
Annals of Software Engineering 11, 107–139, 2001
 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Genetic Algorithms for Project Management

CARL K. CHANG chang@uic.edu
Department of EECS (M/C 154), The University of Illinois at Chicago, Chicago, IL 60607, USA

MARK J. CHRISTENSEN, PH.D. markchri@concentric.net
Independent Consultant, St. Charles, Illinois

TAO ZHANG Tao_Zhang-CTZ020@email.mot.com
Motorola-iDEN Engineering Development, 1301 E. Algonquin Rd, Schaumburg, IL 60196, USA

Abstract. The scheduling of tasks and the allocation of resource in medium to large-scale development
projects is an extremely hard problem and is one of the principal challenges of project management due to
its sheer complexity. As projects evolve any solutions, either optimal or near optimal, must be continuously
scrutinized in order to adjust to changing conditions. Brute force exhaustive or branch-and-bound search
methods cannot cope with the complexity inherent in finding satisfactory solutions to assist project man-
agers. Most existing project management (PM) techniques, commercial PM tools, and research prototypes
fall short in their computational capabilities and only provide passive project tracking and reporting aids.
Project managers must make all major decisions based on their individual insights and experience, must
build the project database to record such decisions and represent them as project nets, then use the tools
to track progress, perform simple consistency checks, analyze the project net for critical paths, etc., and
produce reports in various formats such as Gantt or Pert charts.

Our research has developed a new technique based on genetic algorithms (GA) that automatically deter-
mines, using a programmable goal function, a near-optimal allocation of resources and resulting schedule
that satisfies a given task structure and resource pool. We assumed that the estimated effort for each task is
known a priori and can be obtained from any known estimation method such as COCOMO. Based on the
results of these algorithms, the software manager will be able to assign tasks to staff in an optimal manner
and predict the corresponding future status of the project, including an extensive analysis on the time-and-
cost variations in the solution space. Our experiments utilized Wall’s GALib as the search engine. The
algorithms operated on a richer, refined version of project management networks derived from Chao’s sem-
inal work on GA-based Software Project Management Net (SPMnet). Generalizing the results of Chao’s
solution, the new GA algorithms can operate on much more complex scheduling networks involving mul-
tiple projects. They also can deal with more realistic programmatic and organizational assumptions. The
results of the GA algorithm were evaluated using exhaustive search for five test cases. In these tests our GA
showed strong scalability and simplicity. Its orthogonal genetic form and modularized heuristic functions
are well suited for complex conditional optimization problems, of which project management is a typical
example.

Keywords: genetic algorithm, scheduling, objective function, optimization, project management

Computer programs that “evolve” in ways that resemble natural selection can solve
complex problems even their creators do not fully understand [Holland 1992].



108 CHANG ET AL.

1. Introduction

Software project management involves the scheduling, planning, monitoring, and con-
trol of the people, processes, and resources to achieve specific objectives, while satisfy-
ing a variety of constraints. In the most general form, the resource-constrained schedul-
ing problem poses the question:

“Given a set of tasks, resources, and the way to evaluate performance, what is the
best schedule to assign the resources to the activities such that the performance is
maximized?” [Wall 1996].

Tasks may be anything from maintaining documents to writing a C++ class. Re-
sources include people, skills, time, equipment, and facilities. Typical PM objectives
include minimizing the duration of the project, maximizing the quality of the product
and minimizing the cost of completing the project. Note that scheduling and planning
are different topics. A plan defines what must be done along with any conditions, con-
straints, and restrictions that must be satisfied, while a schedule specifically describes
both how and when it will be done. Thus they are related by the act of assigning in-
dividuals and other resources to tasks. Task assignment specifically addresses on the
question of “Who does what and when?” In this paper, scheduling is synonymous to job
assignment unless otherwise specified.

In general, the scheduling problem is NP complete, meaning that there are no
known algorithms for finding optimal solutions in polynomial time [Ozdamar 1995].
Exhaustive search methods can be used to solve scheduling problems, but requires for-
biddingly long execution times as the problem size increases. This paper presents a
heuristic method, a genetic algorithm (GA), to solve the scheduling problem in project
management. Instead of evaluating every possible point in the solution space to find an
optimal one, heuristic methods explore the landscape of possible solutions by a combi-
nation of iterative “rules of thumb” or “trial and error” techniques, with the key discrim-
inate between such methods being the technique used to drive, or direct, the iteration
steps. Many strategies can be used to provide this direction. Genetic algorithms are
one such strategy. John Holland of the University of Michigan first developed genetic
algorithms in 1975 [Holland 1992]. Borrowing ideas from Darwin, Holland devised
mechanisms that operate on a selected population of candidate solutions. He employed
the perturbation mechanisms of mutation, replacement and crossover to evolve better
solutions. Holland’s original algorithm was quite simple, yet remarkably robust, in find-
ing optimal solutions to a wide variety of problems. Many custom GAs exist today to
solve very large and complex real-world problems using methods only different from
those of Holland. In a earlier paper [Chang and Christensen 1999] we reported research
work that utilized genetic algorithms to solve resource allocation and scheduling prob-
lems, based on the original work of Chao [1995]. Concurrently, Wall [1996] created a
package of GA classes with hierarchical structures. Wall’s implementation allows users
to incorporate their own interface and other functionality. We fully utilized Wall’s GA
library to attack the job assignment problem.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 109

Among the questions addressed in this paper are:

• What are the assumptions used in project management?

• What are realistic objective or goal functions that can be used in project management?

• Why the new GA reported in this paper is better?

• How to validate our GA solutions?

• What is the computational complexity of the GA solution compared to exhaustive
search?

• How do different parameter setting impact the performance of GA solution?

Since this work was derived from that of [Chao 1995], we include table 1 high-
lighting similarities and differences between [Chao 1995] and our present work.

Table 1
The comparison between new GA and Chao’s (1995) GA solution.

New GA Chao’s GA

Genetic representation is orthogonal 2D array. Genetic representation are 2 sets of linked lists.

A 2D array is used, with one dimension for tasks,
the other for employees.

Two lists are used to represent a schedule, one for
tasks, the other for employees. Duplicate cross-
references between the two lists representing the
schedule, which is redundant.

The 2D array stores all needed information, speeds
up memory access and avoids dynamic memory
allocation.

Memory access is sequential and slow.

New GA supports one to many or many to one as-
signment.

Earlier GA can only support one to one assignment.

2D array can represent schedules for multiple,
concurrent projects, either one-to-one (one em-
ployee can do one job at a time), one-to-many
(one can do many jobs at a time), many-to-one
(many employees can do one job together), or
many-to-many.

Linked list only supports one to one employee/task
assignments.

New GA supports partial commitment. Earlier GA supports binary commitment.

Employees are assigned partial, discrete allocation
of time, currently from {0, 0.25, 0.5, 0.75, 1}
percent.

Employees are assigned either 0% or 100% percent-
age of commitment for one task.

New GA prefers post-checking. Earlier GA prefers pre-checking.

The validity of a solution is checked after assign-
ment;

The validity of solution is checked before the ge-
netic evolving process;

The objective function is isolated from genetic op-
erating process;

The objective function is integrated into the genetic
operators;

Effect: Only objective function needs to be modi-
fied for different projects.

Effect: Both operators and objective functions need
to be modified for different projects.



110 CHANG ET AL.

Table 1
(Continued).

New GA Chao’s GA

New GA uses normalized objective values. Earlier GA uses absolute objective values.

Because different objectives can have different
scales, it would be more meaningful to normal-
ize their values before evaluation and compari-
son.

Unnormalized values used in single objective func-
tion.

All objective values (cost, time) are now normalized
into the range of {0, 1}

Weighting was not effective for two objective values
on two totally different scales.

A composite objective can be used, by summing
weighted objective values.

New GA prefers population diversity. Earlier GA prefers population validity.
Diversity improves the speed and breadth of the

search. Perturbation of an invalid solution may
create valid solutions. The new GA allows a por-
tion of population to consist of invalid solutions.

Operators emphasize creating valid genes, which
decreases diversity. Potential that the program
will fixate on a local-optimum (i.e., premature,
sub-optimal convergence).

GALIB provides multiple mechanism to create a di-
verse population; for instance, the mutation op-
erator has “flip”, “destruction” and “swap” op-
tions to increase the diversity.

New GA supports multiple-project scheduling. Earlier GA only supports single-project scheduling.

New GA has much higher complexities. Earlier GA has lower complexity.

The worst-case complexity is
N(Num_Employee x Num_Task), where N is the
number of possible time increments of a partic-
ular employee, in terms of percentage of work
time.

The worst-case complexity is
Num_EmployeeNum_Task

or
Num_TaskNum_Employee

Partially compensated for by improved memory ac-
cess speed and diversity.

2. Genetic algorithms

2.1. The concept of genetic algorithms

Genetic algorithms mimic natural evolution, by acting on a population to favor the cre-
ation of new individuals that ‘perform’ better than their predecessors, as evaluated using
some criteria, such as an objective function. At any given generation (that is, popula-
tion), the algorithm has a pool of trial solutions. A population can consist of from as low
as 20 to several hundred individuals. These individuals compete for an opportunity to
reproduce. Reproduction will propagate some of an individual’s characteristics (traits)
into the next generation. Candidates for reproduction are chosen probabilistically, but in
a manner that should favor individuals whose offspring will perform well.

Reproduction is a critical step in exploring the solution space because it creates
new candidate solutions. For example, reproduction can consist of two substeps: se-



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 111

Figure 1. A simplified GA example.

lection of the parents and crossover (sometimes combined with mutation), which is the
construction of a child solution from components of the parent solutions. The selection
process should give preference to individuals with better performance. A selection algo-
rithm that gives little weight to performance will tend to search widely but usually will
not converge quickly. On the other hand, an algorithm that overemphasizes performance
as a selection criterion tends to converge quickly but to a suboptimal solution.

The specific mechanisms used in the crossover step depend on the problem and
the internal representation chosen. Finally, to further expand the search GA implemen-
tations incorporate a low-probability random process called mutation. Mutation acts to
randomly perturb some of the solutions in the population. In the absence of mutation, no
child could ever acquire parameter value that was not already present in the population.

2.2. The operation of a genetic algorithm

Figure 1 illustrates the operations performed by genetic algorithms. A population of
three individuals is shown as binary strings. Each is assigned a fitness value by the
function F . On the basis of these fitness values; the selection phase eliminates the worst
case 00111 and replaces it by the best individual 11100. After selection, the genetic
operators are applied probabilistically. The first individual has its first bit mutated from
a ‘1’ to ‘0’, and crossover combines the other two individuals into two new ones. The
resulting population is shown in the box labeled Tn+1.

Typically a genetic algorithm has no obvious stopping criterion. Often, the number
of generations is used as the stopping criteria. Genetic algorithms have been the subject
of extensive research since their creation in 1975. As stated by Forrest, “the researches
on genetic algorithm have abstracted out much of the richness of biology, and more
elaborate representation techniques can be expected . . .” [Forrest 1993].



112 CHANG ET AL.

2.3. GAlib: A C++ library of genetic algorithm components

A variety of researchers and practictionares have implemented genetic algorithms. The
implementations available include GAUCSD [Schraudolph 1992], GALOPPS [Goodman
1996], IlliGAL [Knjazew 2000], and GAlib [Wall 1996]. As the objective of the cur-
rent research was to apply genetic algorithms to the problems of project scheduling an
extensive search of existing GA packages was conducted. We decided to adopt the
GA library in C++ created by Wall [Wall 1996] (available as a free download from
http://lancet.mit.edu/galib-2.4). Wall’s GAlib provides rich types of
Genomes and Operators. Each type can be customized to meet more complicated re-
quirements, for instance, deterministic crowding, traveling salesman, DeJong, and Royal
Road problems. Also, new genetic algorithms can be derived from base genetic algo-
rithms class in the library. We hereby give a very brief introduction to GAlib for the
readers who are not familiar with this work.

2.3.1. Four classes of genetic algorithms
• Simple GA – Uses non-overlapping populations and optional elitism. For each gen-

eration the algorithm creates an entirely new population of individuals.

• Steady-state GA – Uses overlapping population. User can specify how much of the
population should be replaced in each generation.

• Incremental GA – Allows user-defined replacement methods for the integration of the
new generation into the population.

• Deme genetic algorithm – Allows for the evolution of multiple populations in parallel
using a steady-state algorithm. The algorithm migrates some of the individuals from
each population to one of the other populations.

In addition to four major classes of genetic algorithms, GAlib also supports a va-
riety of representations of Genome, such as lists, binary strings and arrays. Choosing a
representation that is minimal and sufficiently expressive is critical to solving any opti-
mization problem. The right representation of the genome should be able to represent
any point in the search space. Although it is attractive to use a genome containing “ex-
tra” gene information, the complexity of the algorithms will increase and thus hinder the
performance.

Three primary operators can be applied to genomes: initialization, mutation and
crossover. In addition to these three primary operators, objective function that is used
to evaluate the fitness of genomes, together with a comparison operator, must be sup-
plied. The comparator is used to determine how one genome is different from another.
Conceptually, it serves as a distance function.

2.3.2. The role of the objective function
The objective function provides a measure of how good an individual is but can be con-
sidered for either an individual in isolation or within the context of the entire population.
The objective score is a measure used to evaluate the performance of the genome. The



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 113

Figure 2. Flow chart of GAlib (from [Wall 1996]).

fitness score is computed from the objective score using a scaling strategy, such as those
introduced by Goldberg [1989]. Figure 2 shows the operation of GAlib and, in particular,
shows the use of the objective function in the second step.

3. Project scheduling

3.1. Definition of the scheduling problem

There are a variety of representations that can be used when scheduling projects includ-
ing PERT (program evaluation and review technique), and CPM (critical path method)
methodologies. Since all of these methods are attempting to solve a single problem they
share a number of features. These include:

I. A technique for describing tasks and their requirements.

II. A method of specifying the relationships between the tasks.

III. A description of the resources available to perform the tasks.



114 CHANG ET AL.

IV. A set of objectives that will be used to evaluate the schedule.

V. A specification of any constraints that the project must satisfy.

A schedule is a specific, time-phased assignment of resources to tasks that satis-
fies the requirements and constraints. The goal of the project manager is to produce a
schedule that optimizes the objectives [Davis 1971]. In general, if only precedence re-
lationships constraint the schedule, it would require only polynomial-time computation,
as commonly employed in most project management tools.

This paper treats project scheduling as a resource allocation or assignment function
by presenting a time schedule, which belongs to a class of NP-hard problems, also known
as the resource-constrained project scheduling problem [Blazewicz 1983]. That is, as
“Who does what and when”, where ‘who’ stands for employees, ‘what’ stands for tasks,
and ‘when’ means the time schedule.

A project is best represented as a Task Precedence Graph (TPG). A TPG is an
acyclic directed graph consisting of a set of tasks V = {T1, T2, . . . , Tn} and a set of
precedence relationships P = {(Pij ); i �= j, 1 � i � n, 1 � j � n}, where Pij = 1
if task i must be first completed, with no other intervening tasks, before task j can
start, and zero if not. Associated with each task Tk are the estimated effort and required
skills. We assume that such effort estimation can be obtained from any known estimation
method such as COCOMO [Boehm 1981].

The description of a task should include what skills are needed to complete it, along
with what level of effort and staffing is required, and any constraints the task is subject
to. The resources that are required to perform tasks include personnel, usually described
by numbers of hours, equipment, and facilities. Performance attributes can be specified
for resources. For example, the required skills of personnel can be specified, as can
the throughput of computing resources. The relationship between resources and tasks
is a many-to-many one. That is, many resources can be assigned to multiple concurrent
tasks.

The assignment of resources to tasks is usually subject to rules and constraints. In
the current research prototype the following simplified rules for assigning personnel to
tasks. First, the time required to perform a task is inversely proportional to the number
of resources (primarily appropriately skilled people) assigned to it. It is well known that
this is usually not the case. In addition, this assumption serves to increase the span of the
search space and slows down the algorithm. Likewise, the labor costs were assumed to
be constant for a given individual. Thus, all personnel are compensated for all overtime
at their normal rate. In some companies no overtime is paid to some employees, while
others receive a premium. Finally, no penalty was incurred for under utilization of per-
sonnel. Some companies strive for 100% utilization, while others deliberately reserve a
nominal amount (say 10%) for administrative functions.

Improving the realism of the task assignment and labor cost functions of the algo-
rithm were not seen as essential at this time. We will discuss how to improve the realism
of the system in these areas later in this paper.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 115

Finally, the assignment of personnel to tasks was constrained to those areas that
were essential to the prototype. Thus the percent of an employee’s labor that can be
committed to any give task was constrained to a discrete set of values. This commitment
quota was constrained to the set {0%, 25%, 50%, 75%, 100%} for each individual’s ef-
fort that could be assigned to any single task. Thus if person Pi is assigned a task Tj

with 0.25 quota they will expend 25% of the their normal, 40-hour work week working
on that task while it is active. Increasing the granularity of the allowable values (say to
the set {0%, 10%, 20%, . . . , 90%, 100%}) is not a structural change to the algorithm but
does degrade performance.

In addition, a constraint was applied to the overtime that an employee could work.
In our experiments this limit was set to 75%. Thus an employee committed to work on
task A 100% is also allowed to work on other tasks with a maximum of 75% commitment
quota. For protracted periods this would be excessive but the limit can easily be adjusted
downward or even made dependent on the duration of the overtime. Project management
commonly makes such adjustments.

Lastly, the objective function must be specified. Objective functions must satisfy
the following conditions:

– The objective function must depend upon the entire schedule. That is, the objective
must be dependent upon every task.

– The ultimate goal is to minimize or maximize the objective function.

– Objective functions may be composite. That is, they can be dependent upon com-
ponent objectives such as cost, schedule, and overtime commitment or any other
properties of the network. However, the objective function must return a scalar value.

– Any component objectives must be normalized and weighted. Since different com-
ponent objectives have different units and scales, it is necessary to normalize each
objective such that they all have comparability. Also different component objectives
can have different weights, or priorities.

In the research reported in this paper, four component objectives were considered.

Validity of job assignments (Validity). If the job assignments of a schedule are valid
they must satisfy the following constraints [Chao 1995]: the precedence relations among
tasks must be observed; the employee must posses the skills required for each task; all
the skill needs of the tasks must be satisfied; all the tasks must appear in the schedule
(completeness). Validity is usually scored on a 0/1 basis, 0 if the assignments are invalid,
1 if they are valid.

Minimum level of overtime (OverLoad). The amount of time worked beyond the in-
dividual over time limits is summed over all employees, and it is treated as a global
objective for a project. This was done to further reduce the amount of overtime worked
by employees. The alternative would be to impose a cost penalty for overtime, such as
an overtime premium.



116 CHANG ET AL.

Minimum cost (CostMoney). The total labor cost of performing the project, computed
using the labor rates of each resource and the hours applied to the tasks.

Minimum of time span (CostTime). The total time span required to finish the project,
from the start of the first task until the end of the last, can be used as a component
objective.

The simplest composite objective value is the summation of weighted component
objective values. Since genetic algorithms search for the solution with the highest fitness
values, the composite objective will be maximized. The simplest form of a composite
objective function is:

Composite objective function

= Validity · (W1/OverLoad + W2/CostMoney + W3/CostTime) (1)

In this form the Validity is used to impose a large penalty in the event the schedule
assignments are incomplete. The alternative would be to reject the genome out of hand.

Often the objectives conflict with each other. For example, it may be possible to
shorten a project’s duration by assigning more experienced employee to critical tasks,
but the cost will usually increase. As more components are encompassed by the objective
function the possibility for conflict between the components increases. This can result
in extended execution time of the genetic algorithm. However, it is more realistic, as
making tradeoffs between competing objectives is a common project management task.

3.2. Search by genetic algorithm

Our approach to project scheduling, extended from that of [Chang and Christensen
1999], requires that the user describe the problem in the following form:

I. A task precedence graph, TPG = (V ,E),

II. An employee database Demp including skills and salary,

III. An objective function.

The parameters describing the GA search are:

Npop = size of population,

Probcross = probability of crossover,

Probmut = probability of mutation,

Probreplace = probability of replacement.

The goal is to produce near optimal (in the sense of the specified objective function)
schedule Snear-opt.

Consider the case of two employees A and B with the same (sufficient to all tasks)
skills, with tasks 1, 2, 3, 4 having precedence shown in figure 3.

One possible solution to the problem of scheduling this simple project would be:



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 117

Figure 3. An example for task precedence graph.

“Employee A can be assigned to do task 1 with 50% commitment and task 2 with
25% commitment. Employee B does task 2 with 75% commitment and task 3 with
50% commitment.”

The intuitive representation for the above example is a two dimensional array with
Employee enumerated along the rows, and the tasks along the columns:

T1 T2 T3 T4

Emp. 1 0.5 0.25 0 0.25
Emp. 2 0 0.75 0.5 0.25

GAlib provides 2DArrayGenome 2DArrayAlleleGenome classes, simplifying the
task of implementing a GA search for problems of this type. Both individuals are as-
signed to task 4 at the 25% level.

4. The GA operators

Our algorithm used the default genetic operators provided by GAlib:

Genetic operators GAlib methods

Initialization GA2DarrayAlleleGenome〈 〉::UniformInitializer
Comparison GA2DarrayGenome〈 〉::ElementComparator
Mutation GA2DarrayAlleleGenome〈 〉::FlipMutator
Crossover GA2DarrayGenome〈 〉::OnePointCrossover

4.1. Initialization

Genetic algorithms are an example of a search method with weak memory. Indeed,
the only memory is the population itself. Initialization may have little effect on the
performance of the solution provided that the evolution history is long enough. As a
result we used the UniformInitializer, which initializes all individuals in the population
with uniform values. This results in a population that initially occupies only a small
region of the total solution space but, if the GA propagation parameters are selected



118 CHANG ET AL.

at all well, it will rapidly produce populations containing individuals with high figures
of merit (as measured by the objective function). The properties of individuals with
high figures of merit will be propagated throughout the whole population very quickly.
Customization of the initializer was not necessary in our experiments.

For the example shown in figure 3, the UniformInitializer assigns each individual
the same value, for example, 0.25.

T1 T2 T3 T4

Emp. 1 0.25 0.25 0.25 0.25
Emp. 2 0.25 0.25 0.25 0.25

4.2. Comparator

The comparator is used to determine how one genome is different from another, as mea-
sured in the space of all solutions. Thus, the comparison operation generates a distance
measure between two points in the search space as an intrinsic property of the space
itself. Thus, given two solutions A and B, one definition of the distance between A and
B is given by the equation

d =
√√√√

n∑
i=1

m∑
j=1

(aij − bij )
2, (2)

where aij – ith row and j th column of genome A, bij – ith row and j th column of
genome B, m – number of tasks, n – number of employees.

For example, given two solutions A and B for project scheduling:

A

T1 T2 T3 T4

Emp. 1 0.25 0.25 0.25 0.25
Emp. 2 0.25 0.25 0.25 0.25

B
T1 T2 T3 T4

Emp. 1 0 1 0.5 0
Emp. 2 0.5 0 0.25 0.5

d = (
(0.25 − 0)2 + (0.25 − 1)2 + (0.25 − 0.5)2 + (0.25 − 0)2 + (0.25 − 0.5)2

+ (0.25 − 0)2 + (0.25 − 0.25)2 + (0.25 − 0.5)2)1/2

The comparator thus provides a measure of how diverse a population is, as distinct
from how desirable it is. The objective function is used to evaluate that property.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 119

4.3. Crossover

The crossover operator mimics the way in which bisexual reproduction passes along
each parent’s “good genes” to the next generation. Figure 4, reproduced from [Wall
1996], illustrates how a crossover operator operates on 2D array genomes.

In this example the two parent solutions create two new “offspring” solutions by
combining their “genes” through a one-point crossover operation. Crossover uses both
inheritance and variation to improve the performance of the population (as measured
by the objective function) while retaining a diverse (as measured by the comparison
function) population.

4.4. Mutation

Following the crossover operation the offspring may (at a rate determined by Probmut) be
mutated by the mutation operator. This is done by modifying one of the values used to
encode the offspring. Similar to random mutations in the biological world, this function
is intended to preserve the diversity of the population, thereby expanding the search
space into regions that may contain better solutions.

GAlib provides three types of mutation operators, destructive, element flip and
element swap shown in figure 5, again, reproduced from [Wall 1996]. Each can be
assigned their own probabilities.

Figure 4. One-point crossover operator for 2D array genome (from [Wall 1996]).

Figure 5. Three types of mutation operators for array genome.



120 CHANG ET AL.

5. Details of the objective function

The objective function is used to determine the fitness value for each solution of the
problem. The fitness is, in turn, used during the selection process to determine the pool
of solutions used to create the next generation. In our approach to the project-scheduling
problem, it is performed in two stages, each based on the schedule the genome rep-
resents. The first stage evaluates the extent to which the genome satisfies the con-
straints, the second stage evaluates the schedule performance of the genome. The 2D
array genome contains all the data needed to directly calculate the value of the objective
function.

Of the two stages of evaluation, the constraint satisfaction is the easier one to per-
form. Two validations are performed sequentially, task completeness and resource skill
match.

Task completeness. At least one employee must be assigned to work on each task Tj .
In other words the summation of any column of the employee-to-task assignment array
S must be greater than zero.

n∑
i=1

Sij > 0. (3)

Resource skill match. The combined skill set of the employees assigned to task i

(SK_EMP(i)) should include all the skills required by the task (SK_TASK(i)). That is,

SK_EMP(i) ⊇ SK_TASK(i). (4)

In the second stage of the objective function evaluation process the cost, duration, and
overtime percentages are evaluated and combined. The cost is computed for each task
by summing the cost contribution of each individual to the task. The total cost is then
computed by summing the costs of all the

CostMoneynorm = CostMoney

CostMoneymax
(5)

tasks. The duration is computed by finding the longest (in calendar time) path through
the precedence graph. These components are computed for each member of the current
population and then normalized using the maximum values found for that population,
as shown in equations (5) and (6). Finally, the two components are combined, using
user-selected weights (Wtime and Wmoney), as shown in equation (7).

CostTimeNorm = CostTime

CostTimemax
, (6)

FF = Wtime

CostTimenorm
+ Wmoney

CostMoneynorm
. (7)

The final component of the objective function is the amount of effort expended beyond
the over time limits. Each employee can be separately assigned a limit to the amount



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 121

of work load they can be assigned. The total effort expended beyond the limits is then
totaled across all tasks and all employees. In our work any over-limit is considered
a reason for rejection of the schedule. However, the metric could be normalized and
combined with the other components, as shown in equation (1).

6. The test problems and results

The project used in the tests consists of 18 tasks. The TPG for the project is shown in
figure 6. There are 10 employees available to work on this project. The skill proficiency
(0–5) and salary for each employee is shown in table 2.

We evaluated the algorithms using a variety of objective functions, focusing on the
time required to find satisfactory solutions. GA performance is tested using both single
objective and composite objectives.

Test 1. “Find the schedule that utilizes all employees with full loading and no restriction
of skill match, money cost and overtime working.”

Test 1 is definitely not realistic, it was used only for evaluation purposes. It has
one expected solution – a 2D array with full of ‘1’s, which means that every employee
should do each of the task with 100% commitment. Figure 7 shows its evolution history.
This curve shows that the job loading increases with each generation, and eventually

Figure 6. Task precedence graph of the experiment project (PM: person month, SR: skill required).



122 CHANG ET AL.

Table 2
The employee table.

Emp. ID Skill 0 Skill 1 Skill 2 Skill 3 Skill 4 Salary

P1 – – 2 4 – 5000.00
P2 1 – 2 – – 4000.00
P3 – 4 – – – 3000.00
P4 – – 2 4 3 5000.00
P5 – 3 – – – 3000.00
P6 – 3 2 4 – 6000.00
P7 – 2 2 – – 6000.00
P8 – 3 3 4 – 5000.00
P9 – 1 2 – – 8000.00

P10 3 2 – – 3 9000.00

Figure 7. The evolutionary history for test 1 with job loading as objective.

reaches its maximum level of 180. Recall that the solution array is 10×18, so 180 is the
summation of all the commitments in the array. The optimal solution for test 1 is shown
in table 4.

Test 2. “Find the schedule that has shortest execution time, assuming no restriction of
skill match, money cost and overtime working.”

According to the constraints used, the time spent to fulfill a task is inversely pro-
portional to the number of employees assigned to it. The expected result is a schedule
that assigns as many employees as possible to each task with full commitment quotas.
Recall that the commitment quotas take the form of {0%, 25%, 50%, 75%, 100%}. This
test was used to evaluate the correctness of the implementation.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 123

Table 3
TPG matrix represents the precedence relations between tasks.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4
The optimum solution for test 1.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17

P1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 8 shows the genetic evolutionary history to find the solution for test 2. Each
generation produces a population that provides better and better performance. Table 5
shows the optimal solution when the generation number is over 500. The solution ex-
hibits the following expected behaviors.

(a) The solution array is dominated by full loading commitments. It achieves the stated
objective that more personnel can complete a task more quickly.

(b) The matrix also contains a small number of assignments with partial commitment
quota. The reason is that the schedule duration is only determined by the critical
path of the TPG. For example, the following graph shows a project consisting of



124 CHANG ET AL.

Figure 8. The genetic evolutionary history of test 2 with time cost as primary objective.

Table 5
The optimum solution for test 2.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17

P1 1 0.5 1 1 1 1 1 1 0.75 1 1 1 1 0.75 1 1 1 1
P2 1 1 1 1 1 0.25 0.75 1 1 1 1 1 1 0.75 1 1 1 1
P3 1 0.5 1 1 1 1 1 1 1 1 0.5 1 1 1 1 1 1 1
P4 1 1 1 1 1 1 1 1 1 1 1 1 1 0.75 1 1 1 1
P5 1 1 1 1 1 1 1 1 0.5 1 0.5 1 1 1 1 1 1 1
P6 1 0.5 1 1 1 0.75 1 1 0.75 0.75 0.5 1 1 0.5 1 1 1 1
P7 1 1 1 1 1 0.25 1 1 0.5 1 0.75 1 1 0.75 1 1 1 1
P8 1 0.75 1 1 1 0.75 1 1 0.5 1 1 1 1 1 1 1 1 1
P9 1 1 1 1 1 1 1 1 0.75 1 0.75 1 1 1 1 1 1 1

P10 1 0.25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

three tasks. If the minimum execution time for T1 is 20 months, T2 is 5 months, T3
is 10 months, the minimum time cost to full T1, T2, T3 is 20 + 10 = 30 months.
The critical path is from T1 to T3. As long as the assignment for T1 and T3 are
optimized, T2 need not to be fully loaded.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 125

Figure 9. The genetic evolutionary history of test 3 with money cost as primary objective.

Table 6
The near-optimum solution for test 3 with lowest money cost.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

P1 1 0.5 0.5 0 0 0.25 0.25 0.75 0 0 0.5 0.75 0.75 0.75 0.5 0 0.25 1
P2 1 0.5 0.75 1 0.5 0.25 1 0.5 0 0.75 1 0.75 0.75 0.75 1 0.75 0.5 1
P3 0.75 0.75 0.75 1 0.75 1 1 1 0.75 0.75 0.25 1 1 1 1 1 0.5 0.75
P4 1 0.5 0.5 0.5 0 0.25 0.5 0.75 0.25 0.75 1 0.25 0 0 1 0.25 0.5 0.75
P5 0.75 1 0.5 1 0.75 0.75 0.75 1 1 0.75 1 1 1 1 0.75 0.75 1 0.5
P6 0.25 0.25 0.25 0 0.25 0 0.5 0.75 0 0 0.25 0.25 0 0 0.5 0 0 0
P7 0 0.25 0.5 0.25 0 0 0 0 0 0.25 0.5 0 0 0.25 0.25 0 0.75 0.75
P8 0.75 0.25 0 0.5 0 0.25 0.25 0.75 0 0 0.5 0.25 0.75 0 0 0.5 0.5 0.5
P9 0 0 0 0 0 0 0 0.25 0 0 0.5 0 0 0 0 0 0 0

P10 0.25 0 0 0 0 0 0.25 0 0 0 0.25 0 0.25 0.25 0.25 0 0.25 0.25

Test 3. “Find a valid schedule that has lowest money cost, irrespective of time cost and
overtime working.”

Compared to tests 1 and 2, the schedule produced by test 3 is not predictable.
According to our algorithm described above, the money cost needed to complete the
project is based on the execution time for each task, the number of employees assigned
to that task and their salaries.

Figure 9 shows how genetic algorithm “evolves” an optimum solution for test 3.
The evolutionary curve clearly demonstrates a pattern of long term cost reductions with
short-term fluctuations. Table 6 shows the near-optimum solution.



126 CHANG ET AL.

Test 4. “Find the optimum valid schedule, satisfying a composite objective function,
including money cost, time cost and overt time limits for loading.”

The objective for test 4 is composite. Three objectives: time, money, overload-
ing are considered at different levels. Since these individual objectives use different
scales, they are normalized to the range of 0–1. The definition of the composite objec-
tive is shown in equation (1). Figure 10 shows the evolution of the solution for test 4.
The evolution process reached its optimum level after around 6,000 generations. Fig-
ures 11 and 12 show the behavior of the individual components of money and time.

Figure 10. The genetic evolutionary history of test 4 with composite objective.

Figure 11. The genetic evolutionary history for time cost of test 4.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 127

Figure 12. The genetic evolutionary history for money cost of test 4.

Table 7
The GA solution that considers real time overloading.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

P1 0 1 0.25 0.25 0.5 1 0 0.5 0.5 1 0 0.75 1 0 0.75 0.25 1 0.5
P2 0 1 0.25 0 0.25 0.5 0.25 0.75 0.75 1 0.5 0 1 0.75 0.25 0 1 0.75
P3 0.5 0.5 0.25 0 0 0.5 0 0 0.5 1 0 0.75 1 0.75 0.75 0.25 0.75 0
P4 0.75 0.5 0 0.5 0 0.75 0.50 1 0 1 0.75 1 1 0.25 0.5 0.25 0 1
P5 0.5 0.5 0.25 0 0 0.5 0.75 0 0.5 1 0 0.75 1 0.75 0.75 0.25 0.75 0
P6 0.5 0.5 0 0.25 0 1 0 0.25 0.75 1 1 1 1 1 0.5 0 0.25 0.25
P7 0.25 0.5 0 0 0.25 0.75 1 0.25 0.75 1 0.5 0.75 1 0.5 0 0 0 0.25
P8 0 1 0.25 0.25 0.5 1 1 0.5 0.5 1 0 0.75 1 0 0.75 0.25 1 0.5
P9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P10 0 0 0.25 0 0 0 0.25 0 0 0 0 0 0 0.25 0.5 0.25 1 0

Both “Money” and “Time” evolution show decreasing trends but they are not correlated
due to heuristic behavior of genetic algorithm and the complex relationship between
time cost and money cost. Table 7 shows the optimum schedule for test 4. Notice that,
employee 9 isn’t assigned any work, and employee 10 is only lightly loaded. Both of
these employees have higher salaries and few applicable skills. The schedule shown by
table 7 appears reasonable and also is valid in the sense described earlier.

Finally, figure 13 shows the loading for every employee in test 4. The loading is
set as 100%. From the graph we can see, the time over loading is minimized to zero.
The limit for loading can be changed as a user input to the algorithm.



128 CHANG ET AL.

Figure 13. The employee’s loading charts. The loading limit is set as 100%.

To illustrate this, test 4 was re-run using various loading limits. In the following
test each employee was assigned a different loading limit according to the following
table:

Employee Loading limit

1 1.0
2 1.0
3 1.25
4 1.25
5 1.5
6 1.5
7 1.75
8 1.75
9 2.0

10 2.0

The GA produced a valid schedule for this case, resulting in employee task assign-
ments shown in table 8 and loading charts given in figure 14.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 129

Table 8
The GA solution.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

E1 0.25 0.5 0 0 0.25 0.75 1 1 0.75 1 0.5 0.75 1 0.5 0 0 0 0.25
E2 0 1 0.25 0 0.25 0.5 1 1 0.75 1 0.5 0 1 0.75 0.25 0 1 0.75
E3 0.5 0.5 0.5 0.25 0.25 0.5 0.5 0.75 0.25 1 0.75 1 1 0.5 0.25 0.5 1 1
E4 0.75 0.5 0 0.5 0 0.75 1 1 0 1 0.75 1 1 0.25 0.5 0.25 0 1
E5 0.5 0.5 0.25 0 0 0.5 1 1 0.5 1 0 0.75 1 0.75 0.75 0.25 0.75 0
E6 0.5 0.5 0 0.25 0 1 1 1 0.75 1 1 1 1 1 0.5 0 0.25 0.25
E7 0.5 0.75 0 0 0 1 1 1 0.25 1 0.75 1 1 1 0.25 0.75 0.75 1
E8 0 1 0.25 0.25 0.5 1 1 1 0.5 1 0 0.75 1 0 0.75 0.25 1 0.5
E9 0.75 0.75 0.75 0.25 0.75 0.25 1 1 1 1 0.75 1 1 0 0.5 0.75 0.75 0.5

E10 1 1 0.25 0.75 0 0.75 1 1 1 1 1 1 1 0.5 0.5 0.25 1 0

Figure 14. The loading history for employees having different loading limits.



130 CHANG ET AL.

Figure 15. The task precedence graph for multiple projects used in test 5.

Test 5. “Multiple project scheduling (N = 3) without loading limit.”

Project scheduling based on 2D-array genetic representation can be easily extended
to multiple projects. With our representation, multiple projects do not necessarily have
higher complexity. Figure 15 shows the TPG for three projects. Table 9 gives the corre-
sponding solution.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 131

Table 9
The optimum solution for multiple project of test 5.

Project 1

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

P1 0.5 0.5 0.5 0 0 1 0.75 0.25 1 0
P2 0.75 0.75 0.5 0 0 0.75 0 0.75 1 0.25
P3 0.75 1 0.75 0 0 0 0 1 1 0.5
P4 0.5 1 0 0 0 0 0 0.25 0.75 0.5
P5 0.75 1 1 0 0.25 0.5 0 0 0.5 0.5
P6 0.25 1 0.25 1 0.25 0 0 0 0.5 0.5
P7 0 0.25 0 0.25 0.75 0 0 0 0 0.75
P8 0.25 0 0.5 1 1 0.5 0 0 0.5 0
P9 0 0.75 0 1 0 0.5 0 0 0.25 0

P10 0 0 0 0 1 0 1 0 0 0
P11 0 0.75 0 0 0 0 0 0 1 0
P12 0.25 0.75 0 0 1 0.5 0 0.25 0.25 0
P13 0 0.75 0 0.25 1 0 0 0 0 0.75
P14 1 0.75 0.75 1 0.75 0 0 0 0 0.25
P15 0.25 0.25 0.5 1 0.75 0 0.75 1 1 0

Project 2

T10 T11 T12 T13 T14 T15 T16 T17

P1 1 0.75 0.25 0.25 0 0.25 0.75 0
P2 0.75 0 0.75 0 0 0.25 0.25 0
P3 1 0 1 1 0.75 1 1 0.75
P4 0 0 0.25 1 0 0.25 0 0
P5 0.5 0 0 1 0.25 0.5 1 0.5
P6 0 0 1 0.25 0.25 0 0.5 0
P7 0 0 1 0.25 0 0 0 0
P8 0.5 0 0.75 0.5 0.5 0 0 0.25
P9 0.5 0 0 0.75 0.25 0 0 0

P10 0 0 1 0.25 0 0 0 0
P11 1 1 0 0 0 0 0 0
P12 0.5 0.75 0 0.75 0.25 0.75 0.5 0
P13 0 0 0 1 1 0.75 0.75 1
P14 1 1 0 1 0.75 0.75 0.75 0.25
P15 1 0.75 1 1 0.75 0.5 0.25 1

7. GA performance analysis

All the results of tests were achieved using a steady-state genetic algorithm. No specific
attempt was made to tune the genetic algorithm, all tests were run for a fixed number of
generations with reasonable mutation and crossover rates, population size, and replace-
ment rate. Tables 4–9 summarize the parameters used in the genetic algorithm runs.

The genetic algorithm required no modifications to switch between any of these
test problems. All of the tests used the same data structures and genetic strategies. Only
the objective function was modified for the different tests.



132 CHANG ET AL.

Table 9
(Continued).

Project 3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

P1 0.25 0.75 0 1 0.75 0 0.25 0.25 0.75 0.75 0.75 1
P2 0.25 0.25 0 0.75 0.25 1 0.5 0 0.25 0 0 0.75
P3 1 1 0.75 0.75 0.75 0 0 0 1 0.5 1 1
P4 0.25 0 0 0.75 0.25 0 0 0.5 0.25 0 0.5 0
P5 0.5 1 0.5 0 0 0 1 0.75 1 0.75 0.75 1
P6 0 0.5 0 0.25 1 0 0.75 0.25 0 0 0 0.75
P7 0 0 0 0 0 1 0 0 0 0.75 0 0.75
P8 0 0 0.25 0 0.5 0.5 0.75 0 0.25 0 0.25 1
P9 0 0 0 0.25 0 0 0 0 0 0 0 0.25

P10 0 0 0 0.5 0 0.25 0 0 0.25 0.75 0 0.75
P11 0 0 0 0.25 0 0.5 0.25 0 0.25 0.75 0.75 0.5
P12 0.75 0.5 0 1 0.5 0.5 0.5 0.5 0.25 0.5 1 1
P13 0.75 0.75 1 1 1 0.75 1 0.25 0 0 0 0.75
P14 0.75 0.75 0.25 0.75 0 1 1 1 1 0.75 1 1
P15 0.5 0.25 0 0 0 0.75 0.75 1 0.25 0.75 0.5 0.75

Table 10
The summery of parameters used in GA tests.

Genetic Number of Mutation Crossover Replacement Population
algorithm generation probability (%) probability (%) (%) size

Test 1 Steady-state 1200 0.15 65 15 30
Test 2 Steady-state 500 0.15 65 15 60
Test 3 Steady-state 2000 0.25 90 15 30
Test 4 Steady-state 10000 0.3 75 15 30
Test 5 Steady-state 8000 0.2 65 15 30

7.1. GA versus exhaustive search

To establish a benchmark by which to evaluate performance of the genetic algorithm an
exhaustive search approach was also implemented. Obviously, an exhaustive search is
computable, as it simply enumerates every possible combination in the solution space,
evaluating each and keeping the record for the best solution seen to date. However, the
computational complexity of exhaustive search is extremely high. Given the example
shown in figure 3, this complexity can be estimated. This example consists of four tasks
and two employees. The solution is represented as a 2-dimensional array with height
as employee dimension and width as task dimension. Each cell in the array is assigned
one value from the set of {0, 0.25, 0.5, 0.75, 1}. So it has a total number of 58 different
combinations including invalid cases. For a general case, an n × m array will have 5n×m

combinations. Using a machine with a 1000 MHz CPU, assuming it can enumerate
10 million combinations in one second, the following chart shows the estimation of real
computing time with respect of size of the array.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 133

Table 11
The complexity of exhaustive searching with 2D array representation (worst case).

Size of array Number of Number of Computing Computing time
combinations combinations time (s) (year)

4 54 625 6.25E−5 1.98E−12
8 58 390,625 3.9E−2 1.24E−9

16 516 1.526E11 152.6E+2 4.84E−4
32 532 2.328E22 2.32E+15 7.4E+7
64 564 5.421E44 5.42E+37 1.72E+30

128 5128 2.939E89 2.94E+82 9.32E+75

Table 12
Experiment results from exhaustive search and GA-Scheduling algorithm.

Proj. # # Tasks # Emp. Array Num. Time (ES) Time (GA) #pop/#Conv./#Gen.
size comb. (seconds)

(1) 3 2 6 56 0.5 s 0.5 40/100/1000
(2) 3 3 9 59 17.2 s 0.61
(2) 4 4 16 516 7.25 h 0.98 40/330/1000
(3) 8 4 32 532 N/A 1.4 40/400/1000
(4) 8 8 64 564 N/A 2.8 40/560/1000
(5) 10 10 100 5100 N/A 4.2 40/470/1000
(6) 15 10 150 5150 N/A 6.3 40/580/1000
(7) 20 10 200 5200 N/A 14.0 40/780/1000
(8) 20 15 300 5300 N/A 18.2 40/778/1000
(9) 20 20 400 5400 N/A 21.6 40/890/1000

(10) 30 20 600 5600 N/A 22.4 40/760/1000
(11) 30 25 750 5750 N/A 24.5 40/810/1000
(12) 30 30 900 5900 N/A 27.7 40/860/1000
(13) 40 30 1200 51200 N/A 35.0 40/960/1000
(14) 50 30 1500 51500 N/A 52.5 40/860/1000

The exponential complexity of exhaustive search makes it impossible to find opti-
mal solutions for projects of any realistic size or complexity.

In order to contrast the performance of exhaustive search and GA approaches an
experiment was performed on a Pentium-based, 300 MHz-class computer.

In the experiment we randomly created a set of experimental projects. Each project
has different precedence relationships, different constraints for each task, and various
skills for the programmers. In each project, we use the exhaustive search to find the
optimal solution, and then the GA-Scheduling was applied to the same project to find
the optimal (or near-optimal) solution. Table 12 summarizes the experimental results
from exhaustive search and genetic algorithm.

As was estimated in table 11, the computational complexity is extremely high for
exhaustive search.



134 CHANG ET AL.

Figure 16. The time expense for GA with respect to the size of gene array.

Table 13
The description of three different groups of projects.

Group number Number of Number Number of Combination
projects of tasks employees

Group (1) 10 10 10 5100

Group (2) 10 30 15 5450

Group (3) 10 50 30 51500

Figure 16 shows that the complexity of GA is not proportional to the number of
combinations, which is 5array size, but rather grows linear with the size of the 2D array.
This is because of the fixed population size used in each generation.

7.2. Parameter tuning

In order to investigate the impact of different parameters, including converge numbers,
crossover probability, mutation probability and replacement probability, on the perfor-
mance of GA-Scheduling algorithm, we conducted a comprehensive experiment on a
number of projects. Test data for 30 projects with different precedence relationships,
different constraints for each task, and various skills for the employees were randomly
generated. The projects are divided into three different groups as shown in table 13
according to the computational complexity.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 135

Table 14
The range of different parameters.

Parameters Parameter’s range

Population number 10, 20, . . . , 100
Generation number 100, 200, . . . , 1000
Crossover probability 10%, 20%, . . . , 100%
Mutation probability 10%, 20%, . . . , 100%

Table 15
The relationship between generation number and statistical behavior of GA.

Group 1 Group 2 Group 3

Gen. num. Min Mean Max Min Mean Max Min Mean Max

100 83.73 83.83 84.79 8.57 8.58 8.60 1.80 1.80 1.81
200 90.90 91.04 91.25 8.88 8.92 8.98 1.83 1.83 1.83
300 101.26 102.15 108.49 9.30 9.32 9.41 1.86 1.87 1.87
400 116.92 116.93 117.06 9.55 9.55 9.58 1.89 1.90 1.90
500 125.76 125.76 125.82 9.66 9.68 9.71 1.93 1.93 1.93
600 127.48 128.00 137.59 9.80 9.83 9.92 1.96 1.96 1.98
700 149.32 149.33 149.46 10.13 10.20 10.33 2.01 2.01 2.01
800 151.28 151.84 153.38 10.48 10.50 10.53 2.04 2.04 2.04
900 166.38 166.45 167.23 10.90 10.93 10.96 2.05 2.05 2.06

1000 170.96 171.14 171.23 11.22 11.24 11.27 2.08 2.08 2.08

Table 16
The relationship between population size and statistical behavior of GA.

Group 1 Group 2 Group 3

Pop. num. Min Mean Max Min Mean Max Min Mean Max

10 127.06 127.06 127.06 8.78 8.79 8.80 1.90 1.90 1.90
20 155.87 155.87 155.87 10.45 10.46 10.47 2.10 2.10 2.12
30 187.18 187.18 187.18 11.18 11.23 11.33 2.09 2.09 2.10
40 271.70 272.65 276.28 11.17 11.18 11.28 2.13 2.13 2.13
50 296.85 296.90 297.70 11.48 11.49 11.54 2.12 2.12 2.12
60 289.30 289.45 290.91 12.37 12.39 12.54 2.17 2.17 2.18
70 238.80 238.88 239.52 10.99 11.02 11.16 2.17 2.17 2.17
80 253.76 254.43 255.08 12.06 12.07 12.10 2.18 2.19 2.19
90 206.69 207.51 208.43 11.25 11.27 11.30 2.15 2.15 2.16

100 200.12 200.14 200.19 11.64 11.66 11.69 2.14 2.14 2.14

For each project, we applied the GA-Scheduling algorithm with different parameter
settings. The range for each parameter is shown in table 14. Each project has been
executed with a combination of parameters.

For each set of parameters, the behavior of the genetic population was evaluated,
using the minimum (Min), the maximum (Max), and average (Mean) values of the fitness
value seen in the population.

Table 15 shows the relationship between the number of solutions in the population
and the behavior of these three statistics of the GA solution. The relationship between the



136 CHANG ET AL.

Table 17
The relationship between crossover probability and statistical behavior of GA.

Group 1 Group 2 Group 3

CrossOver % Min Mean Max Min Mean Max Min Mean Max

10 101.90 101.90 101.90 9.61 9.61 9.61 1.94 1.94 1.94
20 116.80 117.10 117.10 9.40 9.41 9.46 1.97 1.97 1.97
30 124.75 124.78 125.51 10.27 10.28 10.30 2.02 2.02 2.02
40 138.52 138.52 138.60 10.80 10.81 10.83 2.04 2.04 2.04
50 209.56 209.56 209.58 10.34 10.35 10.36 2.07 2.07 2.08
60 110.51 110.51 110.51 10.64 10.65 10.67 2.05 2.06 2.06
70 216.41 216.41 216.41 10.47 10.48 10.51 2.07 2.07 2.08
80 165.91 165.91 165.93 10.28 10.29 10.31 2.11 2.12 2.12
90 179.38 179.90 180.76 10.44 10.45 10.47 2.07 2.08 2.08

100 144.76 145.30 145.38 10.05 10.06 10.08 2.10 2.10 2.11

Table 18
The relationship between mutation probability and statistical behavior of GA.

Group 1 Group 2 Group 3

Mutation % Min Mean Max Min Mean Max Min Mean Max

10 147.40 147.40 147.40 8.44 8.44 8.45 1.87 1.87 1.87
20 779.80 787.60 804.10 8.41 8.41 8.41 1.81 1.81 1.81
30 328.66 329.41 339.88 8.29 8.29 8.29 1.83 1.83 1.83
40 78.70 78.70 78.70 8.46 8.46 8.46 1.80 1.80 1.80
50 423.47 539.14 543.13 8.17 8.17 8.17 1.79 1.19 1.80
60 109.65 110.88 123.32 8.03 8.03 8.03 1.79 1.79 1.79
70 172.63 172.63 172.63 8.14 8.14 8.14 1.80 1.80 1.80
80 527.84 528.44 533.91 8.15 8.15 8.15 1.80 1.80 1.80
90 737.48 743.34 802.20 8.12 8.12 8.12 1.81 1.81 1.81

100 345.50 381.45 505.40 8.39 8.39 8.39 1.81 1.81 1.81

generation numbers and GA statistics is depicted in table 16. Table 17 shows the impacts
of crossover probability to GA statistics. Table 18 shows the mutation probability effect.

Table 15 shows that statistically the fitness values will increase with the generation
numbers. The variance of each population will decrease while the populations converge
to a steady state.

We were interested in whether or not there is an optimal combination of parame-
ters that improves the performance of the Genetic algorithm. Tables 16–18 suggests
that when the population size is around 50–80, crossover around 40–80%, and mutation
around 10–40%, the genetic algorithm perform best.

8. Conclusions

This paper reports new research results as a major extension to the thesis work done by
Chao [Chao 1995] that was inspired by Chang’s message [Chang 1993] to encourage the



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 137

software engineering researchers to bridge the gap between soft computing and software
engineering.

Borrowing the wisdom of soft computing, this research applied an existing GA
software library to the problems of project scheduling. The representation chosen for
this work was PM-Net [Chang and Christensen 1999]. We introduced a new internal
representation of PM-Net and implementation for application of genetic algorithms to
project scheduling. This technique is able to determine the near-optimal resource allo-
cation and automatically schedule the resources. Validation of our techniques has been
conducted by five test problems with progressively increased complexity. Results show
that the GA scheduling approach provides an attractive tool to project management.

The major advantage of GAs lies in their ability to generate near-optimal solutions
rapidly. All five tests demonstrated superior performance compared to exhaustive search.
Another advantage of the GA approach to project management is the ease with which
it can be adapted to varying constraints and objectives as weighted components of the
fitness function (or objective function). This makes it easy to adapt the GA scheduler to
the particular requirements of projects.

The tuning of the GA’s free parameters is currently rather ad hoc. Indeed, most
of the research into GA seams to be centered on providing minor improvements to effi-
ciency without much theoretical justification. A clearer theoretical framework is needed
for more thorough understanding of the subject. It is conceivable that a quantitative sta-
tistical basis for GA may be found in Bayesian inference [Backus 1988; Gallagher et al.
1991].

Genetic algorithms are conceptually simple and well suited to problems with a
mix of continuous and discrete variables. They frequently outperform other more direct
methods such as gradient descent on difficult problems, i.e., those involving highly non-
linear, high dimensional, discrete, multi-modal or noisy functions. Many empirical sim-
ulations have demonstrated the efficiency and robustness of GA on different optimization
problems. However, GA are not guaranteed to find the global functional optima simply
because the search process is not guaranteed to cover the entire state space. However,
we are encouraged by our results in the sense that currently most project management
tools failed even to attempt to tackle the difficult NP-hard scheduling problems.

9. Limitations and future work

We discovered several limitations of our current design and implementation. Some of
the most important issues are discussed below.

9.1. Integrating the COCOMO model with the constraint

One assumption made in implementing the constraints was that the time to complete a
task is inversely proportional to the number of persons involving in it. This is not an
essential issue but did simplify the calculation of cost. However, it is well known that
this is not realistic. The COCOMO model [Boehm 1981] provides a simple mechanism



138 CHANG ET AL.

that we will use to eliminate this flaw. It gives the relationship between the time needed
to complete a project and the number of employees involved. The empirical relationship
between cost (total labor hours in person-months (PM) ) for development and length of
duration is

TDEV = 2.5 · (MM)0.38.

So the average, normal staffing on a task is

Staff = MM

2.5 · MM0.38 = 0.4 · MM0.62.

The staffing number is thus nonlinear with the total labor content of a task. The CO-
COMO equation can be used as a filter to restrict on the number of employees working
on same tasks. In other words, we can constrain the distribution of employee such that
execution of tasks follows COCOMO pattern. Of course, not every task in a project
would be subject to this constraint.

An alternative way to integrate COCOMO or other cost model would be to in-
troduce an efficiency function into the fitness function. This function would penalize
unrealistic job loading and would give feedback to the genetic algorithm to generate
more efficient schedules.

9.2. More constraints on people

Modern project management practices should encourage individual career growth. Thus
job assignments could also consider an employee’s experience needs. This would require
that information of this type would need to be added to the employee’s current skill set.
Including this factor will, of course, increase the complexity of the scheduling problem
and may conflict with other project objectives. In addition, if employees are assigned
tasks that they have little or no experience in performing, some form of “learning curve”
must be included in the model.

In addition, for reasons of efficiency, it is common practice to assign a person to
no more than a small numbers of tasks at any one time. The rule of thumb we suggest is
to assign at most 1.5–2 tasks per person. This can easily be included in the model and
will, in fact, serve to reduce the number of possible solutions.

Finally, the limit of overloading may vary from person and person. For instance,
lead programmers or team leaders may have higher limits than others.

References

Blazewicz, J., J.K. Lenstra and A.H.G. Rinnooy Kan (1983), “Scheduling Subject to Resource Constraints:
Classification and Complexity,” Discrete Applied Mathematics 5, 11–24.

Boehm, B. (1981), Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ.
Chang, C.K. (1993), “Is existing software engineering obsolete?” IEEE Software, September, 4–5.
Chao, C. (1995), “SPMNET: A New Methodology for Software Management”, Ph.D. Thesis, The Univer-

sity of Illinois at Chicago.



GENETIC ALGORITHMS FOR PROJECT MANAGEMENT 139

Chang, C.K. and M. Christensen (1999), “A Net Practice for Software Project Management,” IEEE Soft-
ware, November/December, 80–88.

Davis, E.W. and G.E. Heidorn (1971), “An Algorithm for Optimal Project Scheduling under Multiple Re-
source Constraints,” Management Science 17, 12, B803–B817.

Forrest, S. (1993), “Genetic Algorithms: Principles of Natural Selection Applied to Computation,” Science
261, 872–878.

Gallagher, K., M. Sambridge and G. Drijkoningen (1991), “Genetic Algorithms: An Evolution from Monte
Carlo Methods for Strongly Non-Linear Geophysical Optimization Problems,” Geophysical Research
Letter 18, 12, 2177–2180.

Goldberg, D.E. (1989), Genetic Algorithm in Search, Optimization and Machine Learning, Addison-
Wesley, Reading, MA.

Goodman, E.D. (1996). “An Introduction to GALOPPS Release 3.2 (July 31, 1996),” Technical Report
No. 96-07-01, Genetic Algorithms Research and Applications Group (GARAGe), Michigan State Uni-
versity.

Holland, J.H. (1992), “Genetic Algorithms,” Scientific American, 66–72.
Knjazew, D. (2000), “Ordering Messy Genetic Algorithm in C++,” IlliGAL Report No. 2000034.
Ozdamar, L. and G. Ulusoy (1995), “A Survey on the Resource-Constrained Project Scheduling Problem,”

IIE Transactions 27, 574–586.
Schraudolph, N.N. and J.J.Grefenstette, (1992), “A User’s Guide to GAUCSD 1.4”, Technical Report CS92-

249, CSE Department, UC San Diego.
Wall, B.M. (1996), “A Genetic Algorithm for Resource-Constrained Scheduling”, Ph.D. Thesis, MIT;

http://lancet.mit.edu/ga.


