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Abstract. The paper analyzes global optimization problem. In order to solve this problem multidimensional scaling algo rithm 

is combined with genetic algorithm. Using multidimensional scaling we search for multidimensional data projections in a 

lower-dimensional space and try to keep dissimilarities of the set that we analyze. Using genetic algorithms we can get more 

than one local solution, but the whole population of optimal points. Different optimal points give different images. Looking at 

several multidimensional data images an expert can notice some qualities of given multidimensional data. In the paper genetic 

algorithm is applied for multidimensional scaling and glass data is visualized, and certain qualities are noticed.

Keywords: multidimensional scaling, genetic algorithms, visualization.

Introduction

In various research fields human being has to deal with 
multidimensional data. Probably we would not find such 
research field where we could avoid multidimensional data. 
The amount of such data increases very quickly (Dzemyda 

et al. 2008).

The size of data grows in a very high speed, so it is 

necessary to solve certain problems: how to understand 

the data, comment it and gain information while refusing 

unimportant facts. In most cases there is a need to unders-

tand the structure of such data: groups of similar objects 

(clusters) and outliers, the similarity and dissimilarity of 

objects. It is difficult to understand multidimensional data 
because it means complicated phenomenon or object which 

has many parameters. These parameters can be numerical, 

logical, text or something else (Karbauskaitė 2005).
The higher is the dimension of data, the more diffi-

cult is to understand it. Multidimensional data should be 

given in a form that researcher could easily understand data 

structure, groups and connections in data, etc. Such a way 

could be visualization. Visualization is graphical view of 

multidimensional data. Graphical view is easier for human 

being to understand. From graphical view a researcher can 

see certain tendencies in data and make decisions.

Multidimensional scaling

Multidimensional scaling (MDS) is a statistical method 

which is meant to visualize dissimilarities (Groenen, 

Velden 2004). MDS is widely applied for multidimensional 

data analysis in many science fields, such as economics, 
psychology, etc. The aim of multidimensional scaling is to 

find multidimensional data projection in a lower dimension 
space (R2 or R3), so that similarities or dissimilarities of that 

data is kept. It is expected that after visualization similar 

objects are closer to each other and different objects are 

further from each other.

The primal data of multidimensional scaling method is 

quadratic symmetrical matrix which means the similarities 

(dissimilarities) of analyzed objects. In the simplest case it 

is Euclidean distances matrix. In general case they do not 

have to be mathematical distances.
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When p = 2, we have Euclidean distances, when p = 1 

we have city block distances.

Using MDS algorithm it is aimed to make distances 
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(Stress) DSE  is used and is as follows:
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Global optimization algorithms  
for multidimensional scaling

One of the most famous minimization algorithms for mul-

tidimensional scaling is SMACOF (Leeuw 1977). This 

algorithm is based on the objective function majorization. 

Here the minimization of least squares function (Stress) is 

changed to simpler minimization of supportive function. It 

is proved that majorization method is globally convergent. 

In most cases convergence is linear.

If sequential estimation method is applied (Miyano, 

Inukai 1982), the view is renewed when new objects are 

inserted into the data set. Here the insertion of a new object 

requires less calculations then the search of a view gained 

from the whole data set by multidimensional scaling.

It also exist tunneling algorithm (Groenen, Heiser 

1996), which is applied to use for multidimensional sca-

ling with Minkowski distances. Here local minimization is 

combined with tunneling step. It is aimed to find another 
image with the same objective function value as a previous 

local minimum. Iteratively applying local search and tun-

neling better solutions are found and the last solution may 

be global solution.

In multidimensional scaling local minimization can 

be combined with evolutionary search so that new points 

could be generated (Mathar, Žilinskas 1993). Such a hybrid 
algorithm where global evolutionary search is applied with 

local search is very effective, but needs a lot of calculations.

Heuristic simulated annealing algorithm is begun by 

dividing each coordinate axis into discrete points. The al-

gorithm searches for the minimum of the objective function 

in the grid made of these points (Brusco 2001).

Distance smoothing method applied for multidime-

nsional scaling is offered in paper (Hubert et al. 1992). 

This method allows avoiding local minima.

Two levels method for multidimensional scaling is of-

fered in paper (Žilinskas A., Žilinskas, J. 2008). Here global 
optimization problem is changed into two levels minimi-

zation problem. In upper level combinatorial optimization 

problem is solved. In lower level quadratic programming 

problem is solved with a positively defined objective func-

tion and linear restrictions. Lower level problem is solved 

by applying standard quadratic programming algorithm. 

Upper level problem can be solved by using evolutionary 

search if datasets are bigger. Parallel two level optimization 

algorithm with evolutionary search and quadratic program-

ming is offered in article (Žilinskas A., Žilinskas, J. 2006b).

Genetic algorithms for multidimensional scaling

Genetic algorithm mimics nature (Alba, Dorronsoro 

2008). Here the most important part is recombination. 

Nevertheless, algorithm starts its work from initialization 

when a random list of individuals is created where each 

element means certain solution of a problem. In most cases 

initial population is made of hundreds or thousands indivi-

duals that have poor adaptation.

Later the generated population is evaluated accor-

ding to each member’s adaptation. There are many ways 

to calculate individual’s adaptation. Assume that the given 

individual codes equation’s solution. Therefore, the closer is 

the individual’s value to the equation’s solution, the higher 

is its adaptation.

After evaluation selection is carried out and parents 

are selected for recombination. The most commonly sele-

ction methods are:

− Roulette wheel selection;

− Tournament selection.

By applying roulette wheel selection, the adaptation 

of each individual is evaluated. Then it is calculated whi-

ch part of the whole adaptation has certain individual’s 

adaptation. The greater is the individual’s adaptation, the 

higher is probability to be selected. Roulette wheel selection 

is carried out randomly, and the probability for a certain 

individual to be selected as a parent is:
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where: if  – adaptation of a certain individual, ∑ jj
f  – 

adaptation of all the members of the population.

For tournament selection k individuals are randomly 

selected. The best individual is chosen with a probability p. 

The second best individual has a probability p (p – 1). The 

third best individual has a probability p (p – 1)(p – 1), and 

etc.

When selection is carried out, offsprings are made 

from parents. This process is called reproduction and con-

sists of recombination and mutation. There are many re-

combination variants, but most often used are these:

− recombination, when parents’ chromosomes are 

cut into two parts;

− recombination, when parents’ chromosomes are 

cut into more than two parts.

In multidimensional scaling case we assume that 

genes are the points that represent objects. During re-

combination some points are taken from one individual 

(see parent 1 in Fig. 1) and some points-from the other 

individual (see parent 2 in Fig. 2). Resulting offspring is 

shown in Figure 3.
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During mutation one or more components of the gene 

are changed and new trait of the individual is gained. If 

the components of genes are nulls and ones then ones are 

changed to nulls and nulls-to ones.

After mutation replacement is carried out. It means 

that the population of offsprings changes some part or the 

whole population of parents. Elitist replacement is popular 

as it saves the fittest individuals. In most cases 10% poorest 
parent individuals are selected and they are replaced by 

individuals from the population of offsprings.

Genetic algorithm stops when termination condition is 

met. It means that quite good solution is reached or maxi-

mum number of generations is made.

Experimental investigation

Data for experimental investigation is selected from 

“UCI Machine Learning Repository” (UCI Machine 

Learning... 2014) database. Data is created by B. German 

in 1987. Data file consists of 214 lines that correspond to 
various glasses. Each line is made of eleven attributes that 

have ID. There is also a class of the glass that is at the 

end of every line. ID has values from 1 to 214, and class 

attribute: 1, 2, 3, 5, 6, 7. Attributes 2–10 are as follow: 
refractive index, Sodium, Magnesium, Aluminum, Silicon, 

Potassium, Calcium, Barium, Iron oxides percentage in 

glass. Glass classes are as follow: 1 – building windows 

float processed, 2 – building windows non float processed, 
3 – vehicle windows float processed, 5 – containers, 6 – 
tableware, 7 – headlamps.

Glass data is chosen for experimental investigation, 

because it is numerical and there is no missing data, so it 

is easier to visualize such data. Furthermore, it is wanted to 

compare glass data visualization done by multidimensional 

scaling using genetic algorithms with other authors’ work.

In glass data chromosome consists from nine attribu-

tes (2–10), where each attribute is a gene. Every chromo-

some is a line from glass file without ID and class number. 
Glass data file consists of 214 lines which correspond to 
214 chromosomes. Each chromosome is made from nine 

genes and it means that glass data is nine-dimensional.

Glass data is visualized by applying Matlab (Fig. 4). 

Genetic multidimensional scaling algorithm is applied and 

two dimensional points (vectors) are gained from nine-di-

mensional data. Then two dimensional points are visualized 

in two-dimensional space. It is noticed that two dimensional 

points usually form two clusters. The first cluster is from 
first, second and third glass classes and the second cluster is 
from seventh glass class. Other glasses do not form clusters 

and are scattered in two-dimensional space.

Fig. 3. Offspring – the chromosome of parent 1 and 2 

recombination: points “o1” and “o2” are taken from parent 1, 

while points “o3” and “o4” – from parent 2

Fig. 1. Parent 1 – the first chromosome from parents’ 
population used for recombination (dimensions x and y)

Fig. 2. Parent 2 – the second chromosome from parents’ 

population used for recombination (dimensions x
1
 and y

1
)
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Other authors also carried out experiments with glass 

data. In paper (Stefanovič, Kurasova 2011) glass data is 

analyzed using artificial neural networks and observed how 
glasses are distributed into classes while teaching neural 
networks. K. Ząbkiewicz (2013) offers to combine principal 
component analysis and evolutional methods. The image 

which is gained by combining these two methods consists 
of two clusters. The first cluster is from first, second and 
third glass classes and the second is from seventh glass 

class. In paper (Ding et al. 2011) artificial neural network 
is combined with genetic algorithm. Neural network easily 
“stucks” in a local minimum, and the effectiveness of a 
new hybrid algorithm is greater than of these two methods 
separately. This hybrid algorithm with 94.44% probability 
separates building windows from other glass classes. In 
paper (Runkler, Bezdek 2013) three algorithms are compa-

red: Sammon, principal component analysis (PCA) and 
MTP-MSO algorithm, which is a modification of particle 
swarm algorithm. Three images are gained by these met-
hods. Every image has two clusters. One cluster is of 1, 
2, 3 glass classes, second cluster is of 7 glass classes. In 
article (Benabdeslem, Lebbah 2007) glass data is visualized 

using HI-SOM method. There is one cluster made of 1, 2, 
3 glass classes and other glass classes are scattered in two 
dimensional space. In paper (Carriosa, Pliastra 2010) there 
are two clusters. One cluster is from 1, 2, 3 glass classes and 
the other is from 7 glass class. Here glass data is visualized 

by Principal Separation and Shrinkage Analysis method.
Having compared glass data visualized by genetic 

multidimensional scaling algorithm to other authors’ met-

hods it has been noticed that data images usually consist of 
two clusters. One cluster is from 1, 2, 3 glass classes and 
the other is from 7 glass class. 7 glass class is headlamps. 

Because of the fact that headlamps (7 glass class) form a 

separate cluster, it means that the glass of headlamps is 
recognized and can be used in criminology as a proof to 
investigate crimes.

Conclusions

When multidimensional data is visualized, data that is in 
a higher-dimensional space is projected in a lower-dime-

nsional space. It is expected that certain structures such as 

clusters and outliers are kept. By using multidimensional 
scaling it is expected to understand more than three dime-

nsional data which human being does not perceive. In this 
article multidimensional scaling algorithm is analyzed and 

is showed that it can be combined with genetic algorithm 
to visualize data into a lower-dimensional space. The new 

hybrid algorithm is suitable to visualize multidimensional 
datasets.

References

Alba, E.; Dorronsoro, B. 2008. Cellular genetic algorithms. 

Springer. 248 p.

Benabdeslem, K.; Lebbah, M. 2007. Feature selection for 
self organizing map, in 29th International Conference on 

Information Technology Interfaces, 25–28 June 2007, Cavtat, 
45–50. http://dx.doi.org/10.1109/iti.2007.4283742

Brusco, M. J. 2001. A simulated annealing heuristics for uni-
dimensional and multidimensional (city block) scaling of 
symmetric proximity matrices, Journal of Classification 

18(1): 3–33. http://dx.doi.org/10.1007/s00357-0003-4

Carriosa, E.; Pliastra, F. 2010. Principal seperation and shrinkage 

analysis [online], [cited 25 October 2014]. Available from 
Internet: http://research.vub.ac.be/sites/default/files/uploads/
BUTO/Working-Papers/mosi_working_paper_46_-_carrizo-

sa_e._2010_principal_separation_and_shrinkage_analysis.
pdf .

Ding, S.; Su, C.; Yu, J. 2011. An optimizing BP neural network 
algorithm based on genetic algorithm, Artificial Intelligence 
Review 36(2): 153–162. 
http://dx.doi.org/10.1007/s10462-011-9208-z

Dzemyda, G.; Kurasova, O.; Žilinskas, J. 2008. Daugiamačių 
duomenų vizualizavimo metodai. Vilnius: Mokslo aidai.

Groenen, P. J. F.; Heiser, W. J. 1996. The tunneling method for glo-

bal optimization in multidimensional scaling, Psychometrika 

61: 529–550. http://dx.doi.org/10.1007/BF02294553

Groenen, P.; Velden, M. 2004. Multidimensional Scaling. 

Econometric Institute Report EI 2004-15.

Hubert, L.; Arabie, P.; Hesson-Mcinnis, M. 1992. Multidimensional 
scaling in the city-block metric: a combinatorial approach, 
Journal of Classification 9(2): 211–236. 
http://dx.doi.org/10.1007/BF02621407

Karbauskaitė, R. 2005. Daugiamačių duomenų vizualizavimo 
metodų, išlaikančių lokalią struktūrą, analizė: Daktaro diser-
tacija. Vytauto Didžiojo universitetas, Matematikos ir infor-
matikos institutas.

Fig. 4. Glass data visualized by genetic algorithm for 
multidimensional scaling

−4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

X 1

X
 2

1

2

3

5

6

7



279

Leeuw, J. 1977. Applications of convex analysis to multidimensio-

nal scaling, Recent Developments in Statistics. Amsterdam: 

North Holland Publishing company, 133–146. 

Li, Te-S. 2006. Feature selection for classification by using a 
GA-based neural network approach, Journal of the Chinese 

Institute of Industrial Engineers 23(1): 55–64.

Mathar, R.; Žilinskas, A. 1993. On global optimization in two-dime-

nsional scaling, Acta Applicandae Mathematicae 33: 109– 118. 
http://dx.doi.org/10.1007/BF00995497

Miyano, H.; Inukai, Y. 1982. Sequential estimation in multidi-

mensional scaling, Psychometrika 47: 321–361. 
http://dx.doi.org/10.1007/BF02294163

Runkler, T. A.; Bezdek, J. C. 2013. Topology preserving feature 
extraction with multiswarm optimization, IEEE International 

Conference on Systems, Man, and Cybernetics, 13–16 
October 2013, Manchester, UK, 2997–3002. 

http://dx.doi.org/10.1109/SMC.2013.511

Stefanovič, P.; Kurasova, O. 2011. Influence of learning rates 
and neighboring functions an self organizing maps, Lecture 

Notes in Computer Science 6731: 141–150. 
http://dx.doi.org/10.1007/978-3-642-21566-7_14

UCI Machine Learning Repository [online], [cited 25 October 
2014]. Available from Internet: http://www.ics.uci.edu/~mlearn/

Ząbkiewicz, K. 2013. Evolutionary nonlinear data transforma-

tion for visualization and classification task, in Proceedings 

of the 2013 Federated Conference on Computer Science 

and Information Systems, 8–11 September 2013, Krakow, 

Poland, 683–685.

Žilinskas, A.; Žilinskas, J. 2006a. On multidimensional scaling 
with Euclidean and city block metrics, Ūkio ir technologijos 
vystymas 7(1): 69–75.

Žilinskas, A.; Žilinskas, J. 2006b. Parallel hybrid algorithm for 
global optimization of problems occurring in MDS-based 

visualization, Computers and Mathematics with Applications, 

52(1–2): 211–224. 
http://dx.doi.org/10.1016/j.camwa.2006.08.016

Žilinskas A.; Žilinskas, J. 2008. A hybrid method for multidi-
mensional scaling using city-block distances, Mathematical 

Methods of Operations Research 68(3): 429–443. 
http://dx.doi.org/10.1007/s00186-008-0238-5

GEnETInIų ALGORITMų TAIKyMAs 
DAuGIAMATĖMs sKALĖMs

A. Dzidolikaitė

Santrauka

Analizuojamas globaliojo optimizavimo uždavinys. Jis apibrėžia-

mas kaip netiesinės tolydžiųjų kintamųjų tikslo funkcijos op-

timizavimas leistinojoje srityje. Optimizuojant taikomi įvairūs 
algoritmai. Paprastai taikant tikslius algoritmus randamas tikslus 

sprendinys, tačiau tai gali trukti labai ilgai. Dažnai norima gauti 
gerą sprendinį per priimtiną laiko tarpą. Tokiu atveju galimi kiti – 
euristiniai, algoritmai, kitaip dar vadinami euristikomis. Viena 

iš euristikų yra genetiniai algoritmai, kopijuojantys gyvojoje 
gamtoje vykstančią evoliuciją. Sudarant algoritmus naudojami 
evoliuciniai operatoriai: paveldimumas, mutacija, selekcija 

ir rekombinacija. Taikant genetinius algoritmus galima rasti 

pakankamai gerus sprendinius tų uždavinių, kuriems nėra tikslių 
algoritmų. Genetiniai algoritmai taip pat taikytini vizualizuojant 

duomenis daugiamačių skalių metodu. Taikant daugiamates 
skales ieškoma daugiamačių duomenų projekcijų mažesnio 
skaičiaus matmenų erdvėje siekiant išsaugoti analizuojamos 
aibės panašumus arba skirtingumus. Taikant genetinius algorit-
mus gaunamas ne vienas lokalusis sprendinys, o visa optimumų 
populiacija. Skirtingi optimumai atitinka skirtingus vaizdus. 

Matydamas kelis daugiamačių duomenų variantus, ekspertas gali 
įžvelgti daugiau daugiamačių duomenų savybių. Straipsnyje ge-

netinis algoritmas pritaikytas daugiamatėms skalėms. Parodoma, 
kad daugiamačių skalių algoritmą galima kombinuoti su genetiniu 
algoritmu ir panaudoti daugiamačiams duomenims vizualizuoti.

Reikšminiai žodžiai: daugiamatės skalės, genetiniai algoritmai, 
vizualizavimas.


