthana parent.
This approachs knownas SteadyState.GENITOR only producesonenew genotypeat a time,
so inserting a single new individual is relatively simple. Furthermore, the insertion
automaticallyranksthe individual with relationto the existing pool — no further measureof
the relative fitness is needed.

Case Study— GENESIS

GENESIS[5] is the mostwell known softwarepackagefor geneticalgorithmdevelopment
and simulation. It is now on version5.0, which is availablefrom The Software Partnership
company.GENESIS runs on most machineswith a C compiler. The presentversion runs
successfullyon both Sunworkstationsand IBM/PC's compatiblecomputersaccordingto the

4The whole population is replaced in each generation.

17

author.The codehasbeendesignedo be portable,but minor changesnay be necessaryor
other systems. The system provides the fundamental proceduresfor genetic selection,
crossoverandmutation SinceGAs are task independent optimisers, the user prasideonly
an evaluation function which returns a value when given a particular point in the search space.

GENESIShasthreelevels of representatiotior the structuresit is evolving. The lowest
level, or packedrepresentationjs used to maximise both spaceand time efficiency in
manipulatingstructuresin generalthis level of representatioiis transparento the user.The
next level, or thestring representation, represents structures as null-termiagtggs of chars
This structureis provided for userswho wish to provide an arbitrary interpretationof the
genetic structures,for example, non-numericconcepts.The third level, or floating-point
representatioris the appropriatdevel for many numericoptimisationproblems At this level,
the usercanthink aboutgeneticstructuresas vectorsor real numbersFor eachparameteror
gene the userspecifiests range,its numberof values,andits outputformat. The systemthen
automatically lays out the string representation, tesugslateoetweerthe user-levelgenesand
lower representation levels. The system contains five major modules:

« Initialisation — the initialisation proceduresetsup the initial population.lt is possible
to "seed"the initial populationwith heuristically chosenstructures.The rest of the
population is filled with random structures.It is also possible to initialise the
population with real numbers.

« Generation- thisis responsibldor the executionof the selectioncrossovermutation,
and evaluation procedures; and perform some data collection.

« Selection- this is the processof choosingstructuredor the next generatiorfrom the
structuresin the currentgeneration.The default selectionprocedureis a stochastic
procedurewhich guaranteeshat the numberof offspring of any structureis bounded
by the floor and the ceiling of the (real-valued)expectednumberof offspring. The
procedureis basedon the roulette wheel algorithm. It is also possibleto perform
selectionbasedon a rankingalgorithm.Rankinghelpspreventprematureconvergence
by preventing super individuals from taking over the population within a few
generations.

- Mutation— after the new population is selected, mutation is applied to each structure in
the new population.Each position is given a chance(mutationrate) of undergoing
mutation. If mutation does occur, a random value is chosenfrom {0,1} for that
position. If the mutated structure differs from the original one, it is marked for
evaluation.

« Crossover exchangesllelesamongadjacenpairsof thefirst n structuresn the new
population.The result of the crossoverrate appliedto the populationsize gives the
numbem of structuredo operate Crossovercanbeimplementedn a variety of ways.
If, after crossover,the offspring are different from the parents,then the offspring
replace the parents, and are marked for evaluation.

Thesebasicmodulesare addedto the evaluationfunction suppliedby the userto create
the customisedversionof the system.The evaluationproceduretakesone structureas input
and returns a double precision value.

To executeGENESISthree programsare necessaryset-up,report and ga. The set-up
programpromptsfor a numberof input parametersAll the informationis storedin files for
future use. It is possibleto setthe type of representationthe numberof genes,numberof
experimentsirials per experimentpopulationsize, length of the structuresin bits, crossover

18

and mutation rates, generationgap, scaling window and many other parameters.Each
parameter has a default value.

Thereportprogramrunsthe ga andproducesa descriptionof the algorithmperformance.
It summarisesthe mean, variance and range of several measurementsincluding on-line
performance off-line performance averageperformanceof the current population,and the
current best value.

5.2. Algorithm Libraries

Algorithm Libraries provide a powerful collection phrameterisedeneticalgorithmsand
operatorsgenerally codedin a common language,and so are easily incorporatedin user
applications.

Overview

Thesesystemsare modular,allowing the userto selecta variety of algorithms,operators
andparameterso solvea particularproblem.Their parameterisetibraries provide the ability
to usedifferent models(algorithms,operatorsand parametesettings)to comparethe results
for the sameproblem.New algorithmscodedin high level languageslike "C" or Lisp, canbe
easily incorporatedinto the libraries. The user interface is designedto facilitate the
configurationand manipulationof the modelsas well as to presentthe resultsin different
shapes (tables, graphics, etc.).

Survey

The two leading algorithm-librariesare EM and OOGA. Both systems provide a
comprehensivdibrary for genetic algorithms, and EM also supports evolution strategies
simulation.In addition,O0GA canbe easilytailoredfor specificproblems.t runsin Common
Lisp and CLOS (CommonLisp Object System),an object orientedextensionof the Common
Lisp.

EM — Evolution Machine— hasbeendevelopedy Hans-MichaeMoigt, JoachimBorn and
JensTreptow[18] at the Institutefor Informaticsand ComputingTechniquesn Germany.The
EM simulatesnatural evolution principles to obtain efficient optimisation proceduresfor
computemodels.The evolutionarymethodsncludedin EM werechoserto providealgorithms
with differentnumericalcharacteristicsThe programmingenvironmensupportsthe following
algorithms:

i) Evolution Strategy by Rechenberg [12],
i) Evolution Strategy by Rechenberg & Schwefel [12,15],
iif) Evolution Strategy by Born,
iv) Simple Genetic Algorithm by Goldberg [3], and
v) Genetic Algorithm by Voigt and Born [18].
To run a simulation sessionthe user providesthe fitness function codedin the "C"

programminganguageThe systemcalls the compilerandthe linker to producean executable
file containing the selected algorithm and the user supplied fithess function.

19

EM usesextensivemenuswith default parametersettings,data processingor repeated
runsandgraphicalpresentatiorof results(on-line presentatiorof the evolution progresspne,
two, and three-dimensionajjraphs).The systemruns on IBM-PC compatiblecomputerswith
MS-DOS operatingsystemand usesthe Turbo C (or Turbo C++) compilerto generatethe
executable files.

OOGA — Object Oriented Genetic Algorithm — is a simplified version of the Lisp-based
softwarethat hasbeendevelopedsince 1980 by LawrenceDavis. It was mainly createdas a
supportfor Davis'book[1] but canalsobe usedto developandtestcustomisewr newgenetic
algorithms and genetic operators.

Case Study— OOGA

OOGA is a systemdesignedso that eachof the techniquesemployedby a GA is an object
that canbe modified, displayedor replacedin an object-orientedashion.The highly modular
OOGA architecturemakesit easyfor the userto defineandusea variety of geneticalgorithm
techniquesby incrementallywriting and modifying componentsn CommonLisp. Thefiles in
the OOGA system contain descriptionsof several techniquesused by genetic algorithm
researchers, but they are not exhaust@GA contains three major modules:

« Evaluation Module which has the evaluation(or fitness) function that measureghe
worth of any chromosome on the problem to be solved;

« Population Module containsa population of chromosomesand the techniquesfor
creating and manipulating that population. There are a number of techniquesfor
populationencoding(e.g. binary, real number,etc.), initialisation (e.g. randombinary,
random real, normal distribution, etc.) and deletion (e.g. delete all, delete last, etc.

» ReproductionModule has a set of genetic operatorsresponsiblefor selectingand
creatingnew chromosomesduring the reproductiorprocessThis moduleallows genetic
algorithmconfigurationswith morethanonegeneticoperatoraswell asits parameters
settings.The systemcreatesa list with the userselectedbperatorsand executeghenin
sequenceThereare a numberof geneticoperatorsfor selection(e.g. roulette wheel),
crossover(e.g. one-and two-point crossover mutate-and-crossovegnd mutation. All
the parameters such as bit mutation rate and crossover rate, can be set by the u:

The lasttwo modulesare,in fact, a library of severaldifferent techniquesvhich enables
the userto configurea particular geneticalgorithm. When the geneticalgorithmis run, the
Evaluation,Populationand Reproductionmoduleswork togetherto effect the evolution of a
population of chromosomes towards the best solution.

The systemalso supportssomenormalisationtechniquege.g. linear normalisation)and
parameterisatiomechniquesallowing the alterationof the geneticoperatorsrelative fithess
over the course of the run.

20

6. Tool Kits

6.1. Educational systems

Educationalprogrammingsystemsare designedfor the novice userto obtain hands-on
introduction to genetic algorithms concepts.They typically provide a rudimentarygraphic
interface and a simple configuration menu.

Overview

Educationalsystemsare typically implementedon PCs for portability and low cost
reasonsFor easeof use,they havea nice graphicalinterfaceand are fully menu-drivenGA
Workbench is one of the best examples of this class of programming environments.

Case Study— GA Workbench

GA Workbench[9] hasbeendevelopedoy Mark Hughesfrom CambridgeConsultants
Ltd. It is a mouse-driven interactive GA program that runs on MS-DOS/PC-DOS
microcomputersThe systemis aimedat peoplewishing to understancand get hands-onGA
practice.Evaluationfunctionsare drawnon screenusinga mouse.The systemproducesun-
time plots of GA populationdistribution, peak and averagefitness. Many useful population
statisticsare also displayed.It is possibleto changea range of parameterdncluding the
settings of the genetic operators, the population size, breeder selection, etc.

Its graphicalinterfaceneedsa VGA or EGA graphicadapterandit dividesthe screeninto
seven fields:

« A Command Menuthis is a menu-bar that has gene@hmanddo startor stopa GA
execution, as well as let the user enter the target function.

« TargetFunctionGraph- after selectingthe "Enter Targ" commandrom the command
menu, the userinputs the targetfunction by drawingit on a graph using the mouse
cursor.

« Algorithm Control Chapter- this field is calledchapterbecauset cancontainseveral
pagesput only onepageis visible at a time. It initially displaysa pagecalled"Simple
GeneticAlgorithm". Pagescanbe flipped through,forwardsor backwardshy clicking
the left mousebutton on the arrows in the top high hand corner of the chapter.
Following is a brief description of the available pages:

« Simple Genetic Algorithm Page - this page shows a number of input
variables used to control the operation ofdlgorithm.The variablevalues
canbe numericor text stringsandthe usercanalter any of thesevaluesby
clicking the left mousebuttonon the up or down arrowsto the left of each
value.

« GeneralProgramControl Variables Page- this page containsvariables
relatedto generalprogramoperationratherthana specificalgorithm. Here
the usercanselectthe sourceof datafor plotting on the outputplot graph,
setthe scalefor the X or Y axis, determinethe frequencywith which the
populationdistribution histogramis updatedor seedsthe randomnumber
generator.

21

« Output Variables Box - this containsthe current values of a numberof variables
relating to the current algorithm. For the Simple Genetic Algorithm, a counter of
generationdgs presentedas the optimum fitness value, the current best fithess, the
average fitness, the optimumcurrent best, and the average

« Population Distribution Histogram - this graph shows the genetic algorithm's
distribution of organismsby value of x. The histogramis updatedaccordingto the
frequency set in the general control variables page.

« Output Graph - this field is usedto display plots of severaloutput variablesagainst
time.

« AxisValueBox- this box is usedin combinationwith the mousecursorto readvalues
from any of the graphdescribedabove Whenthe mouseis movedoverthe plot areaof
any graph,it changedo a crosshair and causesthe Axis Value box to display the
coordinate values of the corresponding graph at the point indicated by the cursor.

By drawing the Target Function varying several numeric control parameters,and
selectingdifferenttypesof algorithmsand geneticoperatorsthe novice usercan practiseand
havea goodideaon how quickly the algorithmis ableto find the peakvalue, or indeedif it
succeeds at all.

6.2. General-purpose programming systems

General-purpossystemsare the ultimatein flexible GA programmingsystemsNot only
do they allow the userto developtheir own GA applicationsand algorithms,but also provide
users with the opportunity to customise the system to suit their own purposes.

Overview

These programming systems provide a comprehensive tool kit, including:

« asophisticated graphic interface;

« a parameterised algorithm library;

« a high level language for programmiGgs; and
e an open architecture.

Accessto the systemcomponentss via a menu-drivengraphicinterface,and a graphic
display/monitor.The algorithm library is normally "open", allowing the userto modify or
enhanceany module.A high level language— often object-oriented— may be providedwhich
supportsthe programmingof GA applications,algorithmsand operatorsthrough specialised
datastructuresandfunctions.Lastly, dueto the growing importanceof parallel GAs, systems
provide translatorsto parallel machinesand distributed systems, such as networks of
workstations.

Survey

The numberof general-purpossystemss increasing,stimulatedby growing interestin
the applicationof GAs in manydomains Examplesof systemsn this categoryinclude Splicer,
which presentsnterchangeablébrariesfor developingapplications MicroGA thatis an easy
to use object orientedenvironmentfor PCs and Madntoshes,and parallel environmentdike
ENGENEer, GAME andPeGASUSS.

EnNGENEer — Logica CambridgeLtd. developedEnGENEer [13] as an in-house Genetic
Algorithm environmentto assistthe developmentof GA applicationson a wide range of

22

domains.The softwarewaswritten in "C" andrunson Unix systemsas part of a consultancy
and systemspackage.lt supportsboth interactive (X-Windows) and batch (command-line)
modesof operation.Also a certain degreeof parallelismis supportedfor the executionof
application dependent evaluation functions.

ENGENEer provides a number of flexible mechanisms which allow the developer to rapidly
bring the power oGAs to bear on new problem domaiBsartingwith the GeneticDescription
Language, the developer can describe, at high level, the structure of the "genetic maestial"
The languagesupportsdiscretegeneswith userdefinedcardinality andincludesfeaturessuch
as multiple models of chromosomesmultiple speciesmodels and non-evolvableparsing
symbols, which can be used for decoding complex genetic material.

A descriptivehigh level languagethe EvolutionaryModel Languagejs alsoavailableto
the user. It allows the descriptionof the GA type usedin terms of configurable options
including: populationsize, populationstructureand source,selectionmethod,crossovetrtype
andprobability, mutationtype andprob.,inversion,dispersamethod,andnumberof offspring
per generation.

Both the GeneticDescriptionLanguageand the Evolutionary Model Languageare fully
supportedwithin the interactiveinterface (including on-line help system)and can be defined
either "on the fly" or loaded from audit files, which are automatically created during a GA run.

Monitoring of GA progresds providedvia both graphicaltools and automaticstorageof
results (at user defined intervals). This allows the teseFstartEnGENEer from any pointin a
run, by loading both the populationat that time and the evolutionarymodel that was being
used.

ConnectingEnGENEer to different problem domains is achie\®dspecifyingthe nameof
the programusedto evaluatethe problemspecific fithessfunction and constructinga simple
parsingroutineto interpretthe geneticmaterial.A library of standardnterpretatiorroutinesis
also providedfor commonlyusedrepresentatiorschemesuchas gray-coding,permutations,
etc. Thefitnessevaluationcanthenbe run aseithera slaveprocesdo the GA or via standard
handshakingoutines.Bettersitill, it canberun on eitherthe machinehostingthe EnGENEer or
on any, sequential or parallel, hardware capable of connecting to a Unix machine

GAME — GeneticAlgorithm ManipulationEnvironment— being developedas part of the
main EuropeanCommunity (ESPRIT Ill) GA project, called PAPAGENA It is an object-
orientedenvironmenfor programmingparallel GAs applicationsandalgorithms,andmapping
them on to parallel machines. The programming environment comprises 5 major modules:

« Virtual Machine— the machineindependentow level code responsiblefor the
managemenand executionof a GA application.For parallelexecutionthe virtual
machine should provide communicationmechanismgor information exchange
between all the virtual machines in the system.

« Genetic Algorithms Libraries — parameterisedalgorithms, applications and
operators' libraries written in the high level language,podiding the userwith a
number of validated modules for constructing applications.

e Graphical Monitor (using X Windows) — the software environmentémtrolling
the executionand monitoring of a geneticalgorithm applicationsimulation. This
includestools for configuring the graphicalinterface and a monitoring support
from the virtual machinethat canbe usedby applicationspecificdatamonitorsto
visualise data and change its values.

23

« High Level LanguaggGA-HLL) — the object-orientecorogramminganguagefor
defining, in conjunctionwith the algorithmlibrary, new geneticalgorithm models
and applications.

« Compilers — to various UNIX-based workstations and parallel machines.

The environmenis beingprogrammedn C++, andwill be availablein sourcecodeform
to allow full user-modification.

MicroGA — marketedby EmergentBehavior,is designedto be usedon a wide range of
complex problems,while at the sametime being small and easyto use.The environmentis
also designedto be expandableThe systemis a framework of C++ objects.As such, it is
designedso that severalpiecesare usedin conjunctionwith eachotherto give the usersome
defaultbehaviour.Therefore,it goesfar from thelibrary conceptwherea setof functions(or
classes)s offeredto be incorporatedinto the userapplication. The frameworkis almosta
ready-to-useapplication, needingonly a few user-definedparameterdo start running. The
packagecomprisesa compiled library of C++ objects, three sample programs,a sample
programwith an ObjectWindows Library userinterface(from Borland) and the Galapagos
code generationsystem. MicroGA runs on IBM-PCs compatible systemswith Microsoft
Windows 3.x, using Turbo/Borlar@k+. It also runs on Macintosh computers.

The application developercan configure his application either using Galapagosor
manually. The Galapagods a windows-basedode generatorthat produces,from a set of
custom templates and a little information provided by the user, a coraaatialondvlicroGA
application. Ithelpson the creationof a subclasglerivedfrom its "TIndividual" class,required
by the environment to credttee geneticdatastructureto be manipulatedThe numberof genes
for the prototypeindividual, as well as the range of possiblevaluesthey can assumeis
requestedy GalapagosThe evaluationfunction can be specified,but the notationuseddoes
not allow complex,or non-mathematicditnessfunctionsto be enteredvia GalapagosAs a
result, Galapagosreatesa class,derivedfrom Tindividual, which containsspecific member
functions according to user's requirements.

Applications requiring complex genetic data structuresand fitness functions can be
definedmanuallyby inheriting from the TIndividual class,andwriting the codefor its member
functions.After creatingthe applicationdependengeneticdatastructureand fithessfunction,
MicroGA compilesandlinks everythingusing the Borland C++ or Turbo C++ compiler,and
produces amS-windows executable file.

MicroGA is very easyto useandallows fast creationof geneticalgorithmsapplications.
However, for real applicationsthe userhasto understandasic conceptsof object oriented
programming and Windows interfacing.

PeGAsuS— is a Programmingenvironmentfor ParallelGeneticAlgorithms developedat the
GermanNationalResearctCenterfor ComputerScienceln fact, it is a tool kit which canbe
used for programming a wide range of genetic algorithms, as well as for educational purposes.

The environmentis written in ANSI-C and is availablefor many different UNIX-based
machineslt runson MIMD parallel machinessuch as transputersand distributed systems
with workstationsPeGASLS is structured in four hierarchical levels:

« the User Interface,

« the PeGAsuS Kernel and Library,

- compilers for severaNIX -based machines, and
» the sequential/distributed or parallel hardware

24

The User Interface consistsof three parts: the PeGAsuSscript language,a graphical
interfaceand a userlibrary. The userlibrary hasthe samefunctionality of the PeGAsSUS GA
library. It allowsthe userto defineapplicationspecificfunctionsthat are not providedby the
systemlibrary. The script languageds usedto specify the experiment.The usercanuseit to
define the applicationdependentiata structures attacheshe geneticoperatorsto them and
specifiestheinput/outputinterface Whereashe scriptlanguagespecifiesthe constructionof a
sub-population, the connections between these are specified through the graphical interface.

The Kernel includes the "base" and the "frame" functions. The "base" functions twatrol
executionorder of the geneticoperatorsmanagecommunicationbetweendifferent processes
and provideinput/outputfacilities. They build generalframesfor simulatingGAs, andcanbe
consideredas autonomougprocessesThey interpretthe PeEGASUS script, createappropriate
datastructuresanddescribethe orderof the framefunctions.A "frame" function controlsthe
execution of a single genetic operator, and is invokealligsefunction. They preparehe data
representinghe geneticmaterial,and apply the geneticoperatordo it, accordingto the script
specification.The Library containsgeneticoperators,a collection of fitness functions, and
input/outputand control procedureslt providesthe userwith a numberof validatedmodules
for constructing applications.

Currently, PeGAsuS can be compiledwith the GNU C, RS/6000C, ACE-C, and Alliant's
FX/2800 C compilers.It runs on SUNs and RS/6000workstations,as well as on the Alliant
FX/28 MIMD architecture.

Splicer — This softwareenvironmentvas createdby the SoftwareTechnologyBranchof the
Information SystemsDirectorate at NASA/JohnsonSpace Center, with support from the
MITRE Corporation[16]. It is oneof the mostcomprehensivenvironmenturrentlyavailable,
and forms the case study below.

Case Study— Splicer

Splicer presentsa modular architecturethat includes: a Genetic Algorithm Kernel,
interchangeable Representatldhbraries, FitnessModules,anduserinterfaceLibraries.It was
originally developedn "C" on an Apple Macintoshandhasbeensubsequentlyportedto UNIX
workstations(SUN3 and 4, IBM RS/6000Q using X-Windows. The GeneticAlgorithm Kernel,
Representatior.ibraries, and FitnessModules are completely portable. The following is a
brief description of the major modules:

» GeneticAlgorithm Kernel - the GA kernel comprisesall functions necessaryfor the
manipulationof populations.It operatesndependentlyfrom the problem representatior
(encoding), fitness function and user interface. Some of its supportedfunctions are:
creationof populationsand membersfitnessscaling,parentselectionand sampling,and
generation of population statistics.

+ RepresentatioriLibraries - interchangeableepresentatiodibraries are able to store a
variety of pre-defined problem-encoding schemes and functions. This #lle®s kernel
to be usedfor any representatiorscheme . There are representationibraries for binary
stringsandfor permutationsTheselibraries containfunctionsfor the definition, creation
and decodingof geneticstrings as well as multiple crossoverand mutation operators.
Furthermorethe Splicertool definesthe appropriatdnterfacego allow the userto create
new representation libraries.

25

« FitnessModules- theseare interchangeablenoduleswherefitnessfunctionsare defined
and stored.They are the only componentf the environmenta userwill be requiredto
createor alter to solve a particular problem.It is possibleto createa fitness (scoring)
function, set the initial values for various Splicer control paraméegspopulationsize),
createa function that graphically displaysthe best solutions as they are found, and
provide descriptive information about the problem.

« UserlInterfaceLibraries - therearetwo userinterfacelibraries: a Macintoshand an X-
Window Systemuserinterface.They are event-driveninterfacesand provide a graphic
output in windows.

Stand-aloneSplicer applicationscan be usedto solve problemswithout any need for
computerprogramming.However,to createa Splicer applicationfor a particularproblem,a
Fitness Module must be created using the C programming language.

Splicer version 1.0 is currently availablefree to NASA andits contractorsfor use on
government projects. In the future it will be possible to purchase Splicer for a nominal fee.

Having surveyedsomeof the availableGA environmentsyve now speculateon the likely
future developments of genetic algorithms programming environments.

26

7. Future Developments

The following are some trends and possible future directions in each of the GA
programming environments.

Application-oriented

As with any newtechnology,n the early stagesof developmenthe emphasidor toolsis
on the easeof use.Application-orientedsystemdhavea crucialrole in bringing the technology
to a growing set of application domaisg)cetheyaretargetedandtailoredfor specificgroups
of users.Thereforewe would expectthe numberand diversity of application-orientedgystems
to expandrapidly in the next few years.One high growth areashould be the associationof
geneticalgorithmsand other optimisationalgorithmsin hybrid systems.By the end of the
century,hybrid GA-NeuralNetworkswill havemadesignificantprogresgoward solving some
currently intractable machine learning problems (promising domains include autonomous
vehicle control, signal processing, and intelligent process control).

Algorithm-specific & Libraries

With the further developmentf application-orientedystemsgcoupledwith the discovery
of new algorithmsand techniquesyve expectto seeanincreasen algorithm specific systems
possiblyleadingto general-purpos&As. Accessto efficient versionsof thesealgorithmswill
be provided by algorithm libraries.

Educational

Interestin educationalsystemsand demonstratorof GAs is rapidly growing. Their
contributionis at the start of a new technology,but their usagetraditionally diminishesas
general-purpossystemsmature. Thus we should expecta declinein educationakystemsas
sophisticated general-purpose systems become available and easy to use.

General-purpose

General-purpossystemdor GA programmingare very recent.With the introduction of
Splicer,a growing numberof commercialdevelopmensystemsare expectedo appearin the
nearfuture. We shouldfind programmingenvironmentn an expandingrangeof sequential
and parallel computers An increasingnumberof public domain open systemprogramming
environments from universities and research centres is also expected.

Hybrid Systems

Recently there has been considerableinterestin creating hybrid systems,of genetic
algorithmswith expertsystemsandgeneticalgorithmswith neuralnetworks.If a particularly
complexprobleminvolvesthe useof both optimisationand either decisionsupportor pattern
recognitionprocesseghen hybrid systemsare powerful candidatesFor examplewith neural
networks,geneticalgorithmshavebeenusedto train networks,andhaveachievedoerformance
levelsexceedinghat of the commonlyusedbackpropagatiormodel. GAs havealsobeenused
to selectthe optimal configurationsfor neuralnetworks,suchas the numberof hiddenunits,
layers and learning rates.

To conclude,geneticalgorithmsare robustsearchand adaptivealgorithmsthat may be
immediatelytailoredto real problems.The explosionof interestin GA applicationsis driving
the developmentof GA programming environments,and many powerful commercial
environmentscan be expectedin the near future. The two major influences on future
environmentswill be, we believe, firstly exploitation of parallel GAs, and secondly the

27

programmingof Hybrid applicationslinking GAs with Neural Networks, expertsystemsand
traditional utilities such as spreadsheets and database packages.

Acknowledgements

The authors thank Lawrence Davis, Darrel Whitley and Nicol Schraudolph, for
recommendingGA programming environmentsfor us to survey. We also thank Frank
Hoffmeister,Hans-MichaeNoigt and JoachimBorn for their advice.Finally, we acknowledge
our colleagueslasonKingdon and SuranGoonatilakefor commentingon early drafts of this
paper.

28

References

[1] L. Davis "Handbook of Genetic Algorithms", Van Nostrand Reinhold, New York — 1991.

[2] K.A. De Jong "An Analysis of the Behavior of a class of Genetic Adaptive Systems",PhD thesis,
University of Michigan — 1975.

[3] D. E. Goldberg. "Genetic Algorithms in Search, Optimization & Machine Learning”, Addison-
Wesley Publishing Company] — 1989.

[4] M. Gorges-Schleuter "ASPARAGOS An Asynchronous Parallel Genetic Optimisation Strategy",
in H. Schaffer, editor3rd International Conference on Genetic Algorithipg. 422-427, Morgan
Kaufmann — 1989.

[5] J. J. GrefenstetteGENESIS A System for Using Genetic Search Procedure®roteedings of the
1984 Conference on Intelligent Systems and Machppesl61-165 — 1984.

[6] F. Hoffmeister & T. Béck "Genetic Algorithms and Evolution Strategies: similarities and
differences” inTechnical Report "Grine Reihe" No. 3&epartment of Computer Science,
University of Dortmund, Germany — 1990.

[7] F. Hoffmeister "The User's Guide BESCAPADE 1.2A Runtime Environment for Evolution
Strategies”, Department of Computer Science, University of Dortmund, Germany — 1991.

[8] J. H. Holland. "Adaptation in natural and artificial systemsAim Arbor: The University of
Michigan Press — 1975.

[9] M. Hughes "Genetic Algorithm Workbench Documentation”, Cambridge Consultants Ltd. — 1989.

[10] H. Muhlenbein "Parallel genetic algorithms, population genetics and combinatorial
optimization”, in J.D. Schaffer, editdProceedings of the Third International Conference on Genetic
Algorithms,pp. 416-421, San Mateo — 1988.

[11] H. Muhlenbein "Evolution in Time and Space — The Parallel Genetic Algorithm" in G. Rawlins,
editor, Foundations of Genetic Algorithmlorgan Kaufmann — 1991.

[12] I. Rechenberg " Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution", Fromman-Holzboog Verlag, Stuttgart— 1973.

[13] G. Robbins "EnGENEer — The Evolution of SolutionsPimceedings of the 5th Annual Seminar
on Neural Networks and Genetic Algorithm4992.

[14] N. N. Schraudolph & J. J. Grefenstette "A User's Guide to€3A1.2", Computer Science &
Engineering Department, University of California, San Diego — 1991.

[15] H. P. Schwefel "Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie" ifnterdisciplinary Systems Researtfol. 26, Birkauser, Basel — 1977.

[16] NASA — Johnson Space Center "Splicer — A Genetic Tool for Search and Optimization” in
Genetic Algorithm Digesiol: 5, Issue: 17 — 1991.

[17] R. Tanese "Distributed Genetic Algorithms", in H. Schaffer, eddar International Conference
on Genetic Algorithmsp. 434-440, Morgan Kaufmann — 1989.

[18] H. M. Voigt, J. Born & J. Treptow "The Evolution Machine Manual — V 2idstitute for
Informatics and Computing Techniques, Berlin — 1991.

[19] D. Whitley & J. Kauth'GENITOR a different genetic algorithm” iRroc. of the Rocky Mountain
Conference on Artificial Intelligencep. 118-130, Denver, CO — 1988.

29

Appendix A — Sequential GAC Listing

/*

* Simple Genetic Algorithm ~ *

*/

#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include <math.h>

#define RAND_MAX OX7FFFFFFF
#define random(num) (rand()%(num))
#define randomize() srand((unsigned)time(NULL))

#define POPULATION_SIZE 10
#define CHROM_LENGTH 4

#define PCROSS 0.6
#define PMUT 0.050
#define MAX_GEN 50

struct population

int value;
unsigned char string[CHROM_LENGTH]J;
unsigned int fitness;

struct population pool[POPULATION_SIZE];
struct population new_pool[POPULATION_SIZE];

int selected[POPULATION_SIZE];
int generations;

main()

int i;

double sum_fitness, avg_fitness, old_avg_fitness;
generations = 1;

avg_fitness = 1,

initialise_population();

do

{ . .
old_avg_fitness = avg_fitness;
sum_fitness = 0;

/* fitness evaluation */
for (i=0; i<POPULATION_SIZE; i++)

pool[i].value = decode(i);
pool[i].fitness = evaluate(pool[i].value);
sum_fitness += poolli].fitness;

}
avg_fitness = sum_fitness / POPULATION_SIZE;

for (i=0; i<POPULATION_SIZE; i++)
selected[i] = select(sum_fitness);

for (i=0; i<kPOPULATION_SIZE; i=i+2)
crossover(selected[i],selected[i+1],i,i+1);

mutation();

statistics();

printf ("\nimprovment: %f\n", avg_fitness/old_avg_fitness);

while ((++generations < MAX_GEN) &&
((avg_fitness/old_avg_fitness) > 1.005) ||
((avg_fitness/old_avg_fitness) < 1.0));

30

/*

* initialise_population *
* Creates and initialize a population *

*
initialise_population()

int i;
randomize();
for (i=0; i < POPULATION_SIZE; i++)
encode(i, random(2*"CHROM_LENGTH));
}

/*

* select *
* Selects strings for reproduction *

*/
select(sum_fitness)
double sum_fitness;
t

inti;

double r, parsum;

parsum = 0;
r = (double)(rand() % (int)sum_fitness); /* spin the roulette */

for (i=0; i < POPULATION_SIZE, parsum <=r; i++)
parsum += pool[i].fitness;

return (--i); /* returns a selected string */

}
/*

* crossover *
* Swaps 2 sub-strings

*

crossover (parentl, parent2, child1, child2)
int parentl;

int parent2;

int child1;

int child2;

{

int i, site;
if (flip(PCROSS))
site = random(CHROM_LENGTH);

else
site = CHROM_LENGTH-1;

for (i=0; i < CHROM_LENGTH; i++)
if (i <= site) || (site==0))
{

new_pool[child1].string[i] = pool[parentl].string[i];
new_pool[child2].string[i] = pool[parent2].string[i];
lelse

{
new_pool[child1].string[i] = pool[parent2].string[i];
new_pool[child2].string[i] = pool[parentl].string[i];

/*

* mutation *
* Changes the values of string position *

*
mutation ()

inti, j;
for (i=0; i < POPULATION_SIZE; i++)

for (j=0; j < CHROM_LENGTH; j++)

31

if (flip(PMUT))

pooli].string[j] = ~new_pool[i].string[j] & 0x01;
else

pool[i].string[j] = new_pool[i].string[j] & 0x01;

}
/*

* encode *
* Code a integer into binary string *

*/

encode(index, value)
int index;

int value;

{

inti;

for (i=0; i < CHROM_LENGTH; i++)
pool[index].string[CHROM_LENGTH-1-i] = (value >> i) & 0x01;

}
/*

* decode *
* Decode a binary string into an integer *

*/
decode(index)
int index;

{

inti, value;

value = 0;
for (i=0; i < CHROM_LENGTH; i++)
value += (int)pow(2.0,(double)i) * pool[index].string[CHROM_LENGTH-1-i];

return(value);

}
/*

* evaluate *
* Objective function f(x)=x"2 *

*/

evaluate(value)

int value;
return(pow((double)value,2.0));

/*

* flip *
* Toss a biased coin *

*/

flip(prob)
double prob;
{

double i;
i=((double)rand())/RAND_MAX;
if ((prob == 1.0) || (i < prob))
return (1);
else
return (0);

/*

* statistics *
* Print entermediary results *

*
statistics()
inti, j;

printf("\n;Generation: %d\n;Selected Strings\n;", generations);
for (i=0; i< POPULATION_SIZE; i++)
printf(" %d", selected[i]);

32

printf("\n");
printf("\n; X\tf(x)\t New_String\tx™");

for (i=0; i< POPULATION_SIZE; i++)

printf("\n %d\t%u\t;", pool[i].value, pool[i].fitness);

for (j=0; [<CHROM_LENGTH; j++)
printf(" %d",pool[i].string[j]);

printf("\t%d", decode(i));

33

Appendix B — Developers Address List

C Darwin Il

Attar Software
Newlands Road
Leigh, Lancashire
England

Tel: +44 94 2608844
Fax: +44 94 2601991

EM — Evolution Machine
H.M. Voigt & J. Born

Institute for Informatics and Computing

Techniques

Rudower Chaussee 5

D — 1199 Berlin

Germany

Tel: +49 372 674 5958

Fax: +49

E-mail: voigt@iir-berlin.adw.dbp.de
born@iir-berlin.adw.dbp.de

ESCAPADE

Frank Hoffmeister

University of Dortmund
Department of Computer Science
Chair of Systems Analysis
P.0O.Box 500500

D - 4600 Dortmund 50

Germany

Tel: +49 231 755 4678

Fax: +49 231 755 2047

E-mail: iwan@Is11.informatik.uni-
dortmund.de

EnGENEer

George Robbins

Systems Intelligence Division
Logica Cambridge Ltd.
Betjeman House

104 Hills Road

Cambridge CB2 1LQ

U.K.

Tel: +44 71 6379111

Fax: +44 223 322315

EVOLVER

Axcélis Inc.

4668 Eastern Avenue North
Seattle, WA 98103

U.S.A.

Tel: +1 206 632 0885

Fax: +1 206 632 3681

GA Workbench

Mark Hughes

Cambridge Consultants Ltd.
The Science Park

Milton Rd.

Cambridge CB4 4DW

U.K.

Tel: +44 223 420024

Fax: +44 223 423373
E-mail: mrh@camcon.co.uk

GAGA

Jon Crowcroft

University College London
Gower Street

London WCI1E 6BT

U.K.

Tel: +44 71 387 7050
Fax: +44 71 387 1398
E-mail: jon@cs.ucl.ac.uk

GAucsD

N.N. Schraudolph

Computer Science &

Engineering Department
University of California, San Diego
La Jolla. CA 92093-0114

U.S.A.

Fax: +1 619 534 7029

E-mail: nici@cs.ucsd.edu

GAME

Jose L. Ribeiro Filho

Computer Science Department
University College London
Gower Street

London WC1E 6BT

U.K.

Tel: +44 71 387 7050

Fax: +44 71 387 1398

E-mail: j.ribeirofilho@cs.ucl.ac.uk

GENESIS

J.J. Grefenstette

The Software Partnership
P.O. Box 991

Melrose, MA 02176

U.S.A.

Tel: +1 617 662 8991
E-mail: gref@aic.nrl.navy.mil

34

GENITOR

Darrel Whitley

Computer Science Department
Colorado State University

Fort Collins, Colorado 80523
U.S.A.

E-mail: whitley@cs.colostate.edu

MicroGA

Steve Wilson

Emergent Behavior

635 Wellsbury Way

Palo Alto, CA 94306

U.S.A.

Tel: +1 415 494-6763
E-mail: emergent@aol.com

OMEGA

David Barrow

KiQ Ltd.

Easton Hall

Great Easton

Essex CM6 2HD
U.K.

Tel: +44 371 870254

OO0OGA

Lawrence Davis

The Software Partnership
P.O. Box 991

Melrose, MA 02176
U.S.A.

PC-BEAGLE

Richard Forsyth
Pathway Research Ltd.
59 Cronbrook Rd.
Bristol BS6 7BS

U.K.

Tel: +44 272 428692

PeGAsuS

Dirk Schlierkamp-Voosen

Research Group for Adaptive Systems
German National Research Center for
Computer Science - GMD

P.O. Box 1316

D-5205 Sankt Augustin 1

F.R.G.

Tel: +49 2241 / 14 2466

E-mail: dirk.schlierkamp-voosen@gmd.de

35

Splicer

COSMIC

382 E. Broad St.

Athens, GA 30602

U.S.A.

Tel: +1 404 5423265

Fax: +1 706 542 4807

E-mail: bayer@galileo.jsc.nasa.gov

XpertRule GenAsys
Attar Software
Newlands Road
Leigh, Lancashire
U.K.

Tel: +44 942 608844
Fax: +44 942 601991

XYpe

Ed Swartz

Virtual Image, Inc.

75 Sandy Pond Road \#11
Ayer, MA 01432

U.S.A.

Tel: +1 508 772 0888
Fax: +1

