
Rochester Institute of Technology Rochester Institute of Technology

RIT Scholar Works RIT Scholar Works

Theses

7-1-2004

Genetic algorithms in cryptography Genetic algorithms in cryptography

Bethany Delman

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation Recommended Citation

Delman, Bethany, "Genetic algorithms in cryptography" (2004). Thesis. Rochester Institute of Technology.

Accessed from

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in
Theses by an authorized administrator of RIT Scholar Works. For more information, please contact
ritscholarworks@rit.edu.

https://scholarworks.rit.edu/
https://scholarworks.rit.edu/theses
https://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F5456&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses/5456?utm_source=scholarworks.rit.edu%2Ftheses%2F5456&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

Genetic Algorithms in Cryptography

by

Bethany Delman

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Supervised by

Professor Dr. Muhammad Shaaban

Department of Computer Engineering

Kate Gleason College of Engineering

Rochester Institute of Technology

Rochester, New York

July 2004

Approved By:

Dr. Muhammad Shaaban
Professor
Primary Advisor

Dr. Stanislaw Radziszowski
Professor, Computer Science Department

7 - ? . I - o ~

Dr. Shanchieh Jay Yang

Assistant Professor

Thesis Release Permission Form

Rochester Institute of Technology

Kate Gleason College of Engineering

Master of Science, Computer Engineering

Title: Genetic Algorithms in Cryptography

I, Bethany Delman, hereby grant permission to the Rochester Institute of Technology to

reproduce my print thesis in whole or in part. Any reproduction will not be for commercial

use or profit.

I, Bethany Delman, additionally grant to the Rochester Institute of Technology Digi

tal Media Library (RIT DML) the non-exclusive license to archive and provide electronic

access to my thesis in whole or in part in all forms of media in perpetuity.

I understand that my work, in addition to its bibliographic record and abstract, will be

available to the world-wide community of scholars and researchers through the RIT DML.

I retain all other ownership rights to the copyright of the thesis. I also retain the right to

use in future works (such as articles or books) all or part of this thesis. I am aware that the

Rochester Institute of Technology does not require registration of copyrights for ETDs.

I hereby certify that, if appropriate, I have obtained and attached written permission

statements from the owners of each third party copyrighted matter to be included in my

thesis. I certify that the version I submitted is the same as that approved by my committee.

Bethany Delman

Abstract

Genetic algorithms (GAs) are a class of optimization algorithms. GAs attempt to solve

problems through modeling a simplified version of genetic processes. There are many

problems for which a GA approach is useful. It is, however, undetermined if cryptanalysis

is such a problem.

Therefore, this work explores the use of GAs in cryptography. Both traditional crypt

analysis and GA-based methods are implemented in software. The results are then com

pared using the metrics of elapsed time and percentage of successful decryptions. A de

termination is made for each cipher under consideration as to the validity of the GA-based

approaches found in the literature. In general, these GA-based approaches are typical of

the field.

Of the genetic algorithm attacks found in the literature, totaling twelve, seven were

re-implemented. Of these seven, only three achieved any success. The successful attacks

were those on the transposition and permutation ciphers by Matthews [20], Clark [4], and

Griindlingh and Van Vuuren [13], respectively. These attacks were further investigated in

an attempt to improve or extend their success. Unfortunately, this attempt was unsuccessful,

as was the attempt to apply the Clark [4] attack to the monoalphabetic substitution cipher

and achieve the same or indeed any level of success.

Overall, the standard fitness equation genetic algorithm approach, and the scoreboard

variant thereof, are not worth the extra effort involved. Traditional cryptanalysis methods

are more successful, and easier to implement. While a traditional method takes more time,

a faster unsuccessful attack is worthless. The failure of the genetic algorithm approach

indicates that supplementary research into traditional cryptanalysis methods may be more

useful and valuable than additional modification ofGA-based approaches.

Contents

1 Introduction 1

1.1 Document Overview 2

2 Genetic Algorithms 4

3 Cryptography ... 9

3.1 Monoalphabetic Substitution cipher 9

3.2 Polyalphabetic Substitution cipher 11

3.3 Permutation/Transposition ciphers 12

3.3.1 Permutation cipher 13

3.3.2 Transposition cipher 13

3.4 Knapsack ciphers 15

3.4.1 Merkle-Hellman Knapsack cipher 16

3.4.2 Chor-Rivest Knapsack cipher 18

3.5 Vernam cipher 22

3.6 Comments 22

4 Relevant Prior Works 23

4.1 Spillman et al. 1993 25

4.1.1 Comments 26

4.2 Matthews - 1993 27

4.2.1 Comments 30

4.3 Spillman- 1993 31

4.3.1 Comments 33

4.4 Clark 1994 34

4.4.1 Comments 35

4.5 Lin, Kao 1995 35

4.5.1 Comments 36

4.6 Clark, Dawson, Bergen 1996 37

4.6.1 Comments 38

4.7 Clark, Dawson, Nieuwland 1996 39

4.7.1 Comments 41

4.8 Clark, Dawson - 1997 41

4.9 Kolodziejczyk - 1997 42

4.9.1 Comments 42

4.10 Clark, Dawson - 1998 43

4.10.1 Comments 44

4.11 Yaseen, Sahasrabuddhe - 1999 45

4.11.1 Comments 47

4.12 Grundlingh, Van Vuuren submitted 2002 47

4.12.1 Comments 50

4.13 Overall Comments 51

5 Traditional CryptanalysisMethods 52

5.1 Distinguishing among the three ciphers 53

5.2 Monoalphabetic substitution cipher 53

5.3 Polyalphabetic substitution cipher 54

5.4 Permutation/Transposition ciphers 56

5.5 Comments 58

6 Attack Results . . 59

6.1 Methodology 59

6.2 Classical Attack Results 61

6.3 Genetic Algorithm Attack Results 64

6.4 Comparison ofResults 71

7 Extensions and Additions 74

7.1 Genetic Algorithm Attack Extensions 74

7.1.1 Transposition Cipher Attacks 75

7.1.2 Permutation Cipher Attack 76

7.1.3 Comments 77

7.2 Additions 77

7.2.1 Comments 79

8 Evaluation and Conclusion 81

8.1 Summary 81

8.2 Future Work 83

8.3 Conclusion 83

Bibliography 85

in

List of Figures

4. 1 Substitution Cipher Family and Attacking Papers 23

4.2 Permutation Cipher Family and Attacking Papers 24

4.3 Knapsack Cipher Family and Attacking Papers 24

4.4 Vernam Cipher Family and Attacking Paper 24

6.1 Classical Substitution Attack 62

6.2 Classical Vigenere Attack 63

6.3 Classical Permutation Attack 64

6.4 Classical Transposition Attack 65

6.5 Effect ofNumber ofGenerations at Population Size 10 67

6.6 Effect ofNumber ofGenerations at Population Size 20 67

6.7 Effect ofNumber ofGenerations at Population Size 40 68

6.8 Effect ofNumber of Generations at Population Size 50 68

6.9 Effect of Population Size at 25 Generations 69

6.10 Effect of Population Size at 50 Generations 69

6.11 Effect of Population Size at 100 Generations 70

6.12 Effect of Population Size at 200 Generations 70

6.13 Effect of Population Size at 400 Generations 71

IV

Glossary

block

block length

chromosome

cipher

ciphertext

crossover (mating)

cryptanalysis

cryptography

cryptosystem

decryption

digram

encryption

A sequence of consecutive characters encoded at one

time

The number of characters in a block

The genetic material of a individual represents the in

formation about a possible solution to the given problem

An algorithm for performing encryption (and the reverse,

decryption) a series of well-defined steps that can be

followed as a procedure. Works at the level of individual

letters, or small groups of letters

A text in the encrypted form produced by some cryp

tosystem. The convention is for ciphertexts to contain no

white space or punctuation

Crossover is the process by which two chromosomes

combine some portion of their genetic material to pro

duce a child or children

The analysis and deciphering of cryptographic writings

or systems

The process or skill of communicating in or deciphering

secret writings or ciphers

The package of all processes, formulae, and instructions

for encoding and decoding messages using cryptography

Any procedure used in cryptography to convert cipher-

text (encrypted data) into plaintext

Sequence of two consecutive characters

The process of putting text into encoded form

fitness

generation

genetic algorithm (GA)

key

key length

monoalphabetic

mutation

one-time pad

order-based GA

plaintext

polyalphabetic

The extent to which a possible solution successfully

solves the given problem - usually a numerical value

The average interval of time between the birth of parents

and the birth of their offspring - in the genetic algorithm

case, this is one iteration of the main loop of code

Search/optimization algorithm based on the mechanics

of natural selection and natural genetics

A relatively small amount of information that is used by

an algorithm to customize the transformation of plaintext

into ciphertext (during encryption) or vice versa (during

decryption)

The size of the key - how many values comprise the key

Using one alphabet - refers to a cryptosystem where each

alphabetic character is mapped to a unique alphabetic

character

Simulation of transcription errors that occur in nature

with a low probability - a child is randomly changed from

what its parents produced in mating

Another name for the Vernam cipher

A form of GA where the chromosomes represent per

mutations. Special care must be taken to avoid illegal

permutations

A message before encryption or after decryption, i.e., in

its usual form which anyone can read, as opposed to its

encrypted form

Using many alphabets refers to a cipher where each al

phabetic character can be mapped to one ofmany possi

ble alphabetic characters

VI

population

scoreboard

trigram

unigram

Vigenere

The possible solutions (chromosomes) currently under

investigation, as well as the number of solutions that can

be investigated at one time, i.e., per generation

Method of determining the fitness of a possible solution

takes a small list of the most common digrams and tri-

grams and gives each chromosome a score based on how

often these combinations occur

Sequence of three consecutive characters

Single character

The specific polyalphabetic substitution cipher used in

this work

vn

Chapter 1

Introduction

The application of a genetic algorithm (GA) to the field of cryptanalysis is rather unique.

Few works exist on this topic. This nontraditional application is investigated to determine

the benefits of applying a GA to a cryptanalytic problem, if any. If the GA-based approach

proves successful, it could lead to faster, more automated cryptanalysis techniques. How

ever, since this area is so different from the application areas where GAs developed, the

GA-based methods will likely prove to be less successful than the traditional methods.

The primary goals of this work are to produce a performance comparison between

traditional cryptanalysis methods and genetic algorithm based methods, and to determine

the validity of typical GA-based methods in the field of cryptanalysis.

The focus will be on classical ciphers, including substitution, permutation, transposi

tion, knapsack and Vernam ciphers. The principles used in these ciphers form the founda

tion for many of the modem cryptosystems. Also, if a GA-based approach is unsuccessful

on these simple systems, it is unlikely to be worthwhile to apply a GA-based approach to

more complicated systems. A thorough search of the available literature found GA-based

attacks on only these ciphers. In many cases, these ciphers are some of the simplest pos

sible versions. For example, one of the knapsack systems attacked is the Merkle-Hellman

knapsack scheme. In this scheme, a superincreasing sequence of length n is used as a pub

lic key. According to Shamir [23], a typical value for n is 100. In the GA-based attacks on

this cipher, n was less than 16. This is almost an order of magnitude below the typical case,

and makes these attacks useful only as proof-of-concept examples for learning the use of

1

GAs.

In otherGA-based attacks, there is a huge gap in the knowledge needed to re-implement

the attack and the information provided in the paper. For example, the values ofp and h are

vitally necessary for an implementation of the Chor-Rivest knapsack scheme. This system

utilizes a finite field, q, of characteristic p, where q = ph,p > h, and the discrete logarithm

problem is feasible. In the GA-based attack on this cipher, these values are not provided.

This information hole means that this attack could have been mn using trivia] parameters,

or parameters known to be easy to attack. This attack can not be considered remotely valid

without knowing these parameters.

Many of the GA-based attacks also lack information required for comparison to the tra

ditional attacks. The number of generations it took for a run of the GA to get to some state

is not at all useful when attempting to compare and contrast attacks. The most coherent

and seemingly valid attacks were re-implemented so that a consistent, reasonable set of

metrics could be collected. These metrics include elapsed time required for the attack and

the success percentage of each attack.

1.1 Document Overview

This thesis is broken into a number of chapters. Each chapter covers one aspect of the thesis

in detail. Chapter 2 gives a brief introduction to genetic algorithms. The general form of

the selection, reproduction and mutation operators are discussed, as is the general sequence

of events for a GA-based approach. Chapter 3 introduces the necessary classical ciphers in

detail. The algorithm for each cipher is given, in some cases including a small example to

illustrate the process of using the given cryptosystem.

The next two chapters cover the different attacks found in the literature. Chapter 4 dis

cusses the various GA-based attacks in detail. These attacks are covered in chronological

order, with up to four papers attacking the same cipher or variants thereof. The following

chapter, Chapter 5, details the classical attack on those ciphers chosen for further investiga

tion. The ciphers were selected for further investigation due to the difficulty or lack thereof

of the traditional attack method, as well as the clarity and quality of the GA-based work.

For example, the Vernam cipher was not selected for further investigation. This cipher is

unconditionally secure, meaning that an attack is successful only when there is a protocol

or implementation failure. There is no basis for attacking this cipher when no mistakes

have been made.

The next chapters detail the results of the traditional and GA-based attacks, as well as

extensions to the GA-based attacks. Chapter 6 covers the results of the traditional attacks,

and discusses those GA-based attacks that achieved some success. Chapter 7 discusses the

extensions made to several of the GA-based attacks, as well as new work attempted.

Finally, Chapter 8 discusses the overall conclusions drawn from this work, as well as

any other directions that need further investigation.

Chapter 2

Genetic Algorithms

The genetic algorithm is a search algorithm based on the mechanics of natural selection

and natural genetics [12]. As summarized by Tomassini [29], the main idea is that in order

for a population of individuals to adapt to some environment, it should behave like a natu

ral system. This means that survival and reproduction of an individual is promoted by the

elimination of useless or harmful traits and by rewarding useful behavior. The genetic algo

rithm belongs to the family of evolutionary algorithms, along with genetic programming,

evolution strategies, and evolutionary programming. Evolutionary algorithms can be con

sidered as a broad class of stochastic optimization techniques. An evolutionary algorithm

maintains a population of candidate solutions for the problem at hand. The population is

then evolved by the iterative application of a set of stochastic operators. The set of opera

tors usually consists of mutation, recombination, and selection or something very similar.

Globally satisfactory, if sub-optimal, solutions to the problem are found in much the same

way as populations in nature adapt to their surrounding environment.

Using Tomassini 's terms [29], genetic algorithms (GAs) consider an optimization prob

lem as the environment where feasible solutions are the individuals living in that environ

ment. The degree of adaptation of an individual to its environment is the counterpart of the

fitness function evaluated on a solution. Similarly, a set of feasible solutions takes the place

of a population of organisms. An individual is a string of binary digits or some other set of

symbols drawn from a finite set. Each encoded individual in the population may be viewed

as a representation of a particular solution to a problem.

In general, a genetic algorithm begins with a randomly generated set of individuals.

Once the initial population has been created, the genetic algorithm enters a loop [29]. At

the end of each iteration, a new population has been produced by applying a certain num

ber of stochastic operators to the previous population. Each such iteration is known as a

generation [29].

A selection operator is applied first. This creates an intermediate population of n "par

ent"

individuals. To produce these "parents", n independent extractions of an individual

from the old population are performed [29]. The probability of each individual being ex

tracted should be (linearly) proportional to the fitness of that individual. This means that

above average individuals should have more copies in the new population, while below

average individuals should have few to no copies present, i.e., a below average individual

risks extinction.

Once the intermediate population of "parents" (those individuals selected for reproduc

tion) has been produced, the individuals for the next generation will be created through the

application of a number of reproduction operators [29]. These operators can involve one or

more parents. An operator that involves just one parent, simulating asexual reproduction,

is called a mutation operator. When more than one parent is involved, sexual reproduction

is simulated, and the operator is called recombination [29]. The genetic algorithm uses two

reproduction operators - crossover and mutation.

To apply a crossover operator, parents are paired together. There are several differ

ent types of crossover operators, and the types available depend on what representation

is used for the individuals. For binary string individuals, one-point, two-point, and uni

form crossover are often used. For permutation or order-based individuals, order, partially

mapped, and cycle crossover are options. The one-point crossover means that the par

ent individuals exchange a random prefix when creating the child individuals. Two-point

crossover is an exchange of a random substring, and uniform crossover takes each bit in

the child arbitrarily from either parent. Order and partially mapped crossover are similar

to two-point crossover in that two cut points are selected. For order crossover, the section

between the first and second cut points is copied from the first parent to the child [28]. The

remaining places are filled using elements not occurring in this section, in the order that

they occur in the second parent starting from the second cut point and wrapping around as

needed. For partially mapped crossover, the section between the two cut points defines a

series of swapping operations to be performed on the second parent [28]. Cycle crossover

satisfies two conditions every position of the child must retain a value found in the cor

responding position of a parent, and the child must be a valid permutation. Each cycle, a

random parent is selected. For example [28]:

Parent 1 is (h k c e f d b 1 a i g j) and parent 2is(abcdefghijkl)

For position #1 in the child,
'h' is selected

Therefore,
'a'

cannot be selected from parent 2 and must be chosen from parent 1

Since 'a' is above 'i' in parent 2, T must also be selected from parent 1

So, if
'h'

is selected from parent 1 for position #1, then 'a', 'i\ 'j', and T must also

be selected from parent 1

The positions of these elements are said to form a cycle, since selection continues

until the first element
('h'

here) is reached again

After crossover, each individual has a small chance of mutation. The purpose of the

mutation operator is to simulate the effect of transcription errors that can happen with a

very low probability when a chromosome is mutated [29]. A standard mutation operator

for binary strings is bit inversion. Each bit in an individual has a small chance of mutating

into its complement i.e. a
'0'

would mutate into a T.

In principle, the loop of selection-crossover-mutation is infinite [29]. However, it is

usually stopped when a given termination condition is met. Some common termination

conditions are [29]:

1 . A pre-determined number of generations have passed

2. A satisfactory solution has been found

3. No improvement in solution quality has taken place for a certain number of genera

tions

The different termination conditions are possible since a genetic algorithm is not guar

anteed to converge to a solution. The evolutionary cycle can be summarized as follows

[29]:

generation = 0

seed population

while not (termination condition) do

generation = generation + 1

calculate fitness

selection

crossover

mutation

end while

Typical application areas for genetic algorithms include:

Function Optimization

Graph Applications such as

- Coloring

- Paths

- Circuit Layout

Scheduling

Satisfiability

Game Strategies

Chess Problems

Computing Models

Neural Networks

Lens Design

Many of these application areas are concerned with problems which are hard to solve

but have easily verifiable solutions. Another trait common to these application areas is

the equation style of fitness function. Cryptography and cryptanalysis could be considered

to meet these criteria. However, cryptanalysis is not closely related to the typical GA

application areas and, subsequently, fitness equations are difficult to generate. This makes

the use of a genetic algorithm approach to cryptanalysis rather unusual.

Chapter 3

Cryptography

In general, the genetic algorithm approach has only been used to attack fairly simple ci

phers. Most of the ciphers attacked are considered to be classical, i.e. those created before

1950 A.D. [21] which have become well known over time. Ciphers attacked include:

Monoalphabetic Substitution cipher

Polyalphabetic Substitution cipher

Permutation cipher

Transposition cipher

Merkle-Hellman Knapsack cipher

Chor-Rivest Knapsack cipher

Vernam cipher

3.1 Monoalphabetic Substitution cipher

The simplest cipher of those attacked is the monoalphabetic substitution cipher. This cipher

is described as follows:

Let the plaintext and the ciphertext character sets be the same, say the alphabet Z

Let the keys, /C, consist of all possible permutations of the symbols in Z

For each permutation it G /C,

1. define the encryption function e7I(x) = n(x)

2. and define the decryption function dn(y) = Tt~l(y), where
7r_1 is the inverse

permutation to n.

For example, define Z to be the 26 letter English alphabet. Then, a random permutation

7r could be (plaintext characters are in lower case and ciphertext characters in upper case)

[27]:

a b c d e f g h i j k 1 m

X N Y A H P 0 G Z Q W B T

n o P q r s t u V w X y z

S F L R C V M U E K J D I

This defines the encryption function like so - en(a) = X, e^(b) = N, etc. The decryp

tion function, dn(y) is the inverse permutation, and can be obtained by switching the rows.
7T"1 is, therefore:

A B C D E F G H I J K L M

d 1 r y v 0 h e z X w P t

N O P Q R S T U V W X Y Z

b g f j q n m u s k a c i

Using the encryption function, a plaintext of
'plain' becomes a ciphertext of 'LBXZS'.

A ciphertext of 'YZLGHC would decrypt to 'cipher'.

Monoalphabetic substitution is easy to recognize, since the frequency distribution of

the character set is unchanged [21]. The frequency of individual characters changes, of

10

course. This attribute allows associations between ciphertext and plaintext characters, i.e.

if the most frequent plaintext character X occurred ten times, the ciphertext character X

maps to will appear ten times.

3.2 Polyalphabetic Substitution cipher

This cipher is a more complex version of the substitution cipher. Instead of mapping the

plaintext alphabet onto ciphertext characters, different substitution mappings are used on

different portions of the plaintext [21]. The result is called polyalphabetic substitution. The

simplest case consists of using different alphabets sequentially and repeatedly, so that the

position of each plaintext character determines which mapping is applied to it. Under dif

ferent alphabets, the same plaintext character is encrypted to different ciphertext characters,

making frequency analysis harder.

This cipher has the following properties (assuming m mappings):

The key space /C consists of all ordered sets ofm permutations

These permutations are represented as (ki, k2, . , km)

Each permutation ki is defined on the alphabet in use

Encryption of the message x = (x1,x2, . . . , xm) is given by

ek(x) = ki(xi)k2(x2) . . . km(xm), assuming the key k = (fci, k2, . . . , km)

The decryption key associated with ek(x) is dk(y) = (k^1, k2l , . . . , fc"1).

The encryption and decryption functions could also be written as follows (assuming

that the addition/subtraction operations occur modulo the size of the alphabet):

eK(x1,x2, .,xm)
= (xi + ki,x2 + k2,...,xm + km)

dK(yi,yo.,...,ym) = (y\ - h,y2- k2, . . . ,ym
- km)

11

The most common polyalphabetic substitution cipher is the Vigenere cipher. This ci

pher encrypts m characters at a time, making each plaintext character equivalent to m

alphabetic characters. A example of the Vigenere cipher is:

Suppose m = 6

Using the mapping A <-> 0, B <-^- 1, . . . , Z <-> 25

If the keyword AC = CIPHER, numerically (2, 8, 15, 7, 4, 17)

Suppose the plaintext is the string
'cryptosystem'

Convert the plaintext elements to residues modulo 26 - 2 17 24 15 19 14 18 24 18 19

4 12

Write the plaintext elements in groups of 6 and add the keyword modulo 26

2 17 24 15 19 14 18 24 18 19 4 12

2 8 15 7 4 17 2 8 15 7 4 17

4 25 13 22 23 5 20 6 7 0 8 3

The alphabetic equivalent of the ciphertext string is: EZNWXFUGHAID.

To decrypt, the same keyword is used but is subtracted modulo 26 from the ciphertext

3.3 Permutation/Transposition ciphers

Although simple transposition ciphers change the dependencies between consecutive char

acters, they are fairly easily recognized since the frequency distribution of the characters

is preserved [21]. This is true for both ciphers considered, the permutation cipher and the

columnar transposition cipher. Both ciphers apply the same principles, but differ in how

the transformation is applied. The permutation cipher is applied to blocks of characters

while the columnar transposition cipher is applied to the entire text at once.

12

3.3.1 Permutation cipher

The idea behind a permutation cipher is to keep the plaintext characters unchanged, but

alter their positions by rearrangement using a permutation [27].

This cipher is defined as:

Let m be a positive integer, and AC consist of all permutations of {1, ... , m}

For a key (permutation) -n E AC, define:

The encryption function e7r(xi, . . .

,xm)
= (x^i), . . , x^m))

The decryption function d^(yi ym) = (2/^-1(1), ,y*-Hm))

A small example, assuming m = 6, and the key is the permutation n:

ic(l) 2

The first row is the value of i, and the second row is the corresponding value of

7r(z). The inverse permutation,
ir~x is constructed by interchanging the two rows, and

rearranging the columns so that the first row is in increasing order, Therefore, 7r_1 is:

X 1 2 3 4 5 6

TX~l(x) 3 6 1 5 2 4

If the plaintext given is 'apermutation', it is first partitioned into groups of m letters

('apermu'

and 'tation') and then rearranged according to the permutation ir. This yields

'EMAURP'

and 'TOTNIA', making the ciphertext equal
'EMAURPTOTNIA'

. The cipher-

text is decrypted in a similar process, using the inverse permutation 7r_1.

3.3.2 Transposition cipher

Another type of cipher in this category is the columnar transposition cipher. As described in

[24], this cipher consists ofwriting the plaintext into a rectangle with a prearranged number

of columns and transcribing it vertically by columns to yield the ciphertext. The key is

a prearranged sequence of numbers which determines both the width of the inscription

13

rectangle and the order in which to transcribe the columns [24]. This key is usually derived

from an agreed keyword by assigning numbers to the individual letters according to their

alphabetical order.

For example, if the keyword is SORCERY, the resulting numerical key would be 6 3

4 12 5 7 [24], where numbers are assigned to the keyword letters according to the alpha

betical order of the letters. If we wish to encipher the message LASER BEAMS CAN BE

MODULATED TO CARRY MORE INTELLIGENCE THAN RADIO WAVES, it would

first be written out on a width of 7 under the numerical key. As is traditional, white spaces

and punctuation are ignored in this and all ciphertexts used. The rectangle would look like

this:

S O R C E R Y

6 3 4 12 5 7

L A S E R B E

A M S C A N B

E M O D U L A

T E D T O C A

R R Y M O R E

I N T E L L I

G E N C E T H

A N R A D I O

WAVE S Q R

Since the message length was not a multiple of the keyword length, the message does

not fill the entire rectangle. Deciphering is simplified if the last row contains no blank

cells, so two dummy letters are added (here, Q and R) to make the rectangle completely

filled [24]. Enciphering consists of reading the ciphertext out vertically in the order of the

numbered columns. It can be written in groups of five letters at the same time, if so desired

[24]. The ciphertext is, therefore, ECDTM ECAER AUOOL EDSAM MERNE NASSO

DYTNR VBNLC RLTIQ LAETR IGAWE BAAEI HOR.

14

The decipherer would count the number of letters in the message (63) and determine

the length of the inscription rectangle by dividing this value by the length of the keyword.

This makes the inscription rectangle 7 x 9 in this case. The numerical key is then written

above the rectangle and the ciphertext characters entered into the diagram in the order of

the key numbers [24]. The plaintext is read off by rows, as it was originally entered.

3.4 Knapsack ciphers

Knapsack public-key encryption systems are based on the subset sum problem, an NP-

complete problem. Given in this problem are a finite set S C N+ (N+ is the set of natural

numbers {1, 2, . . . }), and a target t G N+. The question is whether there exists a subset

S' C S whose elements sum to t [9]. For example:

If 5 = {1,2,7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993}

And t = 138457

Then the subset S' = {1, 2, 7, 98, 343, 686, 2409, 17206, 117705} is a solution.

The basic idea of a knapsack cipher is to select an instance of the subset sum problem

that is easy to solve, and then disguise it as an instance of the general subset sum problem

which is hopefully difficult to solve [21]. The original (easy) knapsack set can serve as the

private key, while the transformed knapsack set serves as the public key.

The Merkle-Hellman knapsack cipher is important as it was the first implementation

of a public-key encryption scheme. Many variations on it have been suggested but most,

including the original, have been demonstrated to be insecure [21]. A notable exception to

this is the Chor-Rivest knapsack system [21].

15

3.4.1 Merkle-Hellman Knapsack cipher

The Merkle-Hellman knapsack cipher attempts to disguise an easily solved instance of the

subset sum problem, called a superincreasing subset sub problem, by modular multiplica

tion and a permutation [21]. A superincreasing sequence is a sequence (bi,b2, . . . , bn) of

positive integers with the property that 6j > 2^7=1 fy> fr eacn i,2 <i <n.

The integer n is a common system parameter. 6j, b2, . . . , bn is the superincreasing se

quence and M is the modulus, selected such that M > 6] + b2 + . . . + bn. W is a random

integer, such that 1 < W < M 1 and gcd(H/, 7\/) = 1. 7r is a random permutation

of the integers {1,2,..., n}. The public key of A is (ai,a2, . . . , an), where a; = Wbv^
mod M, and the private key ofA is (n, M, W, (h, b2, . . . , bn)).

The steps in the transmission of a message m are as follows (B is the sender, A is the

receiver) [21]:

1 . Encryption - B should do the following:

Obtain A's authentic public key (a1; a2, . . . , an)

Represent the message m as a binary string of length n,

m = m\m2 . . .mn

Compute the integer c = m\a\ + m2a2 + . . . + mnan

Send the ciphertext c to A

2. Decryption To recover the plaintext m from c, A should do the following:

Compute d = W~lc mod M

By solving a superincreasing subset sum problem, find the integers r-\ , r2, . . . , rn,

Ti G {0, 1} such that d = r-\b\ + r2b2 + . . . + rnbn.

The message bits are m, = r^), i = 1, 2, . . . , n.

A small example is as follows [21]:

16

1 . Let n = 6

2. Entity A chooses the superincreasing sequence (12, 17, 33, 74, 157, 316)

3. M = 737

4. VU = 635

5. The permutation n of {1, 2, 3,4, 5, 6} is defined as:

6. 7r(l) = 3,7r(2) = 6,tt(3) = 1,tt(4) = 2,tt(5) =5,tt(6) =4

7. A's public key is the knapsack set (319, 196, 250, 477, 200, 559)

8. A's private key is (n, M, W, (12, 17, 33, 74, 157, 316))

9. To encrypt the message m 101101, B computes c as:

10. c = 319 + 250 + 477 + 559 = 1605

1 1 . and sends it to A

1 . To decrypt, A computes

2. d = W~lc mod M = 136

3. and solves the superincreasing subset sum problem of:

4. 136 = 12r: + 17r2 + 33r3 + 74r4 + 157r5 + 316r6

5. to get 136 = 12 + 17 + 33 + 74

6. Therefore, rx = 1, r2 = 1, r3 = 1, r4 = 1, r5 = 0, r6 = 0

7. Applying the permutation n produces the message bits:

8. m1 = r3 = l,ra2 = r6 = 0,m3 = r1 = 1, mA = r2 = l,m5 = r5 = 0,m6 = r4 = 1

17

3.4.2 Chor-Rivest Knapsack cipher

The Chor-Rivest cipher is the only known knapsack public-key system that does not use

some form of modular multiplication to disguise an easy subset sum problem [21]. This

cipher is by far the most sophisticated of those attacked by a genetic algorithm. When the

parameters of this system are carefully chosen, and no information is leaked, there is no

feasible attack on the Chor-Rivest system. It can not be covered in detail in a few pages,

so only a summary of the system will be given. Further number theoretical algorithms are

needed for the set-up and operation of the cipher.

Most of the parameters are based on a finite field q, of characteristic p, where q =

ph,p > h and for which the discrete logarithm problem is feasible [21]. f(x) is a random

monic irreducible polynomial of degree h over Zp. The elements ofq are represented as

polynomials in Zp[x] of degree less than h, with multiplication done modulo f(x). g(x)

is a random primitive element of q. For each ground field element i G Zp, the discrete

logarithm ai = log^^x + i) of the field element (x + i) to the base g(x) must be found.

The random permutation n is on the set of integers {0, 1, 2, . . . ,p 1}, and the random

integer d is selected such that 0 < d < ph 2. c, is then computed as c* = (a^j) + d)

mod
(ph 1), 0 < i < p 1. A's public key is ((c0, Ci, . . . ,cp-i),p, h) and its private key

is (f(x),g(x),n,d).

A message m is transmitted as follows (B is the sender, A is the receiver) [21]:

1 . Encryption - B should do the following:

Obtain A's authentic public key ((c0, c\, . . . , cp_i),p, h)

Represent the message m as a binary string of length |lg (^)J, where () is a

binomial coefficient

Considerm as the binary representation of an integer

Transform this integer into a binary vectorM = (M0, Mi, ... , Mp_i) of length

p having exactly h l's as follows:

(a) Set I y- h

18

(b) For % from 1 to p do the following:

(c) Ifm > (p;') then setM^ *-l,m*-m- {p~li), I <- I - 1

(d) Otherwise, set A/,_i < 0

(e) Note: () = 1 for n > 0, (?) = 0) for I > 1

Compute c = 2_X^> ^c mo<^
(Ph

~ 1)

Send the ciphertext c to A

2. Decryption To recover the plaintext m from c, A should do the following:

Compute r = (c- hd) mod
(ph 1)

Compute u(x) =
g(x)r

mod f(x)

Compute s(x) ~ u(x) + f(x), a monic polynomial of degree h over Zp (Zp is

the set of integers {0, ... ,p 1}. Addition, subtraction, and multiplication in

Zp are performed modulo p.)

Factor s(x) into linear factors over Zp : s(x) = Ylj=1(x + tf), where tj G Zp

Compute a binary vectorM = (M0, Ml5 . . . , Mp_i) as follows:

(a) The components ofM that are 1 have indices 7r_1(tj), 1 < j < h.

(b) The remaining components are 0.

The message m is recovered fromM as follows:

(a) Set m <- 0, / <- h

(b) For i from 1 to p do the following:

(c) ifMj_x = 1, then set m <- m + (P7') and I < / - 1

An example using artificially small parameters would go as follows [21]:

1 . Entity A selects p = 7 and h = 4

2. Entity A selects the irreducible polynomial /(x) =
x4 + 3x3 + 5x2

+ 6x + 2 of

degree 4 over Zr. The elements of the finite field 7i are represented as polynomials

in Z7[x] of degree less than 4, with multiplication performed modulo f(x).

19

3. Entity A selects the random primitive element g(x) =
3x3 +

3x2 + 6

4. Entity A computes the following discrete logarithms:

. o.o = logg(:r)(x) = 1028

a2 = logg{x)(:r + 1) = 1935

. a2 = logs(l)(./; + 2) = 2054

. a3 = log9(l)(r + 3) = 1008

a., = log5(l)(x + 4) = 379

a5 = logs(l)(.T + 5) = 1780

. a6 = log3(l)(.r + 6) = 223

5. Entity A selects the random permutation n on {0, 1,2,3,4,5,6} defined by 7r(0) =

6,tt(1) = 4,tt(2) = 0,tt(3) = 2,tt(4) = 1,tt(5) = 5,tt(6) = 3

6. Entity A selects the random integer d = 1702

7. Entity A computes:

Co = (a6 + d) mod 2400 = 1925

a = (a4 + d) mod 2400 = 2081

C2 = (o0 + d) mod 2400 = 330

c3 = (a2 + d) mod 2400 = 1356

c4 = (ai + d) mod 2400 = 1237

c5 = (a5 + d) mod 2400 = 1082

c6 = (a3 + d) mod 2400 = 310

8. Entity A's public key is ((c0, Ci, c2, c3, r4, c5, c6),p = 7,h = 4), and its private key is

(/(x),<7(x),7T,d).

20

9. To encrypt a message m = 22 for A, entity B does the following:

(a) Obtains A's authentic public key ((c0, Ci, c2, c3,c4,c5, c$),p, h)

(b) Represents m as a binary string of length 5: m = 10110 (Note that [lg Qj =

5).

(c) Transforms m to the binary vector M = (1, 0, 1, 1,0, 0, 1) of length 7

(d) Computes c = (c0 + c2 + c3 + c6) mod 2400 = 1521

(e) Sends c = 1521 to A

10. To decrypt the ciphertext c = 1521, A does the following:

(a) Computes r = (c - hd) mod 2400 =1913

(b) Computes u(x) = #(x)(1913) mod /(.r) = x3 +
3x2

+ 2x + 5

(c) Computes s(x) = u(x) + f(x) = x4 + 4x3 + x2

+ x

(d) Factors s(x) = x(x + 2)(x + 3)(x + 6) (so *, =0,t2 = 2,*3 = 3,t4 = 6).

(e) The components of 7\/that are 1 have indices 7r_1(0) = 2,7r-1(2) = 3,7r_I(3) =

6, ir-1 (6) = 0. Hence, M= (1,0,1,1,0,0,1)

(f) Transforms M to the integer m = 22, recovering the plaintext

To illustrate how small the above parameters are, the parameters originally suggested

for the Chor-Rivest system are [21]:

p = 197 and h = 24

p = 211 and h = 24

p =
35

and h = 24

p =
28

and h = 25

21

3.5 Vernam cipher

The Vernam cipher is a stream cipher defined on the alphabet A = {0, 1}. A binary

message niim2 . . . mt is operated on by a binary key string kjk2 . kt, of the same length

to produce a ciphertext string cxc2 . . . ct where c, = m, (b k,, 1 < i < t [21]. If the key

string is randomly chosen and never used again, this cipher is called a one-time system or

one-time pad.

The one-time pad can be shown to be theoretically unbreakable [21]. If a cryptanalyst

has a ciphertext string c\c2...ct encrypted using a random, non-reused key string, the

cryptanalyst can do no better than guess at the plaintext being any binary string of length t.

It has been proven that an unbreakable Vernam system requires a random key of the same

length as the message [21].

3.6 Comments

The above ciphers comprise all those cryptosystems attacked using a genetic algorithm in

a fairly exhaustive search of the literature. The newest of these systems are the knapsack

ciphers, with the Chor-Rivest system published in 1985, and the Merkle-Hellman system

published in 1978 [21]. The other ciphers attacked are all systems older than that. In some

cases, centuries older. None of the modem ciphers, such as DES, AES, RSA, or Elliptic

Curve, were even attempted using a genetic algorithm based approach. The only ciphers

that are considered even remotely mathematically difficult are the knapsack systems, and

even they are not true number theoretical protocols. This lack makes many of the genetic

algorithm attacks have little importance in the field of cryptanalysis.

22

Chapter 4

Relevant Prior Works

While there have been many papers written on genetic algorithms and their application to

various problems, there are relatively few papers that apply genetic algorithms to cryptanal

ysis. The earliest papers that use a genetic algorithm approach for a cryptanalysis problem

were written in 1993, almost twenty years after the primary paper on genetic algorithms by

John Holland [12] [14]. These papers focus on the simplest classical and modem ciphers,

and are cited frequently by later works.

Figures 4.1 through 4.4 show which ciphers are attacked by which authors.

Substitution

Monoalphabetic Polyalphabetic

/ V

Spillman et. al.1993

Clark 1994

Clark et. al. 1996

Clark & Dawson 1997

C

Clark & Dawson

rundlingh & Van Vu

1998

uren 2002

Figure 4.1: Substitution Cipher Family and Attacking Papers

23

Permutation/Transposition

Permutation Transposition

1 \
Clark 1994 Matthews 1 993

Grundlingh & Van Vuuren 2002

Figure 4.2: Permutation Cipher Family and Attacking Papers

Knapsack

Merkle-Hellman

Spillman 1993

Clark, Dawson, Bergen 1996

Kolodziejczuk 1 997

Chor-Rivest

Yaseen, Sahasrabuddhe 1999

Figure 4.3: Knapsack Cipher Family and Attacking Papers

Vernam

Lin, Kao1995

Figure 4.4: Vernam Cipher Family and Attacking Paper

24

4.1 Substitution: Spillman et al. - 1993

The first paper published in 1993 by Spillman, Janssen, Nelson and Kepner [26], focuses

on the cryptanalysis of a simple substitution cipher using a genetic algorithm. This paper

selects a genetic algorithm approach so that a directed random search of the key space

can occur. The paper begins with a review of genetic algorithms, covering the genetic

algorithm life cycle, and the systems needed to apply a genetic algorithm. The systems

are considered to be a key representation, a mating scheme, and a mutation scheme. The

selected systems are then discussed. The key representation is an ordered list of alphabet

characters, where the first character in the list is the plaintext character for the most frequent

ciphertext character, the second character is the plaintext character for the second most

frequent ciphertext character, and so on. The mating scheme randomly selects two keys for

mating, weighted in favor of keys with a high fitness value. The two parent keys create two

child keys by selecting from each slot in the parents the more frequent ciphertext character.

The first child key is created by scanning left to right, and the second by scanning right to

left. If the more frequent character is already in the child, then the character from the other

parent is selected. The mutation scheme consists of swapping two characters in the key

string. The fitness function uses unigrams and digrams, and is as follows:

26 26

Fitness = (1 - J]{|5F[i] - DF[i\\ + Y^\SDF[i,j] - DDF[i, j]|}/4)8 (4.1.1)
i=i i=i

The function represents a normalized error value. Larger fitness values represent smaller

errors. Sensitivity to small differences is increased by raising the result to the 8th power,

while sensitivity to large differences is decreased by the division of the summation terms

by 4. SF[i] is the standard frequency of character i in English plaintext, while DF[i] is

the measured frequency of the decoded character i in the ciphertext. This makes the first

summation term equal to the sum of the differences between each character's standard fre

quency and the frequency of the ciphertext character that decodes to that character. SDF

is the standard frequency for a digram and DDF the measured frequency. When the mea

sured and standard frequencies are the same, the summation terms equal zero, making the

25

fitness value equal one. This fitness function is bounded below by zero, but cannot evaluate

to zero. Since high fitness values are more important, this does not effect the overall result.

The complete algorithm used in this work is:

1 . Generate a random population of key strings

2. Determine a fitness value for each key in the population

3. Do a biased random selection of parents

4. Apply the crossover operation to the parents

5. Apply the mutation process to the children

6. Scan the new population of key strings and update the list of the 10 "best" keys seen

The process stops after a fixed number of generations, at which point, the best keys are

used to decipher the ciphertext. Results are given for 100 generation runs of the algorithm,

using populations of 10 and 50 keys, and mutation rates of 0.05, 0.10, 0.20, and 0.40. In

the smaller population size, the exact key is found after searching less than 4x10 23 of

the key space, or after the examination of about 1000 keys. In the larger population size,

only about 20 generations are needed to examine 1000 keys. The best mutation rates for

this experiment were those less than 0.20.

4.1.1 Comments

Overall, this paper is a good choice for re-implementation and comparison. It is an early

work, so does not compare its results to others, but provides a decent level of result report

ing and discussion, making comparison possible. It presents the basic genetic algorithm

concepts clearly, and uses examples and diagrams to clarify important points.

Typical results:

- The exact key is not always found

26

- Visual inspection of the plaintext is required most of the time to determine the

exact key

Re-implementation approach:

- The same parameters are re-used

- Additional parameters are used to expand the range of parameter values

Observed cryptanalytic usefulness:

- None - no exact keys found in testing

Comment on result discrepancy:

- Different measures of success were used

4.2 Transposition: Matthews - 1993

The second paper published in 1993 [20], by R. A. J. Matthews, uses an order-based ge

netic algorithm to attack a simple transposition cipher. The paper begins by discussing the

archetypal genetic algorithm. This includes the typical genetic algorithm components, as

well as the two characteristics a problem must have in order for it to be attackable by a

genetic algorithm. The first characteristic is that a partially-correct chromosome must have

a higher fitness than an incorrect chromosome. The second characteristic is an encoding for

the problem that allows genetic operators to work. The next section of the paper discusses

the cryptanalytic use of the genetic algorithm. It concludes that substitution, transposition,

permutation, and other ciphers are attackable by a genetic algorithm, while ciphers such as

DES (Data Encryption Standard), which is a Feistel cipher, are not attackable.

The cipher selected for attack in this work is a classical two-stage transposition cipher.

Here, a key of length N takes the form of a permutation of the integers 1 to N. The

plaintext, L characters long, is written beneath the key to form a matrix TV characters wide

by (at least) L mod N characters deep. The second stage consists of reading the text off

27

the columns in the order indicated by the integers in the key. Decryption consists ofwriting

down the key, determining the length of the columns, writing the ciphertext back into the

matrix in sequence, and reading across the columns. Breaking this cipher is typically a two-

stage process as well. The stages are determining the length of the transposition sequence

(TV), and then finding the permutation of the TV integers.

The genetic algorithm system used to attack the transposition cipher is known as GEN-

ALYST. It incorporates all the standard genetic algorithm features, with the addition of the

items needed for an order-based approach. The GENALYST system uses a fitness scoring

system based on the number of times common English digrams and trigrams appear in the

decrypted text. Ten digram and trigrams were used - TH, HE, IN, ER, AN, ED, THE, ING,

AND, and EEE. The presence of EEE resulted in a subtraction of fitness points, as it prac

tically never appears in English. This process was checked for correlation between fitness

value and correctness of chromosome, to improve confidence in GENALYST. GENALYST

selects the fittest chromosomes using a roulette wheel approach based on normalized fitness

values. This means that the probability of a chromosome getting selected is proportional

to its normalized fitness value.
"Elitism" is present to ensure that the fittest or most elite

chromosomes found so far are always included in the breeding pool. After selection occurs,

breeding is done with a proportion of the remaining chromosomes. The proportion used

decreases linearly as the search continues, in order to help optimize the effectiveness of

GENALYST. Breeding is done using the position based crossover method for order-based

genetic algorithms. In this method, a random bit string of the same length as the chromo

somes is used. The random bit string indicates which elements to take from parent #1 by a

1 in the string, and the elements omitted from parent #1 are added in the order they appear

in parent #2. The second child is produced by taking elements from parent #2 indicated by

a 0 in the string, and filling in from parent #1 as before. Two possible mutation types may

then be applied. The first type is a simple two-point mutation where two random chromo

some elements are swapped. The second type is a shuffle mutation, where the permutation

is shifted forward by a random number of places.

28

A test procedure is given to ensure that test texts have a true fitness value that is repre

sentative of English text. This is calculated mathematically, based on digram/trigram per

centage frequency in the text, the fitness score given by GENALYST to that di- or tri-gram,

and the summation over all di- and tri-grams checked. The text length is also important, as

it is easier to attack texts with a length that is an integer multiple of the key length. Based

on these considerations, a test text with a length of 181 characters was selected. This length

is prime, but close to multiples of 6, 9, 10, and 12. This is a worst-case scenario since not

all column lengths are the same, and multiple possibilities for the key length are present.

A Monte Carlo search is run on the same text so that the genetic algorithm results can be

compared to the results from a traditional search technique. In a Monte Carlo search, a

series of guesses is made to determine the correct key, and the most elite chromosome is

kept.

The breaking of a transposition cipher has two parts: finding the correct keylength, and

finding the correct permutation of the key. GENALYST was tested on both parts. For the

first part, the test text was encrypted using a target key. GENALYST was then used to

find the best decryption of the text, using seven different keylengths in the range of 6 to

12, which includes the length of the target key. The goal of this section was to see if the

fittest of the seven chromosomes had the same length as the target key. The population size

used was 20, and the number of generations was 25. The probability of crossover started

at 0.8 and decreased to 0.5. Mutation probability started at 0.1 for both point mutation and

shuffle mutation, increasing to 0.5 for point mutation and to 0.8 for shuffle mutation. The

experiment was run five times each for three target keylengths, K = 7, 9, 11. GENALYST

was successful in 13 of the 15 runs (87%). However, the random Monte Carlo algorithm

performed equally well in this task, also producing a success rate of 87%. For the second

part, the same parameters of population size and number of generations were used. GEN

ALYST managed to completely break the cipher in one of the runs for K = 7 and one of

the runs for K = 9. Overall, GENALYST involves little more computational effort than

the Monte Carlo algorithm, since the single largest task, fitness rating, is present in both.

29

Therefore, a genetic algorithm approach is useful even when only a small advantage is

produced. Using a larger gene pool and number of generations boosts GENALYST's per

formance significantly over the performance ofMonte Carlo. The greatest improvement in

GENALYST's performance comes from hybridizing the algorithm with other techniques,

such as perming.

4.2.1 Comments

Overall, this is one of the best reference papers available. It is an early work, but is very

complete. It covers background material and problem considerations well, and has a very

balanced approach to considering the genetic algorithm as a possible solution. The param

eters are clearly reported, as are the algorithms used. This is an excellent candidate for

re-implementation and comparison.

Typical results:

- Keylength correctly determined 87% of the time

- Correct key found 13.33% of the time

Re-implementation approach:

- Different text lengths used, same parameters re-used

- Additional parameters are used to expand the range of parameter values

Observed cryptanalytic usefulness:

- Low - low decryption percentage

Comment on result discrepancy:

- Percentages reported are based on number of tests and different numbers of

tests were used

30

4.3 Merkle-Hellman Knapsack: Spillman - 1993

The third paper published in 1993, by R. Spillman [25], applies a genetic algorithm ap

proach to aMerkle-Hellman knapsack system. This paper considers the genetic algorithm

as simply another possibility for the cryptanalysis of knapsack ciphers. A knapsack cipher

is based on the NP-complete problem of knapsack packing, which is an application of the

subset sum problem. The problem statement is: "Given n objects each with a known vol

ume and a knapsack of fixed volume, is there a subset of the n objects which exactly fills

the knapsack ?". The idea behind the knapsack cipher is that finding the sum is hard, and

this fact can be used to protect an encoding of information. There must also be a decod

ing algorithm that is relatively easy for the intended recipient to apply. An easy decoding

algorithm can be made by using the easy knapsacks. An easy knapsack consists of a se

quence of numbers that is superincreasing, i.e., each number is greater than the sum of the

previous numbers. However, an easy knapsack does not protect the data if the elements of

the knapsack are known. A Merkle-Hellman knapsack system converts an easy knapsack

into a trapdoor knapsack. A trapdoor knapsack is not superincreasing, making it harder

to attack. The Merkle-Hellman procedure to create a trapdoor knapsack sequence A is as

follows:

1 . Given a simple knapsack sequence A' = (a\ , . . . , a'n)

2. Select an integer u > 2a'n

3. Select another integer w such that gcd(u, w) 1

4. Find the inverse of w mod u

5. Construct the trapdoor sequence A =
wA'

mod u

Once the easy knapsack has been converted into a trapdoor knapsack, both the easy

knapsack and the value of w~l must be known to decode the data. The target sum for the

superincreasing sequence is calculated by multiplying the sum of the trapdoor sequence and

31

w_1 together and then reducing it modulo u. This system can become a public-key cipher,

with the trapdoor sequence the public key. The private key would be the superincreasing

sequence and the values of u, w, and w"1.

The next section of the paper introduces genetic algorithms using binary chromosomes.

The applicable processes of selection, mating, and mutation are described. Selection is a

random process which is biased so that the chromosomes with higher fitness values are

more likely to be selected. The mating process is a simple crossover operation, i.e., bits

s + 1 to r of parent #1 are swapped with bits s + 1 to r of parent #2. Mutation consists of

switching a bit in the chromosome to its complement, i.e., a 0 becomes a 1 .

The three systems that need to be defined for a genetic algorithm application are: rep

resentation scheme, mating process, and mutation process. The representation used here

is that of binary chromosomes, which represent the summation terms of the knapsack, i.e.,

a 1 in the chromosome indicates that that term should be included when calculating the

knapsack sum. The evaluation function is determined once a representation scheme has

been selected. Here, the function measures how close a given sum of terms is to the target

sum of the knapsack. Other properties included for this experiment are:

Function range between 0 and 1 , with 1 indicating an exact match

Chromosomes that produce a sum greater than the target should have a lower fitness,

in general, than those that produce a sum less than the target

It should be difficult to produce a high fitness value

The actual evaluation function used depends on the relationship between the target sum

and the chromosome sum. The function is determined as follows:

1 . Calculate the maximum difference that could occur between a chromosome and the

target sum

MaxDiff = m&x(Target, FullSum - Target) (4.3.1)

where FullSum is the sum of all components in the knapsack

32

2. Determine the Sum of the current chromosome

3. If Sum < Target then

Fitness = 1 \J\Sum Target\/Target (4.3.2)

4. If Sum > Target then

Fitness = 1 - {/\Sum - Target]/MaxDiff (4.3.3)

As described above, the mating process is simple crossover. The mutation process

consists of three different possibilities. About half the time, bits are randomly mutated as

described above (switched to their complement). Next most likely is the swapping of a

bit with a neighboring bit. The final possibility is a reversal of the bit order between two

points.

A description of the complete algorithm is given, as well as results for one 15-item

knapsack applied to a 5 character text. The characters are encoded as 8 bit ASCII charac

ters. Each of the 5 sums (one per character) was attacked using the genetic algorithm, with

an initial population of 20 random 15-bit binary strings.

4.3.1 Comments

This paper is reasonable for its length (about 10 pages) and year. Aminimal level of experi

mentation is included but the results and parameters are decently reported. The introductory
material and discussion are reasonable, although short. Re-implementation should not be

difficult, and there are sufficient results to make a comparison possible. Overall, this paper

is a reasonable choice for re-implementation and comparison.

Typical results:

- Used 5 ASCII characters, each ofwhich was decrypted

Re-implementation approach:

33

- Not re-implemented

Observed cryptanalytic usefulness:

- None - the knapsack size is trivial

Comment on result discrepancy:

- No comment, not re-implemented

4.4 Substitution/Permutation: Clark - 1994

The only paper published in 1994, by Andrew Clark [4], includes the genetic algorithm as

one of three optimization algorithms applied to cryptanalysis. The other two algorithms are

tabu search and simulated annealing. The first section of the paper describes the two ciphers

used - simple substitution and permutation. Next, suitability assessment is discussed. This

section is where the fitness functions are developed. For the substitution cipher, the fitness

function is

Fk = (a|SF[t] - DF[t\\+P^2J^\SDF[i\[i) - DDF[t\\j]\) (4-4.1)

A denotes the set of characters in the alphabet (A,B,C,...,Z, space). SF[i] is the

relative frequency of character i in English, while DF[i] is the relative frequency of the

decoded character i in the message decrypted using the key k k. SDF[i\[j] is the relative

frequency of the digram ij in English, while DDF[i][j] is the relative frequency of that

digram in the message decrypted using k. Varying a and /? allows one to favor either the

unigram or digram frequencies. For the permutation cipher, the same approach was used

as in [20] - the scoring table for digrams and trigrams.

The next three sections introduce the basic concepts of simulated annealing, genetic

algorithms, and tabu search. The genetic algorithm section is fairly standard, and con

tains much the same material as earlier papers. The section is short and does not give any

34

specifics about the algorithm used. The final section in the paper discusses the results. It is

fairly short, and does not give many details.

4.4.1 Comments

Overall, this paper is too short (5 pages) to be useful. It is well written, but lacks details.

The tiny genetic algorithm section and few reported results make it difficult to re-implement

or even to compare against. This paper is not a good candidate for further use.

Typical results:

- Convergence rates and computation time are the only reported results

Re-implementation approach:

- Parameters were not reported

- Standard parameter values used in other re-implementations were used

- Only the permutation attack was re-implemented as a later work from this au

thor was used for the substitution attack

Observed cryptanalytic usefulness:

- Medium - the correct key was found with a high success rate

Comment on result discrepancy:

- No real discrepancy, different combination of metrics used

4.5 Vernam: Lin, Kao - 1995

This is the only paper published in 1995. By Feng-Tse Lin and Cheng-Yan Kao, [18] is a

ciphertext-only attack on a Vernam cipher. The paper begins by introducing cryptography
and cryptanalysis, including attack and cryptosystem types, as well as the Vernam cipher

35

itself. The Vernam cipher is a one-time pad style system. Let M = m\,m2, ... ,mn

denote a plaintext bit stream and K = ky, k2, . . . , kr a key bit stream. The Vernam cipher

generates a ciphertext bit stream C = Ek(M) = cuc2, ,cn, where a = (m{ + ki)

mod p and p is a base. Since this is a one-key (symmetric or private-key) cryptosystem,

the decryption formula has the same key bit stream K, only M Dk(C) = my, m2, . . .,

where m{ = (ct kt) mod p. The proposed approach is to determine K from an intercepted

ciphertext C, and use it to break the cipher.

Since the described cryptosystem is not the Vernam cipher, and there are many errors in

this paper, both in notation and logic, this application needs no further discussion. The ge

netic algorithm approach is rendered invalid by the errors present in the reported approach

and assumptions.

4.5.1 Comments

This paper is of below average quality. It is rather short, and was written for the IEEE

International Conference on Systems, Man, and Cybernetics. There are some problems

with English grammar, possibly due to translation from the original language. The systems

are adequately described, but are, however incorrect. The cipher given in this paper is not

the Vernam cipher. A re-implementation is impossible due to the many errors present in

this work.

Typical results:

- One run of the genetic algorithm is shown, with parameters

Re-implementation approach:

- Not re-implemented

Observed cryptanalytic usefulness:

- None - inconsistent notation, leading one to believe that the cipher attacked is

not the true Vernam cipher

36

Comment on result discrepancy:

- No comment, not re-implemented

4.6 Merkle-Hellman Knapsack: Clark, Dawson, Bergen -

1996

This paper, by Clark, Dawson, and Bergen [7] is an extension of [25]. It contains a detailed

analysis of the fitness function used in [25], as well as a modified version of the same fitness

function. The paper begins by introducing the subset sum problem and previous work in

genetic algorithm cryptanalysis. The fitness function from [25] is then discussed. Since the

reason this function penalizes solutions which have a sum greater than the target sum for

no clear reason, the function is altered to:

Fitness = 1 - (\Sum - Target] /'MaxDif'/)* (4.6.1)

The altered fitness function is found to be more efficient by running a genetic algorithm

attack on 100 different knapsacks sums from the knapsack of size 15 used by Spillman

[25]. This function requires fewer generations, on average, and searches less of the key

space to find a solution.

The genetic algorithm attack is then introduced and Spillman 's [25] attack summarized.

In this work, for each of three different knapsack sizes 15, 20, and 25, 100 different

knapsack sums were formed, and the algorithm run until the solution was found. The

amount of key space searched is about half that of an exhaustive attack, which is not a

significant gain for a large knapsack. The gain is insignificant due to the overhead of the

genetic algorithm approach. Also, the number of generations required, and the percentage

of the key space searched vary widely between runs.

This attack is poor because the fitness function does not accurately describe the suit

ability of a given solution. The Hamming distance between the proposed solution and

the true solution is not always indicated correctly by the fitness function. A high fitness

37

value does not necessarily mean a low Hamming distance. The distribution of Hamming

distances for a given range of fitness values appears to be binomial-like. Therefore, a fit

ness function based on a difference of sums is not adequate when attempting to solve the

subset-sum problem with an optimization algorithm. Experimental results show that the

genetic algorithm gives little improvement over an exhaustive search in terms of solution

space covered, and, in fact, an exhaustive attack will be faster, on average, due to reduced

algorithmic complexity.

4.6.1 Comments

This paper clearly discusses the problems with an earlier work, [25]. It is well written

and gives a reasonable number of details. It is not, however a stand-alone work. A re-

implementation is possible but unnecessary since the work establishes that the fitness func

tion used is inappropriate. A comparison may be possible but unlikely since a new fitness

function for the attack is needed.

Typical results:

- Reports the number of generations and the key space searched

- These results are for three knapsack sizes (15, 20, 25), each attacked until the

solution was found

Re-implementation approach:

- Not re-implemented

Observed cryptanalytic usefulness:

- None - this work disproves the usefulness of an earlier work [25]

Comment on result discrepancy:

- No comment, not re-implemented

38

4.7 Vigenere: Clark, Dawson, Nieuwland - 1996

This paper, by Clark, Dawson, and Nieuwland [8], is the first to use a parallel genetic al

gorithm for cryptanalysis. It attacks a polyalphabetic substitution cipher. The first section

introduces the simple and polyalphabetic substitution ciphers, while the second section in

troduces the genetic algorithm. The parallel approach chosen for this work is to have a

number of serial genetic algorithms working on a separate part of the problem. In this case,

since more than one key must be found, each processor will work on finding a different

key. Next, the application of the parallel genetic algorithm to the polyalphabetic substitu

tion cipher is discussed. The fitness function uses weighted unigram, digram, and trigram

frequencies as follows:

N N

F(K) = Wl (#i[i] -

Dy[z})2

+ w2 J2(K2[i,j] - D2[t,j})2+
i=i '1.7=1

N

w3 Y, (K3[i,j,k}-D3[i,j,k})2 (4.7.1)

Here, K is a single N character key for a simple substitution cipher. Ky, K2, and K3

are the known unigram, digram, and trigram statistics, respectively. D\, D2, and D3 are

the statistics for the decrypted message, and wy, w2, and w3 are weights chosen to equal

one and emphasize different statistics. Since computation of a fitness function including

trigrams can be computationally intensive, this work starts out using only unigrams and

digrams, and later adds in the trigram statistics.

M processors in parallel are used, where M is the period of the polyalphabetic substi

tution cipher. Each processor works on one of the M keys, and communicates with other

processors after a number of iterations. This communication involves sending the best key
to each of a processor's neighbors, which allows digram and trigram statistics to be com

puted. The mating function is borrowed from [26] and requires the same special ordering

of the key. Mutation has two possibilities, depending on the relative fitness of the child key.

If the child has a fitness greater than the median in the gene pool, each character is swapped

with the character to its right. If the child's fitness is less than the median, each character is

39

swapped with a randomly chosen character in the key. The selection mechanism used is to

combine all the children and all the keys from the previous generation together and select

the most fit to be the new generation.

Fixed parameters for the experiment include:

A gene pool size of 40

A period of 3

200 iterations of the genetic algorithm

A mutation rate of 0.05

10 iterations between slave-to-slave communications

The first test was done to determine the amount of known ciphertext needed to retrieve a

significant portion of the plaintext. A plot was created, with each point found by running the

algorithm on ten different encrypted messages, five times per message. In the five runs per

message, the random number generator was seeded differently every time. About 90% of

the original message was recovered using 600 known ciphertext characters per key. In this

test, the weights were yj\ = 0.4, w2 = 0.6, and w3 = 0.0 initially, and u>\ = 0.2, w2 = 0.3,

and w3 0.5 after 100 iterations.

The second test was done to indicate the optimal choice of weights. The weights were

chosen such that

wy,w2, w3 e {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

and Yh=i Wi = "^- There are 66 combinations that satisfy these conditions. The algorithm

was mn 20 times per combination on ten different messages, twice per message. Of the two

runs per message, the best result was taken, with the ten best results then averaged together.

The values of wy,w2 and w3 were fixed for all 200 iterations of the algorithm. The best

results occurred when w3 = 0.8.

40

4.7.1 Comments

This paper is short but reasonably detailed. The algorithms are clearly defined and the result

graphs are a nice touch. However, only the parallel case is considered, making the paper of

limited usefulness. Re-implementation and comparison are reasonably possible, both in a

serial and a parallel version. If re-implemented, the serial version would be created first to

determine if parallelization is warranted.

Typical results:

- Reports on the amount of known ciphertext required in order to regain a certain

percentage of the original message

- Reports on the optimal choice of fitness function weights

Re-implementation approach:

- Re-implemented in a serial version only

- Most of the original parameters were used in the re-implementation

- Additional parameters are used to expand the range of parameter values

Observed cryptanalytic usefulness:

- None - no messages were successfully decrypted

Comment on result discrepancy:

- Different conclusions based on the different metrics used

4.8 Vigenere: Clark, Dawson - 1997

This is the first paper published in 1997. By Clark and Dawson, [5] is, overall, a slightly

more detailed, longer version of [8]. Therefore, it shares all the same characteristics and is

evaluated as above.

41

4.9 Merkle-Hellman Knapsack: Kolodziejczyk - 1997

This paper [17], published in 1997, is by Kolodziejczyk. It is an extension of [25]. It

focuses on the Merkle-Hellman knapsack system, and the effect of initial parameters on

the approach reported in [25]. The paper introduces the Merkle-Hellman knapsack, and

then discusses the application of a genetic algorithm to the cryptanalysis thereof. Certain

restrictions are placed on the encoding algorithm. These are:

Only the ASCII code will be used in encryption

The superincreasing sequence will have 8 elements, ensuring that each character has

a unique encoding

The plaintext is not more than 100 characters in length

Due to these restrictions, the knapsack is a completely trivial problem. The genetic

algorithm approach needs no discussion, as this application has no point.

4.9.1 Comments

Overall, this paper presents a reasonable amount of numerical data and is a good extension

work to [25]. Unfortunately, the paper is not well written, has poor English grammar and

word usage, and uses a completely trivial knapsack. The only contribution of this paper is

the addition of parameter variation to [25]. There is no point in reimplementation of this

paper.

Typical results:

- Used 5 ASCII characters, each of which was decrypted

Re-implementation approach:

- Not re-implemented

42

Observed cryptanalytic usefulness:

- None - knapsack size is trivial

Comment on result discrepancy:

- No comment, not re-implemented

4.10 Substitution: Clark, Dawson - 1998

This is the only paper published in 1998. By Clark and Dawson, [6] compares three op

timization algorithms applied to the cryptanalysis of a simple substitution cipher. These

algorithms are simulated annealing, the genetic algorithm, and tabu search. Performance

criteria, such as speed and efficiency, are investigated. The paper begins by introducing

the application area and giving the basis for the current work. A simple substitution cipher

is attacked by all three algorithms, with a new attack for tabu search, as compared to the

attack done in [4]. Each of the attacks are compared on three criteria:

The amount of known ciphertext available to the attack

The number of keys considered before the correct solution was found

The time required by the attack to determine the correct solution

The next section of the paper gives a detailed overview of each of the three algorithms.

It is followed by an overview of the attack, as well as details about the attack for each

algorithm. The overall attack uses a general suitability assessment or fitness function. As

suming A denotes the language alphabet, here {A, . . . , Z, _} (where _ is the symbol for a

space), the function is:

^ =El^)-^)l+^EK,)-Z)L)l + 7 \Klm-Dlhk)\ (4.10.1)
ieA i,jeA i,j,kA

k is the proposed key, K is the known language statistics, D is the decrypted message

statistics, and u/b/t are the unigram, digram, and trigram statistics. a,j3, and 7 are the

43

weights. The complexity of this formula is 0(N3), where N is the alphabet size, when

trigram statistics are used. The effectiveness of using the different n-grams is evaluated

using a range of weights, and it is concluded that trigrams are the most effective basis for

a cost function, but the benefit of using trigrams over digrams is small. In fact, due to

the added complexity of using trigrams, it is usually more practical to use only unigrams

and digrams. Therefore, the remainder of the paper uses a fitness function based only on

digrams. This function is:

^=DA(U)-^,)I (4-10-2)
i,jeA

The genetic algorithm attack section begins with detailed pseudocode for the mating

process, which is similar to that used in [26]. Selection is random, with a bias towards

the more fit chromosomes. Next, the mutation operator is discussed. Mutation randomly

swaps two characters in a chromosome. Pseudocode is then given for the overall genetic

algorithm attack. The attack parameters are M, the solution pool size, and MAXJTER,

the maximum number of iterations. The M best solutions after reproduction continue on

to the next iteration.

Experimental results for the three algorithms were generated with 300 runs per data

point. One hundred different messages were created for each case, and the attack mn three

times per message. The best result for each message was then averaged together to produce

the data point. This is done to provide a good representation of the algorithm's ability. In

overall outcome of the attack, all the algorithms performed approximately the same. The

algorithms also perform equally well when comparing the amount of ciphertext provided

in the attack. Considering complexity, however, simulated annealing is more efficient than

the genetic algorithm, and tabu search is the most efficient.

4.10.1 Comments

Overall, this paper is well written and provides a good level of detail. It provides good

discussion of important points, especially in interpretation of the results. It is not focused

44

on a genetic algorithm attack, and only uses a simple substitution cipher, however, the

details given make a re-implementation fairly easy, and provide enough information for

comparison purposes. This paper is a good choice for further study.

Typical results:

- Results include number of key elements correct vs. amount of known cipher-

text, number of key elements correct vs. total keys considered and number of

key elements correct vs. time

Re-implementation approach:

- Parameters were not reported

- Standard parameter values used in other re-implementations were used

Observed cryptanalytic usefulness:

- None - no successful decryptions of the message occurred

Comment on result discrepancy:

- Different conclusions based on the different metrics used

4.11 Chor-Rivest Knapsack: Yaseen, Sahasrabuddhe - 1999

This is the only paper from 1999. By Yaseen and Sahasrabuddhe, [31] is also the only paper

that considers a genetic algorithm attack on the Chor-Rivest public key cryptosystem. The

paper begins with a review of the Chor-Rivest scheme, followed by a review of genetic

algorithms. The genetic algorithm attack is then discussed.

The input to the genetic algorithm is A = (ay,..., an), a knapsack of positive integers,

and c, an integer which represents the cipher. The output is M = (m.y , mn), a binary

vector such that c = A M. A and M are both binary vectors. The binary vector A

is the chromosome that represents the solution message M. The length of the vector is

45

n, the same as the size of the knapsack. ax = 1 if the element has been chosen and

0 otherwise, the same as in [25]. The initial population is created randomly, such that

each n-bit binary chromosome contains exactly h l's, where h is the degree of the monic

irreducible polynomial f(x) over Zp. The fitness function is:

Determine the value of the current chromosome (call it Sum)

Fit = \- ^\Sum - Target] IFullSum (4.11.1)

where FullSum is the sum of all the components in the knapsack

Two genetic operators are used during the alteration (mutation) phase of the algorithm.

They are:

Swapbits: choose two positions in the chromosome randomly and swap their contents

Invert: choose two positions in the chromosome randomly and reverse the sequence

of bits between them

The parameters used throughout the experiment are:

pinv (the probability of the invert operation occurring) = 0.75

pm (the probability of the swapbits operation occurring) initially = 0.75

Population size of 30

To assist the fitness function, the chromosomes with a Hamming distance of 2 and 4

from a target were the ones used. This approach is based on some observations made in [7].

Experimental results were provided for the knapsacks of the fields GF(135), GF(175), GF(195),

and GF(235). These results are for the average of 30 experiments, both with and without

the Hamming distance technique. With the Hamming technique, as the size of the knapsack

increased, the percentage of search space visited decreased. Without the technique, the per

centage visited had no relation to the knapsack size. With the technique, 1 to 2 % of search

46

space was visited, versus 50 to 90 % without. The average number of generations showed

a similar increase - 1 to 10 generations with the technique and 23 to 900 generations with

out, on average. Of the 120 experiments done in each case, 33 experiments without the

technique did not reach a solution even after 5000 generations.

4.11.1 Comments

The main focus of this paper is on the Hamming distance technique, which is not explained

that clearly. A reasonable level of detail is included, however, due to length (5 pages) and

clarity issues, this paper is a poor choice for re-implementation.

Typical results:

- Reports the average number of chromosomes required to find an exact solution

Re-implementation approach:

- Not re-implemented

Observed cryptanalytic usefulness:

- None - lacks information about parameters required to analyze the attack

Comment on result discrepancy:

- No comment, not re-implemented

4.12 Substitution/Transposition: Grundlingh,VanVuuren

- submitted 2002

This paper has not yet been published, but was submitted for publication in 2002. By
Griindlingh and Van Vuuren, [13] combines operations research with cryptology and at

tacks two classical ciphers with a genetic algorithm approach. The two ciphers studied

47

are substitution and transposition. The paper begins with some historical background on

the two fields, and then covers basic components of symmetric (private key) ciphers. The

next two sections discuss genetic algorithms and letter frequencies in natural languages.

The main difficulty in a genetic algorithm implementation is said to be the consideration

of constraints. As for character frequencies, these were generated for 7 languages from

modern bible texts.

The mono-alphabetic substitution cipher was attacked first. In this case, consider a

ciphertext T of length N, formed from a plaintext of the same length in a natural language

L. The fitness function of a candidate key k, is:

Ti{Lm) =
^-^-M-^tt)l

(4.12.1,
2KN ~

Prnin\L))

Here, pf(L) represents the (scaled) expected number of times the letter i will appear per

N characters in a natural language L text. /, (k) is the observed number of occur

rences of letter i when the ciphertext T, of length N, is decrypted using the key k. Also,

Pmin(L) = mini{p^(L)}. The limits of Ty are [0, 1], and both bounds may be reached in

extreme cases. The rationale behind this fitness function involves discrepancies between

the expected number of occurrences and the observed number of occurrences of a letter i.

An alternative option for the fitness measure, this time including digrams is:

T2(L, N,T,k) = [2(2iV - 1 -

plin(L)
- S^(L)) - $>f (L) - f?{N\k)\

i=A

~ EK^ - 4(JV)()I] - (2(2iV - l -

P^(L)
- C(i))) (4-12.2)

ij=A

Here, pf(L) and 5^(L) represent the expected number of occurrences of, respectively,

the letter i and the digram ij, per A^ characters in a natural language L text. f^N\k)
and

fj-" \k) are the observed number of occurrences of, respectively, the letter i and

the digram ij, when the ciphertext T is decrypted using the key k. Also, p^in(L) =

mini{pf(L)} and 5%in(L) = m.inij{8^(L)}. The same limits apply to T2 as to Ty.

A detailed algorithm overview, including pseudocode, is discussed next, including the

genetic operators of mutation, crossover, and selection. The mutation operator is a single

48

random swap of two characters. Crossover occurs during a traversal of the parent chromo

somes. The first child chromosome is produced as follows:

Begin a left-to-right traversal of the parent chromosomes

Select character / from the parent whose z-th character has the better frequency match

to the expected number of occurrences of i

If the 2-th character already appears in the child

- Select the character from the other parent

- If the characters are both already in the child, leave the position blank

If any characters do not appear in the child, insert them to minimize discrepancies

between observed and expected frequency counts

The second child is produced by the same process using a right-to-left traversal. Keys

are selected stochastically, such that keys that have a higher fitness value are more likely to

be mated. The algorithm was mn on a ciphertext of 2,5 1 9 characters and a population size

of 20. Using (4. 1 2. 1) an average pool fitness of 90 % was reached within 7 generations, and

using (4.12.2), an average of 75 % within 15 generations. The algorithm was run for 200

generations, and sets of the best 3 keys overall were kept as well as the final population.

The transposition cipher was attacked second, using a similar genetic algorithm ap

proach. This attack assumes that the number of columns is known, but the column shuffling

is unknown. The fitness function then becomes (using the same symbols as before):

n
2(N - 1 - 6Zin(L)) - f,_J<$(L) - f^N\k)\

T3(L,N,T,k) =
2(^-1-^,(1))

^^ ^

The crossover operator uses a random binary vector to select entries from the parents.

The first child is formed by taking values from parent 1 where 1 occurs in the binary vector.

The rest of the values are filled from parent 2, in the order in which they occur. The second

child is formed starting from parent 2, and using the locations of the O's in the binary

49

vector. Two mutation operators are considered - point and shift. A point mutation consists

of randomly selecting two positions in a key and swapping their values. Shift mutation, on

the other hand, consists of shifting the values in a key a random number of positions to the

left or right modulo the length of the key. Otherwise, the same algorithm was used in this

attack as for the simple substitution cipher. No convergence of fitness values was found for

this attack.

The paper concludes by describing a decision tool created to assist cryptanalysts who

routinely attack substitution ciphers. This tool is graphical in nature, and is based on the

genetic algorithm attack on substitution ciphers discussed above.

4.12.1 Comments

Overall, this paper is pretty good and includes good introductory material. It lacks enough

detail in the results section to be easily comparable, but gives a great level of detail for the

functions, algorithms, and operators used. It is a good candidate for re-implementation, but

not for comparison.

Typical results:

- Gives the final population pool and the partially decrypted ciphertext produced

by the best key for the substitution attack

- Transposition attack declared to be nonconvergent and no results given

Re-implementation approach:

- Both the substitution and transposition ciphers were re-implemented

- Different text lengths used, same parameters re-used

- Additional parameters are used to expand the range of parameter values

Observed cryptanalytic usefulness:

- Substitution: None - no messages successfully decrypted

50

- Transposition: Low low decryption percentage

Comment on result discrepancy:

- Different conclusions based on the different metrics used

4.13 Overall Comments

The quality of the reference works found in the literature varies widely. This issue is com

pounded by the low number of reference works found - twelve. Several of these works were

too poorly specified for further use or used trivial parameters, leaving even fewer valid ref

erence works. Seven works contained enough information for a re-implementation to be

completed. Some of these works depended on other, earlier works for the re-implementation

to be possible. A common set of metrics for these re-implemented works is gathered. It

is not possible to compare the results using the new metrics to the results reported in the

previous works due to the differences in metric composition. The metrics previously used

are a diverse collection, with very different bases. This diversity is one of the motivating

factors for this work.

51

Chapter 5

Traditional CryptanalysisMethods

Only four of the seven ciphers attacked using a genetic algorithm will be further inves

tigated. These ciphers are monoalphabetic substitution, polyalphabetic substitution (e.g.

the Vigenere cipher), permutation and columnar transposition. The other three ciphers are

excluded due to various reasons.

The Merkle-Hellman knapsack cipher was initially marked for further study but has

been removed due to the difficulty of implementing the seminal attack by Shamir [23].

This attack involves Lenstra's integer programming algorithm and a fast diophantine ap

proximation algorithm. The Chor-Rivest knapsack cipher is difficult to implement and was

only considered for a genetic algorithm attack in one paper, which used trivial examples of

the system. The paper [31] is short and does not explain the attack technique well, making

it difficult to re-implement the work. The third cipher that will not be considered further

is the Vernam cipher. This cipher is one of the few that exhibits perfect secrecy, however,

it is not widely used due to the key length requirements. This cipher is also attacked us

ing a genetic algorithm in only one paper [18] which really is not attacking the cipher it

claims it is. Therefore, due to lack of replicable works, this cipher is excluded from further

investigation.

52

5.1 Distinguishing among the three ciphers

If the cipher type is not already known, inspection of the frequency of occurrence of the

ciphertext letters (i.e. how often each ciphertext character appears in the ciphertext), will

distinguish between a permutation and a substitution cipher. Each language (e.g. French,

English, German) has a different set of frequencies for its letters. A permutation cipher

will produce a ciphertext with the same frequency distribution as that of the language of

the plaintext [24]. For example, if the plaintext was written in English, a permutation cipher

will produce ciphertext with the same frequency distribution as any similar English text.

The index of coincidence (IC) measures the variation in letter frequencies in a ciphertext

[22]. If simple (monoalphabetic) substitution has been used, then there will be considerable

variation in the letter frequencies and the IC will be high [22]. As the period of the cipher

increases (i.e. more alphabets are used), the variation in letter frequencies decreases and

the IC is low.

5.2 Monoalphabetic substitution cipher

The traditional attack for the monoalphabetic substitution cipher utilizes frequency analysis

and examination. The first step is to analyze the ciphertext to determine the frequency of

occurrence of each character [27]. The frequencies of digrams and trigrams may also be

determined in this step. Then, based on the frequencies, the cryptanalyst examines the

ciphertext and proceeds by guessing and changing guesses for which cipher character is

which plaintext character.

For example, the most frequent character in an English text is E [27]. Therefore, the

ciphertext character that appears most frequently is highly likely to be the equivalent of

the plaintext E. The next most frequent English letters are T, A, O, I, N, S, H, and R, all

with around the same frequency. Digram and trigram statistics can be used to help identify
these. TH, HE, and IN are the three most common digrams, and the three most common

trigram are THE, ING, and AND. In the end, however, the cryptanalyst must gain a feel for

53

the text and proceed by guessing letters until the text becomes legible.

5.3 Polyalphabetic substitution cipher

The polyalphabetic substitution cipher (here, the Vigenere cipher) is attacked using two

techniques - the Kasiski test and the index of coincidence [27]. The first step is to determine

the keyword length, denoted m.

The Kasiski test was described by Friedrich Kasiski in 1863, but apparently discovered

earlier, around 1854, by Charles Babbage [27]. This test is based on the observation that

"two identical segments of plaintext will be encrypted to the same ciphertext whenever their

occurrence in the plaintext is 5 positions apart, where 6 = 0 (modm)"[27]. Conversely,

if two segments of ciphertext are identical and have at least a length of three, then there is

a good chance they correspond to identical segments of plaintext [27].

The Kasiski test follows the below procedure [27]:

1 . Search the ciphertext for pairs of identical segments of length at least three

2. Record the distance between the starting positions of the two segments

3. If several such distances are obtained (Sy,82, . . .),

m divides all of the <5j's

and, therefore, m divides the greatest common divisor (gcd) of the <5;'s

The index of coincidence is used to further verify the value of m. This concept was

defined by Wolfe Friedman in 1920, as follows [27]:

Suppose x = X1X2 xn is a string of n alphabetic characters

The index of coincidence of x, denoted Jc(x) is defined to be the probability that two

random elements of x are, identical

54

Suppose the frequencies of A, B, C, . . . , Z in x are denoted by /0, fy, , f'2b, respec

tively. Two elements of x can be chosen in I 1 ways [27]. For each i, 0 < i < 25, there

are I l

J ways of choosing both elements to be i. This produces the formula [27]:

UX) =

25 / f.\ 25

o E/'(/'-i)
i=0 \z/ i=0

/n\ n(n 1)

k2,

Suppose x is a string of English text. Then, if the expected probabilities of occurrence

of the letters A,B,...,Z are denoted by p0, . . . ,p25, respectively, we would expect that

25

^c(-i') ~ YI Pi = 0-065 [27]. The same reasoning applies if x is a ciphertext string obtained
i=0

using any monoalphabetic cipher - the individual probabilities are permuted but the quantity

YpI 's unchanged.

Now, suppose we have a ciphertext string y = yxy2 -yn produced by a Vigenere

cipher. Define m substrings of y, denoted yi,y2, - - ,ym, by writing out the ciphertext, in

columns, in a rectangular array of dimensions m x (n/m) [27]. The rows of this matrix are

the substrings y;, 1 < i < m. This means that we have:

Yl = ?/l?/m+2/l?/2m+

yi = y2ym+y2y2m+

Ym = ?/m2/2m?/3m * * "

If yi, Y2, , ym are constmcted as shown, and m is indeed the keyword length, then

^c(yi) should be approximately equal to 0.065 for 1 < i < m. If m is not the keyword

length, then the substrings yi will look much more random since they will have been pro

duced by shift encryption with different keys. A completely random string produces an

Ic 26(^)2
= ^ = 0.038 [27]. These two values (0.065 and 0.038) are far enough apart

that the correct keyword length can be obtained or confirmed using the index of coinci

dence.

55

After the value of m has been determined, the actual key, K = (ky, k2, , km) needs

to be found. The method in [27] is as follows:

Let 1 < i < m and /0, . . . , /25 denote the frequencies of A, B, . . . , Z in the string y;

Let n' = n/m be the length of the string y-t

f f
The probability distribution of the 26 letters in y; is then , . . . ,

-

n'

n

Since each substring yi is obtained by shift encryption of a subset of the plain

text elements using a shift kt, it is hoped that the shifted probability distribution

will be close to the ideal probability distribution po, ,P25, with
Jki .125+k,

n n

subscripts evaluated modulo 26

25 ,

Suppose that 0 < g < 25 and define the quantityM =

\^

_Jl

^-^ n'

2=0

25

If g = ki, then Mgw^ = 0.065
i=0

If g 7^ kt, then Mg will usually be significantly smaller than 0.065

This technique should allow the determination of the correct value of kt for each value of

i, 1 < i < m.

5.4 Permutation/Transposition ciphers

The permutation cipher defined in [27] is the same as that used in [4], while [20] and [13]

use a columnar transposition cipher. The permutation cipher will be attacked by exhaustion

as per [22]. This attack consists of considering d\ permutations of the d characters, where

d is the period of the cipher. The ciphertext is divided into blocks of various lengths, and

all possible permutations considered. For each possible value of d, starting at d = 2, all

d\ possible permutations are attempted on the first two groups of d letters. For example, if

d = 2, the first two groups of 2 letters are permuted as (letter 1)(letter 2) and (letter 2)(letter

56

1). This continues until one or both of the groups permute into something that looks like a

valid word or word part. At this time, the possibly valid permutation is applied to the other

groups of letters in the ciphertext. If the permutation produces valid text, i.e., the human

cryptanalyst accepts the text as valid in the language used, then the attack is completed,

otherwise, the process continues.

The columnar transposition cipher is attacked differently for an incompletely filled rect

angle than for a completely filled rectangle. We will assume that the rectangle is completely

filled in order to simplify the attack. The width of a completely filled rectangle must be a

divisor of the length of the message, i.e., if the message has 77 letters, the rectangle must

be either 7 or 1 1 letters wide [24]. The ciphertext is written vertically into rectangles of

the possible widths, and a solution obtained by rearranging the columns to form plain

text. The process of restoring a disarranged set of letters into its original positions is called

anagramming [24].

There are several ways to proceed with the process of anagramming. These include

the use of a probable word, the use of a probable sequence, digram/trigram charts, contact

charts, and vowel frequencies. A contact chart is an extension of the digram/trigram charts,

and contains information relating to the likelihood that a specific letter will be preceded or

followed by another letter. Vowel frequencies are language-specific. In English, vowels

comprise approximately 40% of the text, independent of text length [1 1]. Therefore, when

putting the ciphertext into matrix (rectangle) form, a period should be chosen which pro

duces the most even distribution of vowels across the columns of the matrix [19]. The text

is deciphered more easily if the columns are then exchanged so that the most frequently oc

curring letter combinations appear first [19]. This fact helps the cryptanalyst to determine

the most likely possible width for the inscription rectangle.

The next step after vowel frequency examination is usually the use of a probable word

or sequence. The probable word is used when the cryptanalyst has some information about

the message which would lead to the assumption of a word in the text [24]. For example,

if the message is of a military nature, words such as division, regiment, attack, report,

57

communication, enemy, retreat, etc. are likely to be present [11]. If a probable word can

not be assumed, the next option is to look for the presence of one of the less frequent

digrams such as QU or YP [11]. If this is not possible either, reconstruction may default to

working on the first word of the message as in [24].

If there is some difficulty involved in anagramming the first row, the next step is to try to

fit two columns together to produce good digraphs [24]. One technique for column fitting

is to give each assumed digram its frequency in plaintext and then add the frequencies

[15]. The combination with the highest total is most likely to be correct [15]. Next, one

would attempt to extend the digrams into trigrams, and so on. Columns can be added both

before and after the current set, so the extension into trigrams and longer combinations

must consider both situations.

5.5 Comments

Overall, the traditional attack methods are not easily automated, and tend to require a

trained and experienced cryptanalyst. The polyalphabetic substitution cipher is the only

one that is attacked mostly mathematically. Mathematical information is used for both the

monoalphabetic substitution cipher and the permutation/transposition ciphers, however, the

main component of these attacks is the human cryptanalyst. The final decision on whether

or not the plaintext is found is always made by the human cryptanalyst, no matter which

method is used in the attack.

58

Chapter 6

Attack Results

6.1 Methodology

The main metric for both classical and genetic algorithm attacks was elapsed time. This

was measured using the tcsh built-in command, "time". In the classical algorithm case,

the elapsed time is measured from the time the attack begins to the time the ciphertext is

completely decrypted. This measurement is almost completely comprised of time spent

interacting with the user, as processing time is less than is measurable with the
"time"

command. In the genetic algorithm case, each attack was run using a tcsh shell script.

Therefore, the amount of time spent in user interaction is minimal, and the elapsed time

measurement is comprised almost wholly of processing time. The differences in composi

tion of elapsed time for the two categories of attack make it difficult to compare the attacks

on a time basis. Therefore, an additional metric is used for the genetic algorithm attacks.

This additional metric, used only for the genetic algorithm attacks, is the percentage

of attacks which completely decrypted the ciphertext, as determined by the human crypt

analyst upon examination of the final result. This metric is invalid in a classical attack,

as this class of attacks mn until the text is decrypted. A genetic algorithm attack, on the

other hand, runs for a specific number of generations, independent of the decryption of the

ciphertext. Using this metric, as well as the elapsed time, gives one a better feel for the

usefulness of each attack. The time measurement is irrelevant if the attack is unsuccessful.

These two metrics were chosen so that traditional and genetic algorithm attacks could

59

be compared. Elapsed time measures the efficiency of the attack while the percentage of

successful attacks measures how useful the attack is. Both of these metrics are needed to

gauge the success of an attack.

The same set of ciphertexts was used for all attacks. This set consists of 100, 500,

and 1000 characters of five different English texts. These texts are: Chapter 1 of Genesis

from the King James Version of the Bible [2], Patrick Henry's "Give me liberty or give

me
death!"

speech [3], Section 1/Part 1 of Charles Darwin's The Origin ofSpecies [10],

Chapter 1 of H. G. Wells's The Time Machine [30], and Chapter 1/Part 1 of Louisa May

Alcott's Little Women [1].

Additional parameters were required for the genetic algorithm attacks. The parame

ters were compiled from the various genetic algorithm attacks found in the literature and

then extended to cover greater parameter space. All attacks were mn using the following

parameters:

Population sizes of 10, 20, 40, or 50

Number of generations equaling 25, 50, 100, 200 or 400

Mutation rates of 0.05, 0.10, 0.20, 0.40

Each possible combination of parameters was mn once per ciphertext and length combina

tion.

Certain genetic algorithm attacks required additional parameters. The columnar trans

position attacks were mn using keylengths of 7, 9, or 1 1 . The Vigenere attack was run

using a period of 3, 5, or 7. The fitness weights used in the Vigenere attack were: 0.1 for

unigrams and digrams, 0.8 for trigrams. The permutation attack was run using keylengths

of 2, 4, or 6. The only attack that varied from others attacking its cipher type was the

Matthews [20] columnar transposition attack. An additional set of parameters was used for

this attack. These parameters were:

Initial and Final Crossover probabilities

60

Initial and Final Point Mutation probabilities

Initial and Final Shuffle Mutation probabilities

In order to use the same set of parameters as the other attacks, both crossover probabilities

were set to 1 and both of the point mutation and shuffle mutation values were set to 0.05,

0.10, 0.20 or 0.40. The additional set of parameters used consisted of setting the initial

crossover probability to 0.8, the final crossover probability to 0.5, the initial point mutation

probability to 0.1, the final point mutation probability to 0.5, the initial shuffle mutation

probability to 0.1, and the final shuffle mutation probability to 0.8. This additional set of

parameters was used throughout the original results reported for the Matthews attack.

6.2 Classical Attack Results

As stated above, all classical attacks are mn until complete decryption of the ciphertext

is obtained. Since each ciphertext is different in both statistics and distribution of com

mon/uncommon words, the time needed to decrypt a text can vary widely. The more math

ematical an attack is, the shorter the period of time required.

Since a classical substitution attack is based on statistical information about the text,

as well as the user's intuition, the time this attack takes can vary widely from text to text.

Usually, a longer text is easier to decrypt, as the statistical characteristics are more distinct.

Some texts are statistically very well-defined, making them easy to decrypt even at shorter

text lengths. The first chapter of Genesis, for example, is easy to decrypt due to the clarity

of the statistical evidence. Other texts, that use less common words or word-patterns, such

as the Liberty or Death speech, are consistently difficult.

As Figure 6.1 shows, times can vary widely between texts, and between different

lengths of the same text. Times range from 1 :50 to 10:25, and can vary as much as 6:25 or

as little as :45 between different lengths of a text.

The classical Vigenere attack, on the other hand, is very mathematically based. This

means that the time to decrypt a text is much more consistent. Longer decryption times

61

Figure 6. 1 : Classical Substitution Attack

mean that there was more than one good candidate for the period, leading to multiple

attempts at decryption. This is what occurred for most of the 100 character texts when a

period of 5 or 7 was used.

As Figure 6.2 shows, times are fairly consistent among different texts and text lengths.

Times range from :58 to 6:25, and vary as much as 4:55 or as little as :10 between different

text lengths.

The classical permutation attack is a bmte force, exhaustive search. Therefore, the

amount of time the attack takes depends both on the characteristics of the text and the

block length used. A longer block length takes more time to decrypt because there are

many more possibilities thatmust be considered and sorted through. Texts that contain less

common character combinations will take longer to decrypt because fewer permutations

result in that particular combination.

Figure 6.3 shows that this attack is more consistent for elapsed time values at smaller,

more trivial block lengths. At longer block lengths, it takes more time to sort through the

possible permutations to determine if a correct arrangement has been found. The word

62

6 00

5:30

5 00

4:30

4:00

3 30

3:00

2:30

2 00

1 .30

1 00

0:30

0:00

"^ ^ 1 00 chars (period = 3)
"O O 500 chars (period = 3)
a Q 1000 chars (period = 3)
"^ ^ 100 chars (period = 5)
"O O 500 chars (period = 5)
"& Q 1000 chars (period = 5)
~^* ^ 1 00 chars (period = 7)
-O O 500 chars (period = 7)
-E3- a -! 000 chars (period = 7)

*\

/
/

/

*>

&~;
&=

httlew

text file

Figure 6.2: Classical Vigenere Attack

choice of the text can make it more difficult to determine if a correct permutation has been

found, since longer or less common words are more difficult to distinguish from a partial

root. Times range from :13 to :15 for texts at block length 2, :21 to :38 for texts at block

length 4, and 1:21 to 2:25 for texts at block length 6.

A classical columnar transposition attack begins with statistical analysis of the cipher-

text. The user then proceeds with anagramming, or rearranging the columns to produce

recognizable words. Like the classical substitution attack, a great deal depends on the

user's intuition. The more often easily recognizable words occur in the text, the easier

and faster the user can rearrange the columns correctly. The characteristics of the text,

therefore, are a significant factor in the length of time required to decrypt the text.

As shown in Figure 6.4, block length does not heavily influence the time it takes to

decrypt a text. The text attacked, and its length, are more influential factors. Times range

from :30 to 3: 15, with certain texts fairly consistently taking more time.

63

A 100 chars

o 500 chars
? 1000 chars

. A.,

<3>

"

H

.&

block length = b

/ /

"

A- "^
-o-

*""-'"-'-Hblock length = 4

tblock length = 2

linlew

text file

Figure 6.3: Classical Permutation Attack

6.3 Genetic Algorithm Attack Results

Only the attacks on the monoalphabetic substitution, polyalphabetic substitution (i.e. the

Vigenere cipher), permutation and columnar transposition were selected for further inves

tigation. This includes the attacks by Spillman et al. (1993) [26], Matthews (1993) [20],

Clark (1994) [4], Clark et al. (1996)[8] / Clark & Dawson (1997) [5], Clark & Dawson

(1998) [6], and both attacks from Grundlingh & Van Vuuren (2002) [13].

The majority of the Genetic Algorithm based attacks did not correctly decrypt any

texts. Two of the attacks, Matthews (1993) [20] and Griindlingh & Van Vuuren (2002)

[13], decrypted some texts correctly. One attack, Clark (1994) [4] correctly decrypted

many texts. Only the three successful attacks will be discussed here, as time measurements

for the four unsuccessful attacks are irrelevant.

The Matthews (1993) [20] attack and the Grundlingh & Van Vuuren (2002) [13] at

tack were against the columnar transposition cipher, while the Clark (1994) [4] attack was

against the permutation cipher. The Matthews attack was successful only for key length

64

3:15 -,

3:00

2:45

2'30

2:15 -

2.00

1 45

1:30

1:15 -

1:00

0:45

0:30

0:15

-^ ^ 100 chars (keylenglh = 7)
-O > 500 chars (keylength - 7)
-S El 1000 chars (keylength - 7)
"V V 100 chars (keylength - 9)
"> O 500 chars (keylength . 9)
" O 1 000 chars (keylength - 9)
""<S < 100 chars (keylength - 1 1)
""f" 6> 500 chars (keylength = 11)
"? " 1000 chars (keylenglh - 11)

S-

.....

J--':-v

...a...

o

^^

""-

lilllew

text file

Figure 6.4: Classical Transposition Attack

7; there were no successes at a keylength of 9 or 11. The per-text percentage of complete

breaks at key length 7 ranged from 0 % to 20 %, with most texts in the 2 to 4 % range.

Mutation and mating rates had little effect on decryption success, with more decryptions

occurring at larger population sizes and/or more generations.

The Grundlingh & Van Vuuren attack was also only successful at a keylength of 7. Per-

text decryption percentages at key length 7 ranged from 0 % to 28 %. The 100 character

text segments failed almost uniformly - there was one text of the five that was broken once,

giving it a success rate of 0.416 % as opposed to 0 %. Also, Chapter 1 of Genesis failed

to decode at any text length. The other 500 and 1000 character text segments achieved a

success rate of 20 % to 28 %. Mutation rate and type had no noticeable effect, and more

decryptions occurred with larger population sizes and/or more generations. A population

size of 50 resulted in decryption most of the time, as compared to the other population sizes

(10,20,40).

In comparison to the other attacks, Clark's attack of 1994 [4] was wildly successful.

A block length of 2 always decrypted, while block lengths of 4 and 6 had success rates

65

ranging from 5 % to 91 %. Most of the per-text decryption percentages at block length 4

were in the high seventies or low eighties, while the percentages at block length 6 were

usually in the mid-forties. Overall, 66 % of the 100 character text tests, 73.5 % of the 500

character text tests, and 74.75 % of the 1000 character text tests were correctly decrypted.

As above, larger population sizes and/or more generations increased the decryption rate,

with no obvious effect from mutation rate. Block length 6 texts were especially sensitive

to the number of generations and population size, failing most of the time on a population

size of 10 or 20.

The effects of varying the population size and number of generations in this attack

(Clark 1994 [4]) are shown in the following graphs. The first set of graphs, Figures 6.5

through 6.8, show the effect of the number of generations on a specific population size.

This effect is independent of the block length used. Each graph shows all three block

lengths (2, 4, & 6), but the times are so close as to form one line when displayed on the

same graph. This set of graphs also illustrates the minimal effect of the mutation rate. Each

group of tests at 25, 50, 100, 200 or 400 generations, forms a plateau for time, indicating

that varying the mutation rate from 5 % to 40 % has no measurable effect.

The second set of graphs, Figures 6.9 through 6.13, show the effect of the population

size at a specific number of generations. Again, this effect is independent of the block

length used. Each graph shows all three block lengths, but only in Figures 6.9 and 6. 10 can

the difference between block lengths be seen. This visibility is due to the tiny range used in

these graphs - a maximum elapsed time of 0.65 or 1 .30 seconds. Again, the minimal effect

of mutation rate on the elapsed time is apparent.

Overall, these graphs show the expected effect of increasing the number of generations

or the population size - more time is required due to the larger pool of chromosomes that

need evaluation.

66

0:2 10

0:2.00

0:1 90 -

01.80 -

0:1.70 -

0:1 .60 -

0:1.50 -

0:1.40

0:1.30

0:1 20

0.1.10

0:1.00

0:0.90

0 0.80

0:0.70

0:0 60

0:0.50

0:0.40

0:0.30

0:0.20

0:0.10

0 0 00

^ 100 chars

O 500 chars
d 1 OOO chars

1
T~

o

Number of GenerationsMutation Rate

Figure 6.5: Effect ofNumber ofGenerations at Population Size 10

0:4 25

0:4 00

0:3 75

0:3.50

0:3.25 -

0:3 00

0:2.75

0:2.50

0:2 25

0:2.00

0:1.75

0:1.50

0:1.25 -

0:1.00

0:0.75 -

0.0 50

0:0.25

0:0.00

1 00 chars

O 500 chars

O 1 000 chars

Number of Generations-Mutation Rate

Figure 6.6: Effect ofNumber ofGenerations at Population Size 20

67

E
E

0:8.50

0:8.00

0:7.50

0:7.OO

0:6.SO

0:6.00

O:5.50

0:5.00

0:4 50

0:4 OO

0:3.SO

0:3.00

0:2.50

0:2.OO

0:1.50

0:1.OO

0:0 50

0:0 00

100 chars

500 chars

1 000 chars

o <g> o

o o

g H
-g g-

Number of GenerationsMutation Rate

Figure 6.7: Effect ofNumber of Generations at Population Size 40

0:10.50

0:10.00

0:9.50 -

0:9.OO -

0:8.50 -

0:8.00

0:7 50

0:7.00 -

0:6.50

0:6.00

0:5.50

0:5.OO

0:4.50

0:4.00

0:3.50

0:3.OO

0:2.50

0:2.00

0:1.50

0:1.OO

0:0.50

0:0.00

B B

^ 100 chars

O 500 chars

O 1000 chars

0

-3- CD

Number of GenerationsMutation Rate

Figure 6.8: Effect ofNumber ofGenerations at Population Size 50

68

0:0.65

0:0.60

0:0.55

0.0.50

0:0.45

00 40

0:0.35

0:0 30

0.0.25

0:0.20

0:0.15

0:0.10

0:0.05

0 0 00

-A "^ 100 chars (block length - 2)
-O > 500 chars (block length - 2)
-B ED 1000 chars (block length - 2)
"^ ^ 100 chars (block length = 4)
O O 500 chars (block length = 4)
"O- d 1000 chars (block length = 4)
-^, ^ 100 cnars (b|ock length . 6)
-O O 500 chars (block length 6)
-Ej a 1000 cnars (b|ock |ength = 6)

I I I i ' 1 1 1 1 1 1 1 1 1 1 1

10-05 10-10 10-20 10-40 20-05 20-10 20-20 20-40 40-05 40-10 40-20 40-40 50-05 50-10 50-20 50-40

Population Size-Mutation Rate

Figure 6.9: Effect of Population Size at 25 Generations

0:1.00

0:0.90

co
CO

co
co

0:0.80

E
E 0:0 70

E
0:0.60

CD

Q.
CO

0:0.50

0:0.40

0:0.30

0:0.20

0:0.10

0:0.00

-> "^ 1 00 chars (block length - 2)
-O O 500 chars (block length = 2)
-H El 1 000 chars (block length = 2)
"^ ^ 1 00 chars (block length = 4)
O O 500 chars (block length = 4)
-G3- a 1000 chars (block length = 4)
-A ^ 1 00 chars (block length = 6)
-O O 500 chars (block length 6)
-B 2 1000 chars (block length = 6)

1 1 1 1 1 I I I I I I I ' I 1 1

10-05 10-10 10-20 10-40 20-05 20-10 20-20 20-40 40-05 40-10 40-20 40-40 50-05 50-10 50-20 50-40

Population Size-Mutation Rate

Figure 6.10: Effect of Population Size at 50 Generations

69

0 2 60

0.2 50

02.40

0:2.30

0:2 20

0:2.10

0 2.00

0.1 90

0:1 80

0.1.70

0 1 60

0:1 50

0:1.40

0:1.30

0:1.20

0.1 10

0:1.00

0 0.90

0 0 80

0:0 70

0 0.60

0 0 50

0:0.40

0:0 30

0:0 20

0:0.10

0 0 00

" D"'"'"B B

A 100 chars

O 500 chars
n 1000 chars

I I i I I 1 1 1 1 1 1 1 1 1 1 1

10-05 10-10 10-20 10-40 20-05 20-10 20-20 20-40 40-05 40-10 40-20 40-40 50-05 50-10 50-20 50-40

Population Size-Mutation Rate

Figure 6. 1 1 : Effect of Population Size at 100 Generations

0.525

0.500

0.4.75

0:4.50

0:4.25

0:4.00

0:3.75

\n
0:3.50

SS 03.25

E 0:3.00

fc

CD

E

0 2.75

0:2 50

TD 0:2 25
co

0:2 00

CD 0:1 75

0:1.50

0:1.25

0 1.00

0:0.75

0:0.50

0 0 25

00.00

^ 100 chars

<> 500 chars

O 1000 chars

1 1 1 1 1 1 1 1 1 1 1 1 1 1
r-

1

10-05 10-10 10-20 10-40 20-05 20-10 20-20 20-40 40-05 40-10 40-20 40-40 50-05 50-10 50-20 50-40

Population Size-Mutation Rate

Figure 6. 1 2: Effect of Population Size at 200 Generations

70

0.10 50

0:10 00 -

0 9 50

0 9 00

0:8.50 -

0 8 00

0:7 50

0:7 00

0 6 50

0 6 00

0:5 50

0:5 00

0.4.50 -

0.4 00

0:3.50

0:3.00

0 2 50 -

0:2 00

0:1 50

0:1 00

0:0 50

0:0 00

^ 100 chars

O 500 chars
? 1000 chars

-e-

-0-

^iirgi-nttlg

"?-"-

A- n,^

I I I I ' ' I T ' I ' I I ' ' I

10-05 10-10 10-20 10-40 20-05 20-10 20-20 20-40 40-05 40-10 40-20 40-40 50-05 50-10 50-20 50-40

Population SizeMutation Rate

Figure 6.13: Effect of Population Size at 400 Generations

6.4 Comparison ofResults

Overall, the GA-based methods were unsuccessful. Traditional methods took more time,

but were always successful. Only three of the seven GA-based attacks re-implemented

achieved any success. The successful attacks were on the permutation and transposition

ciphers.

The traditional attack on the transposition cipher produced elapsed times ranging from

:30 to 3: 1 5, with certain texts fairly consistently taking more time. It was successful 100 %

of the time, as is standard with a classical attack run to completion.

The two GA-based attacks on the transposition cipher were by Matthews [20] and

Grundlingh & Van Vuuren [13]. Both GA attacks were only successful at a key length

of 7. The Matthews attack achieved success rates of 2 - 4 %, on average. The Grundlingh

& Van Vuuren attack averaged success rates of 6 - 7 %.

The Matthews attack took from :00.05 to :06.27 in the tests run on the 100 character

texts, from :00.06 to :07.29 on the 500 character text tests, and from :00.08 to :07.46 on the

71

1000 character text tests. These elapsed time values are dependent on the population size

and number of generations used in a given test. There is no correlation between elapsed

time and success rate.

The Grundlingh & Van Vuuren attack took from :00.00 (according to the resolution of

the measurement tool) to :01.21 in the tests run on the 100 character texts, from :00.00 to

:02.27 on the 500 character text tests, and from :00.00 to :02.99 on the 1000 character text

tests. Again, there is no correlation between elapsed time and success rate.

The GA-based attacks took much much smaller amounts of time to complete each test

run. At the tiny success rates these two attacks achieved, one success generally takes

more time to produce than running a traditional attack. At the 2 4 % success rate of

the Matthews attack, the test which took the longest time (:07.46) would need to be run

over and over for a total time of about 6:22 to produce one success. For the Grundlingh &

Van Vuuren attack, with the success rate of 6 7 %, the test which took the longest time

(:02.99) would need to be run multiple times for a total time of about :50. In both of these

estimates, it is assumed that success occurs randomly and spread evenly throughout the

tests, which is not the case in actual testing - the successful results tend to cluster together.

This being the case, it is not likely that either of the GA-based attacks will produce a result

faster than the traditional attack, in the typical case.

The classical permutation attack is a brute force, exhaustive search. Times range from

:13 to : 15 for texts at block length 2, :21 to :38 for texts at block length 4, and 1:21 to 2:25

for texts at block length 6.

The only GA-based attack on the permutation cipher was the Clark (1994) attack [4].

In comparison to the other attacks, this GA-based attack was wildly successful. A block

length of 2 always decrypted, while block lengths of 4 and 6 had success rates ranging

from 5 % to 91 %. Most of the per-text decryption percentages at block length 4 were in

the high seventies or low eighties, while the percentages at block length 6 were usually in

the mid-forties. Overall, 66 % of the 100 character text tests, 73.5 % of the 500 character

text tests, and 74.75 % of the 1000 character text tests were correctly decrypted.

72

This attack took from :00.06 to :06. 12 in tests run on the 100 character texts, from

:00.08 to :07.96 on the 500 character text tests, and from :00.10 to : 10.25 on the 1000

character text tests. These elapsed time values are dependent on the population size and

number of generations used in a given test. There is no correlation between elapsed time

and success rate.

The Clark (1994) attack is very competitive with the traditional attack. The elapsed time

required is much smaller, and the success rates offer a excellent chance that this GA-based

approach will be faster than the traditional method, on average.

73

Chapter 7

Extensions and Additions

There were three genetic algorithm attacks that achieved some success in decryption. These

attacks were:

Matthews'

[20] attack on the transposition cipher

Grundlingh and Van Vuuren's [13] attack on the transposition cipher

Clark's [4] attack on the permutation cipher

Since the Matthews [20] and Grundlingh & Van Vuuren [13] were only slightly suc

cessful, these attacks were re-run with larger population sizes and more generations, to

possibly improve success rates. The main problem with these two attacks, besides the low

rate of success, is that only a key length of 7 was successfully attacked. The Clark [4] at

tack was very successful originally, so an attempt was made to extend its success to larger

block sizes and to apply this attack to a different cryptosystem.

7.1 Genetic Algorithm Attack Extensions

The Matthews attack was successful only for key length 7 there were no successes at a

keylength of 9 or 11. The per-text percentage of complete breaks at key length 7 ranged

from 0 % to 20 %, with most texts in the 2 to 4 % range. Mutation and mating rates had

little effect on decryption success, with more decryptions occurring at larger population

sizes and/or more generations.

74

The Grundlingh & Van Vuuren attack was also only successful at a keylength of 7.

Per-text decryption percentages at key length 7 ranged from 0 % to 28 %. The overall

average for success rate was in the 6 % to 7 % range. Mutation rate and type had no

noticeable effect, and more decryptions occurred with larger population sizes and/or more

generations.

In comparison to the other attacks, Clark's attack of 1994 [4] was wildly successful.

A block length of 2 always decrypted, while block lengths of 4 and 6 had success rates

ranging from 5 % to 91 %. Most of the per-text decryption percentages at block length 4

were in the high seventies or low eighties, while the percentages at block length 6 were

usually in the mid-forties. Overall, 66 % of the 100 character text tests, 73.5 % of the 500

character text tests, and 74.75 % of the 1000 character text tests were correctly decrypted.

As above, larger population sizes and/or more generations increased the decryption rate,

with no obvious effect from mutation rate.

7.1.1 Transposition Cipher Attacks

The two attacks on the transposition cipher were run with similar parameters. Population

sizes of 100 and 200 were used, in combination with 1,000, 5,000, or 10,000 generations.

The other parameters for each attack were:

Matthews

- A point mutation rate starting at 0. 1 and finishing at 0.5

- A shuffle mutation rate starting at 0.1 and finishing at 0.8

- A mating rate starting at 0.8 and finishing at 0.5

Grundlingh and Van Vuuren

- A mutation rate of 0. 10

- Mutation using both point and shift mutation

75

As before, the following set of ciphertexts was used: Chapter 1 of Genesis from the

King James Version of the Bible [2], Patrick Henry's "Give me liberty or give me
death!"

speech [3], Section 1/Part 1 of Charles Darwin's The Origin ofSpecies [10], Chapter 1 of

H. G. Wells's The Time Machine [30], and Chapter 1/Part 1 of Louisa May Alcott's Little

Women [1].

Unfortunately, the larger values for the population size and number of generations did

not result in any improvement in the results. The success rate for the Matthews [20] attack

remained in the 2 % to 4 % range, while the rate for Grundlingh and Van Vuuren [13] was

in the 6 % to 7 % range. Again, only texts at a key length of 7 were decrypted.

7.1.2 Permutation Cipher Attack

The attack on the permutation cipher, Clark's 1994 attack[4], was extended to attempt

larger block sizes than before. To aid in this attempt, the parameter values were changed,

mostly to larger values. The parameters used were:

Block lengths of 8, 16, and 32

Population sizes of 50, 100, and 200

A number of generations of 200, 400, 1000 or 5000

A mutation rate of 0.001, 0.01, 0.05 or 0.10

The mutation rate parameter was the only one lowered. The mutation rates used in the

original versions of the genetic algorithm attacks are atypically high for genetic algorithm

applications. More common values are in the 0.001 and 0.01 range, so these values were

used in the extension of this attack.

Again, the following set of ciphertexts was used: Chapter 1 of Genesis from the King

James Version of the Bible [2], Patrick Henry's "Give me liberty or give me death!" speech

[3], Section 1/Part 1 of Charles Darwin's The Origin of Species [10], Chapter 1 of H. G.

76

Wells's The TimeMachine [30], and Chapter 1/Part 1 of LouisaMay Alcott's Little Women

[!]

The attack was erratically successful on a block length of 8, slightly successful on a

block length of 16, and unsuccessful on a block length of 32. The ciphertext attacked

seemed to play a larger role in the attack's success. With a block length of 8, two cipher-

texts were not decrypted at all, 9 ciphertexts were decrypted more than 50 % of the time,

and 4 ciphertexts were decrypted anywhere from 12 % to 40 % of the time. The longer

texts (500 and 1000 characters) were attacked more successfully than the shortest text (100

characters). For a block length of 1 6, several successes were seen against two of the 1000

character ciphertexts. No attacks were successful against a block length of 32.

As before, mutation rate had no apparent effect, and a greater rate of success was

achieved among larger populations with many generations.

7.1.3 Comments

The two transposition cipher attacks do not justify writing this style of genetic algorithm at

tack in their current form. Their success rates are stable, but low, even with extraordinarily

large parameter values.

The permutation cipher attack is possibly worthwhile at small block lengths, probably

under 10 or so. It does not work at larger block lengths in its current form. This approach

would need to be evaluated on a case-by-case basis, in order to determine if this genetic

algorithm approach will be cost-effective in comparison with a more traditional, brute force

approach.

7.2 Additions

A new attack was implemented on the substitution cipher. Two variants of this attack were

tested. The difference between the variants was solely in the scoreboard used.

This attack is a conversion of the Clark [4] attack from the permutation cipher to the

77

simple substitution cipher. The only changes made were those necessary to apply the attack

to a different cipher.

The original version of this attack used order-based GAs, since each chromosome rep

resented a permutation. Breeding was done using the position based crossover method for

order-based genetic algorithms. In this method, a random bit string of the same length as

the chromosomes is used. The random bit string indicates which elements to take from par

ent #1 by a 1 in the string, and the elements omitted from parent #1 are added in the order

they appear in parent #2. The second child is produced by taking elements from parent #2

indicated by a 0 in the string, and filling in from parent #1 as before. Two possible muta

tion types may then be applied. The first type is a simple two-point mutation where two

random chromosome elements are swapped. The second type is a shuffle mutation, where

the permutation is shifted forward by a random number of places. Either one or both of

these mutation types could occur, depending on the initial parameters. The population for

the next generation was produced by merging the parent and child populations and keeping

only the (population size) best solutions.

In order to apply this attack to a cipher that was not permutation-based, some changes

had to be made. The major change made was the conversion of the chromosomes from

numerical genes to alphabetical genes. Another change made was to allow both mutation

types to occur all the time - the input parameter previously present was removed. This step

was deemed reasonable as mutation type had no apparent effect in prior testing. Breeding

and new population creation occurred as before.

The difference between the two variants of the new attack is in the scoreboard used.

The first variant uses the same scoreboard as the implementation of Clark's [4] attack on

the permutation cipher. The second variant adds several additional items to the scoreboard.

The original scoreboard contains the digrams and trigrams TH, HE, IN, ER, AN, ED, THE,

ING, AND, and EEE. The variant scoreboard adds RE, ON, HER, and ENT, with the same

associated values standard on the original digrams and trigrams. These values are +1 for

digrams and +5 for trigrams. TH is +2 while EEE is -5.

78

The original variant was attacked using the following parameters:

Population sizes of 10, 20, 40, and 50

Number of generations of 25, 50, 1 00, 200, and 400

Mutation rates of 0.05, 0. 1 0, 0.20, or 0.40

The variant with the extended scoreboard was attacked with these parameters:

Population sizes of 50, 100, and 200

Number of generations of 200, 400, and 1000

Mutation rates of 0.001, 0.01, 0.05, or 0.10

Both variants used the following set of ciphertexts: Chapter 1 ofGenesis from the King

James Version of the Bible [2], Patrick Henry's "Give me liberty or give me
death!"

speech

[3], Section 1/Part 1 of Charles Darwin's The Origin of Species [10], Chapter 1 of H. G

Wells's The TimeMachine [30], and Chapter 1/Part 1 of LouisaMay Alcott's Little Women

[1]-

Both attacks were completely unsuccessful. None of the ciphertexts were decrypted in

any of the tests.

7.2.1 Comments

This approach appeared promising at the outset. It achieved at least some success on both

the transposition and permutation ciphers. Additional modification of the parameters may

improve performance, but that seems doubtful given the complete lack of success displayed

in these tests. Another option would be to further tune the operators to the new cryptosys

tem.

If this attack had proved successful, it could have served as a springboard to attacking a

modern cipher such as DES orAES with a GA. These ciphers are based on substitution and

79

permutation principles. It may have been possible to attack the components of the system

with a GA tuned for that component's cipher.

80

Chapter 8

Evaluation and Conclusion

8.1 Summary

The primary goals of this work were to produce a performance comparison between tradi

tional cryptanalysis methods and genetic algorithm (GA) based methods, and to determine

the validity of typical GA-based methods in the field of cryptanalysis.

The focus was on classical ciphers, including substitution, permutation, transposition,

knapsack and Vernam ciphers. The principles used in these ciphers form the foundation

for many of the modem cryptosystems. Also, if a GA-based approach is unsuccessful on

these simple systems, it is unlikely to be worthwhile to apply a GA-based approach to

more complicated systems. A thorough search of the available literature resulted in GA-

based attacks on only these ciphers. In many cases, these ciphers were among the simplest

possible versions.

Many of the GA-based attacks lacked information required for comparison to the tra

ditional attacks. Dependence on parameters unique to one GA-based attack does not allow

for effective comparison among the studied approaches. The most coherent and seemingly

valid GA-based attacks were re-implemented so that a consistent, reasonable set of metrics

could be collected.

The main metric for both classical and genetic algorithm attacks was elapsed time. In

the classical algorithm case, the elapsed time was comprised almost completely of time

81

spent interacting with the user, while in the genetic algorithm case, it was comprised al

most entirely of processing time. This difference in composition of elapsed time makes

it difficult to compare the attacks on a time basis. Therefore, an additional metric was

required.

The secondary metric used was the percentage of successful attacks per test set. Success

was defined as complete decryption of the ciphertext. This metric was only calculated for

the GA-based attacks, as a classical attack will run until the text is decrypted. A GA-based

attack, on the other hand, runs for a specific number of generations, independent of the

decryption of the ciphertext. Using this metric, as well as elapsed time, gives one a better

feel for the usefulness of each attack. The time measurement is irrelevant if the attack is

unsuccessful.

These two metrics were chosen so that traditional and GA-based attacks could be com

pared. Elapsed time measures the efficiency of the attack while the percentage of successful

attacks measures how useful the attack is. Both of these metrics are needed to gain a com

plete picture of an attack.

Of the twelve genetic algorithm based attacks found in the literature, seven were se

lected for re-implementation. None of the knapsack or Vernam cipher attacks were re-

implemented, for varying reasons. Of these seven, only three attacks were successful in

decrypting any of the ciphertexts. The successful attacks were those GA-based attacks on

the permutation and transposition ciphers. Clark's [4] GA-based attack on the permutation

cipher was by far the most successful. Both of the attacks which used a scoreboard for

fitness calculation, Matthews [20] and Clark [4], achieved at least some success. The third

successful GA-based attack was by Grundlingh and Van Vuuren [13], the only successful

attack to use a fitness equation. These three successful attacks were extended to further ex

amine their success rates. The two transposition attacks were tested using much larger pop

ulation sizes and numbers of generations, while the permutation attack was attempted on

larger block lengths. The two transposition cipher attacks obtained about the same success

rate as before, while the permutation cipher attack experienced decreased success. Since

82

the scoreboard approach was successful in both cases it was used, this style of GA-based

attack was attempted on the monoalphabetic substitution cipher. The attack was based on

Clark's [4] attack, simply altered to apply to a different cipher. Unfortunately, this attempt

was unsuccessful. No ciphertexts were completely decrypted with either variant attempted.

8.2 FutureWork

There are several areas in which this work could be expanded. One of these is in the

investigation of the scoreboard approach to fitness calculation. This method achieved the

best results of the two methods used, yet does not seem to be in widespread use. Applying

this approach to other problems may prove useful.

A comparison of the scoreboard approach to the fitness equation approach in other ap

plications would be useful as well. This would determine whether the scoreboard approach

is limited to specific applications only, or if it has widespread applicability.

Another area for investigation is the use of less common fitness calculation measures.

The scoreboard approach, for example, proved useful in this application despite the rarity

of its use. Use of other seldom-used approaches may prove additionally valuable.

This work was coded in C and used perl/tcsh scripts. Re-working of the code to make

it modular and re-usable for other projects would be a useful extension.

8.3 Conclusion

The primary goals of this work were to produce a performance comparison between tradi

tional cryptanalysis methods and genetic algorithm (GA) based methods, and to determine

the validity of typical GA-based methods in the field of cryptanalysis.

The focus was on classical ciphers, including substitution, permutation, transposition,

knapsack and Vernam ciphers. The principles used in these ciphers form the foundation

for many of the modern cryptosystems. Also, if a GA-based approach is unsuccessful on

83

these simple systems, it is unlikely to be worthwhile to apply a GA-based approach to

more complicated systems. A thorough search of the available literature resulted in GA-

based attacks on only these ciphers. In many cases, these ciphers were among the simplest

possible versions.

Many of the GA-based attacks lacked information required for comparison to the tra

ditional attacks. Dependence on parameters unique to one GA-based attack does not allow

for effective comparison among the studied approaches. The most coherent and seemingly

valid GA-based attacks were re-implemented so that a consistent, reasonable set of metrics

could be collected.

The two metrics used, elapsed time and percentage of successful attacks, were chosen

so that traditional and GA-based attacks could be compared. Elapsed time measures the

efficiency of the attack while the percentage of successful attacks measures how useful the

attack is. Both of these metrics are needed to gain a complete picture of an attack.

Of the genetic algorithm attacks found in the literature, totaling twelve, seven were

re-implemented. Of these seven, only three achieved any success. The successful attacks

were those on the transposition and permutation ciphers by Matthews [20], Clark [4], and

Grundlingh and Van Vuuren [13], respectively. These attacks were further investigated in

an attempt to improve or extend their success. Unfortunately, this attempt was unsuccessful,

as was the attempt to apply the Clark [4] attack to the monoalphabetic substitution cipher

and achieve the same or indeed any level of success.

Overall, the standard fitness equation genetic algorithm approach, and the scoreboard

variant thereof, are not worth the extra effort involved. Traditional cryptanalysis methods

are more successful, and easier to implement. While a traditional method takes more time,

a faster unsuccessful attack is worthless. The failure of the genetic algorithm approach

indicates that supplementary research into traditional cryptanalysis methods may be more

useful and valuable than additional modification of GA-based approaches.

84

Bibliography

[1] Alcott, Louisa May. Little Women Parts I & II. Great Lit

erature Online 1997-2003. Retrieved August 20, 2003 from

http://www.underthesun.cc/Classics/Alcott/littlewomen/.

[2] The Holy Bible, King James Version. New York: American Bible Society: 1999;

Bartleby.com, 2000. Retrieved August 20, 2003 from http://www.bartleby.com/108/.

[3] Bryan, William Jennings, ed. The World's Famous Orations. New York: Funk and

Wagnalls, 1906; New York: Bartleby.com, 2003. Retrieved August 20, 2003 from

http://www.bartleby.com/268/.

[4] Clark, A. (1994). Modern optimisation algorithms for cryptanalysis. In Proceedings of

the 1994 SecondAustralian andNew Zealand Conference on Intelligent Information

Systems, November 29 December 2, (pp. 258-262).

[5] Clark, A., & Dawson, Ed. (1997). A Parallel Genetic Algorithm for Cryptanalysis of

the Polyalphabetic Substitution Cipher. Cryptologia, 21 (2), 129-138.

[6] Clark, A., & Dawson, Ed. (1998). Optimisation Heuristics for the Automated Crypt

analysis of Classical Ciphers. Journal ofCombinatorialMathematics and Combina

torial Computing, 28, 63-86.

[7] Clark, A., Dawson, Ed, & Bergen, H. (1996). Combinatorial Optimisation and the

Knapsack Cipher. Cryptologia, 20(1), 85-93.

[8] Clark, A., Dawson, Ed, & Nieuwland, H. (1996). Cryptanalysis of Polyalphabetic

Substitution Ciphers Using a Parallel Genetic Algorithm. In Proceedings of IEEE

International Symposium on Information and itsApplications, September 17-20.

[9] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to

Algorithms: Second Edition. Cambridge, Boston: MIT Press, McGraw-Hill.

85

[10] Darwin, Charles Robert. The Origin ofSpecies. Vol. XI. The Harvard Classics. New
York: P.R Collier & Son, 1909-14; Bartleby.com, 2001. www.bartleby.com/ll/. [Au
gust 20, 2003].

[11] Gaines, H. F. (1956). Cryptanalysis: a Study of Ciphers and their Solutions. New

York: Dover.

[12] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning. Boston: Addison-Wesley.

[13] Grundlingh, W. & van Vuuren, J. H. (submitted 2002). Using Genetic Algo

rithms to Break a Simple Cryptographic Cipher. Retrieved March 31, 2003 from

http://dip.sun.ac.za/~vuuren/abstracts/abstr_genetic.htm

[14] Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: The

University ofMichigan Press.

[15] Kahn, D. (1 967). The Codebreakers: The Story ofSecretWriting. New York: Macmil-

lan.

[16] Kreher, D. L. & Stinson, D. R. (1999). CombinatorialAlgorithms: Generation, Enu

meration, and Search. Boca Raton: CRC Press.

[17] Kolodziejczyk, J., Miller, J., & Phillips, P. (1997). The application of genetic al

gorithm in cryptoanalysis of knapsack cipher. In Krasnoproshin, V; Soldek, J.;

Ablameyko, S.; Shmerko, V. (Eds.), Proceedings ofFourth International Conference

PRIP '97 Pattern Recognition and Information Processing, May 20-22, (pp. 394-401).

Poland: Wydawnictwo Uczelniane Politechniki Szczecinskiej.

[18] Lin, Feng-Tse, & Kao, Cheng-Yan. (1995). A genetic algorithm for ciphertext-only

attack in cryptanalysis. In IEEE International Conference on Systems, Man and Cy
bernetics, 1995, (pp. 650-654, vol. 1).

[19] Lubbe, J. C. A. van der. (1998). Basic Methods of Cryptography. (S. Gee, Trans.).

Cambridge: Cambridge University Press. (Original work published 1997).

[20] Matthews, R.A.J. (1993, April). The use of genetic algorithms in cryptanalysis. Cryp
tologia, 17(4), 187-201.

[21] Menezes, A., van Oorschot, P., & Vanstone, S. (1997). Handbook ofApplied Cryp
tography. Boca Raton: CRC Press.

86

[22] Seberry, J. & Pieprzyk, J. (1989). Cryptography: An Introduction to Computer Secu

rity. Sydney: Prentice Hall.

[23] Shamir, A. (1982). A polynomial time algorithm for breaking the basic Merkle-

Hellman cryptosystem. In Proceedings of the 23rd IEEE Symposium on Foundations

ofComputer Science, 1982, (pp. 145-152).

[24] Sinkov, A. (1968). Elementary Cryptanalysis: A MathematicalApproach. New York:

Random House.

[25] Spillman, R. (1993, October). Cryptanalysis of knapsack ciphers using genetic algo

rithms. Cryptologia, 77(4), 367-377.

[26] Spillman, R., Janssen, M., Nelson, B., & Kepner, M. (1993, January). Use of a genetic

algorithm in the cryptanalysis of simple substitution ciphers. Cryptologia, 77(1), 31-

44.

[27] Stinson, D. (2002). Ciyptography: Theoiy and Practice. Boca Raton: CRC Press.

[28] Oliver, I.M., Smith, D.J., & Holland, J.R.C. (1987, July). A Study of Permutation
Crossover Operators on the Traveling Salesman Problem. In John J. Grefenstette

(Ed.), Proceedings of the 2nd International Conference on GeneticAlgorithms, Cam

bridge, MA, USA, July 1987, (pp. 224-230). Lawrence Erlbaum Associates.

[29] Tomassini, M. (1999). Parallel and Distributed Evolutionary Algorithms: A Review.

In K. Miettinen, M. Makela, P. Neittaanmaki and J. Periaux (Eds.), EvolutionaryAl

gorithms in Engineering and Computer Science (pp. 113 133). Chichester: J. Wiley
and Sons.

[30] Wells, H. G. The TimeMachine. Bartleby.com, 2000. Retrieved August 20, 2003 from

http://www.bartleby.com/1000/

[31] Yaseen, I.F.T., & Sahasrabuddhe, H.V (1999). A genetic algorithm for the crypt

analysis of Chor-Rivest knapsack public key cryptosystem (PKC). In Proceedings of

Third International Conference on Computational Intelligence and Multimedia Ap

plications, 7999, (pp. 81-85).

87

	Genetic algorithms in cryptography
	Recommended Citation

