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Abstract

This paper concerns Genetic Algorithms efficiency in solving the pure

flow-shop scheduling problem. Different formulations of the crossover operator

and setting of control parameters are investigated in order to obtain enhanced

performances in the determination of minimum makespan schedules. A lower

bound based ending criterion is also introduced to obtain computation fastening.

1 Introduction

Heuristic scheduling algorithms have been extensively developed in the

past four decades for improving the productive performances of production

systems, in widely different fields of manufacturing where a set of different

products requires an effective solution of the sequencing problem.

The first attempts to develop Flow Shop heuristic sequencing algorithms

suitable for solving real world problems (i.e. not limited by the number of

stations and/or by the number of parts to be worked), have been based on some

knowledge of the influence of the entity and distribution of processing times on

sequencing; the "constructive" algorithms proposed by Petrov, Gupta, Campbell

Dudeck and Smith and many others [3-4], mostly based on Johnson's rule [5]

adaptations, belong to this category.

Afterwards, the concept of a neighbourhood search of a seed has been

introduced [6,7,15], utilising different techniques to deterministically explore a

greater portion of the solution space, such as pairswapping, merging and

insertion search. These techniques are based on the evidence that the larger will

be the solution space explored, the better will be the solution obtained;
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consequently, a reiteration of the search is very often part of the optimisation

strategy, using the previous solution as the input for a new search cycle, until an

improvement is found.

The conventional sequencing algorithms are characterised by a search

space determined by the choice of the seed and of the swapping rule, and

consequently also by a self-contained stopping rule. They can be considered as

deterministic algorithms, in the sense that each of them is unmodifiable in the

search strategy and that a new solution is accepted only if it leads to a goal

improvement. Consequently, conventional search algorithms often get stuck in a

local minimum. On the contrary, some new "methaeuristic" algorithms have

been recently proposed [16], as Simulated Annealing, Tabu Search and Genetic

Algorithms, that are stochastic search algorithms allowing to sample more

effectively large search spaces, as occurs for scheduling problems [8].

Moreover, the stochastic nature of these algorithms allows to avoid the risk of

pitfalls in local minima, typical of the conventional search ones. Genetic

Algorithms [1,2] are based on selecting pairs of solutions from an actual

population, and combining them to produce new solutions. Particularly, a

Genetic Algorithm develops a family of solutions with individuals in competition

with each other, and the evolution of that population is obtained transferring the

beneficial adaptations gained during the search from the chromosomes of the

parents to the ones of the offspring.

The aim of this paper is to investigate the effectiveness of some

alternative formulations of the crossover genetic operator and tune the setting

of control parameters in solving the flow-shop scheduling problem The

evaluation of the GA scheduling algorithms obtained combining the different

genetic operators and setting of control parameters is concluded presenting a

comparative analysis of the obtained results with the ones achieved using two

conventional search algorithms, as well as with lower bound makespan values.

2 Manufacturing systems management and flow shop

scheduling.

In recent years an ever growing effort of research in production

management has taken place, with the aim of developing ever more efficient and

realistic shop scheduling algorithms, to face the large capital investments needed

to install automated manufacturing systems.

As a matter of fact, for manufacturing environments devoted to produce

or to assembly items in high volume, but with diversified options in order to

match the customer demand, flexible, highly productive but costly system

configurations, as Flexible Flow Lines (FFL) and Flexible Assembly Lines

(FAL) have been recently developed. Moreover, the application of Group

Technology concepts to low and medium volume production of heterogeneous

mix, trough the development of the cellular manufacturing organisation, led to

system configurations characterised by flexible automation and unidirectional

material flow, as Flexible Manufacturing Cells (FMC), allowing, even for highly

diversified production, to move from a job-shop towards a flow-shop
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configuration. The increasing role of scheduling in production management

together with the systems flexibility is established as the consequence of

sensitivity of the system performances to the operative planning, that notably

affects the interactions among the allowable resources. On the other hand, it is

well known that the use of production systems characterised by flexible

automation involves higher fixed costs for the firm and therefore a proper return

of investments can be obtained only through an efficient scheduling of the

system [9].

As to the schedule efficiency, it is extensively accepted in literature that

in flexible manufacturing environments particularly to be pursued are the goals

of reaching high production rates, together with the shortening of job lead

times, the lowering of Work in Process and an enhanced material flow and

production control. Consequently, the growing interest in making new and more

useful tools to solve the flowshop sequencing problem actually shown in the

concerned literature [10-13] is addressed to techniques allowing to improve not

workstation utilisation alone, but this latter together with material handling

system utilisation [14]. In this context the Genetic Algorithms approach, here

developed as a first step with a fitness function based only on the first goal,

seems very promising and not yet investigated enough.

2.1 The permutation flow-shop model.

For manufacturing systems characterised by unidirectional part flow and

equal routing, the Pure Flow Shop model has been extensively used in

developing more and more effective heuristic sequencing algorithms, the only

useful for NP-complete combinatorial problems. The PFS scheduling problem

can be stated as the problem of processing a set of n parts trough m different

workstations, characterised by identical routing for every part to be processed

and no job passing or pre-emption allowed; pursuing the objective of minimising

the makespan, the well known n/m/F/Cmax scheduling problem is formulated,

subjected to the following restrictive assumptions.

1. all n jobs, because of technological similarities, follow the same flow through

the set of the m machines;

2. all jobs and machines are available for processing at production starting;

3. each job requires the whole set of operations, and each operation requires a

different machine;

4. set up and removal times are sequence independent and are considered as

included in the machining time of each job;

5. no job passing is allowed, that is, job sequences are identical at all stages and

thus only permutation schedules are considered;

6. transfer times from machine to machine can be neglected;

7. intermediate storage facilities of infinite capacity are located ahead each

workstation.

3 Genetic algorithms and production scheduling.

From a genetic point of view, the n! feasible sequences to be considered
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for a PFS problem constitutes the search space, each sequence of which being a

different chromosome, and each part to be worked constituting a gene g.

The genetic operators selected for these experiments have been worked

out also on the basis of a previous author's experience [17]. Particularly, to

avoid feasibility problems in creating new individuals and consequent fitness

decay due to a needed reconstruction, a decimal representation of the strings

has been adopted as well as a preference for genetic operators ensuring directly

solution feasibility. Choosing a decimal alphabet to identify each part (the

positive integers from 1 to n), each sequence in which the n parts can be worked

constitutes a string of length n. In the following, the symbol A(g<i>) indicates

that gene g occupies position i in the string A, i.e. part g is processed as i-th in

sequence A; moreover, to have a feasible sequence must be A(g<i>) ̂ A(h<j>),

i.e. all parts must be represented in the string A. The fitness of each individual is

evaluated by the related makespan, and lower makespan values correspond,

obviously, to higher sequence fitness.

4 Genetic operators

A Genetic Algorithm, typically, constructs progressively better

individuals iteratively applying the set of genetic operators described as follows:

I) generation: an initial population of Ns sequences is formed, using random

sampling;

II) reproduction: a new population, deriving from the initial one, is formed,

assigning to the sequences with higher fitness a higher probability to be

copied in the new population, also formed by Ns individuals;

III) crossover: at each iteration, a pair of genitors are chosen on a fitness basis,

that is, assigning a higher level of probability of reproducing to fittest

individuals; the new individuals, two for all the selected operators, replace

the parents only if they better fit the goal;

IV) mutation: a chromosome, chosen casually on a fitness basis, is randomly

modified; mutation is applied during the iterative process with a probability

Pm;

V) stop test: the operators previously described are iteratively applied, starting

from the third step, until an ending criterion, based on the number of

iterations or on a prefixed difference from a lower bound, is fulfilled.

The subsequent sections present the specific implementation of genetic

algorithms to flow-shop scheduling, and the evaluation of their effectiveness.

4.1 Initialisation operator.

In developing a genetic algorithm, the first step is to create some initial

individuals. These individuals are used as the parents to which the various

genetic operators are applied to generate new individuals. The GA typically

starts from a randomly generated population of candidate solutions on which a

reproduction operator is applied to improve the fitness of the population before

starting the evolutionary process.
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4.2 Crossover operators

4.2.1 Order Crossover with Gene Swapping (OCGS). The OCGS operator

consists in exchanging between the selected parents the relative order in which

genes are positioned, in order to generate the offspring [2]. Several positions

are randomly selected and the corresponding genes of a parent are reordered in

the offspring in the relative positions corresponding to the ones occupied in the

alternate parent. Once built the partial sequence corresponding to the selected

parts, the remaining elements are obtained copying directly from parent B the

genes that occupy unselected positions, filling the free positions in the sequence

following the relative priority. If the selected crossover sites, individualised by

the binary cross string as in Table I, are <2>, <4>, <5> and <7> occupied

respectively in parent B by genes 2, 8, 5, 1, i.e. if B(2<2>), B(8<4>), B(5<5>)

and B(l<7>) are the selected genes, while for the alternate parent A the

corresponding genes are A(2<5>), A(8<8>), A(5<4>) and A(l<3>), to respect

the relative position occupied in parent A, the genes 2, 8, 5, 1, must fill in

offspring D the positions in the relative order 1,5,2,8; that is D(l<2>),

D(5<4>), D(2<5>) and D(8<7>). The remaining position are filled as shown in

Table I, where offspring C, similarly obtained, is also reported.

Parent A
c

Parent B
Offspring
Offspring

Table I - C

:ross sites

C
D

6,
0

3,
6

3,

)C

4,
1
2,
?

1,

G

1,
0
4,
1

4,

S

5,
1
8,
4
5,

2,
1
5,
5

2,

3,
0

7,
1
7,

7,
1
1,
7
8,

8
0
6
8
6

Table II - O

Parent A
cross sites

Parent B
Offspring C
Offspring D

6

0,
1

3,
6

C

4
1,
?
4,
?

Gl

i
0,
4
8,
4

r
i

1,
8

5,
8

?

1,
5
2,
5

1

o,
7

1,
1

7
1,
1

7,
1

8
0
6
6
7

4.2.2 Order Crossover with Gene Transferring (OCGT) This Order

Crossover operator is based on transmitting as a genetic information the part

ordering in a sequence, by transferring directly to the new individuals the

absolute positions of the parts to be worked as in the parent sequence [2]. The

OCGT operator randomly selects several positions in the parent sequences and

directly transmits the correspondent genes to the offspring. In the example of

Table II the selected elements are A(4<2>), A(5<4>), A(2<5>) and A(7<7>)

that are copied in offspring C as C(4<2>), C(5<4>), C(2<5>) and C(7<7>). The

remaining positions, starting from the first free one, are filled by the missing

genes, respecting the relative order that they have in the alternate parent B.

Offspring D is obtained in a similar way, directly transferring the selected

elements from parent B and filling the remaining positions accordingly to

sequence A ordering.

4.2.3 Partially Matched Crossover (PMX) The partially matched crossover

[1] operator allows to transfer important ordering similarities from a pair of

parents, randomly selected from the actual population, to the offspring. The

matching section of the first parent, defined randomly picking two crossing sites

along the string, is directly inherited by the offspring, as with OCGT operator,

while the remaining elements are positioned mapping the genes between the

crossing sites.
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Table III - PMX

Parent A
cross sites

Parent B
Offspring C
Offspring D

6,4,1,5,2.3,7,8
0,0, 1, 1, 1, 1,0,0
3, 2,4,8,5,7, 1.6
7,8,1,5,2,3,4,6
6,1,4,8,5,7,3,2
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The mapping procedure starts from the first element of the matching

block: if the element A<3>=1 matches with gene B<3>=4, and the position of

gene 1 is B<7>, the offspring inherit

the gene 4 in position 7, i.e.

C<7>=4. Because the matching

sections of the two parents may

contain equal elements, a

recombination operator must be

used to ensure the legality of the

new individual. Because the

candidate position for part 8 is C<5>, just occupied by part 2, the gene 8 is

temporarily laid aside in the construction of the offspring. The sequence is

completed copying from the second parent the remaining genes, creating, if that

is the case, some gene repetitions, as C<2>=C<4>=5 in our example, positioned

aside the crossing block. The missing genes, the ones previously laid aside, are

then used to fill that position, i.e. C(8<2>).

4.3 Mutation operator.

The mutation operator used in the experiments is a gene swapping

operator that performs a position based exchange [1]. It randomly selects two

sites on the chosen chromosome and swaps the genes occupying these

positions. Let A(g<i>) and A(h<j>) be the selected elements; the mutation

operator creates a new individual whose chromosome is defined by the swapped

genes B(h<i>) and B(g<j>), and by the copied genes B(l<k>)=A(l<k>) Vk#ij.

4.4 Fitness function and control parameters.

The definition of the fitness function and the setting of the control

parameters of the GA plays a significant role in effectively solving a scheduling

problem. In particular, to accurately evaluate the quality of each individual, the

fitness function is here defined as the distance of the makespan of each

individual from a lower bound (LB), so obtaining more appropriate levels of

competition among individuals.

Moreover, the knowledge of a lower bound allows to test the efficiency

of the calculated solutions, and to define a run stop test based on the distance of

actual solution from the LB, to be used together with the number of iterations.

4.4.1 Lower bound The lower bound is based on the choice of couples of

bottleneck workstations, and on the relaxation of the capacity constraints on the

rest of workstations (i.e. considered as of an infinite capacity); each one of the

so obtained two workstations fictitious problem is then solved with Johnson's

rule to determine the correspondent makespan [18]. The strongest lower bound

can evidently be obtained as the maximum among the m(m-l)/2 makespan

values obtained coupling the workstations in all the feasible ways.

4.4.2 Fitness function. The knowledge of the previous described lower bound

enables to define a fitness function that emphasises the differences in the quality

of individuals, allowing to privilege the mating of the best chromosomes during

the search. To this purpose, the fitness F of each individual is evaluated as the
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difference between the related makespan, MK, and the lower bound LB.

4.4.3 Setting of control parameters. The setting levels of the control

parameters of the GA, that is, the mutation probability, the population size and

the maximum number of iterations Nmi, tested in the experiments, are reported

in Table IV. They have been selected in the range of the ones that in [17]

revealed themselves as best performing for OCGS algorithm, and have been

confirmed by preliminary tests as very effective also for the newly introduced

algorithms.

5 Analysis of the genetic algorithms efficiency

In order to analyse the influence of the different crossover operators and

control parameters in solving a pure flow shop minimum makespan sequencing

problem, considering the high number of factors to be tested, as resumed in

Table IV, a statistical validation procedure has been used to assess the more

effective GA configuration.

Six different classes of sequencing problems, each one characterised by

the number of processed parts (n) and by the number of workstations (m), have

been solved with the proposed genetic algorithms. The problems here

investigated are characterised by five or ten workstations, heterogeneous mixes

composed by 10, 30 or 60 parts, with processing times chosen from a discrete

uniform distribution in the range [1, 99].

To determine the influence of the

factors, type of crossover (Cross),

probability of mutation (Pm),

population size (Ns), and maximum

number of iterations (Nmi), an

ANOVA procedure has been

performed. As response variable the

relative distance of makespan from

lower bound ((MK-LB)/LB) has

been used to evaluate the effectiveness of the determined solutions. Such metric

allows to overcome the variability due to the different mix size and, by

standardising the problem, to compare the different results. The Analysis of

Variance has been performed on the data resulting from a complete factorial

design with six variables and 10 replicates.

Such analysis has shown that all the interactions between factors higher

than second degree are not significant. Therefore, only the first and significant

second degree interactions have been reported in Table V-i, indicating the level

of significance reached with 1 or 2 stars (5%, 1%).

In order to investigate the second degree interaction between crossover

and Pm, the average values of the response variable have been reported in Table

VI; it can be seen that the high level of interaction is due to the presence of the

Pmx crossover operator, which shows a very poor performance in front of the

two order based crossover operators. Consequently, Pmx crossover can be

excluded in constructing PFS sequencing algorithms.

Table IV - Factors and related levels

Factor
m
n
Pm
Ns
Nmi
Cross

Levels
2
3
3
3
3
3

Values
5
10
0.09
5

5000
PMX

10
30
0.18
10

10000
OCGT

60
0.27
15

15000
OCGS
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Table V - Analysis of Variance

Source
m
n
Pm

Ns
Nmi

Cross
m-n
m-Pm
m-Nmi
m-Cross
Pm-Cross
Ns-Cross
Error
Total

V-i Analysis with PMX
d.o.f.

1
2
2
2
2
2
2
2
2
2
4
4

4798
4859

SS
2.592
1.539

0.011
0.007
0.017
0.065
0.072
0.003
0.005
0.022
0.009
0.006
2.576
6.936

F
4827.55
1433.21
9.96
6.86
15.53
60.67
67.34
348
4.81
20.27
4.00
2.74

P
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.05
0.01
0.00
0.00
0.03

**
**
**

**
**
**
**
*
**
**
**
*

V-ii Analysis without PMX
d.o.f.

1
2
2
2
2
1
2
2
2
1
2
2

3188
3239

SS
1.511
1.001
0.004
0.001
0.009
0.000
0.044
0.002
0.003
0.000
0.000
0.000
1.551
4.134

F
3106.7
1029.3

3.8
0.7
9.3
0.04
45.2
2.6
3.7
0.1
0.05
0.00

P
0.00
0.00
0.023
0.49
0.00
0.85
0.00
0.08
0.025
0.71
0.95
1

**
**
*

**

**

*

Table VI - Crossovcr/Pm interaction

Pm

0.09
0.18

0.27
ALL

PMX

0.0468
0.0435

0.0393
0.0432

OCGT

0.0367
0.0343

0.0355

0.0355

OCGS

0.0368
0.0339

0.0354

0.0354

ALL

0.0401

0.0373
0.0367

0.0380

Moreover, once excluded PMX from the ANOVA, as in Table V-ii, the

number of significant factors substantially decreases and only two genetic

operators, i.e. the maximum number of iterations and the mutation probability,

result as influent on the schedule performance. As a matter of fact, the number

of workstations and the number of

processed parts, and their interaction,

coming out as significant in the

reported analysis, constitute

"structural factors", related to the

production system and to the mix of

parts to be processed.

The dependence of algorithm performances on that "structural factors"

is well known and confirmed also analysing the results, related to the same test

problems, obtained with two of the best performing traditional search

algorithms, i.e. the ones proposed by Nawaz, Enscore & Ham [7] (NEH) and by

Passannanti [15] (SARA).

The genetic operators which remain significant are: the iteration limit,

that obviously it is better to put to highest tested level, and the mutation

probability, that results better at a medium-high level.

In conclusion we suggest that the best choice of factor levels are to be

selected among the combination of OCGS or OCGT for crossover and 0.18-

0.27 for Pm, combined with the highest Nmi level, as shown in table VII.

The GA results, together with the ones obtained with NEH and SARA

algorithms, are resumed in Table VII. The makespan values show that better

results can be achieved with the Genetic approach, that allows an average

decrease of about 1.2% and 0.3% in front of NEH and SARA respectively. The

capability of obtaining such improvements is not negligible, considering that the

obtained results are very near, on average, to the optimal ones, as stated by the

distance from the related lower bound of minus than 2.5%.
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As a matter of fact, the improvement of performance obtained with GA

in comparison with SARA algorithm is to be considered highly significant, as

stated by the Student /-test for paired result (f = 2.9).

Table VII - Results

m

5
5
5

10

10
10

n

10
30
60
10

30

60

Makespan

NEH

750,4
1769,9
3344,50

1052,50

2157,60

3665,70

2123,43

SARA

745,1
1754,2

3328,3
1029,4

2132,8
3638,5

2104,72

GA

742,90
1752,80

3324,80
1018,90

2114,80

3630,30

2097,42

LB

719,70
1747,70

3324,50
942,00

2029,10

3527,80

2048.47

Pm

0,18
0,18
0,27

0,18
0,18

0,18

Ns

15

15
15
15

15
15

Nmi

15000

15000
15000

15000

15000

15000

Cross

OCGS
OCGT

OCGS
OCGT

OCGT

OCGS

To reduce the computational burden without degrading the solution

quality, an ending criterion based on the deviation from the lower bound

previously described has been implemented. The evolutionary process is

stopped when the makespan value reaches the chosen deviation from the lower

bound; when the allowed deviation is not reached during the evolutionary

process, the Nmi control parameter acts as subordinate ending test. The related

results show that a mean reduction on the number of generated sequences of

about 20% is reached using a distance of 1% for the LB based stop test, in front

of a worsening of makespan values of 0.23%.

6 Concluding remarks

A number of Genetic Algorithms devoted to the flow shop scheduling

problem has been presented in this paper. Through the analysis of the described

genetic algorithms has been shown that the different crossover operators and

the setting of control parameters significantly affect the solution of a flow shop

scheduling problem. In particular, order based crossover operators, that always

furnish feasible solutions, have shown themselves to be the most effective ones,

as well as medium-high values of the mutation probability and the highest tested

number of iterations. The comparison of the obtained performances with the

ones achieved with two of the most effective conventional scheduling

algorithms reported in literature allows to assert the effectiveness of the genetic

approach in solving production scheduling problems.
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