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In t roduct ion 

on biological 
Genetic Algorithms (GAs) are a stochastic computational device that allows an effec­

tive search in very large search spaces. They bave been applied to various kind of 
optimization problems, including NP­complete problems [Garey­Johnson,1979], e.g. 
Travelling Salesman (TSP) [Muhlenbein,1989] and Satisfiability (SAT) [DeJong­
Spears,1989], with quite good results. The main goal of our research is to understand 
GAs' limits and potentialities in addressing highly constrained problems, that is opti­
mization problems where a minimal change to a feasible solution is very likely to gen­
erate an unfeasible one. As a test­problem [Colomi­Dorigo­Maniezzo, 1990], we have 
chosen the timetable problem (TTP), a problem that is known to be NP­hard [Even­Itai­
Shamir,1976], but which has been intensively investigated, given its great practical rele­
vance [de Werra,1985], [Davis­Ritter,1987], [Hertz­de Werra,1989]. 

The problem instance we faced consists in the construction of the lesson timetable for 
an (ItaUan) high school. This problem may be decomposed in the formulation of several 
interrelated timetables, one for each pair of sections of the school considered. A pair of 
sections can be in fact processed as an "atomic unit", not further decomposable given its 
high internai dependencies, but relatively isolated from the other pairs of sections. 

Given this premises, the problem is described by: 
• a list of the teachers of the pair of sections (20 in our case), 
• a Ust of the classes involved (10 for the pair of sections), 
• a list of the weekly teaching hours for each class (30 in our case), 
• the curriculum of each class, that is the list of the frequencies of the teachers 

working in that class, 
• some extemal conditions, for example the hours that the teachers use to teach in 

other sections. 
The formai représentation of the TTP may be the following: 
given the 5­tuple < H, T, A, R , / > , where 
T is a fmite set (T i , . . , T j , . . , Tm) of resources (teachers). 

I 
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H is a fmite set ( H i , . . , H j , . . , Hn) of time-intervals (hours), ' 

A is a set of jobs to be accomplished (lessons to be taught), 

R is a m X n matrix of rije A (a timetable), 

/ i s an objective function to be maximized,/: R => IR , 

we want to compute 

max/(CT, A, £2, n ) , where 

a is the number of superimpositions, that is situations where more than one teacher 

is présent in the same class at the same time (this number, to be minimized, is 

controlled by a parameter that may be différent from zéro for reasons of effi-

ciency), 

A is the set of didactic goals (e.g., having the hours of the same subject spread over 

the whole week), 

Q is a set of organizational goals (e.g., for each hour of the week having two teachers 

available for possible temporary teaching posts), 

n is a set of personal goals (like, i.e., having a spécifie free-day). 

Every solution (timetable) generated by our algorithm is feasible if it satisfies the fol-

io wing constraints: 

� every teacher and every class must be présent in the timetable in a predefined 

number of hours; 

� there may not be more than one teacher in the same class in the same hour; 

� no teacher can be in two classes in the same hour; 

� there can be no "uncovered hours" (that is, hours when no teacher has been as-

signed to a class). 

The algorithm 

In order to apply the GA - we suppose the reader is comfortable with the mode! (see 

[Dorigo,1989] for an introduction) - we had to define an alphabet, some genetic opera-

tors and a fîmess function. 

Alphabet: is the set A of the jobs that the teachers have to perform; its éléments 

include the lessons to be taught and other activities. We indicate: 

� with the characters 1,2,3, .. ,0 the ten classes (i.e. 1*A,2'A 4'B,5'B) where the 

lessons have to be taught; 

� with the character D the hours at disposai for temporary teaching posts; 

� with the character A the hours for the teacher updating; 

� with the character S the hours during which lessons are taught in classes of sections 

différent from the two considered. 

Our alphabet is therefore A = {1,2,3,4,5,6,7,8,9,0,D,A,S). 

This alphabet allows us to represent the problem as a matrix R (an m x n matrix of 

TijS A) where each row corresponds to a teacher and each column to a hour. Every élé-

ment Tij of the matrix R is a gene: its allelic value may vary on the subset of A spécifie 

to the teacher corresponding to the row containing the gene. 

The constraints are managed as foDows: 
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i) by genetic operators, so that the set of hours to be taught by each teacher, allocated 

in the inizialization phase, cannot be changed by the application of a genetic opera-

tor (specifically defined to meet this requirement); 

ii) by afiltering algorithm, so that the superimpositions caused by the application of 

genetic operators be — totally or partially —eliminated by filtering; 

iii) by the objective function, so that sélective pressure is used to limit the number of 

individuals with superimpositions (superimpositions are exphcitly considered in the 

objective function, with high penalties). 

We decided to manage the superimpositions by means of both filtering (the so-called 

genetic repair [Muhlenbein,1989]) and fimess function penalties because in this way the 

algorithm has a greater degree of freedom in moving through the search space. This 

choice has been caused by the difficulty of the problem: in our application, in fact, every 

teacher represents a TSP-like problem (consisting in the analysis of the permutations of 

a predefined symbol set), which is context sensitive and has a search space of dimension 

l ^ ^ i h !_ ^ N! 

n ("h!) n M 
h h 

where nn is the number of répétitions of the h-th character in the row representing the 

teacher, and N is the total number of weekly hours (30 in our case). 

It is possible to distinguish between two kinds of constraints: rows and columns. Row 

constraints are incorporated in the genetic operators and are therefore always satisfied; 

column constraints (unfeasibilities due to superimpositions and to uncovered hours) are 

managed by means of a combination of fitness function (f.f.) and genetic repair. Single-

teacher solutions (i.e. solutions that satisfy a single teacher) are each other related 

through column constraints. 

Fimess function: the objective function (o.f.) is the basis for the computation of the 

f.f., which provides the GA with feedback from the environment, feedback used to 

direct the population towards areas of the search space characterized by better solutions. 

The o.f. is structured hierarchically and is built so as to measure a generalized cost, 

which represents the distance existing between the current timetable and the needs of the 

school. The o.f. is defmed through a set of weights interactively chosen by the user. 

The hierarchical structure has been chosen in order to acknowledge the différent rele-

vance of the several groups of problem conditions. This différence is reflected in the 

weights, which have différent orders of magnitudes. 

Genetic operators: the operators that we have defined are the following. 

Reproduction. This is the classical reproduction operator that promotes individuals 

with an above average value of the fimess function. 

Mutation of order k. This operator takes k contiguous gènes and swaps them with 

other k contiguous non-overlapping ones belonging to the same row. Its application is 

subject to some restrictions: it cannot be applied when, among the gènes to be mutated, 

there are some spécial characters, like A or S (thèse hours have in fact been allocated, 

during the initialization phase, to unconvertible activities). 

Day mutation: it takes one day and swaps it with another one belonging to the same 

row. It is a spécial case of mutation of order k: it has been introduced for efficiency 

reasons (with spécial référence to free-day allocation). 
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Crossover. The objective of the définition of this operator is that of recombining effi-

ciently building blocks (defined in the following for our case), so that, given two par-

ents, it is possible to generate two sons having better f.f. values (or at least having one of 

them with a significant increase of f.f. value). 

We call local fitness function (l.f.f.) the part of the fitness function due only to charac-

teristics spécifie to each teacher. Given two individuals (timetables) of the population, Rj 

and R2, the rows of R\ are sortedin order of decreasing l.f.f. and the best ki rows are 

taken as building block. Then the remaining m-ki (where m is the number of teachers) 

rows are taken from R2 to generate the first son. The second son is obtained from the 

unutilized rows of Ri and R2. The value of ki is determined by the program on the basis 

of the l.f.f. of both the parents. 

Filtering. The filtering operator takes as input an unfeasible solution and retums as 

output a possibly feasible one. It has been presented in [Colomi-Dorigo-Maniezzo,1990]. 

Row feasibility is always maintained, while this is not the case for column feasibility: the 

goal of filtering will, therefore, be that of recovering column — hence global — feasi-

bility for any given timetable. 

Some computational results 

This model has been implemented using the C language on an IBM-PC with standard 

configuration, and it has been tested in defining the timetable for a large high school in 

Milan. We have co-operated with the teachers that usually defme the timetable; this 

collaboration has been continuative, from the design phase (for requirement définition) 

until the validation, which is still going on with promising results. 

In Fig.l we présent two évolutions of our System applied to this workbench. The first 

one regards a sample run, stopped after 3250 générations. It is évident how the algo-

rithm converges to a positive value of cost. This non-zero asymptote dérives from the 

conflicting nature of the teachers' needs. The second one concems a run performed with 

very low crossover probability. It is manifest the différence of the trend and the signifi-

cant worsening of the performance. 
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Fig.l- Two sample runs: 
a) run with crossover probability set to 0.5 
b) run with crossover probability set to 0.1 

b) 



Conclusions and fu ture work 

In this paper we have presented a model, a class of algorithms and a Computing pro-

gram, regarding the solution of the timetable problem, with spécial référence to a real-

world application (the timetable of a large high school). In so doing, we have developed 

a gênerai methodology to apply GAs to highly constrained combinatorial optimization 

problems. 

The features of our model that can be generalized are: 

� the définition of genetic operators that minimize generalized cost functions with a 

penalty function for the possible unfeasibilities of the generated solutions; 

� the distribution over genetic operators, f.f. and genetic repair of the management 

of the unfeasibilities; 

� the hierarchical structuring of the o.f., in order to allow an easy and effective 

définition of the relevance of the différent criteria and objectives used; 

� the run-time adaptation of the f.f. weights and probabilities. 

Possible future developments include: 

� a theoretical assessment of the complexity of the operators utilized; 

� an extensive expérimentation of the parallel versions of the algorithm; 

� the generalization to a broader class of constrained combinatorial optimization 

problems; 

� the study of the convergence of GAs applied to this class of problems. 
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