
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

12-1-1993

Genetic Algorithms in Noisy Environments
T. W. THEN
Purdue University School of Electrical Engineering

EDWIN K. P. CHONG
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

THEN, T. W. and CHONG, EDWIN K. P., "Genetic Algorithms in Noisy Environments" (1993). ECE Technical Reports. Paper 245.
http://docs.lib.purdue.edu/ecetr/245

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-EE 93-36
NOVEMBER 1993

Genetic Algorithms in Noisy Environments

T. W. THEN and EDWIN K. P. CHONG *

School of Electrical Engineering, Purdue University

West Lafayette, IN 47907-1285

Abstract

Genetic Algorithms (GA) have been widely used in the areas of searching, function op-

timization, and machine learning. In many of these applications, the effect of noise is a

critical factor in the performance of the genetic algorithms. While it hals been shown in

previous siiudies that genetic algorithms are still able to perform effective121 in the presence

of noise, tlhe problem of locating the global optimal solution at the end of the search has

never been effectively addressed. Furthermore, the best solution obtained bly GA often does

not coincicle with the optimal solution for the problem when noise is present. In this report,

we describe a modified GA for dealing with noisy environments. We use an optimal solution

list to keep a dynamic record of the optimal solutions that have been found during the course

of evolutia~n of the population of noisy solutions. In addition, we also vary the population

size and sampling rate to achieve further improvements. We demonstrate the performance

of our scheme via a simple function optimization problem using genetic algorithm in a noisy

environment. Our results show that the optimal solution list is able to provide a small solu-

tion set that provides near optimal solutions obtainable in the absence of noise. Our scheme

is also easily implemented in practice with the addition of a simple optimal solution list and

minor changes to the selection and evaluation phases of an existing GA implementation.

"Research partially supported by a grant from the Purdue NSF Engineering Research Center for Intelligent

Manufacturing

Although genetic algorithms have been applied in a variety of domains, including image

processing, machine learning, combinatorial optimization, neural network design, robotics,

and function optimization [I, 21, there is still a large class of practical problems where ge-

netic algorithms have not been applied simply because these problems require the evaluation

of thousands of candidate solutions which can prove to be very computai,ionally intensive

and expensive. Nevertheless, genetic algorithm has proven to be very effective in large and

complex search space (e.g., high-dimensional, discontinuous spaces with many local optima),

even more so than many of the traditional random search and local search techniques [3]. As

such, it would be advantageous if we can apply genetic algorithms to those large practical

problems too reduce the amount of computation. In fact, for many such problems, it is suffi-

cient to evaluate the candidate solutions approximately using statistical sampling techniques.

Motivated by this, Fitzpatrick and Grefenstette [5] have established improlved performance

resulting from decreasing effort in approximating function evaluations and increasing the

number of iterations of the genetic algorithm. The same authors have also considered the

effects of varying both the population size and the sampling rate in a later work [4]. In both

studies, the overall performance of the genetic algorithm has been shown to be markedly

superior even in a noisy environment. However, the question of which camdidate solution

in the last generation or in any of the previous generation for that matter is the optimal

solution remains unanswered.

In this report we propose the use of a simple optimal solution list and an appropriate

balance between population size and sampling rate to be incorporated with existing genetic

algorithm implementations in the presence of noise. The purpose of the list is to keep a

dynamic record of potential solutions found during the course of the GA run so as to over-

come the problem of getting an otherwise inaccurate optimal solution whein using a regular

genetic algorithm without the list. We will demonstrate this inadequacy using a function

optimization problem in the presence of gaussian noise. We show that the optimal solution

obtained using a simple GA without the list frequently gives the wrong optimal solution in a

noisy environment. Using the same function optimization problem, we demonstrate that the

genetic algorithm with an optimal solution list provides a more consistent and accurate op-

timal solution even in the presence of an increasingly noisy environment. Further evidence

is provideld in which a dynamic balance in the amount of effort spent on evaluating each

candidate solution and the number of candidate solutions evaluated during each iteration of

the genetic algorithm is shown to improve the results even further. The proposed scheme

can be implemented simply by adding an additional list to existing GA implementations and

minor changes to the selection and evaluation phase of the GA implement t' ion.

The remainder of this report is organized as follows. In Section 2, we dlescribe the basic

principles of genetic algorithms. In Section 3, we present the basic structure of our proposed

scheme. \We will demonstrate the effectiveness of our scheme on a function optimization

problem i11 a noisy environment in Section 4 and 5. Finally, we conclude in Section 6.

Review Of Genetic Algorithms

Genetic algorithms are probabilistic search techniques based on the principle of population

genetics. This class of algorithms can be classified as a subclass of a larger class of algorithms

based on the concept of evolution. Since its conception in the late 1960's and early 1970's

(as a result of the work of John Holland at the University of Michigan), a inyraid of studies

have been conducted on almost every aspect of the algorithm, giving rise t,o a large volume

of literature on this algorithm. Concurrently, there has also been widespread applications

of genetic algorithms to various practical problems from different domains. Recently, the

algorithm has received increase attention as a result of its successfulness in solving many

difficult problems. The following is a brief discussion of the basic concepts underlining the

workings c~f the genetic algorithm.

We shisll proceed with the discussion using a simple genetic algorithm. The genetic

algorithm maintains a population P(t) of N candidate solutions {x1,x2,. . . ,xN}t chosen

from the solution space. During iteration t, the population of candidate solutions undergoes

a process of selection by fitness and evolution to locate the optimal solution. This proceeds

for the duration of the search until the termination condition is satisfied. It is through this

process of selection and evolution that the population of candidate solutions or chromosomes

improves itnd converges towards the global optima. Because the genetic algorithm performs

a multi-directional search of the solution space by maintaining a fixed siize population of

solutions as opposed to a single candidate solution at any given iteration, the search is very

efficient. This gives rise to the implicit parallelism of the genetic algori.thm as noted by

Holland [Ei]. The basic structure of a simple GA is shown below

Genetic Algorit hm

1
t = O
initialize P (t)
evaluate P (t)
while (not termination condition)

1
t = t + l
select P (t) from P (t - 1)
evolve P(t)
evaluate P (t)

1
1

We will proceed to discuss the algorithm in detail.

The first phase of a simple genetic algorithm is the encoding of the solution space into

a suitable representation. Traditionally, as used in the original representation in Holland's

work, this has taken the form of binary strings, that is, strings of 1's and 0's. Using this

scheme of .representation, the various components of a solution are encoded into binary strings

which are then concatenated to form a single binary string called a chrom'osome. Although

binary representation has been very successful in encoding solutions for many problems,

there are still limitations in that not all solutions, especially those of pratical problems, can

be encoded in this manner. As a result, other forms of representation, including real number

representa.tion, have been explored and studied. In many cases, these forms of representation

have provt:n to be very effective in encoding the solutions. However, many of these have not

been formally analyzed. Thus for simplicity, we shall use the binary repr~esentation in our

discussion.

Once i t suitable representation has been chosen, the next phase is to :initialize the first

populatioil of chromosomes. This is usually done by a random generation of the binary strings

representing these chromosomes. In this way, a uniform represent ation of the solution space

in the very first generation is ensured so that the algorithm will not converge prematurely

to a local optima.

After the initial population of chromosomes has been formed, it will undergo a process

of evolution. During each iteration t of the process, each candidate solution x; is evaluated

by computing f (x;) which would include the objective function as well i3s other problem

constraints. This provides a measure of fitness of the given candidate solultion for the given

problem. When the whole population has been evaluated, a new populaition of candidate

solutions is then formed in two stages. In the first stage, the chromos:omes are chosen

stochastic,ally to form the parents for the next population based on their relative fitness. In

practice, the chromosomes of the present population are replicated according to their relative

fitness by ,a stochastic procedure such that the number of replications for each chromosome x;

is on the average proportional to

where f(x;) is the evaluated fitness or performance of the given chromosome x; and F (t)

is the average fitness of the population at the t iteration. In this way, the chromosomes

that perform better than average will be chosen several times for the next generation while

those that perform poorly are replicated less or not even at all. Thus, the better-performing

chromoso~nes will gradually occupy more and more of the population with each passing

iteration a,s a result of the selection pressure. However, this alone is insufficient to locate the

global solution or local optima.

Just as in population genetic, there must be some ways for the popillation to evolve

by introducing variations to the population. This is done during the second phase which

is also called the reproduction phase. In genetic algorithm, this is achieved by two basic

operators, namely the crossover and the mutation operators. Crossover allows us to mate

potential chromosomes to combine the quality components (also called ~enes) from each

parent. This can be done by combining genetic materials from two parent; chromosomes to

produce two new child chromosomes. For each pair of parent chromosomes, a random point is

selected o:n both chromosomes (the same point). The chromosomes would then combine the

corresponding segments between the crossover point so that each child has the first segment

of one parent and the second segment of the other parent. In this way, the two chromosomes

abcde fg and ABCDEFG

would become

abcDEFG and ABCde fg

after crossover at the crossover point between the third and fourth gene. Any two parent

chromoso~nes would undergo crossover with a probability of p,. The crossover operator is the

key operator of evolution of the genetic algorithm. After crossover, numerous alternatives

dealing with the resulting strings can be implemented.

The mutation operator serves to exploit a solution by searching around a candidate

solution to locate a better solution. This can be done by randomly changing each of the

component bit of the chromosomes from 1 to 0 or 0 to 1 with a certain probability p,. In most

cases, only a few of the component bits are mutated since the probability of mutation is set

at a very low value. This ensures that the mutation operator plays only a b,ackground role in

the genetic algorithm as opposed to the crossover operator. After applying {;he two operators

on the selected parent chromosomes, the next generation of chromosomes is formed and the

whole process continues. During each iteration, the solution that has the best performance

so far is recorded and at the end of the process, the final value recorded is tlne global optimal

solution.

2.1 Theoretical Background

The power of genetic algorithm lies in the parallel search of the solutioil space. This is

made possible by the efficient exploitation of the wealth of information thist the evaluation

of the chromosomes provides. Specific configurations of the component values observed to

contribute to the good performance of the chromosome are preserved and propagated through

successive generations in a highly parallel fashion. These successful small configurations, in

turn, forrn the building blocks for the generation of larger configurations in subsequent

generation, giving rise to an improvement of the population of candidate solutions as more

and more successful configurations are combined together and replicated. This is the essence

of the Building Block Hypothesis [7] which states that

Hypothesis 1 (Building Block Hypothesis) A genetic algorithm seeks near-optimal

performance through the juxtaposition of short, low-order, high-performace schemata, called

the building blocks.

The ability of the genetic algorithm to perform such an efficient search of the solution space

is called tlhe implicit parallelism of the genetic algorithm [6].

More specifically, consider a set of finite binary strings of length 1 . A natural method of

representing the similarities of these strings is by the use of wildcards or don"t care symbol (*)

in those positions that are different, that is to say, in those positions that we are not inter-

ested. The structure formed in such a manner is called a schema or similaxity template [7].

It encodes the similarity of a set of binary strings. For example, the schema (*011100110)

matches t:he following two strings

{(0011100110), (1011100110)),

while the schema (*0 * 1100110) matches four strings

{(0001100110), (0011100110), (1001100110), (1011100110)).

With this, we can see that every schema matches exactly 2T strings whelre r is the num-

ber of don't cares in the schema. Furthermore, a string of length 1 can b~e represented by

2' schemata (plural for schema).

Now, dlifferent schemata have different characteristics and the two basic schema properties

are the idela of order and defining length. The order of a schema H, o(H), refers to the number

of fixed digits in the string. In other words, the order gives an indication of how specialized

is the schema. For example, the following schemata

HI = * * *I01 * *11

H2 = 11 * * * 10 *00

H3 = *01 * 11001*

would have the following order

0(Hl) = 5, 0(H2) = 6, 0(H3) = 7,

with H3 being the most specific.

The defining length of a schema H, S(H), refers to the distance between the schema's

first fixed digit and the last fixed digit in the string. For example, using the schemata defined

above, the corresponding defining lengths are as follows,

6(H1) = 10 - 4 = 6

6(H2) = 10 - 1 = 9

6(H3) = 9 - 2 = 7.

Next, lthe schema has another property, and that is the fitness of the schema H at a given

iteration I ! , f (H , t). This is given by the average fitness of all the stringls that match the

schema. For example, assuming that there are N strings {xl, xz, . . . , xN) 'in the population

that match the schema H at the t iteration, then

During the process of selection as discussed earlier, the probability t.hat a string will

be selecte'd depends on its relative fitness as compared to the rest of the population. This

probability is given by equation (1). Let the number of strings matched by the schema H

at the t th iteration be £(H,t) . Under the proportional reproduction and selection process,

the proba'bility that an average string is matched by the schema H is equal to f (H , t) /F (t)

where F (i) is the total fitness of the population. Given that the number of strings matching

the schema H at the t th iteration is £(H,t), the number of strings matched by schema H

after the selection process, that is, at time t + 1 is given by

We can simplify the above formula since F(t)/pop-size is the average fitness which can be

written as P(t) . Thus the formula becomes

This equation is often refered to as the Reproductive Growth Equation.

Now, consider the case where the schema H remains e% above the average fitness, then

the number of strings matching H will be given by the equation

As we call see, this would mean that the number of strings matching the schema H is

increasing exponentially in subsequent generations. In other words, through the process

of selection, those schemata that has a high fitness compared with the average population

fitness will increase in numbers as the generation evolves.

Next, during the process of crossover, a schema might be destroyed vvhen segments of

the chromosomes are swapped. The probability that any given schema would be lost during

this process depends on the defining length of the schema and it is given by the formula

Hence, the probability that a given schema would survive after crossover is given by

However, not all of the given schema are destroyed in the process of crossover; some might

have survived and new ones might even be formed from other schemata. As a result, the

probabi1it:y of schema survival is better than that expressed in equation 7 itnd it is closer to

Therefore: after taking into account the effects of crossover, equation 4 becomes

where pc is the rate of crossover.

Just as in crossover, mutation also influences schema survival since the operator might

also change the component values of a potential schema. Given that the nmtation operator

operates by changing the component bits of a chromosome with a certain propability p,,

the proba'bility that any given schema would be destroyed depends on the number of fixed

component bit in the schema, which is also the order of the schema. In this case, the higher

the schema order, the higher the probability of destruction. Thus, the probability that a

given schema would survive mutation is given by

where pm is the rate of mutation. With that, equation (9) can be further improved to take

into accou.nt the effects of mutation. This gives the final equation

Judging from the above equation, we can conclude that the schema that would survive

and increase exponentially in subsequent generations is the one that is shol-t, low-order, and

has above average fitness performance. This is the essence of the Schema Theorem [7] which

states that

Theorem1 1 (Schema Theorem) Short, low-order, above-average schenlata receive expo-

nentially iincreasing trials in subsequent generations of a genetic algorithm.

To summarize, the strength of a genetic algorithm lies in its ability to ex:ploit information

about the fitness of a large number of structural configurations without the computational

burden of explicit calculation and storage. This allows a concentrated search of the solution

space whi'ch contains solutions of above average fitness, culminating in the identification of

the global optimal solution.

3 Optimal Solution List

In this section, we describe the optimal solution list as a means of solving the problem of

locating t:he global optimal solution accurately in a noisy environment. In various practical

applications, it is often impossible to evaluate the fitness or performance of each candidate

solution accurately as it would be too computationally intensive. This is usually overcome

by approximating the performance using statistical sampling techniques. However, this

would inti-oduce noise into the performance measure evaluated, subsequently resulting in an

inaccurate: optimal solution being indentified. This problem occurs when only one variable

is used to record the optimal solution evaluated thus far.

We observe that the single variable does not constitute sufficient memory to maintian the

best performing solution because the environment is noisy. The variable frequently records a

better candidate solution which performed very well but would subsequently replace it with

a less fit solution that appears to have a higher fitness value because of an added noise. As

a result of this, the actual fitness of the candidate solution recorded by tlie single variable

fluctuates up and down during the search process and depending on how fit the evaluated

solutions appear to be, the final solution recorded may not be the global optimum but one

that appeisrs to be with the noise added. Therefore, we propose that an optimal solution list

be maintained to record the best performing solutions found so far as opposed to a single

variable irk present implementations.

In this scheme, we maintain a small list to record a series of candidate solutions that have

performed better than the rest with the noisy evaluations. During each iteration, when the

fitness of each candidate solution is being evaluated, if the solution performs better than the

worst performing solution in the optimal solution list, it would replace thi~t solution in the

list and this continues for the whole duration of the search. In this way, the list constantly

maintains a set of candidate solutions which appear to have performed better than the rest.

Consequently, even when the global optimum solution does not appear to be fitter than the

rest, the probability that it will be identified through the optimal solution list will improve

since it would still give a relatively good fitness measure. This is the motivation behind the

optimal solution list.

In addition to the list, we also propose that the sampling rate of the evaluation be

increased gradually along the process of the search. The intuition behirtd this is that in

the beginning, when the population is still far away from the global op~timum, it is not

neccessary to spend effort on getting accurate evaluations, but as the proc~ess continues and

the population converges towards the space around the global optimum, it would be more

worthwhile to allocate more resources to evaluate the candidate solutions acscurately in order

to identify the fitter candidate solutions with more confidence. This would help to improve

the quality of the candidate solutions in the list. It is important to note that the accuracy

of the fitness measure of both the population and the list should be increased at the same

rate so that the effects of noise are equal in both during comparison.

In this scheme, when the sampling rate is increased, it is also necessary to decrease

the population size to a certain minimum so that the overall computational effort spent

in updating the list remains constant for the duration of the search. This is achieved by

reducing the population size by one during each iteration while increasing tihe sampling rate

each time the population size has reached 1/2, 1/3, 1/4, . . . of the original size. In this way,

the total number of samplings for the entire search process would be equal to that of the

simple genetic algorithm with the same initial population size and a sampling rate of one.

This completes our description of the proposed solution.

4 Experiments

We have performed a series of experiments to test the performance of our]proposed scheme.

In these experiments, we use a simple genetic algorithm and a modified genetic algorithm

with our proposed scheme to maximize the function

where -3 < x, y 5 3. A gaussian noise with a mean of 0 and a variance o f 8 is introduced

into the system to test the effectiveness of the proposed scheme in a noisy environment.

First, we investigate the effects of noise on the average fitness of the pc~pulation and the

quality of the optimal solution evaluated at the end of the search. Next, we use the modified

genetic algorithm with the optimal solution list (scheme A) to maximize the test function

and the fittest solution in the list is recorded as the global optimum. List sizes of 5, 10, and

20 are tested to observe the effects of different list sizes. The population is maintained at the

original size. Finally, we proceed to test the final version of our modified genetic algorithm

with the proposed schemes of the optimal solution list and varying the polpulation size and

sampling]:ate dynamically (scheme B) on the same test function. In this case, we fix the

list size at 10 and we vary the minimum size to which the population is reduced to. Four

different minimum sizes of 16, 24, 32, and 50 are tested.

It is irr~portant to note that in the above experiments, even though we use the noisy test

function for evaluating the fitness of each candidate solution in the evaluation and selection

phase, we will use the test function without the gaussian noise to establish the true fitness

measure of the candidate solutions in the list and in the single variable when plotting the

graphs. This technique provides us with an accurate evaluation of the fittest candidate

solution that can be obtained from the optimal solution list in the case of the modified

genetic alliorithm. There is no attempt to establish the fittest solution from the list based

on noisy evaluations here because we assume that this solution can be easily established

since the list is small and more intensive assessment of the fitness of those values can be

easily accomplished.

5 Experimental Results

We now describe some experimental results obtained from our experiments. For each ex-

periment, at least ten runs of the genetic algorithm were performed on the test function

described in section 4. Note that all the experiments are run for an initial population size

of 100 for 200 iterations. The initial sampling rate is set to 1 for all experiments.

Figure 1 shows the effects of noise on the selection of the fittest solution using a simple

genetic algorithm. The fitness value of the best solution is evaluated for th.e whole duration

of 200 iterations with a gaussian noise of mean 0 and variance 8. The result clearly shows

the detrinnental effects of noise on the performance of the genetic algorithm in terms of

evaluating: the global optimal solution.

In the second set of experiments, we investigate the performance improvement as a result

of introdulcing the optimal solution list to a conventional genetic algorithm. We evaluate the

effects of varying sizes of the list. In the third set of experiments, we consider the effects of

varying the population size from 100 to various minimum size, MIN-SIZE' = 16, 24, 32, 50,

and increa~sing the sampling rate as explained in section 3 while maintainiing the list size at

10. In the above experiments, the noise has a mean of 0 and a variance of 8.

Figure;32,3, and 4 shows the results of the second set of experiments. It is clear from the

stated figures that the proposed scheme of an optimal solution list does in fact improve the

performance of the genetic algorithm. From figures 5, 6, 7, and 8, it is c1ear:ly shown that the

additional scheme of the varying population size and sampling rate also helps to improve the

performance. Our experimental results therefore demonstrate that the conventional genetic

algorithm is sensitive to the effects of noise, whereas the proposal scheme: is highly robust

and effecti.ve in locating the global optimal solution even in a noisy enviromment.

In this report, we proposed the use of an optimal solution list and the d:ynamic tuning of

the sampling accuracy of the individual candidate solution and the population size in a

genetic algorithm. The proposed scheme exhibits improved performance when compared

to a conventional genetic algorithm. An additional advantage of our scheme is that it can

be easily implemented in traditional genentic algorithm without much modifications. Our

experimental results clearly demonstrate the effectiveness of our proposed scheme in locating

the global optimum solution of a test function in the presence of noise.

We do not claim that this scheme will work for all kinds of problem as it has only been

tested on a single type of test function. Further testing and evaluation of the scheme under

various ca~nditions are needed. Future research effort will include implementation of the

proposed scheme in practical problems such as the optimization of a queuing system.

[I] L. Davis, ed., Genetic algorithms and Simulated Annealing. London: Pitman Press, 1987.

[2] L. Davis, ed., Handbook of Genetic Algorithms. 115 Fifth Avenue, New York, NewYork

10003: Van Nostrand Reinhold, 1991.

[3] K. A. De Jong, An analysis of the behavior of a class of genetic adaptive systems. Doc-

toral d.issertation, Department of Computer and Communication Sciences, University of

Michigan, Ann Arbor, 1975.

[4] J. M. Fitzpatrick and J . J. Grefenstette, "Genetic algorithms in noisy environment,"

Machine Learning, vol. 3, pp. 101-120, 1988.

[5] J . M. Fitzpatrick and J. J . Grefenstet te, "Genetic search with approximate function

evalua.tions," in Proceedings of the First International Conference on Genetic Algorithms

and Their Applications, (Pittsburg, PA), pp. 112-120, Lawrence Erlbailm, 1985.

[6] J . H. Holland, Adaptation in natural and artificial systems: an introduci'ory analysis with

applicc~tion to biology, control, and artificial intelligence. Cambridge, Mass.: MIT Press,

1992.

[7] 2. Michalewicz, Genetic algorithms + data structures = evolution programs. Berlin; New

York: Springer-Verlag, 1992.

Figure 1: Effects of noise on a simple genetic alorithm

25 1 I I I I I 1 I I

......... : i i i i i L i.-- W/O N

....

........

..........

a

>
V)

19
C .w .-
IL 18

17

16

15

I :
I I . -...I ' ..

,111 f
(11 :

- . lIr ...
$1 i

, I (:-..-:....-.... r.,. .:. .!. ;. i. ..i.. .;. .!. .!. ..-
I i

11

-

I 1 I I I I I I I

20 40 60 80 100 120 140 160 180 200
Number of iterations

22.2L' ' I I I I
0 50 100 150 200

Number of iterations

Figure 2: Scheme A: Minimum population size of 100 and list size of 5

:IFigure 3: Scheme A: Minimum population size of 100 and list size of 10

:Figure 4: Scheme A: Minimum population size of 100 and list size of 20

22.4
I

-.I:. ;..:.
I
I

22.2 ' I I I

0 50 100 150
_i 200

Number of iterations

Figure 5: Scheme B: Minimum population size of 50 and list size of 10

#I0

200

24.2 I I I

-
L,....... ,. ,:.-fL:.>.- 2.-. -. -.d..F..Y. !.:)
2 - - - \ r - 5 - + - - - - . - - -

P. - - . -
I'........... : ; ;.-

Number of iterations

23.6
u
C .-
0
Q23.4
'C
0
a
3 23.2+ - m >

a
C u .-
LL 22.8-J

22.6-1

22.4-c

22.2

I
1;'

- . . . , I . .. q..;:-.:.-
1111
a1 I' I - . . . w l c L ..
I I '
I .. I
I'
I

2 3 - . . ~ !. :
;
...................... i .,...;-

I
I
... ... '

I
I
...-

I
I
' I I I

0 50 100 150

Figure 6: Scheme B: Minimum population size of 32 and list size of 10

I

22.2 ' I I I

0 50 100 150
i

200
Number of iterations

Figure 7: Scheme B: Minimum population size of 24 and list size of 10

22 6 .. 1 .. .I , , ,

22.4

22.2
0 50 100 150 Z

-

Number of iterations

Figure 8: Scheme B: Minimum population size of 16 and list size of 10

	Purdue University
	Purdue e-Pubs
	12-1-1993

	Genetic Algorithms in Noisy Environments
	T. W. THEN
	EDWIN K. P. CHONG

