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Abstract 

This article describes the application of genetic algorithms to the problem of 
protein tertiary structure prediction. The genetic algorithm is used to search a 
set of energetically sub-optimal conformations. A hybrid representation of 
proteins, three operators MUTATE, SELECT and CROSSOVER and a fitness 
function, that consists of a simple force field were used. The prototype was 
applied to the ab initio prediction of Crambin. None of the conformations 
generated by the genetic algorithm are similar to the native conformation, but 
all show much lower energy than the native structure on the same force field. 
This means the genetic algorithm's search was successful but the fitness 

function was not a good indicator for native structure. In another experiment, 

the backbone was held constant in the native state and only side chains were 

allowed to move. For Crambin, this produced an alignment of 1.86 ~ r.m.s. 

from the native structure. 
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1. I n t r o d u c t i o n  

The work presented in this article concerns the application of genetic algorithms 

[Holland, 1975] to the problem of protein structure prediction [Schulz & Schirmer, 

1979; Lesk, 1991; Branden & Toose, 1991]. Genetic algorithms in computer science 

are heuristic methods that  operate on pieces of information like nature does with 

genes during evolution. Individuals, represented by a linear string of letters of an 

alphabet (in nature nucleotides, in genetic algorithms bits, strings or numbers) are 

allowed to mutate, crossover and reproduce. Members of a new generation and 

their parents are then evaluated by a fitness function. Only the best individuals 

enter the next reproduction cycle. After a given number of cycles, the population 

consists of well adapted individuals that  each represent a solution for the problem 

of optimizing the given fitness function. Although it cannot be proven that  the final 
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individuals contain the optimal solution it can be mathematically shown that the 

overall effort is maximised during a run [Holland, 1975]. In some applications, 

where the search space was too large for other heuristic or analytic methods, 

genetic algorithms produced better solutions than those known before [Davis, 

1991]. 

In this work, the individuals are conformations of a protein and the fitness function 

is a simple force field. What follows is a description of the rep resen ta t ion  

formalism, the fitness function and the operators used. The results of a run on 

Crambin are then presented and finally, the results of an experiment for side chain 

placement are shown. 

2. Protein Representat ion 

For any application of a genetic algorithm a choice has to be made on the 

representation of the "genes". In the present work, the so-called hybrid approach 

was taken [Davis, 1991]. This means, that the objects the genetic algorithm 

processes are encoded by numbers instead of bit strings, which were used in the 

original genetic algorithm [Holland, 1975]. A hybrid representation is usually 

easier to implement and also facilitates the use of operators. However, three 

potential disadvantages are encountered: strictly speaking, the mathematical 

foundation of genetic algorithms holds only for binary representations; binary 

representations run faster in many applications; and an additional encoding / 

decoding process may be required. For a hybrid representation of proteins there are 

at least two immediately intuitive choices, one being Cartesian coordinates, the 

other torsion angles. 

2.1 Cartes ian Coordinates  

In this representation, the coordinates of all atoms of a protein are stored in a fLxed 

order, i.e. the  nth number always refers to the same component of the 3D 

coordinate of a particular atom. This representation has the advantage of being 

easily converted to and from the conformation of a protein. However, it faces the 

disadvantage that the use of a random mutation operator would most of the time 

create invalid instances, where atoms lie too far apart or collide. To prevent this 

from happening, a filter which eliminates invalid individuals had to be installed 

between the operator and the fitness function. This would be a rather time 

consuming process, especially when a large percentage of the individuals had to be 

sorted out. Therefore, the representation in Cartesian coordinates would 

considerably slow down the progress of the genetic algorithm. These considerations 

have led to another model. 
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2.2 Tors ion  Angles  

In this representation a protein is described by a set of non-redundant torsion 
angles. This can be done under the assumption of constant standard binding 

geometries. Bond lengths and bond angles are taken to be constant and cannot be 

changed by the genetic algorithm. This assumption is a simplification of the real 

situation where bond length and bond angle depend on the environment of an atom 

within a protein. However, a set of non-redundant torsion angles allows enough 

degrees of freedom and therefore enough variability to represent any native 

conformation with only small spatial differences when superimposed on the 

original structure (i.e. small root mean square deviations, abbrev, r.m.s.) 

The following diagram illustrates the use of torsion angles. A small fragment .from 

a hypothetical protein is shown. Two basic building blocks, i.e. the amino acids 

phenyalanine (Phe) and glycine (Gly), are drawn as wire frame models. Atoms are 

described by their chemical symbols. The thicker bonds indicate the backbone. 

Main chain torsion angles phi, psi and omega are indicated next to their rotatable 

bond. 

~ .  C.Terminus 

H 

Special to the representation by torsion angles is the fact that small changes in the 

~o (phi) / y (psi) angles can induce large changes in the overall conformation. This is 

of advantage when creating variability through genetic operators. Also,  as a 
consequence of this representation, one can ge t  relative large r.m.s, differences 

when comparing a native conformation with a reconstruction of the same molecule 

under the assumption of constant standard bonding geometries. This difference can 

be minimized by slight changes in the torsion angles. 
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In the present work, the representation by torsion angles was used. The torsion 

angles of 129 proteins from the Brookhaven database [Bernstein et al, 1977] were 

statistically analyzed. The ten most frequently occurring values for each non- 

redundant torsion angle were collected in 10" intervals. At the beginning of the run, 

individuals were intitialized with either complete extended conformations, where 

all torsion angles are 180", or with a random selection of the ten most frequent 

intervals for each torsion angle. For the co (omega) torsion angle the constant value 

of 180" was used because of the rigidness of the double bond between the atoms C2i 

and Ni+ 1. An evaluation of co angles shows that  with the exception of prolin 

average deviations of 5" occur from the mean of 180", in rare cases 15". 

The genetic operators work on the torsional representation. For the application of 

the fitness function, it is necessary to translate proteins represented in torsion 

angles into Cartesian coordinates. Two programs have been written to carry out 

the conversion of one representation into another. The binding geometries were 

taken from the molecular modelling package Alchemy [Vinter et al, 1987] and the 

bond lengths from the program Charmm [Brooks et al, 1983]. Either a complete 

form with explicit hydrogen atoms or the so-called extended atom representation 

can be calculated. 

Next to the calculation of the fitness of an individual, the conversion of the 

Cartesian representation into the torsional representation is the second most time 

consuming step. The torsion angle of each bond that  extends to at  least one other 

atom is calculated. In the reverse process, atoms with standard binding geometries 

are added to the molecule one by one according to residue type. Then, they are 

rotated by the amount of their torsion angle. This operation can be replaced by the 

addition of two vectors because both torsion angle and radius are known. The 

translation programs were successfully tested by comparison of native and 

reconstructed conformations. A native structure was translated into its torsion 

angle representation and back into a Cartesian representation. The native and 

reconstructed conformations were then superimposed with the FIT routine in the 

program Alchemy. 

2.3 Format  o f  Genes  

Genes are stored one conformation in one ASCII file. The number of records per file 

equals the number of residues of the protein. Each record starts with a three letter 

identifier of the residue type. Ten floating point numbers in the format -xxx.xx 

follow, which stand for the torsion angles ~0, V, co, ~1, X2, X3, X4, Z5, ~6, ~7, in this 

order. For residues with less than seven side chain torsion angles the extra fields 
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carry the value 999.99. The 0) angle was kept at the constant value of 180" in most 

applications. 

3. F i tness  Func t ion  

The fitness function in a genetic algorithm represents the "environment" of all 

individuals. In order to "survive" an individual has to perform better than its 

competitors in terms of the fitness function. In the present work, a simple steric 

potential energy function was chosen as the fitness function. 

3.1 Motivat ion 

The main reason for the choice of a simple steric potential energy function as the 

fitness function of the genetic algorithm was the observation, that  up to date it has 

not been possible to develop a method to efficiently search the conformation space 

spanned by a force field for its global optimum. The problem with this task lies in 

the large number of degrees of freedom for a protein of average size. In general, 

molecules with n atoms have 3n-6 degrees of freedom. This amounts in the case of 

proteins with about 1O0 residues to ((100 residues �9 approx. 20 atoms per residue). 

3) - 6 = 5994 degrees of freedom. Systems of equations with this number of 

variables are analytically intractable today [Gunstsren & Berendsen, 1990]. 

Efforts to empirically find the optimal solution are equally difficult. I f  there are no 

constraints for the conformation of a protein and only its primary structure given, 

then the number of conformations for a protein of medium size (100 residues) can 

be estimated to be (approx. 5 torsion angles per residue, approx. 5 likely values per 

torsion angle) 100 = 25100. Because potential energy function is not monotonous, in 

the worst case 25 to the power of 100 conformations had to be evaluated to find the 

global optimum. This is clearly beyond capacity of today's and tomorrow's super 

computers. 

As can be seen from a number of previous applications, genetic algorithms were 

able to find sub-optimal solutions to problems of equally large search space [Davis, 

1991; Lucasius & Kateman, 1989; Tuffery et al, 1991]. Sub-optimal in this context 

means, that  it cannot be proven that  the solutions generated by the genetic 

algorithm are in fact the optimum but they were in many cases better than any 

previously known solution. This can be of much help in n.p.-complete domains, 

where analytical solutions of the problem are not available. Therefore, it was 

attempted to apply the genetic algorithm to the ab initio protein structure 

prediction problem. 
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3.2 C o n f o r m a t i o n a l  E n e r g y  

The steric potential energy function was taken from the program Charmm [Brooks 

et al, 1983]. It  is the sum of the expressions for Ebond (bond length potential), Ephi 

(bond angle potential), Eto r (torsion angle potential), Eimpr (improper torsion 

angle potential), Evd W (van der Waals pair interactions), Eel (electrostatic 

potential), E H (hydrogen bonds), and of two expressions for solvent interaction, Ecr 

and Ecphi 

E ffi ECoond) + E(phi) + E(tor) + E(impr) + E(vdW) + E(el) + E(H) + E(er) + E(ephi). 

As constant bend lengths and bond angles were assumed, the expressions for 

Ebond , Eph i and Eimpr are constant for each protein. The expression E H was 

omitted because it would have required to exclude the effect of hydrogen bonds 

from the expressions for Evd W and Eel. This, however, was not done by the 

authors of Charmm. In all runs, folding was simulated in vacuum with no ligands 

or solvent, i.e. Ecr and Ecphi are constant. This is certainly a crude simplification 

which will have to be extended in future. Thus, the potential energy function 

simplifies to: 

E ffi E(tor) + E(vdW) + E(el). 

If only the three expressions Etor, Evd w and Eel were calculated, there would be 

no force to drive the protein to a compact folded state. An exact solution to this 

problem is the inclusion of entropy. Unfortunately, measuring the difference in 

entropy between folded and unfolded state requires taking into account 

interactions of the protein with solvent. This cannot be done in a simple way. To 

have a running prototype, it was therefore decided to introduce ad hoc a pseudo 

entropic force, that drives the protein to a globular state. Analysis of a number of 

globular proteins reveals the following empirical relation between the number of 

residues and the diameter: 

expected diameter = 8. length I/3 

The pseudo entropic potential for a conformation is a function of its actual 

diameter. The diameter is defined to be the largest distance between any C a atoms 

in a given conformation. A positive exponential of the difference between expected 

and the actual diameter Epe is added to the potential energy, if that difference is 
less than 15 ~ If the difference is greater than 15 ./k a fixed amount of energy is 

added (1010 kcal/mol). If the actual diameter is smaller than the expected 

diameter,. Epe is zero. This has the effect, that more extended conformations have 

more positive potential energy values and are therefore less fit for reproduction. 
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Ep e = 4(actual diameter - expected diameter) kcal/mol 

Occasionally, if two atoms are very close, the Evd w can become very large. The 

maximum value for Evd W in this case is 1010 kcal/mol and the expressions for Eel 

and Eto r are not calculated. 

Runs have been performed with the potential energy function E as described above, 

where lower values mean fitter individuals and with a variant, where the four 

expressions Eto r, Evd w, Eel and Epe were given individual weights. The results 
were similar in all cases. Especially, scaling down the dominant effect of 

electrostatic interactions did not improve the results. 

4. Operators 

In order to combine individuals of one generation to produce new offspring, nature 

as well as genetic algorithms apply several operators. In the present work, 

individuals are protein conformations in their torsion angle representation under 

the assumption of constant standard binding geometries (see above). Three 

operators were invented to process these individuals: SELECT, MUTATE and 

CROSSOVER. The decision about the application of one operator is made at run 

time and can be controlled by various parameters. 

4.1 S E L E C T  

The first operator is the SELECT operator. If SELECT gets activated for a 

particular torsion angle, this angle will be replaced by a random choice of one of its 

ten most frequently occurring values. The decision, whether a torsion angle will be 

modified by SELECT is made independently for each torsion angle in a protein. A 

random number between 0 and 1 is generated and if this number is greater than 

the SELECT parameter at that time, SELECT is triggered. The SELECT 

parameter can change dynamically during the run. The values for SELECT to 

choose from are from a statistical analysis of 129 proteins from the PDB database. 

The number of values occurring in each of the 36 10"-intervals for that torsion 

angle was counted. The ten most frequent intervals, each represented by its left 

boundary, are available for substitution. 

4.2 M U T A T E  

The MUTATE operator consists of three components: the 1", 5" and 10" operator. 

After application of the SELECT operator and independently from it, for each 

torsion angle in a protein two decisions are made; first, whether a MUTATE 

operator will be applied and second, if the first decision was in favor of the 
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MUTATE operator, which of the three components will be carried out. Mutation is 

done by incrementing or decrementing (always an independent random chance of 

1:1) the torsion angle by 1", 5" or 10". Care is taken that the range of torsion angle 

values is always in the [-180", 180"] interval. The probability of applying the 

MUTATE operator is controlled by the MUTATE parameter, which can change 

dynamically during the run. Similarly, three additional parameters control the 

probability for choosing among the three components. 

4.3 CROSSOVER 

The CROSSOVER operator has two components: the two point crossover and the 

uniform crossover. It is applied to two genes (individuals) independently of the 

SELECT and MUTATE operators. First, the parent generation of individuals, 

possibly modified by SELECT and MUTATE, are randomly grouped pairwise. For 

each pair, an independent decision is made whether or not to apply the 

CROSSOVER operator. The probability for this is controlled by the CROSSOVER 

parameter, which can change dynamically during the run. If the decision is "no", 

the two individuals are not further modified and added to the list of offspring. If 

the decision is "yes", a choice between the two point crossover and the uniform 

crossover has to be made. This decision is controlled by two other parameters, that  

also can change dynamically during the run. 

The t w o  point crossover selects randomly two sites (residues) on one of the 

individuals. Then, the fragment between the two residues is exchanged with the 

corresponding fragment of the second individual. The uniform crossover decides 

independently for each residue, whether or not to exchange the torsion angles of 
that  residue. The chance for exchange is always 1:1. 

4.4 Parameter izat ion  

As indicated in the previous sections, there are a number of parameters to control 

the run of a genetic algorithm on protein conformations. The parameter values 

which were used for the runs presented in the results section are summarized in 

the following table. The ~0 torsion angle was kept constant at 180". The intitial 

generation was created by a random selection of the torsion angles from the list of 

the ten most frequently occurring values for each angle. There were ten individuals 

in one generation. The genetic algorithm terminated after 1000 generations. At the 

start of the run, the chance for a torsion angle to be modified by the SELECT 

operator is 80%, at the end of the run 20%. The probability decreases linearly with 

the number of generations. In contrast, the chance of applying the MUTATE 

operator increases from 20% at the start to 70% at the end of the run. The 10" 
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component of the MUTATE operator is dominant at the start of the run (60%), 

whereas it is the 1" component at the end (80%). Likewise, the chance of 

performing the CROSSOVER operator rises from 10% to 70%. At the beginning of 

the run mainly uniform CROSSOVER is done (90%), at the end mainly two point 

CROSSOVER (90%). 

This parameter setting has a small number of individuals but a large number of 

generations. This was chosen to keep cpu time low while allowing a maximum 

number of crossover events. This run took about 12 hours on a SUN SPARC 

station. At the begi~.ning of the run, SELECT and uniform CROSSOVER are 

applied most of the time. This is to create some variety in the population. At the 

end of the run, the 1" component of the MUTATE operator dominates the scene. 

This is intended for free tuning the conformations that have survived the fitness 

pressure so far. 

Parameter Value 

co angle constant ItiO': on 
initialize start generation: random torsion angels 
number of individuals: 10 
number of generations: 1000 
SELECT (start) 80% 
SELECT (end) 20% 
MUTATE (start) 20% 
MUTATE (end) 70% 
MUTATE (start 10") 60% 
MUTATE (end 10") 0% 
MUTATE (start 5") 30% 
MUTATE (end 5") 20% 
MUTATE (start 1") 10% 
MUTATE (end 1") 80% 
CROSSOVER (start) 70% 
CROSSOVER (end) 10% 
CROSSOVER (start uniform) 90% 
CROSSOVER (end uniform) 10% 
CROSSOVER (start two point) 10% 
CROSSOVER (end two point) 90% 

4.5 Generational Replacement 

There are a number of ways of how to select from the individuals of one generation 

and its offspring the parents for the next generation. Given the constraint, that the 

number of individuals should remain constant, inevitably, some individuals have to 

be discarded. Two ways of controlling the transition are complete replacement and 

elitistic replacement. In the first case, all offspring become parents in the next 

generation. The parents of the old generation are completely discarded. This has 

the disadvantage, that a fit parent can be lost, if it only once produces bad 

offspring. With elitistic replacement all parents and offspring of one generation are 

sorted according their fitness. If the size of the population is n, then the n fittest 
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individuals are selected as parents for the following generation. This mode has 

been used in the present work. 

5. Ab init io Predict ion Results 

A prototype of a genetic algorithm with the representation, fitness function and 

operators as described above has been implemented. For ab initio prediction the 

sequence of Crambin was given to the program. Crambin is a plant seed protein 

from the cabbage Crambe Abyssinica. The structure was determined by W.A. 

Hendrickson and M.M. Teeter up to a resolution of 1.5/k [Hendrickson & Teeter, 

1981]. Crambin has a strong amphiphilic character, which makes it especially 

difficult to predict its tertiary structure with a simple force field. Because of its 

good resolution and its small size of 46 residues it was decided to use Crambin as a 

first candidate to start  with. Independently from this work Scott Le Grand in the 

laboratory of Prof. Karplus at MIT did similar experiments, using a GA and a 

different force field. The results were basically the same as those presented here 

[Le Grand & Merz 1991]. The following structures are displayed in stereo 

projection. I f  the observer manages to look cross eyed at the picture in a way that  

superimposes both halves, a three dimensional impression can be perceived. 

t 
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5.1 C o n f o r m a t i o n s  

In the following, the backbone structure of the ten best individuals generated by 

the genetic algorithm are shown in stereo projection. 



Crambin, native 
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Individual P1 

Individual P2 Individual P3 

Individual P4 IndividualP5 
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Crambin, native Individual P6 

Individual P7 Individual P8 

Individual P9 Individual PIO 

It can be seen from the graphs that none of the individuals generated show 

significant structural similarity to the native Crambin conformation. This can be 

confirmed by superpositioning the generated structures with the native 

conformation. The following table shows the r.m.s, differences between individuals 
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P1 to P10 and the native conformation. All values are in  the range of 9/kngstr6m, 

which rejects any s t ructural  homology. 

r .m.s.  D e v i a t i o n  to  N a t i v e  C r a m b i n  

P1 10.07/~mgstr~m P6 10.31 Jkngstr~m 

P2 9.74/~ngstr6m P7 9.45 ~mgstr~m 

P3 9.15 ~mgstr~m P8 10.18/~mgstrSrn 

P4 10.14 ~mgstr~m P9 9.37/~ngstr6m 

P5 9.95 ~mgstr~m PIO 8.84 ~mgstr6m 

The following table shows the r.m.s, differences between the generated individuals.  

They can be grouped into two classes. The members within each class are similar, 

whereas s tructures from both classes have no similarity. One class holds the 

individuals  P1, P2, P4, PS, P6, P8 and P9. The other class has P3, P7 and P10. The 

fact, tha t  two unrela ted classes of conformations were generated, means  tha t  the 

genetic algorithm did s imultaneously  search in  different regions of the 

conformation space and thus was not trapped in one a local optimum. 

r .m.s.  D e v i a t i o n  w i t h i n  G e n e r a t e d  I n d i v i d u a l s  

P1 PIO 8.40 PlO P8 8.57 P4 P5 1.10 

P1 P2 1.73 PIO P9 7.30 P4 P6 0.71 

P1 P3 9.52 P2 P3 8.96 P4 P7 8.71 

P1 P4 0.86 P2 P4 1.44 P4 P8 0.93 

P1 P5 1.43 P2 P5 1.13 P4 P9 2.15 

P1 P6 1.20 P2 P6 1.63 P5 P6 1.28 

P1 P7 9.03 P2 P7 8.46 P5 P7 8.98 

P1 P8 0.58 P2 P8 2.12 P5 P8 1.75 

P1 P9 2.30 P2 P9 1.15 P5 P9 2.04 

P10 P2 7.75 P3 P4 9.24 P6 P7 8.71 

P10 P3 1.57 P3 P5 9.52 P6 P8 1.28 

P10 P4 8.18 P3 P6 9.23 P6 P9 2.44 

P10 P5 8.39 P3 P7 1.13 P7 P8 9.11 

P10 P6 8.15 P3 P8 9.61 P7 P9 8.21 

PIO P7 1.74 P3 P9 8.57 P8 P9 2.68 

5.2 E n e r g i e s  

The following table lists the values of the four contributions to the potential  energy 

function for the ten individuals generated. The total energy of all individuals  is 

much lower than  the energy for the nat ive conformation of Crambin:  E(vdW) -12.8 

kcal/mol, E(el) 11.4 kcal/mol, E(tor) 60.9 kcal/mol, E(pe) 1.7 kca]/mol and E(total) 
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61.2 kcal/mol. I t  is obvious, that  the largest contribution comes from electrostatic 

interactions. This is due to the six partial charges in Crambin. For a more 

elaborate force field these charges have to be neutralized. 

E n e r g y  C o n t r i b u t i o n s  o f  t h e  G e n e r a t e d  I n d i v i d u a l s  

Individual Evd w Eel Eto r Epe Etota I 

P1 -14.9 -2434.5 74.1 75.2 -2336.6 
P2 -2.9 -2431.6 76.3 77.4 -2320.8 
P3 78.5 -2447.4 79.6 80.7 -2316.1 

P4 -11.1 -2409.7 81.8 82.9 -2313.7 

P5 83.0 -2440.6 84.1 85.2 -2308.5 

P6 -12.3 -2403.8 86.1 87.2 -2303.7 

P7 88.3 -2470.8 89.4 90.5 -2297.6 
P8 -12.2 -2401.0 91.6 92.7 -2293.7 
P9 93.7 -2404.5 94.8 95.9 -2289.1 
P10 96.0 -2462.8 97.1 98.2 -2287.5 

6. Side Chain P lac e m e nt  Resul ts  

Crystallographers often face the problem of positioning the side chains when the 

primary structure and the conformation of the backbone is known. At present, 

there is no method that  automatically does side chain placement with sufficient 

fidelity for routine, practical use. The side chain placement problem is much easier 

than ab initio prediction but still too complex for analytical treatment. 

The genetic algorithm approach, as described above, can also be used for side chain 

placement. The torsion angles ~, V, and co are kept constant at the values for the 

given backbone. Side chain placement by the genetic algorithm was done for 

Crambin. For each five residues, a superposition of the native and the predicted 

conformation was done. This is shown in stereo projection graphs on the following 

pages. 

As can be seen, the predictions are quite well in agreement with the native 

conformation in most of the cases. The overall r.m.s, difference in this example is 

1.86 A. This is comparable to the results from a simulated annealing approach 

(1.65/k) [Lee & Subbiah, 1991] and a heuristic approach (1.48/~) [Tuffery et al, 
1991]. 
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Superposition of Residues 11-15 Superposition of Residues 16.20 
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Superposition of Residues 21-25 Superposition of Residues 26-30 
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Superposition of Residues 36-40 

Superposition of Residues 41-46 

7. Di scuss ion  and Conclus ion  

A prototype for the application of a genetic algorithm to the problem of protein 

tertiary structure prediction is presented. The genetic algorithm searches for 

energetically favorable conformations. A hybrid representation of proteins and 

three operators MUTATE, SELECT and CROSSOVER to manipulate the "genes" of 

a genetic algorithm were developed together with a fitness function, that  consists of 

a simple force field. The work was motivated by the fact that  present at tempts to 

fred ab initio an energetically optimal conformation of a protein face the problem of 

a very large search space. I f  no constraints are given, it is virtually impossible to 
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systematically evaluate all valid conformations in order to find the one with the 

lowest energy. Genetic algorithms have been shown to work efficiently on certain 

function optimization problems, where the search space was too large for other 

methods. 

The prototype was applied on the ab initio prediction of Crambin. The genetic 

algorithm produced ten conformations, which could be grouped into two classes. 

Structures within one class are similar in structure but differ substantially from 

members of the other class. Electrostatic interactions were much higher than in the 

native conformation. This is likely to result from the six partial charges in 

Crambin, which were not neutralized. None of the conformations generated are 

similar to the native confoizaation. However, all conformations generated by the 

genetic algorithm show much lower energy than the native structure on the same 

force field. This means, that  the genetic algorithm's search was successful as it 

produced "good" structures in terms of the fitness function and was not trapped in 

one local minimum but also that  the fitness function was not a good indicator for 

native structure. Crambin has a strong amphiphilic character whereas the simple 

force field used is more suitable for globular, cytosolic proteins. Work has started to 

improve the model at this point. 

In a side chain placement experiment, the backbone of Crambin was held constant 

in the native state and only side chains were allowed to move. The genetic 

algorithm produced an alignment of 1.86 A r.m.s, from the native structure, which 

is reasonable when compared with other methods. 

The results indicate, that  in the domain of ab initio prediction of protein 

conformation the genetic algoritl~n could be an efficient instrument to produce 

likely candidates for sub-optimal solutions. Certainly, the algorithm cannot do 

better than the fitness function given to it. I t  seems therefore possible that  with a 

fitness function that  is a good indicator of native structure ab initio prediction 

might become feasible on present day computers. 
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