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Abstract- Determining the optimum data distribution, 
degree of parallelism and the communication structure on 
Distributed Memory machines for a given algorithm is not a 
straightforward task.  Assuming that a parallel algorithm 
consists of consecutive stages, a Genetic Algorithm is 
proposed to find the best number of processors and the best 
data distribution method to be used for each stage of the 
parallel algorithm. Steady state genetic algorithm is compared 
with transgenerational genetic algorithm using different 
crossover operators. Performance is evaluated in terms of the 
total execution time of the program including communication 
and computation times. A computation intensive, a 
communication intensive and a mixed implementation are 
utilized in the experiments. The performance of GA provides 
satisfactory results for these illustrative examples. 

I.  INTRODUCTION 

Data distribution and processor allocation are two 
important factors that affect the performance of programs 
written for distributed memory parallel architectures. 
Distribution of the data among the processors affects the 
communication time. On the other hand, the number of 
processors used at each step of the parallel code (degree 
of parallelism) affects both the computation time and the 
communication time.  

Different approaches have been used to solve the 
problem of optimizing data distribution in parallel 
programs [1]-[12]. These projects use a variety of 
optimization methods. There are also research works that 
present notation for communication-free distribution of 
arrays [13], [14]. 

The problem of finding optimal mappings of arrays for 
parallel computers is shown to be NP-complete [15]. As a 
discrete problem, even if a restricted set of data 
decomposition patterns is used, the nonlinear nature of the 
problem does not change, especially when combined with 
selecting the degrees of parallelism for each program 
stage and attempting to minimize the overall execution 
time. In this study, Genetic Algorithms (GA) is used to 
analyze the problem of determining the data distribution 
and the degree of parallelism for each stage of a parallel 
code in order to minimize the total execution time. 

II.  PERFORMANCE CHARACTERIZATION OF PARALLEL 
ALGORITHMS 

A. Levels 
A serial algorithm may be composed of a sequence of 

stages (denoted as levels), where each stage is either a 
single loop or a group of nested loops (Figure 1(a)). An 

example program segment is given in Figure 6, where 
there are five levels.  The entire sequence of levels may 
also be enclosed by an iterative loop (Figure 1(b)). A 
general case is given in Figure 1(c), where some 
consecutive loops are enclosed by iterative loops, which 
again with adjacent loops may be enclosed by other 
iterative loops and so on, like a tree structure. Here, to 
simplify the case, it is assumed that programs are in the 
form of Figure 1(a) and Figure 1(b), and programs that 
have structure as in Figure 1(c) are reduced to the form in 
Figure 1(b) by combining L2, L3, L4 as a single level.  

 
 
 [ L1  [ L1  [ L1 
 [ L2  [ L2    [ L2 
 [ L3  [ L3    [ L3 
 [ L4  [ L4    [ L4 
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 (a)  (b)  (c) 

Figure 1. (a) sequence of levels, (b) sequence of levels enclosed 
by an iterative loop, (c) sequence of loops with a general structure 

When the programs are parallelized, each level is 
assumed to have a different degree of parallelism that is, 
each level may be executed using a different number of 
processors. Levels requiring short computation may be 
parallelized on a few processors but those having long 
computations may require the use of many processors. 
Also, due to the distribution of the data among the 
processors, when the code is parallelized, communication 
may be required before the execution of each level. 
Although increasing the number of processors decreases 
the computation time of a level, it may cause extra 
communication between the levels.  

B. Performance Evaluation 
Performance of a serial algorithm can be expressed in 

terms of the problem size, but the performance of a 
parallel algorithm, in addition to the problem size, 
depends on the number of available processors, the 
distribution of the data among the processors, and the 
methods used for transferring data between processors.   

At some stage l of a parallel code, execution time (texec) 
can be expressed as the sum of the computation and 
communication times  

 



l l l
exec comp commt t t= +  Equation 1., 

 
where l

compt  denotes the computation time, and l
commt  

denotes the communication time at stage l.  
Computation time can be formulated as  
 

/l l
comp seq lt t p=  Equation 2., 

 
where l

seqt is the predicted computation time of stage l of 
the sequential algorithm on a single processor, and pl is 
the number of processors used in the parallel code for 
stage l.  

Communication time depends on the number of 
processors pl and the communication structure cl used for 
the transfer of data at that stage. l

commt consists of two 
terms, a term that increases with the size of data to be 
transferred, represented by  f1, and an overhead, 
represented by f2,  

 

1 2( , ) ( , )l
comm l l l l lt f c p d f c p= +  Equation 3., 

 
where dl is the data size per processor. Note that both f1 
and f2 are in the form (a pl + b),  where a and b are 
constants that depend on the communication structure. 

The total execution time (T) of the program is the sum 
of the execution times of all stages in the program 
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where L is the total number of stages (denoted as levels) 
in the code. 

In order to determine the execution time of a parallel 
program at compile-time, machine characterization and 
performance prediction method given in [16] is used. In 
this method, computation and communication 
characteristics of the machine are measured and 
formulated. In order to calculate the total execution time 
of a parallel program, its program parameters (i.e. 
computation time, data size) are substituted in the 
formulas. 

C. Data Decomposition and Alignment 
In most of the parallel algorithms, arrays of one or 

higher dimensions are used. In this study, arrays are 
assumed to be distributed to the processors in the form of 
blocks. Block decompositions of 1 and 2-dimensional 
arrays on four processors are illustrated in Figure 2 and 
Figure 3, respectively. It is assumed that all scalar values 
are replicated on all processors.  

 
 

 
 
 
 
 

 

 

Figure 2. Possible decomposition patterns for a 1D array on 4 
processors 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3. Possible decomposition patterns for a 2D array on 4 
processors 

Arrays are distributed to the processors according to 
one of the decomposition patterns, presented in Figure 2 
and Figure 3. Due to the computational requirements, 
arrays existing at a level, may be distributed to processors 
using the same or different decomposition patterns. 
Considering all the arrangements of decomposition 
patterns for all the arrays at a level, some of them may not 
be feasible. Feasible arrangements of decomposition 
patterns of arrays at a level are referred as alignment.  

As an example, possible alignments for the third level 
of the code in Figure 7 are demonstrated in Table I. The 
arrangement, (Horizontal, Vertical, Horizontal), for arrays 
c, I and b is not a feasible arrangement, as it can not 
satisfy the computational requirements. Hence, it is not 
accepted as an alignment. 
      
TABLE I. ALLIGNMENTS FOR THE THIRD LEVEL OF THE CODE 
IN FIGURE 7 
 
Array Alignment 1 Alignment 2 Alignment 3 

c Horizontal Vertical Rectangular 
I Horizontal Vertical Rectangular 
b Horizontal Vertical Rectangular 

(a) Horizontal 

(c) Replicated (d) Rectangle 

(b) Vertical 

(a) Horizontal (b) Replicated (c) Rectangle 



D. Communication Structures 
In distributed memory architectures using message-

passing, generally, data is transferred among the 
processors in a structured way. Different communication 
structures have been defined for data exchange between 
processors [17], [18]. In this study, multiphase (MU), shift 
(SH), broadcast (BR), scatter (SC) and gather (GA) 
structures have been utilized  (Figure 4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.  Five types of communication structures used in the 
study 

Performance of the communication structures can be 
characterized in terms of f1 and f2, as shown in Table II. 
For all structures, f1 and f2 depend on the number of 
processors, except for SH, where f1 and f2 are constant.  

The machine parameters M, N, R and Q are measured 
running benchmarks on the parallel machine, as explained 
in [16]. The hardware platform used in this study consists 
of 16 Pentium 4, 2GHz processors connected by 
100Mbit/s interconnection network.  

 
TABLE II. MACHINE PARAMETERS FOR THE COMMUNICATION 
STRUCTURES 

 
c 1( , )l lf c p  

2( , )l lf c p  

MU M1  pl  + N1 R1  pl  + Q1 
BR M3  pl  +  N3 R3  pl  + Q3 
SC M4  pl  +  N4 R4  pl  + Q4 
GA M5  pl  +  N5 R5  pl  + Q5 
SH N2 Q2 

 
Once the data distribution and the number of processors 

at each level are determined, communication structures to 
be inserted between levels can be selected. For each level, 
feasible communication structures, that are valid for all 
arrays at that level, are identified considering the 

references to the same arrays in the upper and lower levels 
of the code. Then, a common feasible communication 
structure is selected. In this work, instead of selecting the 
communication structure randomly, the one that produces 
the minimum transfer time is selected.   

In order to minimize the program execution time, the 
best number of processors for each level of the code and 
the best alignment for the arrays that are referred to at 
each level of the code must be determined. A parallel code 
might consist of many levels. Furthermore, for each level 
there might be different possibilities for alignment, degree 
of parallelism and communication structure. For this 
reason, the problem of finding the optimal parallel code 
configuration becomes highly complex. 

III.  GENETIC ALGORITHMS FOR PARALLEL CODE 
OPTIMIZATION 

Genetic Algorithms have been used for solving many 
difficult problems [19] that were introduced by J. Holland 
in 1975 [20]. Given a parallel code, consisting of L levels 
and a distributed memory parallel machine with P 
processors, parallel code optimization (PCO) can be stated 
as finding the best mapping of P processors and D 
alignments of data decomposition patterns at each level, 
reducing the total expected execution time of the 
algorithm. The search space ranges up to (PD)L, assuming 
the best communication structure for the level. Although 
not considered in here, the size of a level and selecting the 
levels to combine may also be used as other optimization 
parameters. 

Machine parameters are obtained by Benchmarking as 
explained in [16] and fed into the GA Solver for execution 
time optimization as shown in Figure 5. The Alignment 
Parser parses the given sequential code to be parallelized, 
in a C like language. It determines all possible array 
alignments in the code and generates the related data 
decomposition patterns at all levels, handing them over to 
the GA solver. Finally, GA solver produces the best 
assignment of alignments and number of processors at 
each level. 
 

 
 
 
 
 
 
 

 

Figure 5. Flowchart showing how parallel code optimization 
problem is solved by GA 

(a) Multiphase (b) Broadcast 

(c) Scatter (d) Gather 

(e) Shift 
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Code
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A. GA Components 
Each individual is a list of alleles, where each locus 

represents a level in the given code. Alleles consist of two 
parts: number of processors to be used at a level and the 
data alignment. Figure 6 demonstrates an example 
individual, having 5 levels. 

 
 
 
 
 
 
 
 
 

Figure 6. An example individual representing a candidate solution 
for a PCO problem with 5 levels 

Two types of Genetic Algorithms are implemented as a 
solver: steady state genetic algorithms (SSGA) and 
transgenerational genetic algorithms (TGGA). Population 
size is chosen to be proportional to the length of an 
individual. Fitness function indicates the total execution 
time as shown in Equation 4. 

The best communication structure is chosen at each 
level among all possibilities. This step can be considered 
as a hill climbing step. This process can be applied, since 
the contribution of the communication structure to the 
total execution time at each level is independent.  

SSGA and TGGA both utilize linear ranking strategy 
for selecting parents and elitist replacement strategies. In 
SSGA, two worst individuals in the population are deleted 
and both offspring are injected in their places. In TGGA, 
the best of the offspring combined with the previous 
population forms the next generation.  

SSGA visits two new states at each generation, while 
the number of states that TGGA visits is two times the 
individual length, determining the number of evaluations.  

Different crossover operators are tested: traditional one 
point crossover (1PTX), two-point crossover (2PTX) and 
uniform crossover (UX). Traditional mutation is used, 
randomly perturbing an allele, assigning a random value 
to the number of processors and the decomposition 
pattern.  

Runs are terminated, whenever the expected fitness is 
reached or the maximum number of generations is 
exceeded.  

IV.  EXPERIMENTAL DATA 

Experiments are performed using three data sets 
produced from two different algorithms. 

A. Hessenberg Reduction 
In the first and second data sets, the parallel algorithm 

in [21] for reducing matrices to Hessenberg form is used. 

One iteration of the Hessenberg reduction is represented 
as follows: 

A = (I – V Z VT)T A (I – V Z VT), 

where A, Z, V are NxN matrices. Its parallel 
implementation has 5 levels as shown in Figure 7.  

Levels 1, 2, 4 and 5 perform matrix multiplication 
operation where the execution time increases with N3, and 
level 3 consists of a subtraction operation where the 
execution time increases with N2.  

 
 

for (i=0; i<N; ++i)  /* Level 1 */  
 for (j=0; j<N; ++j) { 
 a[i][j]=0; 
     for (k=0; k<N; ++k)  
     
a[i][j]=a[i][j]+V[i][k]*Z[k][j]; 
        /* VZ */ 
   } 
 for (i=0; i<N; ++i)  /* Level 2 */ 
 for (j=0; j<N; ++j) { 
 b[i][j]=0; 
     for (k=0; k<N; ++k) 
     
b[i][j]=b[i][j]+a[i][k]*V[j][k]; 
         /* VZV^T */ 
   } 
 for (i=0; i<N; ++i)  /* Level 3 */ 
 for (j=0; j<N; ++j)  
 c[i][j]=I[i][j]-b[i][j];   
       /* I- VZV^T */ 
 for (i=0; i<N; ++i) /* Level 4 */ 
 for (j=0; j<N; ++j) { 
 d[i][j]=0; 
     for (k=0; k<N; ++k) 
    
d[i][j]=d[i][j]+c[k][i]*A[k][j];   
    /* (I- VZV^T)^T A */ 
 } 
 for (i=0; i<N; ++i) /* Level 5 */ 
 for (j=0; j<N; ++j){ 
 e[i][j]=0; 
     for (k=0; k<N; ++k) 
  e[i][j]=e[i][j]+d[i][k]*c[k][j];  
  /* (I- VZV^T)^T A (I- VZV^T) */ 
 } 

 

Figure 7. Implementation of Hessenberg reduction 

Hessenberg reduction is chosen due to its simple 
nature. At each level there are three possible alignments 
and three choices for the number of processors (1, 4 and 
16). In order to be able to test GA using a known result, 
all 95 possible combinations of alignments and the number 
of processors are computed to determine the optimum 
configuration.  

When the problem size N is chosen as 1024, the 
problem is communication intensive; therefore the best 

4 2 4 1 4 5 1 1 1 1

1 2 3 4 5

4 processors and 5th alignment 
should be used at level 3 



fitness is achieved when the algorithm is run on one 
processor regardless of the decomposition pattern.  

However when N is chosen as 10240, the problem 
becomes computation intensive and the best fitness is 
observed utilizing 16 processors at each level, as marked 
in Figure 8.  Note that there are two optimal 
configurations having the best fitness.  

Above data sets are used during the initial experiments, 
denoted as H1 and H2, with N=1024 and N=10240, 
respectively.  Considering the size of the search space and 
the number of optimal points having the same fitness 
value in the search space, H1 is a simpler problem than 
H2 to solve. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Part of the fitness landscape for H2,  N=10240, 
considering {4, 16} as possible number of processors and {1, 2} 
as possible alignment ids, where arrow points out the best fitness. 

B. Dongarra’s Benchmark 
The third data set consists of 11 loops selected from the 

test loops prepared by J. Dongarra for parallelizing 
compilers, found at site: 

  http://www.netlib.org/benchmark/parallel 
This problem involves 12 matrices of sizes n1 and n2, and 
vectors of size n2. Matrix addition, matrix multiplication, 
vector-matrix multiplication, assignment, etc. operations 
are executed on different matrices and vectors (Table III).  

In this case, for all levels, fitness increases with n1xn2, 
except for level 1 where fitness increases with n1

3. When 
n1 and n2 are chosen as 10240, level 1 becomes 
computation intensive, and therefore it can be estimated 
that it will have the best time for 16 processors. Level 2 
also has the same arrays as level 1, therefore to minimize 
the communication time, 16 processors may be feasible. 
Operations in the other levels are not computation 
intensive and they have a different set of arrays than 
levels 1 and 2. Therefore, it is expected that 1 processor 
may be the best choice for these levels. 

 
 

TABLE  III. DETAILS FOR SELECTED LOOPS FROM DONGARRA’S 
BENCHMARK SET. 

 
l Arrays Array Operations  
1 X2, Y2, Z2 Matrix Multiplication 
2 X2, Y2, Z2 Assignment, 2D-Array 

Multiplication 
3 A2, B2, C2 2D-Array Addition 
4 A2, B2, C2, S 2D-Array Addition, Scalar 

Multiplication 
5 A2, B2, C2, D1 1D and  2D-Array Multiplication 

and Addition 
6 A2, B2, C2, D2 2D-Array Addition 
7 A2, B2, C2, D2, 

A1 
1D and  2D-Array Multiplication 
and Addition 

8 A2, B2, C2, D2, 
E2, F2, A1, B1 

1D and  2D-Array Multiplication 
and Addition 

9 A2, B2, C2, D2, 
E2, F2 

2D-Array Addition and 
Subtraction 

10 A2, B2, D2, A1 1D and  2D-Array Multiplication 
and Addition 

11 A2, B2, D2, A1 1D and  2D-Array Multiplication 
and Addition 

V.  EXPERIMENTAL RESULTS 

Runs are performed on an Intel Pentium 4, 1.7GHz 
machine. Each experiment is repeated for 100 times.  
Success rate, µ, is the ratio of the number of runs 
returning the optimal solution to the total number of runs. 
Initial experiments are performed to test crossover 
operators and different types of GAs using Hessenberg 
reduction, yielding the experimental results, summarized 
in Table IV. Runs are terminated for H1 and H2, as 
explained in Section III. A. Since the expected fitness is 
not known for D1, a run is terminated whenever the 
maximum number of generations is exceeded. 

 
TABLE  IV.  TEST RESULTS FOR H1 AND H2 USING DIFFERENT 
GA TYPES AND CROSSOVER (XOVER) OPERATORS, WHERE µ  
DENOTES SUCCESS RATE, ρ  DENOTES AVERAGE NUMBER OF 
GENERATIONS PER RUN, σ DENOTES STANDARD DEVIATION. 

 
Data GA 

Type 
Xover µ (ρ σ) 

H1 SSGA 1PTX 1.00 68.40 94.20 
H1 SSGA 2PTX 1.00 69.49 97.31 
H1 SSGA UX 1.00 65.23 91.51 
H1 TGGA 1PTX 1.00 17.13 18.51 
H1 TGGA 2PTX 1.00 17.44 18.87 
H1 TGGA UX 1.00 17.44 18.96 
H2 SSGA 1PTX 0.81 4908.99 7865.88 
H2 SSGA 2PTX 0.84 4737.81 7287.54 
H2 SSGA UX 0.82 4694.87 7470.72 
H2 TGGA 1PTX 0.79 898.02 1506.45 
H2 TGGA 2PTX 0.81 816,31 1460,61 
H2 TGGA UX 0.80 956.62 1527.07 
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GA solves H1 much faster than H2, as expected. The 
solutions are found for H1 and H2 in tens of generations 
and in seconds as shown in Figure 8.  
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Figure 9. Plot of average and best fitness at each generation 
averaged over 100 runs for solving H1 using (a) SSGA and (b) 
TGGA with 1PTX. 

While solving H2, GA sometimes gets stuck at the 
same local optimum, arranging expected number of 
processors and related alignments at the first two levels 
and failing at the rest. Although, these instances are not 
that many, the individuals tend to become alike. Parallel 
code optimization problem can be formulized as a 
multiobjective problem. Premature convergence is a 
common issue, while applying Genetic Algorithms on 
some multiobjective problems, as in [22]. As the size of 
the search space of a PCO problem instances increases 
and the number of global optima in the search space 
decreases, we expect that this issue will arise and become 
a burden. 

Comparing the number of evaluations, SSGA performs 
slightly better than TGGA. For example, SSGA with 
1PTX requires 136 (68.40*2) evaluations on average, 
while TGGA with 1PTX requires 171 (17.13*10) for 
solving H1. Furthermore, crossover operators establish 
approximately the same performance. For this reason, D1 
is tested using only SSGA with 1PTX. 

Results supported our predictions about the solution, as 
explained in Section IV. B. 50% of the runs yield the 
same solution for D1, emphasizing the problem is 
computation intensive for the first two levels. Figure 10 
shows this final solution generated by SSGA with 1PTX. 
Therefore, the first two levels are mapped to 16 processors 
and the same decomposition patterns are used in order to 
minimize the communication.  Other levels are computed 
on one processor. As the computation is sequential on one 
processor, communication patterns do not have any effect. 

 
 
 
 
 

 

 
Figure 10. A solution of D1 obtained by SSGA with 1PTX, where 
each entry is in the following form: [level] number of 
processors, alignment id. 

VI.  CONCLUSIONS AND FUTURE WORK 

Our experiments show that SSGA is more promising 
than TGGA for solving the parallel code optimization 
problem. SSGA with 1PTX successfully generated a 
solution for Dongarra’s benchmarks (D1).  

Speed is an important issue for this problem. If it takes 
too long time to get optimal settings for a code, users may 
prefer utilizing their intuition for parallelizing their codes. 
Note that success rates for the simpler instances of the 
problem are much better than the success rate for D1. 
Furthermore, the initial indication of premature 
convergence is received. Hence, a diversification scheme 
can be added to improve the GA solver. There is a variety 
of approaches, such as crowding [23], or hyper mutation 
[24] for keeping the population diversified. Different hill 
climbing techniques can also be developed as a part of the 
GA solver.  
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