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applied to problems of structural topology design. An overview
of the genetic algorithm will first describe the genetics-based representations and
operators used in a typical genetic algorithm search. Then, a review of previous
research in structural optimization is provided. A discretized design representation,
and methods for mapping genetic algorithm “‘chromosomes”’ into this representa-
tion, is then detailed. Several examples of genetic algorithm-based structural topology
optimization are provided: we address the optimization of cantilevered plate to-
pologies, and we investigate methods Jor optimizing finely-discretized design do-

mains. The genetic algorithm’s ability to find families of highly-fit designs is also

examined. Finally,

a description of potential future work in genetic algorithm-based

Mructural topology optimization is offered.

1 Introduction

Our interest in this article is the generation of optimal basic
configurations of designed artifacts, a process commonly
known as conceptual design. We use a general optimization
technique which s not tailored to any particular design domain.
Specifically, the examples we provide are in the domain of
structural topology optimization using genetic algorithm search
(Goldberg, 1989). Genetic algorithms can be applied to many
other classes of conceptual design problems—these efforts in-
tend to help determine the utility of genetic ajgorithms in
conceptual design. ‘

2 Genetic Algorithms

Genetic algorithms (GA’s) are an optimization strategy where
points in the design space are analogous to organisms involved
in a process of natural selection (Holland, 1975). Each orga-
nism is represented by a character string analogous to a chro-
mosome, with each character position analogous to a gene and
each character value analogous to an allele. These *“‘chromo-
somes,”” each representing a possibly-optimal design, are cre-
ated in generations, with offspring designs arising from parent
designs. Child designs are created when parent designs, chosen
from the best designsin a generation, group in pairs to produce

offspring via genetic reproduction and crossover (Fig. 1). In-.

frequent, random mutations (Fig. 2) are then performed on
individual alleles. These operations yield two new chromo-
somes which represent two new designs possessing traits from
both parents. A merit function, tailored to take an individual
chromosome as input, is then used to determine the ““fitness”’
of each child chromosome. In this way a new generation is
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created. The process then iterates. After many generations,
the quality of designs should increase because better designs
are more likely to produce offspring.

Genetic algorithms are a compromise between ‘“‘weak’’ and
‘‘strong”’ search methods (Goldberg, 1989, Chapter 1.). Strong
methods, such as numerical optimization procedures, perform
search in an informed manner through the use of function
gradients. Weak methods, such as random or exhaustive pro-
cedures, search in an uninformed manner by extensively sam-
pling the design space. Weak methods are expensive, but more
likely to find global optima; strong methods are inexpensive,
but more likely to settle for local suboptima. Genetic algo-
rithms, in contrast to both, operate with a strong progression

Parents: 111111111111
000000000000
Crossover: 111111111111
000000000000
Children: 111111110000
000000001111

Fig. 1 Crossover

Before
1011100101100010110100
After
1011101101100010110100
Fig.2 Mutation
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toward improved designs, together with the weak operati(‘)ns
of probabilistic pairing, crossover, and mutation. In most cases,

the search progresses toward improved designs, without miss--

ing better optima in multimodal domains.
When using the genetic algorithm to perform search and
optimization, several parameters must typically be specified:

« Probability of Crossover
(Pcrossover)

The probability that cross over
will be performed between a
pair of parent chromosomes.

+ Probability of Mutation
(PmuTaTion)

The probability that any given
allele on any given chromo-
some will mutate.

A measure of fitness value at-
tentuation, this coefficient rep-
resents the desired ratio of
maximum fitness to average fit-
ness in any given generation.
Ensures that an adequate num-
ber of a generation’s fittest
members are chosen to serve as
parents, without allowing them
to dominate the parent pool.

« Fitness Scaling
Coefficient (CyuLt)

Number of chromosomes in
each genetic algorithm gener-
ation.

« Population Size

The method used to mate, or
combine, two parent chromo-
somes to create two child chro-
mosomes which have attributes
from both parents.

» Crossover Operator

+ Selection Scheme The technique used to deter-
mine which chromosomes in a
population will serve as parents

for the next generation.

These parameters have a great effect on search performance
and efficiency. Unfortunately, it is difficult to determine proper
parameter values a priori. De Jong (1975), Grefenstette (1986),
and Schaffer et al. (1989) study the effects of genetic algorithm
parameters. Goldberg (1989) details the selection of fitness
scaling coefficients (pp. 76-79). Eshelman et al. (1989) and
Syswerda (1989) investigate crossover operators. Baker (1987)
suggests several parent selection schemes.

3 Related Work

Shape and topology optimization have been active research
areas for some time (Haftka and Grandhi, 1986). Recently,
several innovative approaches for topology optimization have
been developed. We briefly review them here.

3.1 Homogenization-Based. Perhaps most prominent is
the variable density approach based upon material homoge-
nization methods (Strang and Kohn, 1986). Bendsge and Kik-
uchi (1988) and associated researchers have applied the method,
which minimizes a structure’s compliance given a specified
amount of material, to a variety of structural topology prob-
lems. In the technique, a design domain is discretized into
elements, where each element contains microvoids of a par-
ticular shape. The size and orientation of the microvoids in
an element determine the density and structural characteristics
of the material in that element. A mathematical programming
technique determines how the size and orientation of the mi-
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crovoids in each element should change so that the compliance
of the structure is decreased. In an iterative process, a com-
posite structure emerges.

- With mathematical programming techniques, an optimum
topology is found when the optimality criteria of the mini-
mization problem are satisfied. However, there is no guarantee
that the resultant topology is a global optimum. Bendsge et
al. (1993) demonstrated that initial, nonuniform density dis-
tributions can result in convergence to different local optima.
They also showed that the optimum topology is dependent on
the microstructure model used to describe the composite ma-
terial.

3.2 Simulated Annealing. Another approach is the work
by Anagnostou et al. (1992), who used a design domain dis-
cretized into binary, material/void elements. The optimal ma-
terial configuration within the design domain is found using
simulated annealing (Kirkpatrick et al., 1983).

Their topologi¢al optimization is similar to our research, in
that a design domain containing binary, material/void ele-
ments is optimized using a global search technique. Several
examples were investigated, and satisfactory results were ob-
tained.

3.3 Genetic Algorithms. Goldberg and Samtani (1986),
Hajela (1990), Hajela (1992), Rajeev and Krishnamoorthy
(1992), and Lin and Hajela (1993) investigated cross-section
sizing optimizations of discrete-member trusses. '

Jenkins (1991a, 1991b), Richards and Sheppard (1992), and
Watabe and Okino (1993) studied the shape optimization of
structural members.

GA-based topology optimization of discrete truss structures
was investigated by Shankar and Hajela (1991), Hajela et al.
(1993), and Grierson and Pak (1993). Closer to our approach,
Sandgren et al. (1990), Sandgren and Jensen (1992), and Jensen
(1992) investigated GA-based topological optimization of
structural components ‘where the optimum distribution of ma-
terial within a discretized design domain is found.

4 Our Investigation

Our research extends the work of Jensen and associated

reseatchers. Specifically, we investigate the following:

« Cantilevered plate topologies of high discretization

+ Techniques for obtaining finely-discretized topologies

« Families of highly-fit designs

Several fundamental differences exist between our work and
that of Jensen:

« They use two-dimensional chromosomes (i.e., arrays of
genes) and two-dimensional crossover, while we utilize
one-dimensional chromosomes (i.e., strings of genes) and
single-point crossover.

+ They minimize the weight of a given structure, subject
to stress and displacement constraints. Fitness functions
(to be minimized) used to evaluate chromosomes were
of the form:

Fitnesso = (Fitnessscgea) Po%e"

— r(Penaltyscaed)” Po%er ™

Experimentation is required to use this fitness function
- effectively, because the magnitude of the penalty term(s)
must be properly balanced with that of the ‘‘good’’ terms.
If penalty terms receive too much emphasis, the opti-
mization will likely results in a heavy structure with low
stress and deflection. Likewise, if the penalty terms re-
ceive too little emphasis, the optimization will obtain a
light structure with high stress and deflection.
To avoid these problems, we introduce a merit function
(to be maximized) which bases the fitness of a structuré
on the structure’s stiffness-to-weight ratio:
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Fitness = Weight 2)
This merit function autoniatically assigns highest fitness
to the structure which best combines light weight and
load-carrying ability, and it eliminates the need to care-
fully choose a constraint-violation penalty coefficient.
Also, the normalization allows the GA to focus on op-
timizing the structure’s topology and shape, independent
of the applied load magnitude or material yield stress.
Our merit function can account for stress or displacement
constraints. A linear penalty term which penalizes stiff-
ness-to-weight ratio N percent for every 10 percent con-
straint violation was found to work well. However, care
must be taken to choose a penalty coefficient (in this
case, N) which is well balanced with the ‘‘good”’ terms
of the fitness function.

S Procedure

5.1 Design Domain. A 2-dimensional design domain rep-
resents the maximum allowable size of the component being
optimized. The design domain is discretized into square ele-
ments, where each element represents either material or void.
The distribution of material and void within the domain de-
termines the component’s topology.

Because this binary, material/void design domain typically
results in a discrete, nonconvex search space (Anagnostou et
al., 1992), it serves as an excellent test of the genetic algorithm’s
ability to find optima in such search spaces. This design domain
also allows for a natural conversion between chromosomes
(strings of 0’s and 1’s) and topologies (distributions of void
and material). Lastly, the discrete nature of the domain allows
for a precise, although discretized, topology boundary.

5.2 Creating Topologies from Chromosomes. GA chro-
mosomes in this research are one dimensional strings of binary
digits, where the number of digits, or genes, in each chro-
mosome equals the number of elements in the design domain.
Every gene in a chromosome corresponds to a particular ele-
ment in the design domain—a gene with an allele value of 1
places material in its corresponding design domain element,
while an allele value of 0 places void in the corresponding
element. Each chromosome in a GA population, when mapped
into the design domain, describes a topology for the component
being optimized. Figure 3 depicts the mapping of an example
chromosome into a design domain and the resulting topology.

§.3 Connectivity Analysis. After a chromosome is
mapped into the design domain the resulting ‘“material’’ is
analyzed for connectedness. All material in the design domain
which is not connected (whether directly or indirectly via other
elements) to a *‘seed’’ element is changed to void. A “seed”’
element is an element that is required to contain material so
that it may serve as a support boundary condition or point of
load application. For any two elements to be considered con-

- nected, they must share an edge; elements which share only a

corner are considered disconnected (Fig. 4). This “‘connectivity
analysis’’ guarantees that all topologies are stable. Elements
connected only at a corner cannot withstand applied torques
about the corner, and could therefore lead to a structure which

cannot support various loads. When a disconnected element -

is switched to void or a seed element is switched to material,
the corresponding chromosome allele is not modified—only
the design domain element is changed. With connectivity anal-
ysis, disconnected material elements are assigned zero weight
and are considered to be void when performing finite element
analyses. Without connectivity analysis, disconnected material
elements are counted in weight calculations and considered to
be material when performing finite element analyses.

We found that optimization performance decreased when
connectivity analysis was deactivated, because disconnected
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Fig. 3 Mapping chromosome into design domain

(a) (b)

Fig. 4 (a) Connected and (b} disconnected elements

material elements were included in weight calculations but
could not significantly assist in supporting the applied load.
However, ityis possible that disconnected elements could ar-
range themselves in a ‘“‘chain-link”’ (i.e., a group of elements
connected corner-to-corner, creating a chain-like structure),
which, if situated in a suitable location within the structure,
would assist in withstanding a tensile load. In that situation,
if connectivity analysis was deactivated, the disconnected ma-
terial elements might increase the topology’s stiffness-to-weight
ratio. This, however, was found to rarely occur. Jensen (1992)
found an optimum structure comprised almost entirely of
““chain-link’’ elements. These elements, which supported ten-
sile and compressive loads, were likely assisted by the soft-
material “‘void”’ surrounding the topology.

5.4 Fitness Calculations. After a chromosome is mapped
into the design domain and the material distribution is analyzed
for connectedness, the resulting topology’s fitness is deter-
mined. A topology’s fitness is equal to its stiffness-to-weight
ratio, where ““stiffness’’ (S) is assumed to be inversely pro-
portional to the topology’s displacement (5y4x) at the point
of load application:

1
Smax 3

To determine dy.x, a finite element analysis is performed
on the topology. The design domain is first converted into a
finite element mesh, with four triangular finite elements cor-
responding to each design domain element (vielding a finite
element node at each corner and in the center of every design
domain element). After performing a connectivity analysis on
the topology, all finite elements corresponding to void are given
a small Young’s Modulus. Elements corresponding to material
are given a large Young’s Modulus. Bendsge and Kikuchi
(1988) suggest that if a soft material’s Young’s modulus is 102
to 107 times that of a hard material, the soft material can be
regarded as a void or hole. A similar method is used by Jensen
(1992). We compared this meshing technique with an adaptive
meshing technique where finite elements corresponding to void
are removed from the mesh, and nearly identical optimization
and finite-element analysis performance was observed. In this
work, void elements receive a Young’s modulus 10-3 times
that of a material element.

In the following examples, which all optimize a cantilevered
plate (Fig. 5), a point load is applied at the FEM node on the
right-hand surface 2/5 of the distance from the bottom. Nodes
on the left-hand surface corresponding to the support points

S=
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Design
Domain

Fig. 5 Example 1 design domain

were defined to have zero displacement in the FEM analysis.
After performing the FEM analysis, dmax Was set equal to the
magnitude of the displacement (vector sum of x- and y-direc-
tion displacements) of the node where the point load was ap-
plied.

The area of connected material is used as a qualitative meas-
ure of the topology’s “weight.”” Hence, the topology’s fitness
is given by:

| (&)
SMAX

Fitness =

Area @

5.5 Genetic Algorithm Parameters, The GA routines uti-
lized random initial populations, binary-coded chromosomes,
single-point crossover, mutation, fitness scaling, and an “eli-
tist” stochastic universal sampling selection strategy {Baker,
1987). The following parameter values were used:

Pcrossover = 0.95
Pumuration="0.

Cuurr=1.4
Population Size =30

6 Examples

6.1 Example 1: Plane Stress FEM Model. This example
describes the optimization of a cantilevered plate subject to a
vertical load. The design domain is shown in Fig. 5. Three
discretizations were used—10x 16, 15x 24, and 20X 32 grids
of elements. Material ‘‘seeds’’ were placed at the point of load
application and points of support.

The 10 x 16 grid’s optimization was run for 225 generations,
while the 15x 24 and 20X 32 grid optimizations required 600
generations. Figure 6 details the resuits. The topologies have
well-defined, solid-material outer boundaries, while the inte-
rior regions generally have a “composite like”’ internal struc-
ture comprised of equally-distributed material and void. The
20 x 32 topological optimization “hollowed out’’ several large
interior holes, producing truss-like members.

With the 20x 32 discretization, 18,000 (600 generations *
30 topologies per generation) search space locations were €x-
amined. As the space contains 269 10cations, the GA searched
only a fraction of the space before finding a near-o&gimum
solution. An exhaustive search would examine ail 2°* loca-
tions. A random search would likely find the optimum location
after searching one-half of the Jocations. Hence, the genetic
algorithm is more efficient than other basic techniques which
are also able to search in discrete, discontinuous, multi-modal
search spaces.

1008 / Vol. 116, DECEMBER 1994

Fig. 6 Results of (@) 10 x 18, (b) 15 x 24, and () 20 x 32 optimizations

6.2 Example 2: Hierarchical Design Domain Subdivi-
sion. While Example 1’s design domain resolutions are sat-
isfactory for determining a structure’s general shape, they are
coarser than the finely-discretized domains used in homoge-
nization-based methods. Attempts to increase the discretiza-
tion beyond the maximum 20 X 32 resolution were unsuccessful,
primarily because the system was unable to create topologies
where high-Young’s-modulus material connected the point of
load application to the support locations. Additionally, the
chromosome lengths needed for finely-discretized design do-
mains result in exceptionally large search spaces.

To obtain finely-discretized topologies while limiting chro-
mosome length, we introduce a hierarchical subdivision tech-
nique. This technique begins the optimization with a coarse
design domain, resulting in short chromosomes which easily
create connected topologies. After a specified number of gen-
erations, an ‘‘optimum’’ coarse topology is found. The to-
pology’s resolution provides only a general shape of the
structure, and is insufficient for the creation of truss-like mem-
bers or holes in the structure’s inner region. To refine this
“‘optimum,’’ the design domain resolution is then quadrupled
by subdividing each element into four smaller elements. As
shown in Fig. 7, the coarse “optimum’’ is mapped into the
new design domain, with every element in the coarse topology
corresponding to four elements in the new topology.

While the newly-discretized design domain contains four
times as many elements as the coarse design domain, we wish
to keep the chromosome length constant. The new design do-
main is therefore divided into four “quadrants”’ (Fig. 7), which
each contain the same number of design domain elements as
the original design domain. Four GA populations are used,
with each population controlling the distribution of material
and void within a particular quadrant. Each population has
the same number of chromosomes as the original population,
and the chromosomes contain the same number of genes a$
those in the original population. To initialize the populations,
each quadrant of the finely-discretized “optimum’® topology
is mapped onto the chromosomes in the population controlling
the quadrant—material elements in the topology set corre-
sponding chromosome gencs to 1, while void elements set genes
to 0. Hence, all chromosomes in each population correspon
to the material distribution in the population’s quadrant. To
create diversity in each population, the chromosomes are then
subjected to high-probability mutation (performed on every
gene of every chromosome with a 0.15 probability) similar 10
a “‘nuking’’ procedure used by Jensen (1992).
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Fig. 7 Population-to-design domain mapping (a) before and (b) after
subdivision

Before any optimization is performed in the four popula-
tions, the fitness of each chromosome is evaluated. The finely-
discretized, coarse ‘“‘optimum?’ is first mapped into the four
quadrants. Then, beginning with Quadrant 1, each chromo-
some in the population controlling the quadrant (i.e., after
nuking) is mapped into the quadrant to create a material dis-
tribution in the quadrant. This material, when used with the
material in the other quadrants, creates a material distribution
for the entire design domain. After connectivity analysis, a
finite element analysis is performed on the entire domain to
determine the fitness of the topology created by the current
Quadrant 1 chromosome. After the population’s chromosomes
have all been evaluated, the most-highly-fit chromosome is
mapped back into Quadrant 1 so that it may be used in the
fitness calculations of the other quadrants. The populations
controlling Quadrants 2, 3, and 4 are then evaluated (in that
order) using the same technique.

Separate GA optimizations are then performed in each quad-
rant. The population controlling Quadrant 1 is evolved a single
GA generation: parents are selected and mated to create a
generation of child topologies, each of which is then evaluated
for fitness. The most-highly-fit chromosome in the new gen-
eration is mapped into Quadrant 1. The populations control-
ling Quadrants 2, 3, and 4 (in that order) are then evolved a
single generation. After each quadrant has evolved one gen-
eration, the ‘“cycle’ is repeated. .

After a predetermined number of cycles, the subdivision
process is repeated. Each quadrant is divided into four
subquadrants, where each subquadrant has the same resolution
as the original quadrant. The resulting design domain has 16
times the resolution of the original coarse design domain and
is controlled by 16 populations, where each population’s chro-
mosomes are equal in length to the original chromosomes
which controlled the coarse design domain. The optimization
then proceeds by cycling through the 16 subquadrants (from
left to right, top to bottom), allowing each population to evolve
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Fig. 8 Optimal topologies found using (s) 10 x 18, (b) 20 x 32, and (¢)
40 x 64 discretizations

one generation during each cycle. This process could be re-
peated indefinitely. )

This example’s design domain is the same as that in Example
1. The initial, coarse design domain used a 10x 16 discreti-
zation, resulting in a chromosome length of 160 genes. After
250 generations of optimization (with a population of 30 chro-
mosomes), the resolution was quadrupled to 20 x 32 (where
each element is one-fourth the size of the original, coarse
elements). Four populations (each using 30 160-gene chro-
mosomes) controlled the four quadrants. 50 ‘“‘cycles” were
performed at this discretization, after which the resolution was
quadrupled to 40 x 64. Sixteen populations (each using 30 160-
gene chromosomes) controlled the 16 subquadrants. This dis-
cretization was used for 10 cycles.

Results are shown in Fig. 8, which displays the topologies
obtained with the three discretizations. 7,500 structural anal-
yses were performed during the 10 x 16 optimization (250 gen-
erations * 30 topologies per generation), while an additional
6,000 structural analyses were performed to obtain the 20 x 32
topology (50 cycles * 4 sub-populations per cycle * 30 to-
pologies per sub-population). Obtaining the 40 x 64 topology
required another 4,800 analyses (10 cycles * 16 sub-popula-

_tions per cycle * 30 topologies per subpopulation).

The hierarchical subdivision technique provides reasonable
results. While the structure’s outer boundaries are somewhat
jagged, the inner region contains several well-defined, truss-
like members and several large areas of void. The general shape
of the 20 x 32 topology is similar to that found in Example 1,
although the number and placement of interior holes differs
between the two topologies. The hierarchical subdivision tech-
nique found the 20 x 32 topology using fewer structural anal-
yses (13,500 vs. 18,000) than needed by Example 1’s constant
discretization technique. While all 18,000 analyses required by
Example 1's technique used a finite element mesh correspond-
ing to a 20 x 32 discretization, the hierarchical subdivision tech-
nique performed 7,500 analyses with a 10x 16 discretization
and 6,000 analyses with a 20 x 32 discretization. Hence, in
addition to requiring fewer structural analyses, more than half
of the analyses performed by the hierarchical subdivision tech-
nique used a coarser finite element mesh.

Lin and Hajela (1993) also used a GA-based multistage ap-
proach in the sizing optimization of discrete trusses, periodi-
cally increasing design variable resolution by increasing GA
chromosome length. For our purpose here, hierarchical sub-
division utilizing multiple GA populations performed better
than a single population with expanding chromosome length.
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6.3 Example 3: Design Families. By ‘‘evolving’’ a pop-
ulation of designs, each genetic algorithm optimization pro-
duces a population of topologies. Hence, a single optimization
run provides the designer with -a family of possibly-optimal
designs. The designer can then evaluate the designs to deter-
mine which best satisfy several performance criteria, much like
a pareto optimization study. ;

In this example, we use the genetic algorithm to obtain a
family of topologies with maximum stiffness-to-weight ratio,
which the designer can select from using alternate secondary
(e.g., manufacturing, weight, displacement, etc.) criteria. An-
agnostou et al. (1992) considered manufacturing criteria in
their topological optimization study. The design domain and
loading used in this example are the same as those used in
Examples 1 and 2. A 10x 16 discretization is used. The op-
timization, using a population of 30 chromosomes, was run
for 225 generations. .

We sought to drive the genetic algorithm towards topologies
with-high stiffness-to-weight ratio and high manufacturability
(i.e., few internal holes) by using the following fitness function:

(5)

Area-Perimeter

Fitness = 5)

Perimeter is equal to the sum of a topology’s outer perimeter
and the perimeter of all internal holes. The 1/6yax and Area
terms are identical to those in previous examples.

The optimization resulted in a family of 30 possibly-optimal
topologies. Those topologies with maximum stiffness-to-weight

. ratio and minimum number of internal voids are shown in Fig.
9. Table 1 details each topology’s attributes. Note that the GA
was not forced into different areas of the search space—the
random initial population and probabilistic operators auto-
matically located different topologies.

As shown in Fig. 9, the genetic algorithm provides a designer
with a family of possibly-optimal topologies. By using each
topology’s performance data (Table 1), the designer can de-
termine which topology is best for a particular application.
For example, if manufacturability (i.e., lack of internal voids)
is of utmost importance, the designer would choose topology
(a). Conversely, if weight is important, the designer would
choose topology (b), (c), or (¢). The chosen topology could
then possibly serve as the initial seed for a hierarchical sub-
division-based optimization at finer discretizations.

Hence, there is no need for the designer to develop a com-

()

plicated objective function which specifies the relative impor-

tance of secondary criteria—simply run the GA-based

optimization with a straightforward objective function, and
the genetic algorithm will automatically provide design alter-
natives.

7 Discussion

In the cases investigated, our approach to genetic algorithm-
based structural topology optimization generated interesting
preliminary results. .

The topological optimization of highly-discretized, canti-
levered plates was performed‘to. determine if the genetic al-
gorithm could find complex, nonsymmetric topologies. We
obtained satisfactory results. =

A hierarchical subdivision technique was introduced to in-
crease the genetic algorithm’s ability to locate finely-discretized
topologies. The technique produced highly-fit topologies (of
equal discretization) while requiring fewer structural analyses
than the constant discretization technique used in previous
examples, It was also able to produce topologies of much higher
discretization.

The genetic algorithm’s ability to provide the designer with
a family of topologies was demonstrated. One optimization
run provides the designer with a variety of designs which can
be evaluated using alternate (manufacturing, weight, etc.) cri-
teria. To obtain families of designs using homogenization-
based techniques, the objective function and gradients must
be modified to include the alternate criteria and their relative
importance. L

Table 1 Topology attributes

Sifineas-to-Weight
Ratio )
Topology ‘ """""l ‘;:"“ 1 Displacement Weight

[

Area
()] 1 1193.62 0.0092 91
(EL 2 1151.09 0.0102 85
{c) 3 1113.56 0.0106 85
(d) 4 1196.84 0.0094 89
(&) S 1135.87 0.0102 86
(f) 6 114173 0.0101 87

U

Fig. 9 Family of topologies with (a), 1, (b), 2 (c) 3, (d) 4, (¢} 5, and (N 8

internal voids
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One difficulty with the genetic algorithm is detérmining when
a search should end. GA search is based on probabilistic rather
than deterministic principles and does not utilize sensitivity
information (such as function gradients). While this enables
the genetic algorithm to search in discrete, discontinuous, multi-
modal search spaces, it precludes determining whether an op-
timum has been reached. So, unlike mathematical program-
ming techniques, which use sensitivity information to explicitly
determine if an optimum has been found, the genetic algorithm
must rely on ‘‘convergence criteria.*’ Typically, the criterion
for ending the search is based on the percentage of chromo-
somes in the population which have converged to similar points
in the search space. There is little value in continuing the search
when most chromosomes have converged, because the fitness
of further generations will increase only through the inefficient
method of random gene mutation. Once the convergence cri-
terion is met, it is unknown whether or not this location is an
actual optimum. Hence, genetic algorithm searches produce a
‘“‘pseudo-optimum.’’ The advantage of genetic algorithm
search, we feel, is that it does produce these pseudo-optima
in discrete, discontinuous, multi-modal search spaces which
would be troublesome to mathematical programming tech-
niques which use gradient or other sensitivity information.

Another disadvantage of the genetic algorithm is its com-
putational cost. In our experiments, thousands of function
evaluations (i.e., finite element runs) were required to obtain
a solution. Homogenization-based methods, utilizing mathe-
matical programming techniques, typically require many fewer
analyses. Because each finite element run is computationally
expensive, structures subject to GA-based topological opti-
mization must currently be of limited size and complexity.
Hence, the genetic algorithm is most practical in domains where
function evaluations are relatively inexpensive. While the ge-
netic algorithm’s populations of chromosomes and nondeter-
ministic nature typically require significant computational
effort, they allow the GA to automatically find families of
designs which the designer can then evaluate using secondary
criteria. This is in constrast to homogenization-based methods,
which always obtain the same, single design—all secondary
design criteria must be incorporated into the objective and
constraint functions.

Many of the topologies in the examples contained a large
number of internal voids, which could lead to difficulties when
parameterizing the topology for sizing and shape analysis.
However, as shown in the last example, simple modifications
to the fitness function can eliminate many of the internal voids.
Note that most topologies found using homogenization-based
techniques will also lead to interpretation difficulties, because
the topologies generally contain material of intermediate den-
sity. Hence, when parameterizing these topologies (particularly
those obtained using Rank-2 microstructure models), one must
select a density threshold. The density threshold chosen will
likely a have a great effect on the resultant topology. While
our topologies are generally porous, they contain only material
and void--no density threshold is needed.

One advantage of the genetic algorithm is its ability to work
with a variety of design variable types. While discrete (i.e.,
binary) design variables were used here, the genetic algorithm
can represent real-valued variables with fairly high resolution
by using multibit binary encodings. Mathematical program-
ming techniques are designed specifically for either discrete or
continuous variables—changes in variable type necessitate the
use of a different optimization routine.

Future areas of research will emphasize the optimization of
finely-discretized design domains and the investigation of fit-
ness function formulations similar to those used by homoge-
nization-based methods. With discretizations requiring
excessively-long chromosomes, we plan to experiment with
chromosome reordering operators (Goldberg, 1989, Chapter
5).
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