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Abstract - This paper addresses a genetic algorithm
approach to the optimal multistage planning of distribution
networks, taking in account investment costs, losses, voltage
drops and reliability. The paper also presents results of an
application example for a real size system. The advantages of
adopting this new approach are discussed in the planning
context, namely in conjunction with the use of multicriteria
decision making methods.

INTRODUCTION

For optimal distribution network planning, many
mathematical models have been proposed in the past - for
instance, see refs [1 - 9]. Many of them [1, 2, 4, 5, 7] are static
models, giving an optimal solution for a fixed set of data and a
single time period. Essays in dynamic planning, considering
the evolution in power demand through time and consequent
topological changes in the networks (new branches, new sub-
stations, reinforcements, etc.) have never been a definite
success, when applied to real sized networks. The mathematical
models behind those proposals either were heavy or neglected
several project features that engineers take as important on dis-
tribution system design; for example, economies gained from
cables in the same trench, reuse of disclassified lines, reshaping
the whole network by introducing a new substation, etc.

Furthermore, the vast majority of the model proposals,
on the last 15 years, was aimed at a so called "Optimal
solution". However, during the last few years the objective of
reaching this optimal concept has been challenged more and
more, namely within the U.S., with the acceptance of
principles of the "least cost planning" approach .

This evolution favours the option for multi-criteria
methods and for algorithms giving, as an answer, a large set of
possibly good solutions, instead of a single optimum.

Genetic algorithms share precisely this property, and
therefore an investigation has been made on their behavior in
the distribution network design or distribution planning
problem (DPP). This research has been directed into answering
the following questions :

- Can genetic algorithms adequately model the DPP
problem?

- Is it possible to develop efficient computing algorithms
for real size networks?

- Has the genetic approach an easy interface with
multicriteria decision making procedures ?

- Do genetic algorithms show any advantages over
previous proposed approaches ?

As the following sections report, the answer is positive
to all these four questions. In fact, differently from many
models previously proposed, this new model is flexible enough
so that many realistic features and conditions of practical nature
may be taken care of. For instance:

- the inclusion of multiple feeders in the same trench,
with the related savings achieved;

- the possibility of disclassifying lines at some stage, and
of re-using them at a later stage;

- the possibility of generating solutions with some open
loops, which may be valuable from a reliability point of
view;

- considering multi-objectives;
- dealing naturally with load diversity factors;
- no need to specify, in advance, at which year should a

substation be built or put into service.

REVIEW OF GENETIC ALGORITHMS

Genetic Algorithms (GA) are search and optimization
methods based on natural evolution [10]. They consist on a
population of bit strings transformed by three genetic operators:
selection, crossover and mutation. Each string (chromosome)
represents a possible solution for the problem being optimized
and each bit (or group of bits), represents a value for some
variable of the problem (gene). These solutions are classified by
a evaluation function, giving better values, or fitness, to better
solutions.

Although there are many forms [11] for Genetic
Algorithms, we will only refer to the canonical algorithm. This
means that we will be dealing with three genetic operators
(selection, crossover and mutation) and linear, binary, fixed-size
chromosomes. Canonical GA use a fixed-size, non-overlapping
population scheme and each new generation is created by the
selection operator and altered by crossover and mutation. The
first population is generated at random .

Genetic Algorithm components

Each chromosome represents a potential solution for the
problem to solve and must be expressed in binary form. For

instance, if we want to maximize the function f(x)=x2, in
the integer interval I=[0,31], we could simply code x in



binary base, using 5 bits. Each solution must be evaluated by
the fitness function to produce a value. In our example, the

chromosome 11011 would receive the fitness value 272=729,

while the chromosome 00111 would receive the value 72=49.
The pair (chromosome, fitness) represents an individual.

The selection operator creates a new population (or
generation) by selecting individuals from the old population,
biased towards the best. This means that there will be more
copies of the best individuals, although there may be some
copies of the worst. This operator can be implemented in a
variety of ways, although we use here a technique known as
Stochastic Tournament [12]. This implementation is suited to a
future distributed implementation and is very simple: every
time we want to select an individual for reproduction, we
choose two, at random, and the best wins with some fixed
probability, typically 0.8. This scheme can be enhanced by
using more individuals on the competition [13] or even by
considering evolving winning probability, eventually leading to
Boltzman Tournament [12], generalizing the Simulated
Annealing paradigm [14].

Crossover is the main genetic operator and consists in
swapping chromosome parts between individuals. The simplest
crossover operator is implemented by selecting a random
crossover point in the chromosome, and swapping the genes
that reside between the crossover point and the end of the
chromosome. For example, if we have two individuals:

A=010 | 00 ; B=010 | 11

and choose a crossover point C=3 (indicated by '|') the resulting
individuals after crossover would be:

A'=010 | 11 ; B'=010 | 00

Crossover is not performed on every pair of individuals,
its frequency being controlled by a crossover probability. This
probability should have a large value, typically Pc=0.8.

The last genetic operator is mutation and consists in
toggling a random bit in an individual. This operator should be
used with some care, with low probability, typically
Pm=0.001, for normal populations.

How does a Genetic Algorithm work?

A canonical GA is a very simple process: we first
generate a random initial population, evaluate it and start
creating new populations by applying genetic operators. This
high-level behavior can be depicted on the following piece of
pseudo-C:

main()

{

int gen;

generate(oldpop);

for(gen = 0; gen < MAXGEN; gen++)

{

evaluate(oldpop);

newpop = select(oldpop);

crossover(newpop);

mutation(newpop);

oldpop = newpop;

}

}

Obviously, there is the need for some bookkeeping
functions, for statistics and so on, but they are not central to
this explanation.

This very simple behavior hides a powerful processing,
done by the GA. In fact, the combination of selection and
crossover leads to a proliferation of individuals that possess
small, tightly coupled blocks  of bits leading to good
performance. These blocks, usually called schemata [15], are
replicated through selection and combined or separated by
crossover.

And mutation, what is its job? Mutation works as a
kind of "life insurance". Some important bit values (genes)
may be lost during selection; mutation can bring them back, if
necessary. Nevertheless, too much mutation can be harmful: a
mutation probability of 0.5 always leads to random search [10],
independently of crossover probability.

So, GA tends to select individuals with good
performance and recombine some of their building blocks,
creating more and more copies of good schemata, simply by the
use of selection and crossover. This hidden processing is called
implicit parallelism because the number of schemata processed

in each generation is typically O(N3), being N the population
size [15]. This compares very well with the number of fitness
function evaluations, N. This characteristic is distinctive of
Genetic Algorithms [11].

Genetic algorithms in Power Systems

There have been some attempts to apply Genetic
Algorithms to solve problems in the Power System area, but
so far, to our knowledge, not in multi-stage distribution
planning. In references [16] to [22] one may find the reports of
attempted approaches to problems such as:

- clustering and network reduction [16];
- optimal capacitor placement [17];
- voltage optimization [18];
- harmonics [19];
- system observability [20];
- reactive power control [21];
- load flow analysis [22];

DISTRIBUTION PLANNING MODEL

This section presents a model to solve the problems of
the optimal sizing, timing and location of distribution
substation and feeder expansion, using genetic algorithms.The
model allows the inclusion of constraints related to network
radiallity, voltage drops and reliability assessment.

The objectives for distribution system planning that will
be discussed are related to providing the designs and associated
implementation plans necessary for an orderly expansion of
facilities, minimizing new facility installation costs and
operation costs, as well as achieving an acceptable level of
reliability, under the following constraints :

a) Operation of the networks under radial configuration
(although some open loops may exist);



b) Voltage drop constraints;
c) Power demand specifications;
d) Power flow availability, namely constrained by line

thermal limits;
e) Possible site locations for substation and lines.

Facility installation costs will be divided in three
elements : substation cost, substation capacity expansion cost
and new feeder cost. Power losses in the network will be taken
as operation costs. Already existing elements (substations or
feeders) are included at no investment cost in the model;
however, their power losses are taken in account.

The following assumptions are made:

a) A peak load is considered for each stage expansion
planning (load forecasting is out of the scope of this paper).
Some extra information about load curves (such as load factor)
is required, in order to evaluate losses and assess reliability
indices such as average load disconnected or average annual
energy not supplied.

b) New installation facility candidates are known
beforehand, and their location and installation costs estimated.

An expansion strategy will be driven by load growth.
The planning period will be divided into several stages (one
year, for instance). One aims at having, as a result, a list of
investments to be made at each stage.

The genetic algorithm approach to the DPP is drawn
under the following general lines:

1. A set of variables is chosen to represent a multi-stage
network solution; these variables are encoded in a
chromosome.

2. A genetic algorithm is applied to a family of solutions,
giving birth to new generations.

3. Each solution in the new generation is evaluated
through a fitness function, that includes investment
costs, power loss costs, reliability, voltage drop
deviations; non compliance with other constraints is
dealt with by the fitness function - an unfeasible
solution, with a low fitness value, will hardly survive.

4. At the end of the process, a family of well fitted plans is
available.

Variables:

For a m-stage planning problem, the following (0-1)
integer decision variables could be defined:

Fis : Fis = 1  :  if feeder i is used at stage s
Fis = 0  :  otherwise

Sis : Sis = 1  :  if substation i is used at stage s
Sis = 0  :  otherwise

Eis : Eis = 1  :  if subst. expansion i is used at stage s
Eis = 0  :  otherwise

Existing facilities may be considered by fixing their
respective values to 1.

Chromosome coding

The direct coding of the above variables into a
chromosome has been tried and tested. Although the results
obtained were satisfactory, the process was not very efficient,
because the extremely large number of unfeasible solutions
appearing at each generation led to a large computing time
before reaching an acceptable stability.

Therefore, we devised a new coding process. Its
requirements were: it should lead to a minimum amount of
unfeasible solutions generated; and it should provide very fast
decoding, as this operation is required at every fitness
evaluation. Its characteristics are:

a) at one time stage, some nodes mat be assigned with load
values, while other may have a forecasted zero load;

b) a node with a positive load must be connected to, at
least, one feeder, while nodes with zero load may either
have no connections or have one or more connections in
order to allow power flow to other nodes;

c) each node is represented in the chromosome by a
number of bits needed to encode the number of possible
connections to it - e.g., if four lines connect to the
node, one needs two bits, if it is a positive load node, or
a three bit string, if it is a zero load node (to include the
case where no line goes through that node);

d) a substation is assumed as a special type of line, that
may be connected to the nodes chosen as possible
building sites;

This encoding strategy is such that it gives, as a result,
only solutions with a number of lines=(nodes-1), a radiallity
condition. A few other details were included in the model,
which are not relevant to its understanding but helped in
gaining computer efficiency.

Fitness Function

The fitness function must reflect both the desired and the
unwanted properties of a solution, rewarding the former and
strongly penalizing the latter. In the DPP, desired properties
are, for instance, low cost and high reliability, while unwanted
features are non-radial configurations (open loops are accepted,
but not closed loops), violations of thermal cable limits or of
voltage drop constraints.

Fitness is evaluated a posteriori; therefore it may be
non-linear, non-continuous, non-convex, whatever. This is very
advantageous over strict mathematical programming
approaches.

The general trend is to maximize fitness. Figure 1
presents the general scheme of evaluation of the fitness of a
solution, represented by a chromosome, at any generation. The
functions g(), h() and v(), referred to in this figure, must be
chosen so that, for no matter what solutions  x  are evaluated,
one always obtains

g(xi) < h(xj) < v(xk) < f(xm),   ∀ xi,j,k,m

In function f, we have included the following:
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Fig.1 - Fitness function evaluation scheme

- investment costs IC are added for all the planning
stages, considering a fixed discount rate;

- power loss costs PL are treated in the same way;

- voltage quality VQ may be assessed in many ways - we
have used the following scheme:
1) if the voltage drop at any node exceeds some threshold

(e.g., 8%), the solution has been taken as unfeasible
and its fitness evaluated by function v;

2) else, if the voltage drops at some nodes lie within a
given interval (e.g., [5%,8%]), the voltage quality
index of the solution is assessed by the sum of the
square deviations to the lower limit of this interval;

3) else, if at all nodes the voltage drop stays below that
lower limit, the voltage quality index receives 0
value.

- the reliability RB of a solution is evaluated through the
approximate  calculation of the expected annual energy
not supplied - this calculation takes in account the
existence of open loops in the network; we have used
the following scheme:
1) an upper bound Ur in reliability level is calculated

assuming that no switching devices are included in
the network - therefore, disconnections take place
only at the substation;

2) a lower bound Lr is calculated assuming that all
branches are equipped with switching devices,
allowing the isolation of failed branches and service
restoration (taking in account the line capacities);

3) reliability fitness is given by
RB = αUr +(1-α)Lr

where α ∈ [0,1] is an "improvement coefficient" that
aims at simulating the effect of a compromise
solution in switching device location policy - as
this, in itself, is a very complex problem [23].

The fitness value f  of a solution x is given by

f(x) = M - c1(IC+PL) - c2VQ - c3RB
where M - Large (enough) constant value;

ci  - constants externally fixed.

Other special features
a) the DC load flow calculations are used as a first filter

for unfeasibilities, and are performed at the same time as the
structure of the network is recognized - this strategy proved
very efficient;

b) for AC load flow calculations, we used the method
described in [24], applied to balanced systems, as it was
specially developed for radial networks;

c) before load flow calculations, loads values to be used
may be affected by coefficients to take in account the diversity
in demand load curves - this feature also distinguishes this GA
approach from other models.

APPLICATION EXAMPLE

Data
The GA approach was applied to the system shown in

Fig. 2, where solid lines represent existing cables in the initial
radial system, and dotted lines represent possible sites for the
expansion of the system. A complete data listing may be
obtained from the authors, by request. The proposed substation
sizes and other complementary system data are shown below

Number of time stages 3 (+ initial)
Discount Rate 10%
Nominal voltage 15 kV
Voltage thresholds 5%, 8%
No. of nodes 3 x 50
No. of branches - total 3 x 64
No. of potential branches 3 x 48
Total load for each time stg. (MVA) 45; 63; 74.5
Feeder cost  (PTE) 4*106/km
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Fig. 5
 Solution for Stage 3

Substations S1 S2 S3 S4
Initial cap (MVA) 16.7 16.7
Poss. expansion (MVA) 16.7 13.3
-> cost in stage 1 (PTE*106) 100 80
Planned    (MVA) 22.2 22.2
-> cost in stage 1 (PTE*106) 200 240

Run data - Several runs were made. The results presented were
obtained for a population of 40, and for 300 generations (a
value for which a robust stability in the "best-so-far" solution
has been consistently observed). On average, user run times
have been of around 300 sec., in a NeXTStation (33 MHz), but
we are now aware that these times may still be largely
improved by carefully revising the computer code.
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Results

In figures 3-4-5, a substation symbol within a square
means that there has been a reinforcement in capacity of that
substation; shadowed lines represent feeders already installed
that are not used in a given stage, remaining, however, as open
loops. See, for instance, branches 33-34-35-36, built in stage
1; in stage 2, 34-35-36 are  unused, but in stage 3 they are put
in active service while 33-34 is now open. Notice that node 35
has no forecasted load until stage 3; nevertheless, a solution
was built through it in order to reach node S3, right in stage 1,
which had a positive load value attached. Notice also the
rearrangement in the network when a new substation gets in.

Figure 6 presents a family of solutions, obtained at the
end of the evolution process, in a bi-attribute space
(investment, in Portuguese Escudos, vs. reliability, in average
annual energy not supplied, both to be minimized). We have
drawn a curve representing a convex approximation to the non-
dominated border; the black dot, pointed by the arrow, stands
for the solution depicted in figs. 2-5, and the three shadowed
dots represent some special non-dominated solutions: they
would not be found by classical mathematical programming
methods such as the weighted addition of the functions
representing the objectives - nevertheless, they may be thought
of as good compromises, by the planner.

One may clearly see how few the non-dominated
solutions (also called Pareto optimal) are in this example
which, in principle, are the interesting solutions to look at.
This clearly indicates that the combination of genetic
algorithms followed by multi-criteria screening is likely to be a
powerful tool in decision aid for network planning. We believe
that there is field here for further research.

CONCLUSIONS

The research reported in this paper clearly demonstrates
that a GA approach to a dynamic multi-stage planning problem
is both feasible and advantageous.

It provides the planner with a set of time-ordered
investment decisions which is not obtained from static sub-
optimizations, but directly from the consideration of the time
dimension of the problem. In this respect, it is more complete
than many published approaches which claim feasibility under
constrained computing environments.

Furthermore, it allows the representation of non-
linearities which are hard to include in pure mathematical
programming methods; in fact, the existence of non-linearities
enhances the advantages of using GA against pure mathematical
programming. These non-linearities arise not only from the
non-linear character of objective functions and constraints but
also from the discrete nature of many aspects of the distribution
planning problem. These in some cases could lead to a non-
convex domain, perhaps in some cases not even continuous -
but GA are able to deal with such environments and can detect
local minima or even "islands" of solutions.

The results of a GA are a generation of solutions,
filtered through the struggle for survival. Therefore, many
interesting and valuable exercises on comparisons and trade offs
may be executed, helping the planner to gain insight on the
problem he is faced with and allowing field for better decisions
to be taken.

The fact that many solutions will be available also
enhances the opportunity for multicriteria methods to be
explicitly applied, which is, in our point of view, a step
towards an adequate direction in distribution planning.
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