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Abstract 

Soft-decision decoding is an NP-hard problem of great interest to developers of com

munication systems. We show that this problem is equivalent to the problem of optimizing 

Walsh polynomials. We present genetic algorithms for soft-decision decoding of binary 

linear block codes and compare the performance with various other decoding algorithms. 

Simulation results show that our algorithms achieve bit-error-probabilities as low as 0.00183 

for a [104, 52] code with a low signal-to-noise ratio of 2.5 dB, exploring only 30,000 code

words, whereas the search space contains 4.5 x 1015 codewords. We define a new crossover 

operator tha.t exploits domain-specific information and compare it with uniform and two 

point crossover. We also give a schema theorem for our genetic algorithm, showing that 

high reliability, low order codewords are the building blocks for the evolutionary process. 

[{eywords: genetic algorithms, soft-decision decoding, uniform crossover, Walsh polynomials. 



1 Introduction 

Codes are used for the reliable transmission of data over communication channels susceptible 

to noise. Codes may be classified as either block codes or tree codes. An encoder for a block 

code accepts as input a k symbol message sequence (usually binary sequence) and maps it to 

an n ( > k) symbol sequence. Each n-symbol sequence is completely determined by a specific 

k-symbol message. Block codes may further be classified as linear or nonlinear. A linear code, 

is defined as a vector space over a finite field. We restrict our attention to codes over the two

element field, Z2. Figure 1 describes a typical communication system. As a result of noise, the 

received vector components are real numbers. Of the n codeword coordinates, exactly k are 

linearly independent. Let i be the information vector and G = (9im) the generator matrix, 

a listing of the basis vectors of a code C; then the encoding operation yields iG = c, and, 

consequently, Cj = L:~=l im9im represents the j-th component of the codeword, c. Let 1' be a 

received vector. "Hard decision" decoding involves quantizing each component of the received 

vector independently to the nearest value E {0, 1} and then moving to the code-vector nearest to 

the resulting sequence. "Soft-decision" decoding algorithms utilize received vector components, 

not just their quantized estimates [6]. A maximum-likelihood decoder finds a codeword c' that 
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Figure 1: A Typical Communication System 

maximizes the conditional probability of receiving 1', i.e. 

P(c'jr) = maxP(cjr) = maxP(rlc)P(c)jP(r) 
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Vector 

Channel 
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The above equation holds since we assume that all codewords are equally likely to be trans

mitted. A maximum-likelihood decoder is optimal in this sense. If transmitted signals are 

binary antipodal over a discrete memoryless channel susceptible to additive white Gaussian 

noise, and the noise affects each symbol independently, then P(rjc') is maximized when the 

squared Euclidean distance between vector 1' and c', L:j=1(rj- c'j)2, is minimized [2], [5]. Thus 

maximum-likelihood decoding reduces to nearest-neighbor decoding, with the Euclidean metric. 

More formally the soft-decision decoding problem reduces to: 

Given received real vector 1' = ( r1, ... , rn). find a codeword c E C that minimizes L:j=1 ( ri - Cj ) 2. 
Most research in decoding algorithms has been focused on hard-decision decoding algorithms 

based on algebraic techniques. Soft-decision decoding has not been as extensively studied and 

until recently there were not many efficient decoding algorithms for linear block codes of large 
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block length. An efficient algorithm is the recently developed A*-based decoding algorithm 

[4). Algorithm GADEC is a significant contribution to soft-decision decoding as shown hy 

comparing it with an A* based approach that is currently the most successful algorithm for soft 

decision decoding. 

The problem of decoding an error correcting code is known to be NP-hard. It is indeed 

desirable and often preferable to obtain suboptimal solutions to such a problem. In this paper 

we present a suboptimal decoding algorithm for linear block codes that is based on finding a 

near-global minimum for the function L:j=1 ( rj - Cj )2 • In section 2, we describe the motivation 

for considering a genetic algorithm-based decoding scheme. In section 3, GADEC, our genetic 

algorithm for decoding, is described. In section 4, we present and discuss simulation results. In 

section 5, we analyze the algorithm. In Section 6, we give a comparison with other decoding 

algorithms. 

2 Walsh Polynomials and Nearest Neighbor Decoding 

Walsh polynomials have been used as a benchmark for genetic algorithm performance by Tanese 

[8]. 
This section describes how the soft-decision decoding problem is equivalent to a Walsh poly

nomial optimization problem. A Walsh polynomial is a function of the form 

f(~) = L Wjt/Jj(X) 
iEB 

where B is the set of 1-bit strings and ~ E B. Note that each j can be uniquely identified with 

a vector of dimension 1, j. In the context of soft-decision decoding recei~ed vector components 

rj play the role of Wj· Each ri is real, and Walsh function tPj(~) = ( -1)3·~ = 1 if j.~ has even 

parity and tPj(~) = -1 otherwise [7]. Consider the transformation: 

( z2, +) --+ ( z2, *) 

given by a ~--+ ( -1 )a, where a E Z2 • This isomorphism maps the additive binary group to the 

multiplicative binary group. Under this transformation, the cj's defined earlier transform to 

( -1)'·9i = 1 if i.gi has even parity and -1 otherwise. This is the Walsh function corresponding 

to the j-th column of G. 

We need to minimize the following objective function for nearest-neighbor decoding: 

n n n 

L(rj- Cj)2 = L(ri)2 + n- 2 L rjCj. 
j=I j=I j=l 

As the first and second terms are constants, this is equivalent to the task of maximizing: 

I:j=1 rjCJ. With i and the columns of G playing the role of~ and j respectively, this is seen to 

be a problem of optimizing, I:j rjc;, a Walsh polynomial. 
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2.1 Decoding and Tanese Functions 

Tanese reported [8] that genetic algorithms performed rather poorly on optimizing a certain 

class of Walsh polynomials, genetic algorithms were in fact outperformed by hillclimbing 1 • An 

important investigation in this regard was undertaken by Forrest and Mitchell [7] in which they 

remark that: 

For a given Tanese function, F, the fitness of string~ under F depends on the parity 

of ~ 1\ j, for each j in F. Because of this parity calculation, a change of a single bit 

in ~ in any of the positions in which j has a 1 will produce the opposite value for 

~ 1\ j, thus reversing the contribution of the term to the total fitness. This implies 

that in general, for a Tanese function of order n, no schema of order less than n will 

give any useful information; since for a given j, half the instances of the schema will 

have even parity with respect to j, and half will have odd parity with respect to j. 

This is because each of the Walsh functions is of the same order. [Therefore] schema 

of lower order than n do not provide the GA with useful information. 

Thus for problems equivalent to Tanese functions, crossover is not a useful tool for recombin

ing building blocks. In the case of soft-decision decoding of linear block codes the j's correspond 

to the columns of the generator matrix, G. Recall that G is constructed by listing the basis 

vectors of C as rows. Through elementary row operations G can be reduced to a systematic 

form, i.e: 

G=(IIP), 

where I is a k x k identity matrix and Pis an n x (n- k) matrix. Consider, for example the 

row reduced G matrix of the Hamming [7, 4] code: 

( 

1 0 0 0 

G= 0 1 0 0 
0 0 1 0 

0 0 0 1 

1 1 0 ) 
1 0 1 

0 1 1 

1 1 1 

We see that the Walsh polynomials that arise as a consequence of soft-decision decoding 

consist of a sum of atmost n terms, where n is the blocklength of the code. This is because there 

are n columns in the G matrix of an [n, k] linear block code. Each transmission of a codeword 

gives rise to a potentially different Walsh polynomial as the components of r are likely to be 

different. We also note that not all Walsh functions are of the same order, in fact the first k 

terms are necessarily of order 1. This is because not all columns of the G matrix have the same 

Hamming weight, and the first k have Hamming weight (order) 1. Therefore this problem does 

not suffer from the lack of low-order schema processing characterizing Tanese functions and there 

is reason to believe that genetic algorithms would be a useful tool for the decoding problem. This 

motivates the development of the following genetic algorithm as a nearest-neighbor soft-decision 

decoding. 

1The Walsh polynomials generated and used by Tanese [8] are hereafter referred to as Tanese functions. 

Tanese selected specific Walsh functions by randomly choosing 32 partition indices j all containing the same 

number of ones. The Walsh coefficient Wj for each of the 32 chosen partition indices was also chosen at random 

from the interval (0.0, 0.5]. The fitness function used in her experiments was a sum, f(x) = Lj Wj"Pj(x) of these 

32 terms, other terms were effectively set to 0. 
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3 Algorithm GADEC 

The following is an outline of an algorithm that performs a genetic search over the space of 

all codewords to search for the codeword nearest to received vector r. For exhaustive experi

mentation, the algorithm first simulates the transmission of codewords over an additive white 

Gaussian noise channel. An important feature of this algorithm is the utilization of domain

specific "reliability" information for different components of the received vector. 

• Algorithm GADEC(n, k, Y,pm,Pcrou, N). 
Algorithm GADEC expects as input the blocklength, n, of the code, the dimension, k, of 

the linear code, the signal to noise ratio, Y, in decibels, the probability of mutating a single 

bit, Pm• the crossover probability, Pcross. and the size, N, of the population. 

• STEP 1: Simulate message transmission. 

Randomly generate k binary information bits. Encode these information bits using the G 

matrix of the code, to yield an n-bit vector. Add simulated Gaussian noise after transforming 

each 0 to a 1 and each 1 to a -1 to obtain a received vector, r E Rn. 

• STEP 2: Permute the coordinates of received vector r so that the first k positions are the 

most reliable linearly independent positions of r . 

By assumption data is transmitted over an additive white Gaussian noise channel. Hence, ri 

is considered to be more reliable than ri if lril > lril· Permute the vector r in such a way 

that lril > lri+JI, for 1 ~ i ~ n. Further, permute the coordinates of r to ensure that the 

first k positions of r are its most reliable linearly independent positions [4]. Call this vector r'. 

Modify the generator matrix of the code by applying the same transformation to the columns 

of G that produces r' from r, to get G'. Store permutation in vector PERM. 

• STEP 3: Randomly generate a population of possible message vectors. 

Quantize the first k bits of r' to obtain vector h, which is used to seed the initial population. 

In addition, uniformly randomly generate (N- 1) number of vectors E { -1, 1 }k. Let best be 

the member of the population that is closest to r'. 

• STEP 4: while(generation_counter < Total-Number-Generations) do 

- STEP 4.1: Compute the fitness of each individual in the population. 

An individual represents an information vector of length k bits which is encoded, c = i G', 

to an n-bit codevector. The fitness function is the negated squared Euclidean distance 

- E~=l ( r; - ci)2 between the received word and the encoded individual. 

- STEP 4.2: Sort population in increasing order of fitness. 

- STEP 4.3: Allot ranks to individuals in population and allocate reproductive trials 

to them. 

- STEP 4.4: while(population-size-counter < N ) do 

* STEP 4.4.1: Randomly select two individuals a and b for reproduction. 

* If( random.11um < Pcross) 
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STEP 4.4.2: Crossover( a, b) with probability Pcross to produce offspring c. 

If a= (at, ... ,ak) and b = (bt, ... ,bk) then: 

for each bit i compute 

if ai = bi = -1 

if ai = bi = 1 

if ai =f. bi 

Offspring c inherits 1 with probability P(ci = 1) and -1 with probability 1-P(ci = 

1). 

STEP 4.4.3: Mutate(c). 

Flip each bit of c with probability Pmut. 

STEP 4.4.4: Introduce c as an individual into new population. 

* else 

· STEP 4.4.5: Introduce either a or b into new population with equal proba

bility. 

* STEP 4.5: Let currbest =fittest member of the new population. If fitness( best) 

< fitness ( cu rr best), then best = cu rr best. 

- end while 

{loop invariant: Among all the vectors examined so far, best is the closest to r' } 

• end while 

• STEP 5: To best apply the inverse of the permutation applied in STEP 2 of the algorithm. 

Return c' = PERM- 1 (best) as the decoded result. 

3.1 Description of Algorithm GADEC 

3.1.1 Codeword Transmission 

This step is not a part of the decoder(GADEC) but is necessary in order to simulate a message 

source and noisy transmission channel. In STEP 2, the j-th component of the transmitted 

codeword c and the received vector r are Cj = ( -1 )cJ VE and ri = ( -1 )cJ VE + ei respectively, 

where E is the signal energy per channel bit and ei is a noise sample of a Gaussian process with 

single-sided noise power per hertz N0 . The mean of ei is zero and the variance is N0 /2. The 

signal-to-noise ratio for the channel is Y = EjN0 • In order to account for the redundancy in 

codes of different rates, the signal-to-noise ratio per transmitted bit, i.e.,}/, = Yn/k is used. 

For simulation purposes, E is set to 1 and the mean and variance of ei computed accordingly. 

3.1.2 Chromosome Representation 

In STEP 3, solutions to the optimization problem are represented as k-dimensional vectors. 

The k bits represent the information bits of a code-vector. Hence, crossover and mutation 

operate only on the information bits, which means that all the individuals in the population are 

always feasible solutions. An alternative strategy is to represent individuals as n bit codewords. 
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Reproduction could then create an offspring that is not necessarily a feasible solution. Feasibility 

could be restored by following this up with a hard-decision decoding step to find the codeword 

closest in hamming distance to the n bit offspring. 

3.1.3 Population Initialization 

The initial population is generated uniformly randomly, so that every schema of a given length is 

equiprobably represented in the intial population. The initial population also contains a binary 

vector, h, consisting of components hi = sgn(r;). 2 It is possible to seed the population with 

several good estimates of i, the transmitted information vector, by using minor perturbations 

of h, or perhaps choosing different information sets. We do not follow this approach, since a 

similar approach in using GA's for the TSP was reported to have led to premature convergence 

[17]. 

3.1.4 Fitness Evaluation 

In STEP 4.1, to evaluate the fitness of an individual, it is necessary to first encode it by 

multiplying it with matrix G'. The squared Euclidean distance between r' and this encoded 

vector is then computed. An individual is fitter than another if it is closer in squared Euclidean 

distance to r'. 

3.1.5 Selection 

In STEP 4.2 & 4.3, the selection strategy used is "Linear Ranking Selection". Individuals in the 

population are sorted by non-decreasing order of squared Euclidean distance and each individual 

is assigned a rank which determines the number of reproductive trials for that individual. This 

approach was first proposed by Baker [26], as a means of slowing convergence. It has been 

reported to also result in more accurate optimization [25]. 

3.1.6 RUX: Reliability Based Uniform Crossover 

STEP 4.4.2 is the key component of genetic search. We have developed a unique crossover 

operator for this application, a variant of uniform crossover. In uniform crossover, a choice 

between inheriting a bit from either of two parents is made at each component of an offspring. 

Several researchers have investigated the role of uniform crossover in genetic search [21], [22], 

[23]. An advantage of uniform crossover is that the location of bits on the problem encoding is 

irrelevant. In one and two point crossover, bits that are closer together have a greater chance of 

propagating together through genetic algorithm generations. Syswerda showed, counter to pop

ular belief, that uniform crossover nearly always combines schemata more effectively than one or 

two point crossover [21]. Schaffer, Eschelman and Offut [22] further pursued this line of inves

tigation, and found uniform crossover to be highly effective in combating spurious correlations. 

They concluded that, 

2r is reordered so that the most reliable k linearly independent bits occupy the first k positions of r'. 
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the very good performance of UX combined with population elitist selection seems to 

show that one can exploit the benefits of the vigorous search from a highly disruptive 

crossover operator by combining it with a conservative selection operator. 

In population-elitist selection, every individual mates every generation without regard to its 

fitness [22], after which offspring are pooled with all the parents and the best 50% are selected 

to yield the next generation. Algorithm GADEC implicitly uses elitism in that only one of 

two possible offspring is preserved; the one that is more likely to contain good schema. This 

algorithm explicitly enforces the survival of the best individual in the current generation into 

the next generation. These conservative selection policies and uniform crossover coupled with a 

technique for exploiting problem specific knowledge lead to very good performance. We discuss 

the performance of RUX and provide a comparison between RUX, uniform crossover and two 

point crossover in Section 4, Table 2. 

RUX, the reliability based uniform crossover operator used in algorithm GADEC, repeat

edly exploits the reliability of the received vector. Incorporating problem specific information 

is useful in any search problem; in genetic search, Grefenstette has exploited this for the TSP 

problem [17]. 
Figure 2 is a plot of the probability function used in RUX. 
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Figure 2: Probability Function used in RUX 

RUX is a variant of uniform crossover where a choice is made between inheriting a bit from 

either parent based on a suitable probability function. For example: 

if ai = bi 

if ai = 1 # bi 

if ai = -1 :f. bi 

I I h 
In case ai = 1 :f. bi, P( Ci = ai) approaches 1 as ri approaches oo and 0 as ri approac es 

-oo. Similarly if ai = -1 :f. bi then P(ci = ai) approaches 1 as r~ approaches -oo and 0 as r/ 

approaches -oo. 
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P( Ci = ai) depends on ri in such a way that the probability of Ci inheriting either ai or 

bi increases, depending upon which one has the same sign as ri. The crossover operator thus 

exploits reliability information provided by vector r'. 

3.1. 7 Mutation 

STEP 4.4.3 is the mutation step. Mutation is done bit-wise on offspring with probability Pmut· 

Mutation rate for each bit is kept low, since the probability that a vector is perturbed is 1 -

( 1 - Pmut )k) ~ kPmut, and k is as high as 52 in some of the problems we have experimented with. 

4 Simulation Results and Discussion 

We present simulation results at various signal-to-noise ratios for the [104, 52] extended binary 

quadratic residue code. This is a large code, with a search space of size 252 • We present graphs 

and data showing the excellent performance of our approach. We illustrate the relation between 

bit error probability and the number of genetic algorithm generations. Simulation parameters for 

the results presented in Figures 3, 4, and Table 1 are: n = 104, k = 52, Pmut =3%, Pcross = 70%, 

N = population size= 300. 

Figures 3 and 4 indicate the evolution of bit-error-probability with genetic algorithm gener

ations. Bit error probability is calculated by simulating several (about 1000) transmissions of 

codewords and finding the average fraction of information bits in error. Notice that the bit-error

probability decreases with increasing number of generations, reflecting the fact that it is possible 

to balance solution quality with computational efficiency. Also notice in figure 4, the rapid initial 

evolution which settles down to a steady rate of improvement in bit-error-probability. 
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Figure 3: Bit Error Probability vs Number of Generations 

An important question about this algorithm and, more generally, any genetic algorithm

based optimization technique, is about the stopping criterion. When should one stop iterating 

STEP 4 of algorithm GADEC? Since GADEC is iterative, one has the luxury of balancing 

performance and computational effort. Table 1 shows that there is a steady decrease in bit error 
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Figure 4: Bit Error Probability in the Later Stages of Evolution 

probability with increase in the number of generations, with about 30 to 40% reduction when 

the number of generations is increased from 50 to 100. 

For a given [n, k] code, it is possible to perform a regression between the bit-error rate and 

numbers of genetic algorithm generations, based on simulation data. This will give a relation 

between bit error probability and an upper bound on the number of codewords evaluated ( = 

number of generations x population size). 

We present in Table 1, bit error probability and related statistics after 50 and 100 genetic 

algorithm generations. Figures 5 and 6 exhibit the relation between bit-error probability and 

the signal-to-noise ratio, after 50 and 100 generations, respectively. Some of these errors would 

necessarily be made by any maximum likelihood decoder (MLD) as well and reflect cases where a 

codeword other than the transmitted codeword was found to be closer to the received vector, r'. 

This "lower bound" is also presented. The difference between the two curves, given in Figures 

5 and 6, is often used to gauge the performance of a suboptimal decoding algorithm. 
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Figure 5: Bit Error Probability, (BEP) vs Signal-to-noise Ratio, 50 generations: [104,52] Code 
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Signal-to-Noise Ratio, dB 1.5 1.75 2.0 2.25 

Bit-Error Probability 

(Uncoded Data) .0462 .0418 .0375 .0334 

No. of Codewords 

Evaluated 30000 30000 30000 30000 

Number of Generations 100 100 100 100 

Pb, Bit-Error Probability 

(Coded Data) 0.0165 0.00873 0.00563 0.00217 

MLD Lower Bound 0.00904 0.00404 0.00267 0.00135 

Ratio, Pb/MLD 1.82 2.16 2.10 1.65 

No. of Codewords 

Evaluated 15000 15000 15000 15000 

Number of Generations 50 50 50 50 

Pb, Bit-Error Probability 

(Coded Data) 0.019730 0.010838 0.007769 0.004200 

MLD Lower Bound 0.008307 0.004039 0.002676 0.001336 

Ratio, Pb/ M LD 2.37 2.28 2.90 3.14 

Table 1: Simulation Results for the [104, 52) Code 
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Figure 6: Bit Error Probability, (BEP) vs Signal-to-noise Ratio, 100 generations: [104,52] Code 
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Signal-to-Noise Ratio, dB 1.5 2.0 2.5 

No. of Codewords 

Evaluated 30000 30000 30000 

Number of Generations 100 100 100 

Pb, Bit-Error Probability, RUX 

(Coded Data) 0.0165 0.00563 0.00183 

Pb, Bit-Error Probability, UX 

(Coded Data) 0.151 0.116 0.0851 

Pb, Bit-Error Probability, 2PTX 

(Coded Data) 0.130 0.098 0.065 

Table 2: Comparison Between Different Crossover Operators in Algorithm GADEC 

The results obtained using GADEC are excellent: the ratio of the bit error probability to 

the maximum likelihood decoding lower bound, is as low as 1.65 to 2.2 after 100 generations. 

As shown by the simulation results, it is possible to obtain a lower bit error probability and 

Pb/ M LD ratio, at the expense of more computation. 

For a fixed bit error probability, it is possible to compute the difference in SNR between 

the lower bound maximum-likelihood decoding curve and the curve obtained from algorithm 

GADEC. This difference is atmost 0.55 dB after 50 generations of genetic search and reduces 

to atmost 0.35 dB after 100 generations. 

In Table 2 we present a comparison between results obtained using RUX, uniform crossover 

(UX), and two point crossover (2PTX) in algorithm GADEC. In the case of two point crossover 

the algorithm was modified to produce two offspring. 

Simulation results show that RUX is superior to UX and 2PTX by atleast an order of 

magnitude. 

5 Analysis of Algorithm GADEC 

In this section we show analyze the time and memory complexity of algorithm GADEC. We 

present a probabilistic analysis of the algorithm which includes an analysis of the role played by 

crossover. 

5.1 Complexity Analysis 

We show that algorithm GADEC has polynomial time complexity per generation. 

Given that: 

n = blocklength of code, 

k = dimension of code = length of individuals in population, 

N = population size = total number of individuals in population, 

At any given stage, we maintain a few sets of N x k arrays, therefore the memory complexity 

of this algorithm is O(Nk). 
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STEP 3 has time complexity of O(Pn) [4]. 

STEPS 4.1 to 4.3 have a computational complexity of O(knN) + O(N log N) + O(k). 

The complexity of STEP 3 depends on the random number generator in use; but the cost is 

negligible compared to that of STEP 4 

STEPS 4.4.1 to 5 have an average case complexity of 0(1) + Pcrosa[O(k) + O(k) + O(k)] + 
(1- Pcross)[0(1) + O(k)] = 0(1) + PcrosaO(k) + (1- Pcross)O(k). This reduces to O(k), which is 

also the worst case complexity. Hence each iteration of the genetic algorithm part of GADEC 

has a total time complexity of 0( knN + N log N) per generation. 

Algorithm GADEC has a time complexity of O(knN + N log N) per generation + an Ini

tialization complexity of O(Pn). 

5.2 Probabilistic Analysis of Algorithm GADEC 

Next, we proceed to give a mathematical and empirical analysis of the algorithm. Such an 

analysis must necessarily be probabilistic because genetic algorithms are essentially stochastic 

processes. We start this analysis by computing the effect of STEP 2 on the decoding effort. We 

obtain the probability that the vector produced as a result of STEP 3, is the nearest neighbor 

code vector to the received vector r. We know that vector r = (rh ... , rn) has components ri 

that are Gaussian random variables with mean +1 or -1 and variance N0 J2, as described in 

STEP 2 of algorithm GADEC. 

If n independent and identically distributed random variables with probability density func

tion f(x) are rearranged in order of decreasing magnitude, denoted by X(t) ~ X(2) ~ · · · ~ X(n), 

then the probability density function of X(i) is given by 

Pi(x) = n x (7~:) · f(x) · Fn-i(x)a;-1(x) 

where F(x) = j_x
00

f(t)dt and G(x) = 1- F(x). 

We are interested in computing the probability that STEP 3 of algorithm GADEC produces 

the nearest-neighbor codeword. Let }i = lrd; then P(l'i ~ x) = P( -x < r; < x). 

If ri is received with mean p. = 1, then 

P(}i < x) = -- e-2 (T dy = 4> -- + 4> -- - 1 j x 1 1 (1i.=!)2 (X- 1) (X- 1) 
-x v"iiiu U U 

where 4>(u) = ju ~ e-t212dt. 
-oo V 27r 

Likewise, if ri is received with mean p. = -1, then 

l x 1 1(!±!)2 (x+1) (x-1) P(}i < x) = rn= e-2 tl dt = 4> -- + 4> -- - 1 
-x v27ru q q 
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In other words, the random variables Y1, ... , Yn are distributed independently and identically, ir

respective of the mean of the received component r i for i = 1, ... , n and the common distribution 

function of the }i's is given by equation (1) with associated density function 

1 1(:!.±.!.)2 1 l(s-1 ) 2 
f(x) = rn= e-2 a + -- e- 2 -;;- ; for x > 0. 

v2~u V'fiu 
(2) 

We will approximate the probability of STEP 3, producing the nearest-neighbor codeword 

by neglecting the effect of interchanges required to restore linear independence to the first k bit 

positions. These interchanges should not affect the probability very much [19], as there are very 

few of them; they are hence neglected in the analysis. 

The probability of quantization yielding the transmitted bit is given by 

-- e-2 -a- dt = Cb -100 1 l(t-1)2 (1) 
0 Vii u 

if 1 was transmitted, and 

1° - 1- e-H~ )2 dt = Cb (.!.) 
-oo V'f; U 

if -1 was transmitted. In other words, this probability of quantization yielding the transmitted 

bit is also independent of the transmitted bit. 

The following expression for A(n,j) approximates the probability that the j-th received 

vector component is quantized to its associated transmitted bit. 

A(n,j) = (n- i)~~i- 1)! fooo F(x)n-j. G(x)i-lJ(x) dx 

where f( x) is defined in Equation 2, F( x) is the associated distribution function and, G( x) = 
1- F(x). 

The product nJ=l A(n,j) 'approximates the probability that all of T(l)• ... 'T(A:) are quantized 

to their associated transmitted bits. Since the first k positions uniquely determine a codeword, 

product nJ=1 A(n,j) represents the probability that STEP 3 yields the transmitted codeword. 

The results presented in Table 3 arise from simulating several codeword transmissions to observe 

SNR (dB) u Theoretical Estimate Observed by Simulation 

1.5 0.837 0.415 .398 

1.75 0.813 0.482 .462 

2.0 0.7905 0.546 .533 

2.25 0.768 0.611 .592 

2.5 0.746 0.673 .656 

2.75 0.725 0.729 .719 

Table 3: Estimates of nj=1 A(n,j) for the [104,52} Code 

the frequency with which STEP 3 produced the transmitted codeword correctly. The theoretical 

estimate of probability given by nJ=1 A(n,j) computed using Mathematica, agrees very closely 

with simulation results for the [104, 52] code at six different signal-to-noise ratios. 
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Since we are interested in computing the probability that STEP 3 yields the nearest-neighbor 

codeword, f1j= 1 A(n,j) does not account for the case where the transmitted codeword is not 

the nearest neighbor codeword. In this sense, too, f1j= 1 A( n, j) is an approximation, albeit a 

reasonable one. 

The above has provided us with a handle on the first step of algorithm GADEC and 

indicates that at least one member of the initial population is chosen reasonably close to the 

transmitted vector. In subsequent sections we argue the role of selection, crossover and mutation, 

in algorithm GADEC. 

5.3 Does Crossover Play a Role? 

Crossover is the fundamental driving force in this search algorithm. To show this, we provide 

an analysis of the Schema theorem pertaining to soft decision decoding of linear block codes. 

In this process we develop a very interesting variant of the Schema theorem that leads to the 

"Reliable Building Block" hypothesis. 

Holland provided an analysis of genetic algorithms in (1 ], (24) to prove what is called the 

Schema Theorem. Most individuals in a GA have a transitory existence; hence properties of 

GA 's are proved in terms of abstractions called Schema that represent a collection of individuals. 

Consider a traditional GA where individuals are represented as binary strings. Let us define a 

schema as a subset of the search space which can be represented by the alphabet {1, 0, *},where 

* represents either a 1 or a 0. Further, let: 

o( S) = number of fixed positions in schema S. 
m = length of binary strings in population. 

IP(t)l = N = population size. 

8(S) = number of bits between the first and last fixed positions in schema S. 

'1/J(S, t) = number of strings in population matched by schema Sin generation t. 

av(S, t) = average fitness of all strings in the population matched by schema S in generation t. 

F ( t) = Total fitness of all strings in population t. 

Assuming fitness proportionate selection it follows that: 

This can be written as: 

av(S, t) 
'1/J(S, t + 1) = '1/J(S, t) F(t) N 

av(S, t) 
'1/J(S,t + 1) = '1/J(S,t) pav(t) 

where pav(t) = F(t)jN. This reproductive growth equation says that the number of strings in 

the population matched by schema S grows as the ratio of the average fitness of schema S to 

the average fitness of the population. Accounting for the effects of one point crossover and bit 

mutation, by considering the disruptive effect of crossover and mutation on a schema S, we get: 

·'·(S t + 1) > ·'·(S t)av(S, t)(1- Pc8(S) )(1- P )o(S) 
'f/ ' - 'f/ ' pav ( t) ( m - 1) m 

Above average schema with short defining length and low order are hence sampled at expo

nentially increasing rates. 
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This leads to the Building Block Hypothesis which says that a GA seeks near optimal perfor

mance through the juxtaposition of short, low-order, high performance schemata, called Building 

Blocks. 

The above analysis by Holland assumed a one point crossover operator. In algorithm 

GADEC we use, RUX, a uniform crossover operator that exploits information from the prob

lem at hand. Crossover is done with a bit being selected from either parent a or parent b with 

some probability. This probability is computed using the reliability of the received signal at the 

concerned position. 

We now consider the disruptive effect of RUX on schema S. 

Let Pri =probability that the same bit as in schema defined position is selected during crossover. 

If the schema defined position is 1 then Pri = P( Ci = 1 ). If the schema defined position is -1 

then Pri = P(ci = -1). Pri therefore depends on the magnitude of ri, as illustrated in Figure 

2. 

The probability that schema S survives RUX is at least TI Pr, where the product is taken 

over o( S) terms. The crossover disruption probability changes from ( 1 - f~~~p to TI Pr,, where 

the product is taken over o( S) terms corresponding to schema defined positions. Another differ

ence between the traditional genetic algorithm and algorithm GADEC is that we use ranking 

selection instead of fitness proportionate selection [26]. Indviduals are assigned a rank based on 

their fitness and we can interpret this rank as an assigned fitness value [25]. Therefore, instead 

f . h fi • av(St) F Lfrank(i) h k(') k f' d' 'd 1. o usmg t e tness ratio F"'~(t), we use = • •es 1 , w ere ran z = ran o m IVI ua z. 

Hence, the reproductive growth equation takes the form: 

1/;(S, t + 1) 2:: 1/;(S, t)F II Pr; (1 - Pm)o(S) 

Let us define the reliability of a schema as the product of the reliabilities of schema defined 

positions. Clearly 1/;( S, t) increases exponentially if TI Pr, is large and if the contribution of 

the mutation term, ( 1 - Pmut )o(S) is small. This allows us to re-interpret the building block 

hypothesis as saying that, 

"above average, low-order, high reliability schema are allocated an exponentially increasing 

number of trials." 

The building blocks for algorithm GADEC are low-order, high reliability schema. 

6 Comparison of Algorithm GADEC with Other De

coding Algorithms 

We provide a comparison of algorithm GADEC with pure random search, a systematic exhaus

tive search method an an A* based algorithm. The comparison puts in perspective the excellent 

results obtained which are indistinguishable in performance from the A* based algorithm, an 

order of magnitude better than the systematic exhaustive search method and several orders of 

magnitude better than pure random search. 

This is just the first step in what will emerge as a very important technique in soft-decision 

decoding of linear block codes with issues such as population representation, population size, 

distributed population models and crossover and mutation rates constituting important research 

topics in soft-decision decoding. 
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6.1 Systematic Exhaustive Search 

To further bolster the claim that the genetic algorithm is driven by the forces of reproduction 

and intelligent search space sampling we give a comparison of the performance of algorithm 

GADEC with a systematic, exhaustive search procedure. 

• Algorithm SystematicExhaustiveSearch(n, k, Y, dim) 

n is the of the code, k is the dimension of the code, Y is the signal to noise ratio, in decibels, 

and dim the dimension of the subspace to be exhaustively searched. 

• STEP 1: Same as STEP 1 of algorithm GADEC. 

• STEP 2: Same as STEP 2 of algorithm GADEC. 

• STEP 3: Compute squared Euclidean distance between vector rand transmitted codeword 

c, call it dist. Let h be the quantized estimate obtained from vector r'. 

• STEP 4: while ( counter< 2dim ) do 

STEP 4.1: Store binary equivalent of integer counter, in vector b. 

STEP 4.2: Set i = (ht, h2, ... , hk-dim, bt, ... , bdim)· 

S E d . . I • G' TEP 4.3: nco e t, I.e. c = t . 

STEP 4.4: Compute the squared Euclidean distance, dist', between vector c' and 

vector r'. Keep a running count of the minimum dist' encountered so far. Find the 

number of its information bits in error. 

Steps 1 through 3 of this algorithm are essentially the same as those of algorithm GADEC. 

Once vector h has been obtained, its most reliable n-dim bits determines the subspace (schema) 

that is exhaustively searched for the codeword nearest in Euclidean distance to the received 

vector r. 

The following simulations were done on the [104, 52] code with dim = 15, and the results 

are shown in Table 4. Bit error probability was computed in the same way as for algorithm 

GADEC, i.e., taking the average fraction of information bits in error over all simulated code

word transmissions. A total of 215 = 32767 codewords were evaluated for each simulated trans

mission. This is to provide a fair comparison with algorithm GADEC simulated to perform 

30, 000 codeword evaluations. Simulation results obtained from this approach demonstrate that 

SNR (dB) SystematicExhaustiveSearch (BEP) GADEC (BEP) 

1.5 0.067 0.0165 

2.0 0.045 0.00563 

2.5 0.028 0.00183 

Table 4: Systematic Exhaustive Search vs Algorithm GADEC 

GADEC is superior by an order of magnitude showing that selection, crossover and mutation 

do play important roles in nearest-neighbor decoding. 
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6.2 Pure Random Search 

To further support the claim that crossover plays the major role role in algorithm GADEC, 

simulation results with Pcross = 0 (crossover turned off) and a bit mutation rate of 3% show that 

the bit error probability rose from .0165 to .120 at a signal-to-noise ratio of 1.5dB, which is a 

significant deterioration in performance. 

We now analyze the behavior of a random search over the space of all codewords for the one 

closest in Euclidean distance to the received vector, r. This is done to show the failure of blind 

random search for this problem. We use the extreme value theory of random variables to 

approximate this behavior. 

In a random sample of size n drawn from a population with cumulative distribution function 

P(x), the asymptotic distribution of the largest/smallest element, X(n)' may possess a limiting 

distribution. If it does, then the limiting distribution must be one of three possible types 

whose forms are found in [20). If P(x) denotes the distribution of the standard normal random 

variable then the limiting cumulative distribution of X(n)l the largest observation in a sample of 

n, normalized as V2ln n[x(n)- V2ln n], is exp( -e-x). 

In pure random search we denote the squared Euclidean distance by random variable x;, 

i.e., x; = L:(rj- Cij)2 , where r = (rt, ... ,rn) is the fixed received vector and c;j's are randomly 

generated binary bits. By the central limit theorem, x; is normally distributed for large n. In 

the context of nearest-neighbor decoding we are interested in the distribution of the minimum 

X;, and v2ln n[x(n)- V2ln n] describes the distribution of the maximum, consequently, we will 

consider the statistical behavior of -max( -x;). 

In case the c;j's are randomly selected, each satisfying the Bernoulli distribution with proba-

bilty p = 1/2, each x; has expected value LJ=I rJ +nand standard deviation 2JL:j=1 rJ. Hence, 

-x; has mean J-t = - LJ=I r] - n, standard deviation a = 2~, and 

( -x; + L: rJ + n) 

2~ 
represents a standard normal random variable. Consider a search algorithm that randomly 

samples L codewords from a code of size 2k. Then, by the extreme value theorem, the minimum 

distance among L codewords is 

P [-X(L) + L:r] + n- V2lnL < y l = e-e-Y. 

2~ - V2lnL 

Let x* = -2~ { J2kL + J21n L} + L: r] + n. For a given value of e-e-Y = c and a specified 

threshold x*, we can estimate the number, L, of samples that would be required to discover a 

codeword at squared Euclidean distance less than x*, with probability 1 - c. This can be done 

by solving .r* as a quadratic equation in L. 

The results presented in Table 5, give an estimate of L for threshold x* set to some typical 

values of distance obtained after STEP 3 of algorithm GADEC. We use values of unconditional 

mean, E(L:~~~ rJ + n) = /-luc = n(2 + a 2) and unconditional variance, a~c = 4n(l + o-2), where 

u 2 = t1t (see description of GADEC) in place of conditional mean and variance, J-t and u 2 

respectively. It is observed that Lis a significant fraction (between ! and ~)of the search space 
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SNRdB 1.5 1.75 2.0 2.25 2.5 2.75 

Unconditional Mean, Puc 280 276.64 272.8 268.32 265.82 262.6 

Unconditional St.Dev., Uuc 26.5 26.27 25.99 25.63 25.44 25.18 

A Typical x• 116.01 183.82 93.55 109.97 92.32 91.65 

Estimated Number of Codewords, L 
108 108 1010 108 109 109 

Table 5: Pure Random Search vs Algorithm GADEC 

that has size 252 = 4.5 x 1015 , for the [104, 52] code. Hence, if a random search procedure is going 

to produce any improvement over that obtained in STEP 3 of GADEC, it would probably take 

a very long time to do so. 

6.3 Algorithm A* vs GADEC 

In the A* based algorithm, a linear code is represented as a trellis wherein each path represents a 

codeword [4]. The suboptimal version of algorithm A* restricts the list of nodes to be expanded 

for exploration based on a limit on memory size and prunes search paths which are estimated 

to contain the required solution with a probability less than threshold b. 

The bit error probability values obtained for the [104, 52] code using a suboptimal version of 

algorithm A* are almost indistinguishable from those of algorithm GADEC after 100 genera

tions of search. In addition, the dB difference for the A* algorithm is atmost 0.25 with b = 0 

and 0.50 dB with b = 0.25 as compared with GADEC which has a dB difference of atmost 0.35 

after 100 generations. The performance of algorithm GADEC is therefoie seen to be better 

than that of A* with b = 0.25 and very close to that of A* with b = 0.0. 

It is important to keep in mind that algorithm GADEC could be iterated further, until 

convergence, or perhaps reinitialized with new genetic material to continue the search even 

beyond 100 generations. This is a very significant advantage of genetic search techniques when 

one is willing to expend computation time for the sake of improved performance. 

Another important advantage is the very low memory complexity of algorithm GADEC, 

which is 0( kN) as opposed to algorithm A* which, in the worst case has a memory complexity 

that is exponential in the dimension of the code, O(n2k). 

Perhaps the most significant advantage of GADEC over the A* based approach is the fact 

that genetic algorithms are scalably parallel, suitable for implementation on a wide range of 

parallel architectures including massively parallel ones [16], [14], [8], [12). There is also sufficient 

evidence to conclude that a distributed population version of algorithm GADEC would lead 

to better performance besides giving a good speedup [8], [14]. On the other hand an A* based 

algorithm is limited in speedup because it is necessary to compute the maximum node value at 

each level in the trellis before proceeding to the next one. 

7 Conclusions 

We have investigated a novel and realistic application of genetic algorithms. We have presented 

an efficient genetic algorithm for soft-decision decoding, analyzed this algorithm, implemented 
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it on a large code, of size 252 and demonstrated the superiority of this method over other 

existing soft-decision decoding methods. We have presented a new crossover operator whose 

performance is superior by atleast an order of magnitude to conventional crossover operators. 

The relationship between soft-decision decoding and optimizing Walsh polynomials, which has 

been observed for the first time, provides an interesting analogy between fundamental problems 

in genetic algorithms and information theory. 

From the perspective of soft-decision decoding, results of a Pb/ M LD ratio between 1.65 and 

2.2 represent excellent performance in the presence of very high noise, i.e., between 1.5 dB 

and 2.4 dB. These results suggest that GADEC is a viable and good soft-decision decoding 

algorithm with a very low memory complexity and near-optimal performance, that can be 

iterated to balance computation with performance. The re-interpretation of the schema theorem 

in this context is an interesting twist to genetic search and is perhaps a harbinger of similar 

reliability based crossover techniques applied to other optimization problems. 

8 Acknowledgements 

We would like to acknowledge the willing help and cooperation of Prof. C. R. P . Hartmann 

and Dr. Y. S. Han. We also thank Prof. H. F Mattson, Jr., for helpful comments. 

References 

[1] J. H Holland, "Adaption in Natural and Artificial Systems", University of Michigan 

Press, Ann ArboL 1975. 

[2] G. C. Clark and J. Bibb Cain, "Error Correcting Coding for Digital Communications", 

Plenum Press, 1988. 

[3] R. E. Blahut, "Theory and Practice of Error Control Codes", Addison Wesley, 1984. 

[4] Y. S. Han, "Efficient Soft Decision Algorithms for Linear Block Codes Using Algorithm 

A*," Dissertation, Technical Report SU-CIS-93-29, School of Computer and Informa

tion Science, Syracuse University, August 1993. 

[5] K. H. Farell, L. D. Rudolph, and C. R. P Hartmann, "Decoding by local optimization," 

IEEE TIT, vol IT-29, No. 5, Sept. 1983. 

[6] D. J. Taipale and M. B. Pursley, "An Improvement to Generalized Minimum Distance 

Decoding," IEEE TIT, vol 37, No 1, Jan. 1991. 

[7] S. Forrest and M. Mitchell, "The Performance of Genetic Algorithms on Walsh Poly

nomials: Some Anomalous Results and their Explanation," Proc. of the 4th ICGA, 

UCSD, 1991. 

[8] R. Tanese, "Distributed Genetic Algorithms," Proc. of the 3rd ICGA, 1989, pp. 434-

439. 

20 



[9] D. E. Goldberg, "Genetic Algorithms and Walsh Polynomials: Part I, A gentle Intro

duction," Complex Systems, 3, 1989, pp. 129-152. 

[10] D. E. Goldberg, "Genetic Algorithms and Walsh Functions: Part II, Deception and its 

Analysis," Complex Systems, 3, 1989, pp. 153-171. 

[11] A. D. Bethke, "Genetic algorithms as function optimizers", Doctoral Disser·tation, De

partment of Computer & Communication Sciences, University of Michigan, Ann Arbor. 

[12] B. Manderick and P. Spiessens, "Fine-grained parallel genetic algorithms," Proc. of the 

3rd ICGA, 1989, pp. 428-434. 

[13] M. Gorges Schleuter, "An asynchronous parallel genetic optimization strategy," Proc. 

of the 3rd ICGA, 1989, pp. 422-428. 

[14] H. Muhlenbein, "Parallel genetic algorithms, population genetics and combinatorial 

optimization," Proc. of the 3rd ICGA, 1989, pp. 416-422. 

[15] R. Collins and D. Jefferson, "Selection in massively parallel genetic algorithms," Proc. 

of the 4th ICGA, 1991, pp. 249-256. 

[16] Cohoon, Martin, and Richards "A multi-population genetic algorithm for solving the 

k-partition problem on hypercubes," Proc. of the 4th ICGA, 1991, pp. 244-248. 

[17] J. J. Grefenstette, "Incorporating problem specific knowledge into genetic algorithms," 

Genetic Algorithms and Simulated Annealing, L. Davis and Morgan Kaufmann, eds., 

1987. 

[18] K. A. DeJong and W. M. Spears, "Using genetic algorithms to solve NP-complete 

problems," Proc. of the 3rd ICGA, 1989, pp. 124-133. 

[19] G. Battail and J. Fang, "Decodage pondere optimal des codes lineaires en blocs", 

Extrait Annales Des Telecommuinications, tome 38, Nos 11-12, Nov-Dec 1983. 

[20] H.A. David, "Order Statistics", John Wiley and Sons, NY, 1970. 

[21] G. Syswerda, "Uniform Crossover in Genetic Algortihms", Proc. of the 3rd ICGA, 

1989, pp. 2-9. 

[22] J. D. Schaffer, L. J. Eschelman and D. Offut, "Spurious Correlations and Prema

ture Convergence in Genetic Algorithms", Foundations of Genetic Algorithms, Morgan 

Kaufmann, 1991, pp. 102-115. 

[23] L. Eschelman, "The CHC Adaptive Search Algorithm: How to Have Safe Search When 

Engaging in Nontraditional Genetic Recombination", Foundations of Genetic Algo

rithms, Morgan Kaufmann, 1991, pp. 265-284. 

[24] Z. Michalewicz, "Genetic Algorithms + Data Structures - Evolution Programs", 

Springer Verlag, Berlin, 1992. 

21 



[25] D. Whitley, "The GENITOR Algorithm and Selection Pressure: Why Rank-Based 

Allocation of Reproductive Trials is best", Proc. of the 3rd ICGA, 1989, pp 116-121. 

[26] J. E. Baker, "Reducing Bias and Inefficiency in the Selection Algorithm", Proc. of 

an International Conference on Genetic Algorithms and their Applications, Erlbaum, 

1985. 

22 


	Genetic Algorithms for Soft Decision Decoding of Linear Block Codes
	Recommended Citation

	SU-CIS-93-25_001c
	SU-CIS-93-25_002c
	SU-CIS-93-25_003c
	SU-CIS-93-25_004c
	SU-CIS-93-25_005c
	SU-CIS-93-25_006c
	SU-CIS-93-25_007c
	SU-CIS-93-25_008c
	SU-CIS-93-25_009c
	SU-CIS-93-25_010c
	SU-CIS-93-25_011c
	SU-CIS-93-25_012c
	SU-CIS-93-25_013c
	SU-CIS-93-25_014c
	SU-CIS-93-25_015c
	SU-CIS-93-25_016c
	SU-CIS-93-25_017c
	SU-CIS-93-25_018c
	SU-CIS-93-25_019c
	SU-CIS-93-25_020c
	SU-CIS-93-25_021c
	SU-CIS-93-25_022c
	SU-CIS-93-25_023c

