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Genetic Algorithms Compared to Other Techniques 

for Pipe Optimization 
 

Angus R. Simpson, Member, ASCE, Graeme C. Dandy and Laurence J. Murphy 
 

 

ABSTRACT: The genetic algorithm technique is a relatively new optimization technique. In this 
paper we present a methodology for optimizing pipe networks using genetic algorithms. Unknown 

decision variables are coded as binary strings. We investigate a three-operator genetic algorithm 

comprising reproduction, crossover, and mutation. Results are compared with the techniques of 

complete enumeration and nonlinear programming. We apply the optimization techniques to a case 
study pipe network. The genetic algorithm technique finds the global optimum in relatively few 

evaluations compared to the size of the search space. 

 

INTRODUCTION 

The construction and maintenance of pipelines for water supply costs many millions of dollars every 

year. As funds for the development of new infrastructure become increasingly scarce, there is an 

increasing desire to achieve the highest level of effectiveness for each dollar spent. Traditionally, the 
design of water distribution networks has been based on experience. However, there is now a 

significant (and growing) body of literature devoted to optimization of pipe networks. 

 
Much of the research to date has applied deterministic optimization techniques (including linear 

programming, dynamic programming, and nonlinear programming) to the problems of network design. 

A new and developing field involves the application of stochastic optimization techniques (such as 
genetic algorithms and simulated annealing) to large combinatorial problems. This paper applies 

genetic algorithms to the problem of designing pipe networks and compares its performance with the 

techniques of complete enumeration and nonlinear programming. 

 

PIPE NETWORK OPTIMIZATION PROBLEM 

In its simplest form, the problem of pipe network design for gravity systems is usually formulated in 

the following way. For a given layout of pipes and specified demands at the nodes, find the 
combination of pipe sizes that gives the minimum cost, subject to the following constraints: 

 

1. Continuity of flow must be maintained at all junctions or nodes in the network. 
2. The head loss in each pipe is a known function of the flow in the pipe, its diameter, length, 

and hydraulic properties. 

3. The total head loss around a loop must equal zero or the head loss along a path between two 

reservoirs must equal the elevation difference. 
4. Minimum and maximum pressure head limitations must be satisfied at certain nodes in the 

network. 

5. Minimum and maximum diameter constraints may apply to certain pipes in the network. 
 

In addition, there may be existing pipes in the system with known diameters. One may usually assume 

steady state flow conditions in the network, although more than one loading condition may need to be 

considered. Extensions of the problem allow for valves, pumps, and storage tanks to be sized or 
selected. 

 

Goulter (1987) suggested that the minimum cost design for a given layout and single loading case is a 
branched network (i.e., a network with no loops). In practice, loops are an essential feature of actual 

distribution systems as they provide an alternative flow path if there is pipe failure or for maintenance. 

One can achieve a degree of redundancy in pipe network optimization by ensuring that the layout has 
appropriate loops and by specifying minimum diameters for all pipes. 

 

 



DETERMINISTIC SOLUTION TECHNIQUES 

A large literature exists on the optimization of pipe networks. Lansey and Mays (1989b) provide a 
comprehensive review of the published literature up to 1988. The following review will concentrate 

on the more recent papers. The traditional method for designing pipe networks is by trial and error 

guided by experience. In design of pipe networks, designers often make use of commercial simulation 

packages such as KYPIPE (Wood 1980), WATSYS [or WATERMAX in the United States (Olde 
1985)] or WATER (Fowler 1990). A common technique is to ensure for each pipe in the system that 

the slope of the hydraulic grade line lies within reasonable bounds. Monbaliu et al. (1990) have 

proposed a type of gradient search technique to achieve an efficient design. Initially, they set all pipes 
at their minimum diameters and a simulation package was used to determine the pressures at all nodes 

in the network. If the minimum pressure constraints were not satisfied, the pipe with the maximum 

head loss per unit length was increased to the next available size and a further simulation was carried 
out. They repeated this process until all pressure constraints were satisfied. They obtained near-

optimal solutions in two test cases. 

 

Enumeration 

Complete enumeration is one approach for the optimization of pipe networks. The technique 

simulates every possible combination of discrete pipe sizes. One selects the cheapest cost network that 

satisfies the pressure constraints. The main drawback of this technique is the amount of computer time 
involved. For example, a relatively small system with eight pipes and eight possible sizes for each has 

16,777,216 possible solutions. Gessler (1985) has proposed the use of selective enumeration of a 

severely pruned search space to optimize the design of a pipe network. One has to base the pruning of 
the search space on experience. Unfortunately, the global optimum may be eliminated in the process 

of pruning. Loubser and Gessler (1990) suggested guidelines for pruning the search space to reduce 

the amount of computational effort involved in enumeration; these included: (1) Grouping sets of 

pipes and assuming that a single diameter will be used for each group; (2) progressively storing the 
lowest cost solution which satisfies the constraints and eliminating all other solutions of higher cost; 

and (3) checking on combinations that violate the constraints. One eliminates all combinations that 

include the same or smaller pipe sizes. 
 

The use of guidelines 2 and 3 removes the need to check for hydraulic feasibility of particular 

networks since this is computationally demanding. Despite these aids, one requires a considerable 

amount of computer time for large networks and there is no guarantee that the optimal solution will 
remain in the pruned search space after applying these heuristics. 

 

Linear Programming 

A number of researchers have used linear programming to optimize a design of a pipe network. 

Researchers have developed two principal approaches (Alperovits and Shamir 1977; Quindry et al. 

1979). These are reviewed in Lansey and Mays (1989b). 
 

Nonlinear Programming 

One can apply a number of nonlinear optimization packages to the network design problem. They 

include MINOS (Murtagh and Saunders 1987), GINO (Liebman et al. 1986), and GAMS (Brooke et 
al. 1988). All these packages use a constrained generalized reduced gradient technique to identify a 

local optimum for the network problem. Constraints can be included explicitly in the model. 

Examples include the continuity equations, head losses around loops or between reservoirs, minimum 
and maximum pressure limitations, and minimum and maximum diameters. Costs can be expressed as 

any nonlinear function of pipe diameter and length. The limitations of the technique are as follows: (1) 

Because the pipe diameters are continuous variables the optimal values will not necessarily conform 
to the available pipe sizes; thus, rounding of the final solution is required; (2) only a local optimum is 

obtained; and (3) there is a limitation on the number of constraints and hence the size of network that 

can be handled. 

 
Researchers have reported a number of applications of nonlinear optimization to pipe network 

problems (EI-Bahrawy and Smith 1985, 1987; Su et al. 1987; Lansey and Mays 1989a; Lansey et al. 



1989; Duan et al. 1990). EI-Bahrawy and Smith (1985) applied MINOS to the design of water 

collection and distribution systems. Their model included a preprocessor to set up the data files and a 
postprocessor to round off the pipe sizes to commercial diameters. The model for distribution systems 

included pumps, check valves, and pressure-reducing valves. They obtained the optimal solution to a 

33- pipe network in a reasonable amount of computer time. E1-Bahrawy and Smith (1987) applied the 

aforementioned optimization model to a number of case studies. They demonstrated its ability to: (1) 
Handle pumps and valves; (2) to find the optimal location of booster pumps and their optimal lifts; 

and (3) to address the optimal layout problem. 

 
Su et al. (1987) used nonlinear programming to optimize looped pipe networks. In addition they 

included reliability constraints. They based the optimization model on the generalized reduced 

gradient (GRG) technique. A steady-state simulation model [KYPIPE, Wood (1980)] was used at 
each iteration to calculate pressure heads throughout the system. A separate model was used to 

compute the reliability of both system and nodes. They defined reliability as the probability of the 

design pressure being maintained at appropriate nodes in the system, given the possibility of some 

pipes being unavailable because of breakage. The model cannot include other elements such as pumps, 
valves, and storage tanks. The inclusion of constraints on reliability usually produced looped networks. 

 

Lansey et al. (1989) considered the optimal design of pipe networks where there is uncertainty in the 
nodal demands, Hazen-Williams coefficients and the minimum nodal heads. They used a chance-

constrained approach to convert the probabilistic constraints into deterministic ones. The constraints 

included the probability of the system being able to satisfy the specified nodal demands and heads. 
The GRG technique identified the optimum pipe sizes. The method tended to produce branched pipe 

networks. Lansey and Mays (1989a) used nonlinear programming to find the optimum design and 

layout of pipe networks. Their model was able to simulate pumps, tanks, and multiple loading cases. 

They embedded a simulation package [KYPIPE, Wood (1980)] in the model to ensure that the 
continuity and head loss constraints were satisfied. A GRG technique identified the optimum solution 

and the augmented Lagrangian method was used to include minimum head and other constraints. The 

model often resulted in branched optimum networks. 
 

Duan et al. (1990) further extended the earlier work of Lansey and Mays (1989a). They developed a 

general optimization model that can include pumps and tanks (and the locations of these) as well as 

multiple loading conditions. The model operates on a hierarchical basis as follows. 
 

• At the master problem level, one identifies the numbers and locations of pumps and tanks by 

implicit enumeration. 

• At the subproblem level, one uses the GRG technique to find the optimum pipe sizes for the 

pump and tank layout specified at the master problem level. 

• An inner loop within the subproblem uses KYPIPE to ensure that the continuity and head loss 

constraints are satisfied, and a separate model (RAPS) is used to compute various measures of 

system reliability. 

 
OVERVIEW OF GENETIC ALGORITHMS 

A genetic algorithm is a search algorithm based on natural selection and the mechanisms of 

population genetics (Holland 1975; Goldberg 1989). Genetic algorithms (GAs) differ from the 

traditional approaches of existing optimization techniques. The simple ideas of the GA search have 
their roots in the biological processes of survival and adaptation. The result is an efficient algorithm 

with the flexibility to search complex spaces such as the solution space for the design of a looped pipe 

network. 
 

To implement a GA one codes the decision variable set describing a trial solution as a string or 

"chromosome." Usually a binary alphabet is used for the coding. The genetic algorithm evaluates the 
trial solution and computes a measure of worth or "fitness" for the string. The GA successively 

evaluates and regenerates a collection of trial solutions called a "population." The GA creates new 



populations from old populations. A simple, yet powerful GA comprises three operators: reproduction, 

crossover, and mutation. Reproduction is a survival-of-the-fittest selection process. Crossover is the 
partial exchange of corresponding segments of bits between two parent strings to produce two 

offspring strings. Mutation is the occasional flipping of bit values to prevent the loss of a potentially 

useful genetic trait. 

 
Researchers have applied GAs to a diverse range of scientific, engineering, economic, and also artistic 

search problems including: (1) Structural optimization (Goldberg and Samtani 1986; Sved et al. 1991); 

(2) pipeline operation optimization (Goldberg and Kuo 1987); (3) control system optimization for 
aerospace applications (Krishnakumar and Goldberg 1990); and (4) musical composition (Horner and 

Goldberg 1991). 

 
Goldberg and Kuo (1987) applied GAs to the optimization of the operation of a gas pipeline operation. 

They considered a steady-state serial pipeline consisting of 10 pipes and 10 compressor stations each 

containing four pumps in series. Their objective was to minimize power, while supplying a specified 

flow and maintaining allowable pressures. The simple threeoperator GA found near-optimal pump 
operation alternatives after evaluating a fraction of the total possible number of solutions (about 3,500 

from 1.10 × 10
12

 possible combinations). 

 
Genetic algorithms are robust and have been proven theoretically and empirically to be able to 

efficiently search complex solution spaces. Gas are much less likely to restrict the search to a local 

optimum compared with point to point movement optimization techniques. Goldberg (1989) refers to 

the processing leverage of GAs as implicit parallelism. 
 

Cembrowicz and Krauter (1977) used graph theory, linear programming, and a search procedure 

based on concepts from biological evolution (evolutionary strategy) to optimize pipe networks. The 
evolutionary strategy was developed by Rechenberg (1973) in Germany in parallel with the 

development of genetic algorithms by Holland (1975) in the United States. Cembrowicz and Krauter 

considered tree configurations of pipes that correspond to a local cost minimum. A tree network is a 
network that contains no loops and every node is connected. The search procedure based on biological 

evolution is composed of five major operators similar in nature to the genetic algorithm operators. 

The researchers used the evolutionary strategy technique to generate tree networks and linear 

programming to optimize the generated tree networks. One can determine the flows in the tree 
network, thus the objective cost function is subject to a set of linear constraints. 

 

GENETIC ALGORITHMS APPLIED TO PIPE NETWORK OPTIMIZATION 

The genetic algorithm technique requires that the set of decision variables be represented by a coded 

string of finite length (Goldberg and Kuo 1987). We have used binary coding (the minimum alphabet) 

in this paper. In the case of a pipe network each discrete pipe diameter (e.g., 150 mm, 250 mm, etc.) is 
assigned a binary code (Hadji and Murphy 1990; Murphy and Simpson 1992). As an example, 

consider the optimal sizing of a network with eight pipes. If eight different pipe sizes are available 

then a binary substring of three bits can be used to represent the options for each of the eight decision 

variables (see Table 1). A 24-bit binary string represents the network to be optimized made up of the 
eight by three-bit substrings for each decision variable. 

 

Genetic algorithms provide a stochastic optimization approach (Goldberg 1989). One can use GAs to 
solve large combinatorial optimization problems. GAs use probabilistic transition rules rather than 

deterministic rules. The network design problem described above has 224 (16,777,216) alternatives. 

Complete enumeration of each of the alternatives to find the optimum configuration is possible for 

this number of alternatives. However, when the binary string length exceeds a length of about 30 then 
the number of combinations becomes very large and complete enumeration is not possible. The GA 

technique then becomes particularly useful. 

 
 

 



Table 1. Options for Each Decision Variable and Associated Binary Code 

Options for Each Decision Variable 
Binary Coding 

(3) 
If existing pipe 

(1) 

If new pipe (mm) 

(2) 

Leave as exists 152 000 

Duplicate with 152 mm 203 001 

Clean existing pipe 254 010 

Duplicate with 203 mm 305 011 

Duplicate with 254 m 356 100 

Duplicate with 305 mm 407 101 

Duplicate with 356 mm 458 110 

Duplicate with 407 mm 509 111 

 
Genetic algorithms have a number of advantages over other mathematical programming techniques 

(Goldberg 1989). In the context of optimization of pipe network design some advantages include the 

following. 
 

1. GAs deal directly with a population of solutions at any one time. These are spread throughout 

the solution space, so the chance of reaching the global optimum is increased significantly. 

2. Each solution consists of a set of discrete pipe sizes. One does not have to round diameters up 
or down to obtain the final solution. 

3. GAs identify a set of solutions of pipe network configurations that are close to the minimum 

cost solution. These configurations may correspond to quite different designs that can be then 
compared in terms of other important but nonquantifiable objectives. 

4. GAs use objective function or fitness information only, compared with the more traditional 

methods that rely on existence and continuity of derivatives or other auxiliary information. 

 
Genetic algorithms do not necessarily guarantee that the global optimum solution will be reached, 

although experience indicates that they will give near-optimal solutions after a reasonable number of 

evaluations. 
 

To implement the genetic algorithm technique, the following parameters need to be selected. 

 

• Population size (n) – usually 30-200. 

• Probability of crossover (pc) – usually 0.7-1.0. 

• Probability of mutation (pm) – usually 0.01-0.05. Guidelines for computing pm are: pm ≥ 1/n 

and pm ≤ 1/l where n = population size and l = length of string (Goldberg and Koza 1990). 

 

CASE STUDY 

In this paper we consider a case study in pipe network optimization. Results from the GA technique 
are compared to those from complete enumeration and nonlinear optimization. We have evaluated the 

efficiency and effectiveness of the methods. 

 
The pipe network used for our case study was that studied by Gessler (1985). The layout of the 

network is shown in Fig. 1. We converted Gessler's problem to metric units for this study. The case 

study network has some interesting features, including selection of diameters of five new pipes; three 
existing pipes may be cleaned, duplicated, or left alone; three demand patterns must be satisfied; and 

two supply sources are available. Fig. 1 shows solid lines representing the existing system and dashed 

lines depicting the new pipes. Elevations, pipe lengths, diameters and Hazen- Williams C coefficients 

are also given in Fig. 1. Table 2 shows the pipe costs and available diameters. We have added the two 
largest pipe sizes to make up eight alternatives for each decision variable for the genetic algorithm 

formulation. Three demand patterns (including two fire loading cases) and the associated minimum 

pressure head constraints are shown in Table 3. 
 



 

 
Figure 1. Layout of Gessler (1985) Problem 

 

Table 2. Available Pipe Sizes and Associated Costs for Case Study Network 

Diameter 

(mm) 

(1) 

Cost of new pipe 

(dollars/m) 

(2) 

Cost of cleaning existing pipe 

(dollars/m) 

(3) 

152a 49.54 47.57 

203 63.32 51.51 

254 94.82 55.12 

305 132.87 58.07 

356 170.93 60.70 

407 194.88 63.00 

458 232.94b - 

509 264.10b - 
aTaken as the lower bound for new pipes to be sized in all optimization formulations. 
bApproximated using linear extrapolation. 

 

 

 
 

 



Table 3. Demand Patterns and Associated Minimum Pressures for Case Study Network 

Node 

(1) 

Demand Pattern 1 Demand Pattern 2 Demand Pattern 3 

Demand 

(L/s) 

(2) 

Minimum 

pressure 

head (m) 

(3) 

Demand 

(L/s) 

(4) 

Minimum 

pressure 

head (m) 

(5) 

Demand 

(L/s) 

(6) 

Minimum 

pressure 

head (m) 

(7) 

2 12.62 28.18 12.62 14.09 12.62 14.09 

3 12.62 17.61 12.62 14.09 12.62 14.09 

4 0 17.61 0 14.09 0 14.09 

6 18.93 35.22 18.93 14.09 18.93 14.09 

7 18.93 35.22 82.03 10.57 18.93 14.09 

8 18.93 35.22 18.93 14.09 18.93 14.09 

9 12.62 35.22 12.62 14.09 12.62 14.09 

10 18.93 35.22 18.93 14.09 18.93 14.09 

11 18.93 35.22 18.93 14.09 18.93 14.09 

12 12.62 35.22 12.62 14.09 50.48 10.57 

 

IMPLEMENTATION OF GENETIC ALGORITHM TECHNIQUE 

The genetic algorithm procedure involves the following steps. 

 

Generation of Initial Population 

The GA generates the initial population of solutions (of, say, size n = 100) using a random number 

generator. Each bit position in the 24-bit string for the case study problem takes on a value of either 1 
or 0. Each successive three bits represent a specific option for the eight pipes under consideration (i.e., 

for pipes [11, [4], [51, [61, [81, [11], [13], and [141). For example, if the first six bits were 010110, 

then following Table 1 notation, the existing pipe [1] has to be cleaned and pipe [4] has a parallel pipe 

of diameter 356 mm. Each of the 100 strings represents a possible combination of pipe sizes and thus 
represents a different configuration of a pipe network. We used a recurrence called a linear 

congruential generator to generate sequences of random numbers (Barnard and Skillicorn 1988). 

 

Computation of Network Cost 

The GA considers each of the 100 strings in the population in turn. It decodes each substring into the 

corresponding pipe size and computes the total material and construction cost. One can also 
incorporate operation and maintenance costs if desired. The GA determines the costs of each network 

in the initial population. For generations 1, 2, 3 , . . . , etc., if crossover does not occur for a pair of 

strings (only for pc < 1.0) the previously computed pipe cost is used. 

 

Hydraulic Analysis of Each Network 

A steady-state solver computes the heads and discharges under the three specified demand patterns 

shown in Table 3 for each of the networks in the population. For the initial generation 100 networks 
are analyzed. The actual heads are compared with the minimum allowable pressure heads and any 

pressure deficits are noted. 

 

Computation of Penalty Cost 

The GA assigns a penalty cost for each loading case if a network does not satisfy the minimum 

pressure constraints. We have used the pressure violation at the worst node. The maximum pressure 

deficit is multiplied by a penalty factor (e.g., K = $70,000/m of head). The GA uses the previously 
computed penalty costs if crossover does not occur (for generations after the initial generation). The 

penalty multiplier is a measure of the worth per meter attributed to pressure heads below the 

allowable minimum pressure head. The penalty cost should be such that near-optimal infeasible 
solutions are highly fit so that the optimum solution will be approached from both above and below. 

The optimum solution lies on the boundary between feasible and infeasible solutions (Richardson et al. 

1989). 

 

 

 



Computation of Total Network Cost 

The total cost of each network in the population is taken as the sum of the network cost plus the 
penalty cost. 

 

Computation of Fitnesses 

The fitness of the string is taken as some function of the objective function. The GA computes the 
fitness for each network in the population using (1) and the total cost from "Computation of Total 

Network Cost." The GA searches for the minimum cost configuration in the case of a pipe network. 

Thus the objective function must be minimized. The inverse of the "total network cost" is one 
example of a form of the fitness function selected to ensure the lowest cost strings survive; it has the 

following form: 

 

!! = Fitness! =
!

!"#$%  !"#$%&'  !"#$!

          for  strings  ! = 1, 2,… , !        (1) 

 

One may select many other forms of fitness function; however, we have found the form of (1) 

provides the most effective solutions from the GA search. 
 

Generation of New Population Using Reproduction Operator 

The GA generates new members of the new generation by a selection scheme. We have used a 
proportionate selection method [also referred to as weighted roulette wheel (Goldberg 1989)]. A 

weighted roulette wheel has slots that are sized according to the fitness of each member in the 

population. The selection operator assigns each string in the population to a segment of the roulette 

wheel. The size of the segment is proportional to the fitness f~ of the string. The probability of 
selection of a particular string is 

 

!!
!!

!!
!

!!!

              (2) 

 

Strings with higher fitnesses (i.e., lower costs) have a higher probability of being selected. 

 

Crossover Operator 

Crossover is the partial exchange of bits between two parent strings to form two offspring strings. 

Consider a crossover probability of pc = 0.70. The GA randomly picks two strings from the new 

population. A uniformly distributed random number is then generated in the range 0.0 to 1.0. The GA 
applies the crossover operator if the random number is less than 0.7. Otherwise, the GA does not 

apply crossover for these two particular strings. To perform crossover, a crossover point is randomly 

selected along the strings (e.g., position 19). The crossover operator moves the last five digits of the 
first string in the pair to the digit positions 20 to 24 of the second string, while the last five digits of 

the second string are moved to end part of the first string. On average npc or 70 (= 100 × 0.7) strings 

are crossed over in each generation. 

 

Mutation Operator 

Mutation ensures no important genetic material is lost. Consider a mutation probability of pm = 0.01. 

The GA considers each string bit by bit in the new generation formed as a result of reproduction and 
crossover. A uniformly distributed random number in the range 0.0 to 1.0 is then generated. The GA 

applies mutation if the random number is less than 0.01. Otherwise the GA does not apply mutation to 

that particular bit. The mutation operator changes the value of the bit to the opposite value (i.e., 0 to 1 

or a 1 to 0). 
 

Production of Successive Generations 

Goldberg (1989) refers to the application of the three operators of reproduction, crossover, and 
mutation as a standard genetic algorithm. The foregoing procedure has produced a new generation 

using steps in the sections headed "Computation of Network Cost" through "Mutation Operator." The 

GA repeats the process to generate successive generations. The least-cost strings (e.g., the best 20) are 



stored and updated as cheaper cost alternatives are generated. The size of the network in terms of the 

number of decision variables determines the total number of generations to be evaluated. Typically a 
GA will evaluate 100-1,000 generations, 

 

COMPLETE ENUMERATION RESULTS 

It was feasible to use a complete enumeration of every possible set of pipe combination in the case 
study network. We were thus able to find the global optimum network configuration that satisfied the 

pressure constraints. For the original six alternative pipe sizes (as specified by Gessler) in Table 2 

(152 mm to 407 mm) there are 3,981,312 combinations (65 by 83--including both the cleaning option 
and the option of not duplicating for pipes [1], [4], and [5]). Gessler (1985) used selective 

enumeration of a severely pruned search space of approximately 900 alternatives to optimize this 

problem. Gessler found a least-cost network with a cost of $1,833,700. 
 

Complete enumeration of every alternative (network cost, hydraulic analysis, penalty function cost) 

for each of the three loading cases was carried out. It took 82 central processing unit (CPU) hours on a 

SUN 4/280 computer for 11,940,000 hydraulic network evaluations. There are two least-cost 
networks with a cost of $1,750,300. Table 4 shows the 39 lowest cost solutions obtained. A number of 

different configurations have very similar costs. 

 
NONLINEAR OPTIMIZATION RESULTS 

In addition to complete enumeration, we also solved the case study problem using the nonlinear 

optimization package GINO assuming that continuous sizes were available for all pipes. We carried 
out the GINO analysis independently of both the complete enumeration and the genetic algorithm 

analysis. 

 

A cost function for new pipes was fitted to the data in Table 2. We found that the cost per meter 
length was approximately linear with pipe diameter for new pipes. The linear curve fitted for the new 

pipe cost data is not extremely accurate, especially for the smallest pipe size. The process of fitting a 

cost function to the data is a weakness in the application of nonlinear optimization to pipe networks. 
Table 5 shows the fitted cost functions for new and duplicated pipes. 

 

We used the "equivalent diameter" approach to model the effects of cleaning or duplicating of pipe 

numbers [1], [4], and [5] (i.e., each pipe was assumed to be replaced by a new pipe with the same 
Hazen-Williams coefficient as the old pipe but a new equivalent diameter). Thus, the equivalent 

diameter must be greater than or equal to the existing diameter. We found that the cost per meter 

length was approximately linear with the logarithm of equivalent diameter De for these pipes (Table 5). 
 

The variables in the GINO model are the diameters (Dnew) of the five new pipes; the equivalent 

diameters (Dnew) of pipes [1], [4], and [5]; the 14 flows (Qj) in each pipe for each loading case; and the 
10 total pressure heads (Hi) at each node for each loading case. This gives a total of 80 variables. 

 

The constraints for each of the three loading cases are as follows. Continuity of flow at each node (10 

linear equations) 
 

!! + !!
!"#

!!! = 0        for  all  nodes  ! = 1,… ,!"         (3) 

 

where Qj = flows in each of the NPJ pipes connected to node i if flows away from the node are taken 

as positive. The demand at the node is qi. 

 
The Hazen-Williams head loss equation for each pipe j connecting nodes i and k (14 nonlinear 

equations) 

 

!! − !! =
!".!"#!!!! !!

!.!"#

!!
!.!"#

!!
!.!"#$       for  all  pipes  ! = 1,… ,!"         (4) 



where Lj = length of pipe j; and Cj = Hazen-Williams coefficient for pipe j. 

 

Table 4. Best 39 Ranked Case Study Problem Configurations that Satisfy Pressure Constraints 

Number 

(1) 

Total cost 

(dollars) 

(2) 

Pipe Selections (mm diameter) 

Pipeba 

[1] 

(3) 

Piped 

[4] 

(4) 

Pipebcd 

[5] 

(5) 

Pipe 

[6] 

(6) 

Pipe 

[8] 

(7) 

Pipe 

[11] 

(8) 

Pipe 

[13] 

(9) 

Pipe 

[14] 

(10) 

1 1,750,300 leave dup 356 leave 305 203 203 152 254 

2 1,750,300 leave dup 356 leave 305 203 254 152 203 

3 1,772,500 leave dup 356 leave 305 203 203 203 254 

4 1,772,500 leave dup 356 leave 305 203 254 203 203 

5 1,791,000 leave dup 356 dup 203 254 203 203 152 254 

6 1,799,900 leave dup 356 clean 254 203 203 203 254 

7 1,801,000 leave dup 356 leave 305 203 254 152 254 

8 1,801,000 leave dup 356 leave 305 254 203 152 254 

9 1,801,000 leave dup 356 leave 305 254 254 152 203 

10 1,811,500 leave dup 356 leave 356 203 203 152 254 

11 1,811,500 leave dup 356 leave 356 203 254 152 203 

12 1,811,500 leave dup 356 leave 305 203 305 152 203 

13 1,811,500 leave dup 356 leave 305 203 203 152 305 

14 1,813,100 leave dup 356 dup 203 254 203 203 203 254 

15 1,823,200 leave dup 356 leave 305 203 203 254 254 

16 1,823,200 leave dup 356 leave 305 203 254 203 254 

17 1,823,200 leave dup 356 leave 305 254 203 203 254 

18 1,823,200 leave dup 356 leave 305 203 254 254 203 

19 1,823,200 leave dup 356 leave 305 254 254 203 203 

20 1,828,500 leave dup 356 clean 254 203 254 152 254 

21 1,830,000 leave dup 356 dup 152 305 203 203 152 254 

22 1,830,000 leave dup 356 dup 152 305 203 254 152 203 

23a 1,833,700 leave dup 356 leave 305 203 305 203 203 

24 1,833,700 leave dup 356 leave 356 203 254 203 203 

25 1,833,700 leave dup 356 leave 356 203 203 203 254 

26 1,833,700 leave dup 356 leave 305 203 203 203 305 

27 1,838,500 clean dup 305 leave 254 254 254 152 254 

28 1,839,000 clean dup 305 dup 203 254 203 203 152 254 

29 1,839,000 leave dup 356 clean 305 203 203 152 254 

30 1,839,000 leave dup 356 clean 305 203 254 152 203 

31 1,839,000 leave dup 356 clean 254 203 305 152 203 

32 1,839,000 clean dup 305 dup 152 254 203 203 203 254 

33 1,839,000 clean dup 305 dup 203 254 203 254 152 203 

34 1,841,700 leave dup 356 dup 203 254 203 254 152 254 

35 1,841,700 leave dup 356 dup 254 254 203 203 152 254 

36 1,841,700 leave dup 356 dup 254 254 203 254 152 203 

37 1,841,700 leave dup 356 dup 203 254 254 203 152 254 

38 1,841,700 leave dup 356 dup 152 254 254 203 203 254 

39 1,848,000 clean dup 305 clean 254 203 203 203 254 
aOptimum solution as found by Gessler (1985). 
bLeave = leave existing pipe as it is. 
cClean = clean existing pipe. 
dDup 356 = duplicate existing pipe with a 356 mm pipe. 

 
Table 5. Fitted Cost Functions for Nonlinear Optimization Model 

Pipes 

(1) 

Cost function (dollars/m length) 

(2) 

New c1 = 611.0D – 52.9 

Pipe [1] c2 = 420.1 log(De) + 447.9 (for De ≥ 0.356 m) 

Pipes [4] and [5] c3 = 278.3 log(De) + 385.0 (for De ≥ 0.254 m) 

 



Minimum pressure head constraints at each node as given in Table 3 (10 linear inequalities for each 

loading case) 
 

!! ≥ !!         for  all  nodes  ! = 1,… ,!"           (5) 

 

The foregoing three items give 34 constraints per loading case. 
 

In addition there are eight lower bounds for the pipe diameters. 

 

!!"# ≥ !!"#        for  all  new  pipes, !"# = 1,2,… ,NEW!"!#$        (6) 

 

The minimum diameter for the five new pipes in the case study problem is 152 mm (refer to Table 1). 

The minimum equivalent diameter for each pipe that could be duplicated (pipes [1], [4], and [5]) is its 
existing diameter (Fig. 1). Upper bounds on pipe diameters were not required for this problem. 

 

There were a total of 110 constraints for the problem (i.e., 3 × 34 + 8) as the three loading cases were 
considered simultaneously. The objective function (to be minimized) is the total cost of the network, 

i.e., the cost per unit length for each pipe (Table 5) multiplied by its length and summed over all pipes 

in the network. We optimized the following objective function in GINO 

 

Minimize  Cost        !!!! +    !!!!!∈!"# + !!!!!∈ ! .[!]          (7) 

 
where c1, cj, ck~ = cost functions in Table 5. 

 

GINO uses a generalized reduced gradient approach for solving nonlinear optimization problems. 
Liebman et al. (1986) discusses the details of the method. Table 6 shows the optimum solution 

obtained with an estimated cost of $1,760,000. One needs to round the pipe sizes up or down to the 

nearest available diameter. This may involve considerable judgment, particularly for a large network, 

because it is not clear that the solution after rounding will automatically satisfy the minimum pressure 
constraints at all nodes. In this case the rounding was carried out by trial and error, with each rounded 

solution being checked to see if it satisfied the minimum pressure constraints for all three loading 

cases. 
 

Table 6. Solution from GINO Nonlinear Optimization for Case Study Network 

Pipe 

number 

(1) 

Existing 

diameter (mm) 

(2) 

Diameter from non-

linear optimization (mm) 

(3) 

Rounded solution [equivalent diameter (mm) 

and/or whether rounded up or down] 

(4) 

[1] 356 356 (existing) Don’t duplicate 

[4] 254 445 Duplicate with 356mm (455, round up) 

[5] 254 254 (existing) Don’t duplicate 

[6] - 297 305 (round up) 

[8] - 205 203 (round down) 

[11] - 223 254 (round up) 

[13] - 152 (minimum) 152 

[14] - 220 254 (round up) 

[Cost]  $1,760,000 $1,801,000 

 
Table 6 shows the rounded solution that we determined for this problem. The duplication of pipe [4] 

with a 356-mm-diameter pipe gives an equivalent diameter of 455 mm that is slightly larger than the 

optimum continuous size of 445 mm. Four pipes have been rounded up in size, one has been rounded 
down, and three do not require rounding as they are at the respective lower bounds. The cost of this 

rounded solution is $1,801,000. The solution obtained by rounding up pipe [11] and pipe [14] 

corresponds to solution 7 in Table 4 and is about 3% more expensive than the optimum. 

 



We modified the nonlinear programming model to calculate the pressure heads throughout the 

network for the particular set of pipe sizes. This was accomplished by replacing the lower bounds on 
pipe diameters by equations that define the diameters and deleting the minimum head constraints. We 

verified that the rounded solution matched the results from a commercial network solver [WATER 

(Fowler 1990)]. 

 
The most significant rounding in this solution was for pipes [11] and [14], whose sizes fell midway 

between the commercial sizes of 203 mm and 254 mm. In the foregoing solution both were rounded 

up in size. We tested three further alternative rounding solutions. 
 

1. Round both pipes [11] and [14] down to 203 mm diameter. 

2. Round pipe [11] down to 203 mm and pipe [14] up to 254 mm. 
3. Round pipe [11] up to 254 mm and pipe [14] down to 203 mm. 

 

Solutions 2 and 3 both satisfied the minimum pressure constraints, but solution 1 violated the 

constraints. The costs of solutions 2 and 3 are identical and both equal to $1,750,300. We identified 
these solutions as the likely optimum solutions to the problem. Comparison with the solutions 

obtained by complete enumeration (Table 4) shows that the two solutions obtained by nonlinear 

optimization are indeed the minimum cost solutions to the problem. 
 

The optimization run took 6.8 CPU min on a SUN 4/280 for this problem. Identification of the global 

optima after rounding in this case could have been fortuitous as there is no guarantee that rounding 
from a continuous solution will give the optimum discrete sizes. 

 

GENETIC ALGORITHMS RESULTS 

In the genetic algorithm formulation the eight decision variables in the case study network were each 
represented by a three-bit binary substring representing eight possible alternatives as either new pipes, 

duplicated pipes or cleaning of an existing pipe (see Table 1). We have arranged the options available 

for existing pipes in Table 1 in terms of increasing cost (S/m). The GA deals with a 24-bit binary 
string comprising the eight by three-bit substrings representing the pipe network to be optimized. The 

penalty cost for each loading case was taken as the product of the maximum of all the pressure head 

constraint violations times a specified penalty multiplier, K (S/m). We chose a value of K = 

$70,000/m for the penalty function multiplier. 
 

We developed a PASCAL computer program of a three-operator GA coupled with a Newton-Raphson 

network solver. The program performs a hydraulic network analysis at each function evaluation to 
determine the flows and pressure heads. We formulated the loop equations in the hydraulic solver to 

minimize computation time. The solver uses sparse matrix routines. The pipe flows and node 

pressures for the optimal solution are shown in Tables 7 and 8. 
 

We performed ten GA runs for the case study network problem using different random number seeds. 

We permitted a maximum of 50,000 function evaluations (0.298% of the 16,777,216 possible 

combinations) for each run. Each GA run took 45 min CPU time on a SUN 4/280 computer. The GA 
finds one of the two global optimum solutions, verified by the complete enumeration (Table 4), in 

eight out of the 10 runs, and always identifies near-optimal solutions. The lowest-cost solutions 

achieved in each run are presented in Table 9. 
 

Fig. 2 shows a plot of the cost of the best network solution in each generation and the average cost of 

each generation against the expected number of evaluations up to this generation for a seed of 6,000. 
In the first 7,000 to 8,000 evaluations, selection and crossover dominate, with the average cost being 

driven down from close to $4,500,000 to approximately $2,600,000. For further evaluations both 

crossover and mutation are driving the process. The GA finds the minimum cost configuration of 

$1,750,300 on three occasions. The curves in Fig. 2 show increasingly fitter populations as the run 
progresses, although this tends to level out after approximately 6,000 evaluations. 

 



Table 7. Pipe Flows for Optimal Solution ($1,750,300 – Solution #1 in Table 4) 

Pipe 

(1) 

Upstream 

node 

(2) 

Downstream 

node 

(3) 

Flow (L/s) 

Demand pattern 1 

(4) 

Demand pattern 2 

(5) 

Demand pattern 3 

(6) 

[1] 1 2 47.46 72.65 61.46 

[2] 2 3 -5.70 -7.74 -3.88 

[3] 3 4 -18.32 -20.09 -16.50 

[4] 4 5 -97.65 -135.55 -121.50 

[5] 2 6 40.54 67.50 52.73 

[6] 4 8 79.33 115.46 105.00 

[7] 6 7 -2.62 25.58 -2.79 

[8] 7 8 -24.98 -53.93 -27.54 

[9] 6 9 24.24 22.99 36.59 

[10] 7 10 3.43 -2.50 5.83 

[11] 8 11 35.42 42.60 58.53 

[12] 9 10 11.62 10.37 23.97 

[13] 10 11 -3.87 -11.05 10.87 

[14] 11 12 12.62 12.62 50.47 

 
Table 8. Allowable Pressure Heads and Actual Pressure Heads for Optimal Solution 

Node 

(1) 

Demand Pattern 1 Demand Pattern 2 Demand Patter 3 

Allowable 

pressure head 

(m) 

(2) 

Actual 

pressure head 

(m) 

(3) 

Allowable 

pressure head 

(m) 

(4) 

Actual 

pressure head 

(m) 

(5) 

Allowable 

pressure head 

(m) 

(6) 

Actual 

pressure head 

(m) 

(7) 

2 28.18 36.28 14.09 24.95 14.09 30.48 

3 17.61 30.47 14.09 19.32 14.09 24.52 

4 17.61 26.84 14.09 16.15 14.09 20.46 

6 35.22 46.87 14.09 18.68 14.09 34.34 

7 35.22 50.06 10.57 12.75 14.09 37.54 

8 35.22 59.23 14.09 41.29 14.09 47.93 

9 35.22 51.88 14.09 24.06 14.09 34.61 

10 35.22 49.79 14.09 22.38 14.09 26.65 

11 35.22 47.53 14.09 24.82 14.09 18.27 

12 35.22 50.00 14.09 27.29 10.57 13.72 

 

Table 9. Results of Genetic Algorithm Runs for 50,000 Evaluations 

Run 

number 

(1) 

Lowest-Cost Network 

Random 

number seed 

(2) 

Best total network cost (dollars) 

(difference from optimum %) 

(3) 

Evaluation 

number achieved 

(4) 

Solution number 

(Table 4) 

(5) 

1 1,000 1,722,500 (1.27%) 29,070 3 

2 2,000 1,750,300 10,350 1 

3 3,000 1,750,300 43,740 2 

4 4,000 1,811,500 (3.5%) 40,860 10 

5 5,000 1,750,300 17,190 2 

6 6,000 1,750,300 11,070 2 

7 7,000 1,750,300 10,080 1 

8 8,000 1,750,300 41,490 2 

9 9,000 1,750,300 12,510 1 

10 10,000 1,750,300 19,890 1 

 

Table 10 shows GA results for both 15,000 (0.0894% of search space; evaluation time of 15 min CPU) 
and 25,000 (0.149% of search space; evaluation time of 25 rain CPU) total evaluations. An additional 

10 GA runs were performed to assess the sensitivity of the technique to parameter settings. Table 11 

shows the GA parameters and lowest cost results. The GA identified the optimum solution in 9 out of 

10 runs. These results do not seem to be highly sensitive to the selected GA parameters. 



 
Figure 2. Generation Cost Statistics against Evaluation Number Achieved 

 

Table 10. Results of Genetic Algorithm Runs for 15,000 and 25,000 Evaluations 

Run 

number 

(1) 

Random 

number 

seed 

(2) 

LOWEST-COST NETWORK 

15,000 Evaluations 25,000 Evaluations 

Cost (dollars) 

(difference from 

optimum) 

(3) 

Evaluation 

number achieved 

(4) 

Cost (dollars) 

(difference from 

optimum) 

(5) 

Evaluation 

number achieved 

(6) 

1 1,000 1,811,500 (3.5%) 14,040 1,791,000 (2.3%) 23,400 

2 2,000 1,750,300 10,350 1,750,300 10,350 

3 3,000 1,848,000 (5.6%) 8,100 1,841,700 (5.2%) 22,410 

4 4,000 1,878,100 (7.3%) 9,000 1,839,000 (5.1%) 15,660 

5 5,000 1,801,000 (2.9%) 11,106 1,750,300 17,190 

6 6,000 1,750,300 11,070 1,750,300 11,070 

7 7,000 1,750,300 10,080 1,750,300 10,080 

8 8,000 1,799,900 (2.8%) 4,410 1,799,900 (2.8%) 4,410 

9 9,000 1,750,300 12,510 1,750,300 12,510 

10 10,000 1,839,000 (5.1%) 7,200 1,750,300 19,890 

 

Table 11. Results of 10 Genetic Algorithm Runs 

Run 

number 

(1) 

Population 

size (n) 

(2) 

Probability 

of crossover 

(pc) 

(3) 

Probability 

of mutation 

(pm) 

(4) 

Lowest-cost network 

found (dollars) (% 

difference from optimum) 

(5) 

Achieved at 

evaluation 

number 

(6) 

1 20 0.7 0.02 1,750,300 3,962 

2 50 0.7 0.02 1,750,300 20,755 

3 100 0.7 0.02 1,750,300 28,000 

4 150 0.7 0.02 1,750,300 9,765 

5 100 0.1 0.02 1,750,300 12,920 

6 100 0.5 0.02 1,799,900 (2.8%) 5,400 

7 100 1.0 0.02 1,750,300 13,800 

8 100 0.7 0.0 1,750,300 1,960 

9 100 0.7 0.005 1,750,300 10,150 

10 100 0.7 0.03 1,750,300 2,660 
Note: Global minimum = $1,750,300 

 



COMPARISON OF OPTIMIZATION METHODS 

We have used three methods in this study to find the least-cost alternative for the expansion of a pipe 
network. These methods are complete enumeration, nonlinear optimization, and genetic algorithms. 

 

Complete enumeration was applied to the case study pipe network involved approximately 

11,940,000 hydraulic analyses and used more than 82 CPU hours of computer time. This method 
finds the global optimum. However, for larger network problems complete enumeration would be 

infeasible even on the fastest computer. 

 
Nonlinear optimization is the fastest of the three optimization techniques applied to the case study 

network taking only 6.8 CPU min. One needs to fit a cost function to the discrete pipe cost data and 

this may lead to some inaccuracies. The designer would also have to round the continuous solution 
found either up or down to the nearest discrete pipe sizes. Additional computer runs are required to 

ensure that the rounded solution actually satisfies the pressure constraints. For large systems the round 

up/round down process becomes a second optimization problem. 

 
We found that the genetic algorithm method using the standard three operators was particularly 

effective in finding global optimal or near-optimal solutions for the case study network. The GA 

required only a relatively small number of evaluations to find the optimum solution (<0.3% of the 
total search space for each run). The computer times are comparatively long, with a total of 45 CPU 

min being required for 50,000 evaluations of each of 10 genetic algorithm runs with different starting 

seeds, However, the GA was still effective in finding the global solution for 15,000 evaluations for 
each run. One difficulty with the GA technique is knowing how many evaluations will be sufficient. 

One may also encounter difficulties if a continuous variable needs to be represented with a binary 

representation, especially for large numerical values. The genetic algorithm technique is ideally suited 

to discrete problems such as selection of commercially available pipe sizes. 
 

CONCLUSIONS 

We have presented a methodology for the application of the genetic algorithm technique to pipe 
network optimization. The GA codes the pipe sizes available for selection as binary strings. We have 

used a simple three- operator genetic algorithm comprising reproduction, crossover, and mutation. 

Results presented in this paper show that the genetic algorithm technique is very effective in finding 

near-optimal or optimal solutions for a case study network in relatively few evaluations. 
 

The results from the genetic algorithm technique have been compared with both complete 

enumeration and nonlinear optimization. One may only use complete enumeration for pipe networks 
with relatively few pipes. Nonlinear optimization is an effective technique when applied to a small 

network expansions such as for the case study network; however, the problem of rounding up and 

down of the continuous solution to discrete pipe sizes must be addressed. The nonlinear programming 
method only generates one solution. The GA technique generates a whole class of alternative 

solutions close to the optimum. One of these alternative solutions may actually be preferred to the 

optimum solution based on other nonquantifiable measures. This is a major benefit of the genetic 

algorithm method. The genetic algorithm technique is in its infancy, and further developments should 
provide improvement in these search methods for practical problems. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

Cj = Hazen-Williams coefficient for pipe j; 

cj = cost of pipe j; 

De = equivalent pipe diameter (meters); 

Dnew = pipe diameter of pipe new (meters); 

!!"# = minimum allowable diameter for pipe new (meters); 

fi = fitness of member i in population; 

Hi = pressure head at node i (meters); 

Hi = minimum allowable pressure head at node i (meters); 

K = penalty cost multiplier ($/meter); 

Lj = length of pipe j (meters); 

l = length of binary string; 

n = population size for genetic algorithm; 

NJ = number of nodes in pipe network; 

NP = number of pipes in pipe network; 

NPJ = number of pipes connected to junction i; 

pc = probability of crossover 

pi = probability of selection of member i of population; 

pm = probability of mutation; 

Qj = flow in pipe j (m3/s); and 

qi = demand at node i (m3/s). 


