
1

Genetic algorithms for single machine

scheduling with quadratic earliness and

tardiness costs

Jorge M. S. Valente

LIAAD – INESC Porto L.A., Faculdade de Economia, Universidade do Porto,

Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

Phone: + 351 225 571 100

Fax: + 351 225 505 050

E-mail: jvalente@fep.up.pt

Maria R. A. Moreira

EDGE, Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias,

4200-464 Porto, Portugal

Alok Singh

Department of Computer and Information Sciences, University of Hyderabad,

P.O. Central University, Hyderabad - 500 046, A.P., India

Rui A. F. S. Alves

Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-

464 Porto, Portugal

Abstract

 In this paper, we consider the single machine scheduling problem with quadratic earliness

and tardiness costs, and no machine idle time. We propose a genetic approach based on a random

key alphabet, and present several algorithms based on this approach. These versions differ on the

generation of both the initial population and the individuals added in the migration step, as well as

on the use of local search. The proposed procedures are compared with the best existing heuristics,

as well as with optimal solutions for the smaller instance sizes.

 The computational results show that the proposed algorithms clearly outperform the

existing procedures, and are quite close to the optimum. The improvement over the existing

heuristics increases with both the difficulty and the size of the instances. The performance of the

proposed genetic approach is improved by the initialization of the initial population, the generation

of greedy randomized solutions and the addition of the local search procedure. Indeed, the more

sophisticated versions can obtain similar or better solutions, and are much faster. The genetic

version that incorporates all the considered features is the new heuristic of choice for small and

medium size instances.

2

Keywords scheduling, single machine, quadratic earliness and tardiness, genetic

algorithms

Introduction

 In this paper, we consider the single machine scheduling problem with

quadratic earliness and tardiness costs, and no machine idle time. Formally, the

problem can be stated as follows. A set of n independent jobs {1, 2, … , n} has to

be scheduled on a single machine that can handle at most one job at a time. The

machine is assumed to be continuously available from time zero onwards, and

preemptions are not allowed. Job j, j = 1, 2, … , n, requires a processing time pj

and should ideally be completed on its due date dj. Also, let hj and wj denote the

earliness and tardiness penalties of job j, respectively. For a given schedule, the

earliness and tardiness of job j are defined as Ej = max {0, dj - Cj} and Tj = max

{0, Cj - dj}, respectively, where Cj is the completion time of job j. The objective is

then to find a schedule that minimizes the sum of the weighted quadratic earliness

and tardiness costs ∑
2

2
 =1 , subject to the constraint that no machine

idle time is allowed.

 Even though scheduling models with a single processor may appear to

arise infrequently in practice, this scheduling environment actually occurs in

several activities (for a specific example in the chemical industry, see [1]). Also,

the performance of many production systems is quite often dictated by the quality

of the schedules for a single bottleneck machine. Moreover, the study of single

machine problems provides results and insights that prove valuable for scheduling

more complex systems.

 Early/tardy scheduling models have received considerable and increasing

attention from the scheduling community, due to their practical importance and

relevance. In fact, scheduling problems with earliness and tardiness costs are

compatible with the concepts of supply chain management and just-in-time

production. Indeed, these production strategies, which have been increasingly

adopted by many organisations, view both early and tardy deliveries as

undesirable.

 In this paper, we consider quadratic earliness and tardiness penalties,

instead of the more usual linear objective function, in order to penalize more

heavily deliveries that are quite early or tardy. On the one hand, this is appropriate

3

for practical settings where non-conformance with the due dates is increasingly

undesirable, and it is in line with the loss function proposed by Taguchi [2].

 More specifically, the Taguchi loss function is equal to L(x) = k (x – a)
2
,

where L(x) is the loss to society (producer and/or customers) when one unit of a

certain output is produced at level x, k is a constant and a is the ideal target level

of the output. Thus, this function specifies that the loss increases quadratically as

the output deviates from its desired level. In the considered scheduling problem,

the jobs’ due dates dj and completion times Cj correspond to the desired target

level a and the actual output level x, respectively, while the weights hj and wj are a

generalization of the constant k. Therefore, the considered objective function is in

accordance with Taguchi’s loss function.

 Moreover, and on the other hand, the quadratic penalties are in some

settings more appropriate than linear or maximum penalties. Indeed, and as

discussed in [3], quadratic penalties avoid schedules in which a single or only a

few jobs contribute the majority of the cost, without regard to how the overall cost

is distributed.

 The assumption that no machine idle time is allowed is also actually

appropriate for many production settings. In fact, idle time should be avoided

when the machine has limited capacity or high operating costs, and when starting

a new production run involves high setup costs or times. Some specific examples

of production settings where the no idle time assumption is appropriate have been

given in [4, 5].

 This problem has been previously considered, and both exact and heuristic

approaches have been proposed. Regarding the exact approach, a lower bounding

procedure and a branch-and-bound algorithm were developed in [6]. The

heuristics include several dispatching rules and simple improvement procedures

[7], beam search algorithms [8] and greedy randomized dispatching heuristics [9].

 The corresponding problem with linear costs ∑

 =1 has also been

considered by several authors, and both exact [10 - 13] and heuristic [14 - 16]

approaches have been proposed. The minimization of the quadratic lateness,

where the lateness of job j is defined as Lj = Cj - dj, has also been studied in [17 -

20]. Baker and Scudder [21] and Hoogeveen [22] provide excellent surveys of

scheduling problems with earliness and tardiness penalties, while a review of

scheduling models with inserted idle time is given in [23].

4

 The considered problem is combinatorial in nature, since a schedule is

given by a permutation of the jobs, and there are n! possible permutations. In this

paper, we present several genetic algorithms based on a random key alphabet. In

the random key approach, each chromosome is a vector of n random numbers

between 0 and 1. Such a chromosome can be decoded into a permutation of the

jobs, and therefore a schedule, by performing a simple sort operation.

 The various versions of the genetic approach differ on the generation of

both the initial population and the individuals added in the migration step, as well

as on the use of local search. The genetic algorithms are compared with existing

procedures, as well as with optimal solutions for some problem sizes, on a wide

range of test instances.

 The remainder of this paper is organized as follows. In the next section, we

describe the proposed genetic algorithm approach, and present the several

versions that were considered. Then, the computational results are reported.

Finally, we provide some concluding remarks.

The proposed genetic algorithm procedures

 In this section, we first briefly describe the main features of genetic

algorithms. Then, the encoding used to represent the problem solutions is

presented. The evolutionary strategy, i.e. the transitional process between

consecutive populations, is also described. Finally, we present the six different

versions that were considered for the proposed genetic algorithm approach.

Genetic algorithms

 Genetic algorithms are adaptive methods that can be used to solve

optimization problems. The term genetic algorithm was first used by Holland

[24]. Even though Holland's work placed little emphasis on optimization, the

majority of the research on genetic algorithms has indeed since been focused on

solving optimization problems. Due to their increasing popularity in recent years,

the literature on genetic algorithms now includes a quite large number of papers.

References describing in detail the genetic algorithm approach and its applications

can be found in [25 - 27].

 Genetic algorithms are based on the evolution process that occurs in

natural biology. Indeed, over the generations, natural populations tend to evolve

5

according to the principles of natural selection or survival of the fittest. The

genetic algorithms mimic this process, by evolving populations of solutions to

optimization problems.

 In order to apply a genetic algorithm to a specific problem, it is first

necessary to choose a suitable encoding or representation. In this encoding, a

solution to the problem being considered is represented by a set of parameters,

known in genetic terminology as genes. These genes are joined together in a string

of values that represents (or encodes) the solution to the problem; this string is

denoted as a chromosome or individual. A fitness value is also associated with

each chromosome. This value measures the quality of the solution represented by

that chromosome.

 At each iteration, the genetic algorithm evolves the current population of

chromosomes into a new population. This evolution is conducted using selection,

crossover and mutation mechanisms. Some of the current individuals may be

simply selected and copied to the new population. Also, a crossover operator is

used in the reproduction phase to combine parent individuals selected from the

current population, in order to produce offspring which are placed in the new

population. The parent chromosomes are chosen randomly, although this selection

is usually performed using a scheme which favours fitter individuals. The genes

of the two parents are then combined by the crossover operator, yielding one or

more offspring. Finally, a mutation operator can be applied to some individuals, in

order to change one or more of their genes.

 The reproduction phase and the crossover operator tend to increase the

quality of the populations, since fitter individuals are more likely to be selected as

parents. However, they also tend to force a convergence of those populations (i.e.

the individuals tend to become quite similar). This convergence effect can be

offset by the mutation mechanism. Indeed, by changing the genetic material, the

mutation operator tries to guarantee the diversity of the population, thereby

ensuring a more extensive search of the solution space.

Chromosome representation and decoding

 The genetic algorithm approach proposed in this paper uses the random

key alphabet U(0,1) [28] to encode the chromosomes. In the random key

encoding, each gene is a uniform random number between 0 and 1. Consequently,

6

each chromosome is then encoded as a vector of random keys (random numbers).

Therefore, in the proposed algorithms each chromosome is composed of n genes

gj, j = 1, 2, … , n, so the size of each chromosome is equal to the number of jobs,

i.e. chromosome = (g1, g2, … , gn).

 In order to calculate the fitness of an individual, it is first necessary to

decode its chromosome into the corresponding solution to the considered

problem, i.e. into a sequence of the jobs. This decoding or mapping of a

chromosome into a schedule is accomplished by performing a simple sort of the

jobs. The priorities used in this sorting operation are provided by the genes. More

specifically, the priority of job j in the sorting operation is equal to gj (see figure 1

for an example).

 An important feature of the random key alphabet is the fact that all

offspring generated by crossover are feasible solutions. This is accomplished by

moving the feasibility issue into the chromosome decoding procedure. If any

vector of random numbers can be decoded into a feasible solution, then any

chromosome obtained via crossover also corresponds to a feasible solution.

Through its internal dynamics, the genetic algorithm then learns the relationship

between random key vectors and solutions with good fitness and objective

function values.

 This feature is a significant advantage of the random key alphabet over the

more natural encoding where each chromosome is a permutation of the job

indexes. Indeed, with the natural encoding, the crossover operation is made more

difficult and complicated by the need to assure that the resulting offspring

correspond to a feasible solution.

The evolutionary strategy

 A quite large number of genetic algorithm variants can be obtained by

choosing different selection, reproduction, crossover and mutation operators. We

now describe the evolutionary strategy employed in the proposed approach, i.e.

the specific mechanisms that are used to generate a new population from the

current set of individuals.

 Throughout the procedure, the size of the population is kept constant. This

size is set equal to a multiple pop_mult of the size of the problem (i.e. the number

of jobs n), where pop_mult is a user-defined parameter. This strategy has proved

7

adequate in previous applications of genetic algorithms based on the same

evolutionary approach [29 - 31].

 Given a current population, the next population is obtained through elitist

selection, crossover and migration mechanisms. The discussion of the generation

of the initial population is deferred to the next section. The calculation of the

fitness value of a chromosome will also be addressed in that section.

 The elitist selection strategy [25] copies some of the best individuals in the

current population to the new population. The number of chromosomes that are

copied in this elitist selection phase is set equal to a proportion elit_prop of the

population size, where elit_prop is a user-defined parameter. The advantage of the

elitist selection strategy over the traditional generational approach where the

entire population is completely replaced with new chromosomes is that the best

individual in the population improves monotonically over time. A potential

downside is that it can lead to a premature convergence of the population.

However, this can be overcome by using high mutation or migration rates.

 In the proposed evolutionary strategy, the migration mechanism is used

instead of the traditional gene-by-gene mutation operator. In the migration phase,

new individuals are generated and added to the new population. The number of

newly generated individuals is equal to a proportion mig_prop of the population

size, where mig_prop is a user-defined parameter. The specific process by which

these new individuals are generated will be addressed in the next section. Like in

the traditional mutation operator, and as previously mentioned, the migration

mechanism tries to prevent premature convergence, as well as to assure the

diversity of the population and an extensive search of the solution space.

 Finally, the remaining individuals of the new population are generated via

crossover. In the reproduction and crossover phase, two parents are initially

selected. The first parent is chosen at random from the elite individuals in the

current population (i.e. the individuals that are copied to the new population in the

elitist selection phase). The second parent, on the other hand, is randomly selected

from the entire current population. Then, the parameterized uniform crossover

method [32], described below, is used to create an offspring that is added to the

new population. This process is repeated until the new population has been fully

generated.

8

 In the parameterized uniform crossover method, a random uniform number

between 0 and 1 is generated for each gene. Then, this random number is

compared with a user-defined parameter cross_prob. If the random number is less

than or equal to the cross_prob parameter, the gene in the offspring is set equal to

the corresponding gene in the first parent. Otherwise, the value of the gene is

instead copied from the second parent (see figure 2 for an example).

 The proposed evolutionary strategy is repeated until a stopping criterion is

met. In our approach, we have chosen the number of consecutive iterations

without improvement as stopping criterion. Thus, the genetic algorithms terminate

when stop_iter consecutive populations have been generated without improving

the best solution found so far, where stop_iter is a user-defined parameter. The

evolutionary strategy is depicted in figure 3, and the main steps of the proposed

approach are presented in figure 4.

The genetic algorithm versions

 The discussion of the generation of the initial population and the new

individuals added in the migration step, as well as the calculation of the fitness

value, have been deferred to this section. Indeed, different strategies were

considered for these issues. Therefore, we developed six genetic algorithm

versions, corresponding to various combinations of these strategies. These six

versions will now be described, and their main characteristics are summarized in

table 1.

 The first version consists in a basic genetic algorithm, and is therefore

denoted simply by GA. In this version, the entire initial population, as well as all

the new individuals created in the migration step, are generated randomly. Also,

the fitness value of a chromosome is set equal to the opposite of the objective

function value of the sequence associated with that chromosome. This ensures that

the individuals with a lower value of the objective function have a higher fitness.

 The second version differs from the GA procedure only in the way in

which the initial population is generated. Therefore, the migration step and the

calculation of the fitness value are identical to those in the GA algorithm.

However, in the second version, the initial population is not entirely generated at

random. Indeed, the initial population contains four non-random chromosomes,

while the remaining individuals are again randomly generated. Indeed, previous

9

studies, e.g. [33, 34], have shown that introducing chromosomes that correspond

to solutions generated by simple heuristics can improve the performance of a

genetic algorithm. In this paper, this will be referred to as initializing the first

population. This second version will then be denoted by GA_IN, since the basic

genetic algorithm (GA) is enhanced with the initialization (IN) of the first

population.

 These four non-random chromosomes are created so that their

corresponding schedules are equal to the sequences generated by four of the

dispatching rules considered in [7]. More specifically, these four heuristics are the

procedures denoted in [7] by WPT_sj_E, EDD, WPT_sj_T and ETP_v2. The

WPT_sj_E and WPT_sj_T heuristics performed well for instances where most

jobs were early and tardy, respectively. The EDD heuristic performed better than

the WPT_sj_E and WPT_sj_T rules when there was a greater balance between the

number of early and tardy jobs. Finally, the ETP_v2 heuristic is the best-

performing of the dispatching rules analysed in [7]. In order to keep the paper

self-contained, these four procedures are described in detail in the appendix.

 The third version also sets the fitness value of a chromosome equal to the

opposite of the objective function value of the sequence associated with that

chromosome. Furthermore, this version also includes in the initial population the

same four non-random chromosomes used in the GA_IN procedure. However, the

third version employs an additional heuristic procedure in the generation of the

initial population, as well as on the migration phase.

 This additional heuristic procedure is the best-performing of the greedy

randomized dispatching rules proposed in [9]. These heuristics perform a greedy

randomization of the ETP_v2 rule, so a different schedule can be obtained each

time one of these rules is executed. The greedy randomized dispatching heuristic

that is used in the third proposed algorithm is the procedure denoted in [9] by

RCL_VB, since this strategy provided the best results, both in solution quality and

in computation time, among all the approaches analysed in [9]. Again, the

RCL_VB procedure is described in detail in the appendix. The third genetic

algorithm version will then be identified by GA_GR, since the genetic algorithm

makes use of a greedy randomized (GR) dispatching rule.

 The GA_GR heuristic can be seen as performing a hybridization of the

genetic algorithm and GRASP metaheuristics. Indeed, in this version, the greedy

10

randomized strategy that is used in the construction phase of a GRASP procedure

is employed to generate some chromosomes for the genetic algorithm. This

hybridization has been used in previous studies, e.g. [35, 36].

 The initial population of the GA_GR procedure is then generated as

follows. First, and as previously mentioned, the four non-random chromosomes

that are used in the GA_IN procedure are added to the population. Then, a

proportion init_gr of the remainder of the initial population is generated using the

RCL_VB greedy randomized heuristic, where init_gr is a user-defined parameter.

Thus, these chromosomes are created so that they correspond to schedules

generated by the RCL_VB procedure. Finally, the remaining chromosomes of the

initial population are generated at random.

 As for the migration step, in the GA_GR heuristic this phase is executed as

follows. First, a proportion mig_gr of the chromosomes to be generated in this

step are created using the RCL_VB procedure, where mig_gr is again a user-

defined parameter. The remainder of the migration phase chromosomes are then

randomly generated.

 The remaining three versions differ from their GA, GA_IN and GA_GR

counterparts only in the calculation of the fitness value. That is, these last three

versions generate the initial population and perform the migration step in the same

way as the GA, GA_IN and GA_GR procedures. However, these last versions

additionally use a local search procedure to improve the sequence that is decoded

from a chromosome.

 More specifically, the fitness of a chromosome is calculated as follows in

the remaining three versions. First, the chromosome is decoded, in order to get its

corresponding sequence (similarly to what is done in the GA, GA_IN and

GA_GR algorithms). Then, however, a local search procedure is used to improve

this sequence. The fitness value is set equal to the opposite of the objective

function value of this improved sequence. Finally, the chromosome is changed

(by rearranging its genes), so that it now corresponds to the improved sequence

obtained after the application of the local search procedure.

 These last three versions of the proposed approach combine a genetic

evolutionary strategy with a local search procedure. Therefore, they can also be

viewed as memetic algorithms [37]. Hence, these versions will be denoted by

MA, MA_IN and MA_GR, since the only difference from their GA counterparts

11

resides in the use of local search which, as was just mentioned, allows them to be

seen as memetic algorithms (MA).

 We considered three local search procedures: adjacent pairwise

interchanges (API), 3-swaps (3SW) and first-improve interchanges (INTER). The

API procedure considers pairs of adjacent jobs, and interchanges such a pair when

that swap improves the objective function value. The procedure terminates when

no improving adjacent interchange can be performed. The 3SW method instead

considers three consecutive jobs. All the possible permutations of the three jobs

are analysed, and the current configuration is replaced with the best when this

improves the objective function value. Again, the procedure terminates when no

improving 3-swap is found. Finally, the INTER procedure considers

interchanging two jobs, regardless of whether or not they are adjacent. An

interchange is performed whenever it improves the objective function value, and

the procedure stops when no further improving interchange can be found.

Computational results

 In this section, we first present the set of problems used in the

computational tests. Then, the preliminary computational experiments are

described. These experiments were performed to determine adequate values for

the parameters required by the several genetic algorithms. Finally, the

computational results are presented. We first compare the genetic algorithms with

existing procedures, and the heuristic results are then evaluated against optimum

objective function values for some instance sizes. Throughout this section, and in

order to avoid excessively large tables, we will sometimes present results only for

some representative cases.

Experimental design

 The computational tests were performed on a set of problems with 10, 15,

20, 25, 30, 40, 50, 75 and 100 jobs. These problems were randomly generated as

follows.

 For each job j, an integer processing time pj, an integer earliness penalty hj

and an integer tardiness penalty wj were generated from one of the two uniform

distributions [45, 55] and [1, 100], to create low (L) and high (H) variability,

respectively. In the tables, the processing time and penalty variability will be

12

denoted by var, and so instances with low and high variability will be identified

by var = L and var = H, respectively.

 For each job j, an integer due date dj is generated from the uniform

distribution [P(1 – T – R/2), P(1 – T + R/2)], where P is the sum of the processing

times of all jobs, T is the tardiness factor, set at 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, and

R is the range of due dates, set at 0.2, 0.4, 0.6 and 0.8.

 For each combination of problem size n, processing time and penalty

variability var, T and R, 50 instances were randomly generated. Therefore, a total

of 1200 instances were generated for each combination of problem size and

variability.

 All the algorithms were coded in Visual C++ 6.0, and executed on a

Pentium IV - 2.8 GHz personal computer. Due to the large computational times

that would be required, the GA heuristic was not applied to the instances with 100

jobs.

Preliminary tests

 In this section, we describe the preliminary experiments that were

performed to determine adequate values for the parameters required by the genetic

algorithms. A separate problem set was used to conduct these preliminary

experiments. This test set included instances with 25 and 50 jobs, and contained 5

instances for each combination of instance size, processing time and penalty

variability, T and R. The instances in this smaller test set were generated randomly

just as previously described for the full problem set.

 We considered the following values for the several parameters required by

the proposed genetic algorithms:

 pop_mult = {1, 2, 3};

 elit_prop = {0.05, 0.10, 0.15, 0.20};

 mig_prop = {0.10, 0.15, 0.20, 0.25};

 cross_prob = {0.6, 0.7, 0.8};

 stop_iter = {10, 30, 50};

 init_gr = {0.1, 0.2, ... , 0.9};

 mig_gr = {0.1, 0.2, ... , 0.9}.

 The intervals for the elit_prop, mig_prop and cross_prob values were

based on previous applications of genetic algorithms based on the same

13

evolutionary approach [29 - 31]. Indeed, good results have consistently been

obtained using values inside the considered ranges. The intervals for the pop_mult

and stop_iter parameters were determined based not only on a previous

application of this evolutionary strategy to a scheduling problem [29], but also on

some initial tests. For the MA, MA_IN and MA_GR versions, we additionally

considered the API, 3SW and INTER local search procedures, as previously

mentioned.

 The genetic algorithms were then applied to the test instances for all

parameter (and local search procedure, for the MA, MA_IN and MA_GR

versions) combinations. A thorough analysis of the objective function values and

runtimes was then conducted, in order to select the values that provided the best

trade-off between solution quality and computation time. The parameter values

and local search procedure selected for the several genetic versions are given in

table 2.

 The same elit_prop, mig_prop and cross_prob values proved appropriate

for all the versions. For the versions that use a local search procedure, the results

were actually virtually identical for all the combinations of these parameters. For

the other versions, there were some small differences in performance, and the

chosen values provided good results for all instance types.

 Table 2 shows that smaller values are required for the parameters

pop_mult and stop_iter as the sophistication of the genetic versions increases. In

fact, smaller populations and/or a lower number of consecutive iterations without

improvement can be used, without compromising the solution quality, with the

introduction in the genetic approach of features such as local search, population

initialization and generation of greedy randomized solutions.

 The init_gr parameter is smaller for the MA_GR version. In the GA_GR

procedure, a higher percentage of greedy randomized solutions is then required in

order to generate an initial population that contains high quality solutions. In the

MA_GR version, however, the local search procedure already improves the

quality of the solutions in the initial population, so only a lower percentage of

greedy randomized initial solutions is required.

 For both the GA_GR and MA_GR algorithms, the most appropriate value

of the mig_gr parameter was equal to 0.5. Therefore, half of the new

chromosomes introduced in the migration step are produced by the greedy

14

randomized heuristic, while the remaining half are randomly generated. This

shows that the best results are obtained when there is a balance between the

introduction of relatively good solutions (generated by the greedy randomized

heuristic) and random solutions. Indeed, the greedy randomized solutions increase

the solution quality of the population, but the random solutions are also important,

since they assure the diversity of the population and avoid its premature

convergence.

 Finally, the API local search procedure was selected. This procedure

provided results that were virtually identical to those given by the other methods,

and was significantly faster. We recall that the parameter values were selected

with the objective of obtaining the best trade-off between solution quality and

computation time. Therefore, lower objective function values can still be obtained

for some of the test instances, at the cost of increased computation times, by

increasing the pop_mult or stop_iter values.

Comparison with existing heuristics

 In this section, the proposed genetic algorithms are compared with existing

heuristic procedures. On the one hand, the proposed algorithms are compared with

the recovering beam search (RBS) heuristic developed in [8]. Additionally, the

RCL_VB_3SW greedy randomized heuristic proposed in [9] is also included in

the heuristic comparison. The RCL_VB_3SW procedure essentially generates

greedy randomized solutions using the RCL_VB strategy previously mentioned,

and applies the 3SW improvement procedure to each of those solutions. In the

following, and in order to reduce the size of the identifier, the RCL_VB_3SW

procedure will be denoted as R_V_3.

 Among the existing heuristics, the RBS algorithm provides the best

average performance for small and medium size instances, while the R_V_3

procedure is the heuristic of choice for medium to large problems. The RBS

algorithm includes a final improvement step that uses the 3SW improvement

procedure. Also, in the R_V_3 heuristic, and as previously mentioned, each of the

greedy randomized constructed schedules is improved by the 3SW procedure.

Therefore, the 3SW method was also applied, as a final improvement step, to the

best solution generated by each of the genetic algorithms. For each instance, 10

15

independent runs, with different random number seeds, were performed for all

versions of the genetic algorithm (as well as for the R_V_3 heuristic).

 Table 3 provides the mean relative improvement in objective function

value over the RBS procedure. In table 4, we give the percentage number of times

the R_V_3 heuristic and the genetic algorithms performs better (<), equal (=) or

worse (>) than the RBS procedure. The relative improvement over the RBS

heuristic is calculated as (rbs_ofv - heur_ofv) / rbs_ofv × 100, where rbs_ofv and

heur_ofv are the objective function values of the RBS procedure, on the one hand,

and the R_V_3 procedure or the appropriate genetic version, on the other hand.

 In table 3, the avg column provides the relative improvement calculated

with the average of the objective function values obtained for all the 10 runs. In

the best column, the value of relative improvement has been calculated using the

best of those 10 objective function values. The results in the avg column provide

an indication of the relative improvement we can achieve if the procedure is

executed only once, while the best column shows the improvement that can be

obtained if the algorithm is allowed to perform 10 runs.

 The processing time and penalty variability has a major impact on the

difficulty of the problem, and therefore on the differences between the results

obtained by the several heuristic procedures. When the variability is low, the

problem is much easier, and even simple procedures can obtain optimum or near

optimum results, so there is little or no room for more sophisticated procedures to

provide a large improvement. This has been established and discussed in the

previous literature on this problem, and will also be shown quite clearly by the

comparison with the optimum results performed in the next section.

 For the low variability instances, the performance of the considered

procedures is nearly identical. The results in table 4 show that the heuristics do

generate different solutions for a few instances. However, the objective function

values of those solutions are nevertheless extremely close, as can be seen from the

relative improvement values presented in table 3, which are virtually equal to 0.

When the variability is high, however, the problem becomes considerably more

difficult, and the difference in performance between the several algorithms is

much more noticeable.

 When the average results over the 10 runs are considered, the three genetic

versions with local search are superior to their GA, GA_IN and GA_GR

16

counterparts, as shown by the results in tables 3 and 4. Indeed, not only do the

MA, MA_IN and MA_GR versions provide a larger relative improvement over

the RBS heuristic, but they also give better results for a larger percentage of the

test instances, and are seldom inferior to the RBS procedure. Therefore, the

addition of a local search procedure improves the average performance, in terms

of solution quality, of the genetic algorithms.

 The average performance of the three genetic versions that incorporate a

local search procedure is quite similar. Indeed, the results given by the MA,

MA_IN and MA_GR heuristics are rather close. When local search is not used,

there is only a slight difference in the average performance. In fact, the results

show that the GA_IN version is, in terms of average performance, somewhat

inferior to the GA and GA_GR algorithms.

 When the best result over the 10 runs is considered, the performance of the

several genetic algorithms, in terms of solution quality, is quite close. The genetic

versions that incorporate a local search procedure are extremely robust. Indeed,

the best and average relative improvement values are usually quite close for the

MA, MA_IN and MA_GR algorithms.

 The results given in tables 3 and 4 show that the several genetic versions

are clearly superior to the RBS and R_V_3 heuristics. Indeed, the genetic

algorithms provide a relative improvement of about 1-3% over the RBS

procedure. Also, the genetic algorithms give better results for a larger percentage

of the test instances. The versions with local search, in particular, give better

results for a quite large percentage of the instances, and are seldom inferior to the

RBS procedure. The genetic versions also clearly outperform the R_V_3 heuristic.

Furthermore, the improvement provided by the genetic algorithms is increasing

with the instance size.

 In table 5, we present the effect of the T and R parameters on the relative

improvement (calculated with the average objective function value) over the RBS

procedure, for instances with 50 jobs. The relative improvement is quite minor for

the extreme values of T (T = 0.0 and T = 1.0). When the tardiness factor assumes

more intermediate values, the relative difference in objective function values

becomes much larger. Indeed, for some parameter combinations the genetic

algorithms provide a relative improvement of over 10%.

17

 Again, this is in accordance with results obtained in the existing literature

on this problem. Indeed, the problem is much easier when most jobs are early (T =

0.0) or tardy (T = 1.0). Once more, this will also be shown quite clearly in the next

section. For the more intermediate values of T, the number of early and tardy jobs

becomes more balanced, and the problem becomes harder. Hence, there is more

room for improvement in the harder instances with intermediate values of the

tardiness factor. Therefore, the genetic versions provide a large relative

improvement for the more difficult instances. In fact, as previously mentioned, for

the high variability instances with an intermediate value of the tardiness factor T,

the genetic algorithms can provide an improvement of over 10%.

 The heuristic runtimes (in seconds) are presented in table 6. For the

genetic algorithms and the R_V_3 procedure, we provide the average runtime, i.e.

the average of the runtimes for each of the 10 runs. The R_V_3 algorithm is quite

clearly the fastest and most efficient of the considered heuristics. The RBS

procedure is more computationally demanding, but is faster than the genetic

algorithms. Nevertheless, the genetic procedures, with the exception of the GA

version, are still somewhat efficient, since they are capable of solving instances

with 100 jobs in about 2 seconds.

 The GA procedure is considerably more computationally demanding than

the other genetic versions. This may seem surprising, since the other versions

incorporate several elements that require additional time when compared with the

simpler implementation used in the GA algorithm. Indeed, initializing the first

population, generating greedy randomized solutions and using local search

requires additional computation time.

 However, the inclusion of these features also increases the sophistication

of the procedure, and enables it to find a high quality solution in fewer iterations

and using smaller populations. Therefore, and as previously mentioned, lower

values are required for the parameters pop_mult and stop_iter in the more evolved

genetic versions. The computational results show that the time required by the

additional features included in the GA_IN to MA_GR versions is more than offset

by the fewer iterations and smaller populations required by these procedures.

 In terms of solution quality, all the genetic versions were virtually identical

when the best result was considered, while the versions with local search were

somewhat superior in average performance. However, in terms of computation

18

effort, the more sophisticated versions, particularly those with local search, are

clearly more efficient, and can then obtain similar or better results in less

computation time.

 The MA_GR version is then the recommended heuristic for small and

medium instance sizes. This procedure provides the best results (along with the

other versions with local search), and is the most efficient of the genetic

algorithms, with the exception of the GA_IN version. For large problems,

however, a genetic algorithm approach will require excessive time. The RBS

procedure can be applied to slightly larger instances than the genetic algorithm,

but for the quite large problems only the R_V_3 algorithm (or eventually a

dispatching heuristic) will be able to provide results in reasonable computation

times.

Comparison with optimum results

 In this section, we compare the heuristic procedures with the optimum

objective function values, for instances with up to 20 jobs. The optimum objective

function values were obtained with the branch-and-bound algorithm developed in

[6]. Table 7 gives the average of the relative deviations from the optimum (%dev),

calculated as (H - O) / O × 100, where H and O are the heuristic and the optimum

objective function values, respectively. The percentage number of times each

heuristic generates an optimum schedule (%opt) is also provided.

 The results given in table 7 confirm that, as mentioned in the previous

section, the problem is much more difficult when the processing time and penalty

variability is high. In the low variability setting, the heuristic procedures provide

optimum results for nearly all the instances. In fact, the MA_GR algorithm

actually generates an optimal solution for all instances with low variability.

 When the variability is high, however, the problem becomes harder, and

there is more room to improve upon the RBS and R_V_3 results. Indeed, the

genetic algorithms clearly outperform these procedures for the high variability

instances. This is particularly clear for the better performing versions with local

search. In fact, these versions provide an optimal solution for over 96% of the test

instances. The GA, GA_IN and GA_GR algorithms also perform quite well.

Indeed, not only is their relative deviation from the optimum extremely low, but

they also provide optimal solutions for about 80-90% of the instances.

19

 In table 8, we present the effect of the T and R parameters on the relative

deviation from the optimum, for instances with 20 jobs. Again, the results given in

this table confirm that, as previously mentioned, the problem is harder when there

is a greater balance between the number of early and tardy jobs. In fact, when T ≤

0.2 or T ≥ 0.8, all the heuristics are optimal or nearly optimal. The problem,

however, becomes harder when T = 0.4 or T = 0.6, particularly when the due date

range is low. For these more difficult instances, the improvement the genetic

algorithms provide over the RBS and R_V_3 heuristics is much higher. Indeed,

for these instances, the genetic procedures are much closer to the optimum. This is

particularly true for the versions with local search, which are optimal for nearly all

of the more difficult instances.

Conclusion

 In this paper, a genetic approach was proposed for the single machine

scheduling problem with quadratic earliness and tardiness costs, and no machine

idle time. Several genetic algorithms based on this approach were presented.

These versions differ on the generation of both the initial population and the

individuals added in the migration step, as well as on the use of local search.

 We first performed initial experiments, in order to determine appropriate

values for the parameters required by the genetic algorithms. The proposed

procedures were then compared with the best existing heuristics, as well as with

optimal solutions for the smaller instance sizes.

 The genetic algorithms, particularly the versions with local search, clearly

outperform the existing procedures. Also, the genetic heuristics are quite close to

the optimum. Indeed, the versions with local search provided an optimal solution

for over 96% (and in some cases actually all) of the test instances. The

improvement in performance provided by the genetic algorithms is much larger

for the more difficult instances, i.e. instances with a high processing time and

penalty variability and a greater balance between the number of early and tardy

jobs. Also, the improvement given by the genetic versions increases with the

instance size.

 The performance of the proposed genetic approach was improved by the

initialization of the initial population, the generation of greedy randomized

solutions and the addition of a local search procedure. In terms of solution quality,

20

all the genetic versions were virtually identical when the best result was

considered, while the versions with local search were somewhat superior in

average performance. However, in terms of computational effort, the more

sophisticated versions, particularly those which use a local search procedure, are

clearly more efficient, and can then obtain similar or better results in less

computation time. Therefore, the time required by the additional elements

included in the more sophisticated versions is more than offset by the fact that

they require smaller populations and/or a lower number of iterations without

improvement.

 The MA_GR algorithm is the new heuristic of choice for small and

medium instance sizes. Indeed, and on the one hand, this procedure provided the

best results in terms of solution quality, along with the other genetic versions with

local search. Also, and on the other hand, this is the most efficient of the genetic

algorithms, with the exception of the GA_IN version.

 As a possibility for future research, other metaheuristic procedures, such as

tabu search or iterated local search, could be tested on the considered problem.

Also, the problem could be extended by introducing elements such as distinct

release dates and/or setup times, which are relevant in several practical settings.

Yet another possible direction for future research is to apply the quadratic

early/tardy objective function to scheduling problems with more than one

processor, such as parallel machines or flowshops.

References

1. Wagner BJ, Davis DJ, Kher H (2002) The production of several items in a single facility with

linearly changing demand rates. Decis Sci 33:317-346.

2. Taguchi G (1986) Introduction to quality engineering. Asian Productivity Organization, Tokyo,

Japan.

3. Sun X, Noble JS, Klein CM (1999) Single-machine scheduling with sequence dependent setup

to minimize total weighted squared tardiness. IIE Trans 31:113-124.

4. Korman K (1994). A pressing matter. Video February:46-50.

5. Landis K (1993) Group technology and cellular manufacturing in the Westvaco Los Angeles

VH department. Project report in IOM 581, School of Business, University of Southern California.

6. Valente JMS (2007) An exact approach for single machine scheduling with quadratic earliness

and tardiness penalties. Working Paper 238, Faculdade de Economia, Universidade do Porto,

Portugal.

21

7. Valente JMS, Alves RAFS (2008) Heuristics for the single machine scheduling problem with

quadratic earliness and tardiness penalties. Comp Oper Res 35:3696-3713.

8. Valente JMS (2010) Beam search heuristics for quadratic earliness and tardiness scheduling. J

Oper Res Soc 61:620-631.

9. Valente JMS, Moreira MRA (2009) Greedy randomized dispatching heuristics for the single

machine scheduling problem with quadratic earliness and tardiness penalties. Int J Adv Manuf

Technol . 44:995-1009

10. Abdul-Razaq T, Potts CN (1988) Dynamic programming state-space relaxation for single

machine scheduling. J Oper Res Soc 39:141-152.

11. Li G (1997) Single machine earliness and tardiness scheduling. Eur J Oper Res 96:546-558.

12. Liaw CF (1999) A branch-and-bound algorithm for the single machine earliness and tardiness

scheduling problem. Comp Oper Res 26:679-693.

13. Valente JMS, Alves RAFS (2005) Improved lower bounds for the early/tardy scheduling

problem with no idle time. J Oper Res Soc 56:604-612.

14. Ow PS, Morton TE (1989) The single machine early/tardy problem. Manag Sci 35:177-191.

15. Valente JMS, Alves RAFS (2005) Improved heuristics for the early/tardy scheduling problem

with no idle time. Comp Oper Res 32:557-569.

16. Valente JMS, Alves RAFS (2005) Filtered and recovering beam search algorithms for the

early/tardy scheduling problem with no idle time. Comp Ind Eng 48:363-375.

17. Gupta SK, Sen T (1983) Minimizing a quadratic function of job lateness on a single machine.

Eng Costs Prod Econ 7:187-194.

18. Sen T, Dileepan P, Lind MR (1995) Minimizing a weighted quadratic function of job lateness

in the single machine system. Int J Prod Econ 42:237-243.

19. Su LH, Chang PC (1998) A heuristic to minimize a quadratic function of job lateness on a

single machine. Int J Prod Econ 55:169-175.

20. Schaller J (2002) Minimizing the sum of squares lateness on a single machine. Eur J Oper Res

143:64-79.

21. Baker KR, Scudder GD (1990) Sequencing with earliness and tardiness penalties: A review.

Oper Res 38:22-36.

22. Hoogeveen H (2005) Multicriteria scheduling. Eur J Oper Res 167:592-623.

23. Kanet JJ, Sridharan V (2000) Scheduling with inserted idle time: Problem taxonomy and

literature review. Oper Res 48:99-110.

24. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press,

Ann Arbor, Michigan (re-issued in 1992 by MIT Press).

25. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, Reading, Massachusetts..

26. Reeves CR (1997) Genetic algorithms for the operations researcher. INFORMS J Comp

9:231-250.

27. Reeves C (2003) Genetic algorithms. In: Glover F, Kochenberger GA (eds) Handbook of

metaheuristics. Kluwer Academic Publishers, Dordrecht, pp 55-82.

22

28. Bean JC (1994) Genetics and random keys for sequencing and optimization. ORSA J Comp

6:154-160.

29. Valente JMS, Gonçalves JF (2009) A genetic algorithm approach for the single machine

scheduling problem with linear earliness and quadratic tardiness penalties. Comp Oper Res

36:2707-2715.

30. Gonçalves JF (2007) A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal

packing problem. Eur J Oper Res 183:1212-1229.

31. Gonçalves JF, Mendes JJM, Resende MGC (2005) A hybrid genetic algorithm for the job shop

scheduling problem. Eur J Oper Res 167:77-95.

32. Spears WM, De Jong KA (1991) On the virtues of parameterized uniform crossover. In:

Belew R, Booker L (eds) Proceedings of the fourth international conference on genetic

algorithms. Morgan Kaufman, San Mateo, CA, pp 230-236.

33. Reeves CR (1995) A genetic algorithm for flowshop sequencing. Comp Oper Res 22: 5-13.

34. Ahuja RK, Orlin JB (1997) Developing fitter GAs. INFORMS J Comp 9:251-253.

35. Ahuja RK, Orlin JB, Tiwari A (2000) A greedy genetic algorithm for the quadratic assignment

problem. Comp Oper Res 27: 917-934.

36. Armony, Klincewicz JC, Luss H, Rosenwein MB (2000) Design of stacked self-healing rings

using a genetic algorithm. J Heuristics 6:85-105.

37. Moscato P, Cotta C (2003) A gentle introduction to memetic algotihms. In: Glover F,

Kochenberger GA (eds) Handbook of metaheuristics. Kluwer Academic Publishers, Dordrecht,

pp 105-144.

Appendix

 In the appendix, we will provide details concerning the EDD, WPT_sj_E,

WPT_sj_T and ETP_v2 dispatching heuristics presented in [7] and the RCL_VB

greedy randomized dispatching rule proposed in [9].

 The earliest due date (EDD) rule simply schedules the jobs in non-

decreasing order of their due dates. The WPT_sj_E, WPT_sj_T and ETP_v2

dispatching rules calculate, whenever the machine becomes available, a priority

index value for each unscheduled job. The job with the largest priority value is

then selected for immediate processing. Let Ij(t) denote the priority index of job j

at time t. The WPT_sj_E, WPT_sj_T and ETP_v2 dispatching rules use the

following priority indexes:

23

WPT_sj_E: Ij(t) = (hj / pj) * [p – 2 * max (sj; 0)]

WPT_sj_T: Ij(t) = (wj / pj) * [p + 2 * max(t + pj – dj; 0)]

ETP_v2: Ij(t) ={
 2 – if ≤

 a – 2 othe wise

where sj = dj – t – pj is the slack of job j and p is the average processing time of

the unscheduled jobs.

 The WPT_sj_E priority index includes both weighted processing time

(WPT) and slack (sj) components. Also, this rule performed well for instances

where most jobs were early (E). The priority expression of the WPT_sj_T

heuristic also includes weighted processing time and (inverse) slack components.

However, this procedure performed well for instances where most jobs were tardy

(T). The ETP part of the ETP_v2 p ocedu e’s identifie stands fo ea liness and

tardiness priority, since the priority index of this heuristic includes components

relative to both early and tardy costs.

 Several greedy randomized dispatching rules were proposed in [9]. The

general pseudo-code for the greedy randomized construction of a schedule for a

single machine scheduling problem is as follows:

1. Set S =  , U = 1, 2, … , n} and t = 0.

2. While U ≠ 

2.1. Calculate the priority value Ij(t) for all jobs j  U.

2.2. Create a candidate list CL of the unscheduled jobs that will be considered

to be scheduled in the next position.

2.3. Calculate the score scj for all jobs j  CL.

2.4. Calculate the biased score bscj for all jobs j  CL.

2.5. Calculate the probability probj of selecting each job j  CL: probj = bscj /

Σj  CL bscj.

2.6. Randomly select the next job to be scheduled from the jobs in CL

according to the probabilities probj.

2.7. Let k denote the chosen job. Add k to set S and remove it from set U. Set t

= t + pk.

24

3. Return the schedule in set S.

 Various choices can be made regarding steps 2.1, 2.2, 2.3 and 2.4, thereby

leading to different greedy randomized heuristics. The RCL_VB strategy provided

the best result among the alternatives analysed in [9]. The specific way in which

steps 2.1 to 2.4 are implemented in this approach will now be described.

 In step 2.1, the priority value is calculated using the ETP_v2 priority

index. In step 2.2, the candidate list is created using a restricted candidate list

(RCL) strategy. More specifically, the candidate list CL will contain the jobs with

priority values Ij(t)  [Imax – α Imax – Imin), Imax], where Imax and Imin are the

maximum and minimum values of the priorities of all the unscheduled jobs,

 espectively, and α is a use -defined parameter. After preliminary experiments, the

value of α was set at .5 fo n ≤ 25, . 5 when 25 < n < 100 and 0.002 when n ≥

100.

 The value biased (VB) approach was used in step 2.3, so the score of a job

was simply set equal to its priority value, i.e. scj = Ij(t). Finally, an exponential

bias function was used in step 2.4. Therefore, we have bscj = exp_base
scj

, where

exp_base is the user-defined base of the exponential expression. After preliminary

experiments, the exp_base parameter was set at 1 + 0.1n
-0.33

.

25

Table 1 The proposed genetic algorithms

heuristics initial population migration step fitness value

GA random random

equal to the
opposite of the

objective function
value of the

corresponding
sequence

GA_IN
4 non-random

chromosomes
(1)

random

GA_GR

4 non-random

chromosomes
(1)

+

RCL_VB greedy

randomized

chromosomes
(2)

RCL_VB greedy
randomized

chromosomes
(2)

+

random

MA random random

equal to the
opposite of the

objective function
value of the

corresponding
sequence after

improvement by a
local search
procedure

MA_IN
4 non-random

chromosomes
(1)

random

MA_GR

4 non-random

chromosomes
(1)

+

RCL_VB greedy

randomized

chromosomes
(2)

RCL_VB greedy
randomized

chromosomes
(2)

+

random

(1)
These are created so that their corresponding schedules are equal to the sequences

generated by the WPT_sj_E, EDD, WPT_sj_T and ETP_v2 dispatching rules considered in [7].
(2)

Some chromosomes are created so that they correspond to a schedule generated by the

greedy randomized dispatching rule RCL_VB proposed in [9].

26

Table 2 Parameter values

 GA GA_IN GA_GR MA MA_IN MA_GR

pop_mult 3 2 2 1 1 1

elit_prop 0.05 0.05 0.05 0.05 0.05 0.05

mig_prop 0.25 0.25 0.25 0.25 0.25 0.25

cross_prob 0.8 0.8 0.8 0.8 0.8 0.8

stop_iter 30 30 30 10 10 10

init_gr --- --- 0.4 --- --- 0.1

mig_gr --- --- 0.5 --- --- 0.5

local search --- --- --- API API API

27

Table 3 Comparison with the RBS heuristic - relative improvement

 n = 25 n = 50 n = 75 n = 100

var heur best avg best avg best avg best avg

L R_V_3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 GA 0.00 0.00 0.00 0.00 0.00 0.00 --- ---

 GA_IN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 GA_GR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 MA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 MA_IN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 MA_GR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

H R_V_3 0.15 -0.86 0.33 -0.28 0.43 -0.20 0.11 -0.27

 GA 1.36 0.84 2.23 2.06 2.43 2.32 --- ---

 GA_IN 1.26 0.58 2.19 1.87 2.40 2.17 2.76 2.66

 GA_GR 1.29 0.92 2.20 1.97 2.41 2.27 2.76 2.60

 MA 1.37 1.29 2.23 2.20 2.43 2.41 2.78 2.77

 MA_IN 1.37 1.30 2.23 2.20 2.43 2.41 2.78 2.76

 MA_GR 1.37 1.28 2.23 2.18 2.43 2.40 2.78 2.77

28

Table 4 Comparison with the RBS heuristic - percentage of better, equal and worse results

 n = 25 n = 50 n = 75 n = 100

var heur < = > < = > < = > < = >

L R_V_3 0.6 98.8 0.6 2.4 95.9 1.7 6.1 92.1 1.8 2.7 88.3 9.1

 GA 0.4 97.6 2.0 1.8 93.2 5.0 4.0 90.5 5.5 --- --- ---

 GA_IN 0.4 97.1 2.5 1.2 93.3 5.5 1.9 92.2 5.9 2.5 88.6 8.9

 GA_GR 0.4 97.4 2.2 1.4 93.7 5.0 2.5 92.5 5.1 3.7 88.8 7.5

 MA 0.7 99.3 0.0 2.9 97.1 0.1 7.1 92.9 0.0 10.5 89.5 0.0

 MA_IN 0.7 99.3 0.0 2.9 97.1 0.0 7.1 92.9 0.0 10.5 89.5 0.0

 MA_GR 0.7 99.3 0.1 2.9 97.1 0.0 7.1 92.9 0.0 10.4 89.6 0.0

H R_V_3 10.8 75.7 13.5 23.0 57.6 19.4 34.4 43.2 22.4 31.8 40.2 28.0

 GA 18.5 63.1 18.3 35.5 43.6 20.9 46.0 30.8 23.3 --- --- ---

 GA_IN 15.1 66.9 18.1 30.2 48.9 20.9 37.6 42.0 20.4 41.5 40.7 17.8

 GA_GR 16.8 75.5 7.8 35.8 52.1 12.2 45.8 40.4 13.7 49.2 37.9 12.9

 MA 22.3 75.6 2.1 42.9 54.8 2.3 56.9 40.9 2.2 64.5 33.9 1.6

 MA_IN 22.3 75.8 1.9 43.0 54.9 2.2 56.9 41.2 1.9 64.3 34.2 1.5

 MA_GR 22.3 76.6 1.2 42.9 55.5 1.6 57.2 41.3 1.5 64.4 34.6 1.1

29

Table 5 Relative improvement over the RBS heuristic for instances with 50 jobs

 var = L var = H

heur T R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 0.2 R = 0.4 R = 0.6 R = 0.8

R_V_3 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 -0.01 -0.05 -0.02 -0.01

 0.4 0.00 0.00 0.00 0.00 -0.79 -0.32 -1.17 -1.17

 0.6 0.00 0.00 0.00 0.00 -1.34 -1.63 -0.71 -0.05

 0.8 0.00 0.00 0.00 0.00 0.42 0.13 -0.02 -0.02

 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

GA_IN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 -0.04 -0.06 -0.04 -0.01

 0.4 0.00 0.00 0.00 0.00 4.30 1.37 0.06 -0.55

 0.6 0.00 0.00 0.00 0.00 16.45 10.12 7.02 2.33

 0.8 0.00 0.00 0.00 0.00 3.53 0.45 -0.01 0.00

 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GA_GR 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 0.04 -0.01 0.00 0.01

 0.4 0.00 0.00 0.00 0.00 4.41 1.63 0.60 -0.09

 0.6 0.00 0.00 0.00 0.00 16.43 10.13 7.20 2.84

 0.8 0.00 0.00 0.00 0.00 3.59 0.49 0.02 0.02

 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

MA_IN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 0.10 0.01 0.00 0.02

 0.4 0.00 0.00 0.00 0.00 5.24 2.25 1.13 0.27

 0.6 0.00 0.00 0.00 0.00 16.96 10.91 8.28 3.42

 0.8 0.00 0.00 0.00 0.00 3.64 0.51 0.04 0.03

 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

MA_GR 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.02

 0.4 0.00 0.00 0.00 0.00 5.07 2.18 1.02 0.28

 0.6 0.00 0.00 0.00 0.00 16.92 10.91 8.21 3.36

 0.8 0.00 0.00 0.00 0.00 3.64 0.51 0.04 0.03

 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

30

Table 6 Runtimes (in seconds)

var heur n = 15 n = 25 n = 50 n = 75 n = 100

L RBS 0.002 0.007 0.037 0.104 0.226

 R_V_3 0.001 0.003 0.008 0.017 0.020

 GA 0.032 0.129 0.923 3.007 ---

 GA_IN 0.008 0.019 0.068 0.149 0.262

 GA_GR 0.011 0.040 0.163 0.467 0.972

 MA 0.010 0.030 0.214 0.691 1.656

 MA_IN 0.009 0.029 0.209 0.682 1.637

 MA_GR 0.009 0.024 0.154 0.484 1.139

H RBS 0.002 0.007 0.038 0.109 0.240

 R_V_3 0.002 0.004 0.013 0.030 0.034

 GA 0.033 0.131 0.937 3.046 ---

 GA_IN 0.011 0.032 0.159 0.441 0.982

 GA_GR 0.014 0.065 0.488 2.110 3.647

 MA 0.010 0.032 0.253 0.907 2.362

 MA_IN 0.010 0.031 0.240 0.857 2.258

 MA_GR 0.009 0.026 0.183 0.631 1.523

31

Table 7 Comparison with optimum objective function values

 n = 10 n = 15 n = 20

var heur %dev %opt %dev %opt %dev %opt

L RBS 0.00 99.92 0.00 100.00 0.00 99.67

 R_V_3 0.00 99.65 0.00 99.75 0.00 99.64

 GA 0.00 99.40 0.00 98.93 0.00 98.30

 GA_IN 0.00 99.27 0.00 98.60 0.00 97.58

 GA_GR 0.00 99.63 0.00 99.03 0.00 98.24

 MA 0.00 100.00 0.00 100.00 0.00 99.99

 MA_IN 0.00 100.00 0.00 100.00 0.00 99.98

 MA_GR 0.00 100.00 0.00 100.00 0.00 100.00

H RBS 0.22 95.67 0.91 87.92 1.40 82.50

 R_V_3 0.29 93.12 0.71 85.74 1.03 80.36

 GA 0.00 90.48 0.00 82.77 0.00 77.57

 GA_IN 0.16 90.10 0.15 81.11 0.13 76.64

 GA_GR 0.04 94.66 0.06 88.48 0.05 85.44

 MA 0.00 99.97 0.00 98.61 0.00 96.44

 MA_IN 0.00 99.99 0.00 98.90 0.00 96.63

 MA_GR 0.00 99.99 0.00 98.91 0.00 96.82

32

Table 8 Relative deviation from the optimum for instances with 20 jobs

 var = L var = H

heur T R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 0.2 R = 0.4 R = 0.6 R = 0.8

RBS 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00

 0.4 0.00 0.00 0.00 0.00 3.88 6.22 0.68 0.80

 0.6 0.00 0.00 0.00 0.00 10.94 3.63 2.64 0.74

 0.8 0.00 0.00 0.00 0.00 2.61 1.05 0.03 0.17

 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

R_V_3 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 0.09 0.03 0.01 0.01

 0.4 0.00 0.00 0.00 0.00 3.24 5.27 0.58 1.77

 0.6 0.00 0.00 0.00 0.00 7.89 2.68 2.12 0.50

 0.8 0.00 0.00 0.00 0.00 0.13 0.28 0.00 0.00

 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GA_IN 0.0 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 0.19 0.03 0.08 0.02

 0.4 0.00 0.00 0.00 0.00 0.31 0.32 0.63 0.96

 0.6 0.00 0.00 0.00 0.00 0.22 0.08 0.08 0.04

 0.8 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.10

 1.0 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

GA_GR 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 0.09 0.00 0.01 0.01

 0.4 0.00 0.00 0.00 0.00 0.12 0.39 0.14 0.01

 0.6 0.00 0.00 0.00 0.00 0.22 0.07 0.01 0.00

 0.8 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00

 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MA_IN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MA_GR 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.4 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

 0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

33

Figure 1 Chromosome decoding example

Figure 2 Parameterized uniform crossover example

Figure 3 Evolutionary strategy

Figure 4 Genetic approach

