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SUMMARY 
Recently a new class of methods, to solve non-linear optimization problems, has 
generated considerable interest in the field of Artificial Intelligence. These methods, 
known as genetic algorithms, are able to solve highly non-linear and non-local 
optimization problems and belong to the class of global optimization techniques, 
which includes Monte Carlo and Simulated Annealing methods. Unlike local 
techniques, such as damped least squares or conjugate gradients, genetic algorithms 
avoid all use of curvature information on the objective function. This means that 
they do not require any derivative information and therefore one can use any type 
of misfit function equally well. Most iterative methods work with a single model and 
find improvements by perturbing it in some fashion. Genetic algorithms, however, 
work with a group of models simultaneously and use stochastic processes to guide 
the search for an optimal solution. Both Simulated Annealing and genetic 
algorithms are modelled on natural optimization systems. Simulated Annealing uses 
an analogy with thermodynamics; genetic algorithms have an analogy with biological 
evolution. This evolution leads to an efficient exchange of information between all 
models encountered, and allows the algorithm to rapidly assimilate and exploit the 
information gained to find better data fitting models. 

To illustrate the power of genetic algorithms compared to Monte Carlo, we 
consider a simple multidimensional quadratic optimization problem and show that 
its relative efficiency increases dramatically as the number of unknowns is increased. 
As an example of their use in a geophysical problem with real data we consider the 
non-linear inversion of marine seismic refraction waveforms. The results show that 
genetic algorithms are inherently superior to random search techniques and can also 
perform better than iterative matrix inversion which requires a good starting model. 
This is primarily because genetic algorithms are able to combine both local and 
global search mechanisms into a single efficient method. Since many forward and 
inverse problems involve solving an optimization problem, we expect that the 
genetic approach will find applications in many other geophysical problems; these 
include seismic ray tracing, earthquake location, non-linear data fitting and, possibly 
seismic tomography. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Key words: genetic algorithms, global optimization, waveform inversion. 

1 INTRODUCTION 

Techniques for multiparameter non-linear optimization may 
be conveniently classed into two groups. Methods in the first 
group rely on using local information on the gradient of the 
objective function to improve upon some starting model in 
an iterative fashion. Included in this class are the 
well-known matrix inversion methods such as least squares 
and its variants, and also the single gradient methods such as 

steepest descent, conjugate gradients and simultaneous 
iterative reconstruction techniques. The second class of 
methods requires no derivative information (thereby 
avoiding a linearization of the problem) and instead uses 
random processes to search the model space and find better 
models. The most well known of these global methods is the 
Monte Carlo technique which requires only misfit function 
evaluations. Another type of method that requires only 
function evaluations is a directed grid search, such as that 
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used by Sambridge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kennett (1986) for earthquake 
hypocentre location. However strictly speaking this 
procedure should be classed with the local methods, since it 
consists of a series of searches within restricted regions of 
parameter space. In general, local methods rely on 
exploiting the limited information derived from a compara- 
tively small number of models and avoid extensive 
exploration of the model space. The Monte Carlo search is 
truly global since it is effectively a memoryless random walk. 
As a consequence when Monte Carlo generates a new 
model it neglects to exploit the information gained from the 
sampling of previous models, and instead relies totally on 
random exploration of the  model space. (In this paper we 
use the term Monte Carlo to describe a purely random 
search of the parameter space and stochastic to describe any 
method which relies on random processes but which need 
not necessarily result in an overall random search.) 

In practice, many geophysical optimization problems are 
non-linear and result in irregular objective functions. 
Consequently, the local methods can depend strongly on the 
starting model, are prone to entrapment in local minima and 
can often become unstable. In addition the calculation of 
derivative information can become difficult and costly. The 
global methods avoid nearly all of the limitations of the local 
methods and are therefore more attractive for problems 
which are not too labour intensive in forward modelling. 
However, the Monte Carlo approach always involves a large 
degree of computation in exploring unfavourable regions of 
the model space. This usually means that a large number of 
models must be sampled and so Monte Carlo becomes 
prohibitively slow for large-scale problems and in such cases 
local methods are commonly considered the only viable 
approach. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A new class of global optimization methods known as 
genetic algorithms have recently been developed in the field 
of Artificial Intelligence. Like Monte Carlo methods they 
are completely non-linear, use random processes and 
require no derivative information, yet they have potential 
for significant increases in efficiency over the random walk 
strategy. The original development of genetic algorithms is 
attributed to Holland (Holland 1975) and recent summaries 
of progress in this field have been given by Grefenstette 
(1987), Goldberg (1989) and Davis (1990). Genetic 
algorithms are related to Simulated Annealing methods 
(Kirkpatrick, Gelatt & Vecchi 1983) in that they are both 
stochastic search techniques, employing probabilistic mech- 
anisms to solve complex optimization problems with 
multiple minima. Comparisons between the two can be 
found in Davis (1990) and Scales, Smith & Fischer (1991). 
Simulated Annealing methods use an analogy with physical 
annealing in thermodynamic systems whereas genetic 
algorithms have a resemblance with the genetic evolution of 
biological systems. In the past the major difficulty 
encountered with Simulated Annealing has been in deciding 
on an appropriate annealing schedule for a given problem, 
although Scales et al. (1991) have suggested that this 
problem has more or less been solved with the advent of the 
statistical mechanical approach introduced by Nulton & 
Salamon (1988) and extended by Andresen et al. (1988). 
Nevertheless Simulated Annealing algorithms are still 
inhibited by the ‘critical slowing down’ phenomena 
described by Brower et al. (1989) which, it is suggested arise 

because of the inherently inefficient mechanism by which 
they gather information on the large-scale structure of the 
misfit function. The Simulated Annealing method is well 
known to geophysicists since the work of Rothman (1985, 
1986) on residual statics estimation (for a discussion see also 
Tarantola 1987). Genetic algotithms, however, have largely 
been confined to problems of Artificial Intelligence, and 
have received little attention from geophysicists, although, 
recently, they have been applied to a synthetic 1-D acoustic 
inverse scattering problem by Scales et al. (1991). Gallagher, 
Sambridge & Drijkoningen (1991) have discussed their use 
in geophysical optimization problems and Bolt (1991) has 
presented results of their use in estimating the bulk modulus 
of a decompressed lower mantle by finite-strain theory. 

The power of genetic algorithms is that the optimization is 
driven completely by stochastic means. Essentially this 
means that the search mechanism does not follow a 
deterministic set of rules which force it to move away from a 
single point in parameter space in a pre-defined manner. 
However the use of a stochastic process does not mean that 
the algorithm searches randomly. Indeed one of the most 
interesting features of the algorithm is how some relatively 
simple procedures, requiring only random decisions, can 
lead to such an efficient type of search mechanism. An 
important ingredient of the genetic approach is that large 
and complex models are represented by simple binary 
strings, so that the patterns of 1’s and 0’s represent 
characteristics of the original model. These bit-strings can 
then be manipulated in a manner which has an analogy with 
the way biological systems evolve at a genetic level to 
produce more successful, or fitter, organisms. Genetic 
algorithms exploit the structure of the better data fitting 
models by using their components as building blocks to 
develop new models. In this way they combine the two 
important objectives of exploitation and exploration in a 
very eficient manner which makes them inherently superior 
to random search Monte Carlo techniques. There is every 
indication that genetic algorithms can be applied successfully 
to much larger scale problems than Monte Carlo without 
becoming computationally prohibitive. 

In this paper we outline the basic methodology of genetic 
algorithms, illustrated through a simple example. To 
demonstrate some of the characteristics of the method we 
consider a multidimensional quadratic optimization problem 
and show that as the number of unknowns increases, genetic 
algorithms exhibit a dramatic improvement in efficiency over 
a Monte Carlo search. As an example of the performance of 
the technique in a real data problem, we consider the 
non-linear inversion of marine seismic refraction waveforms 
for 1-D velocity profiles. Finally we discuss the relationship 
of genetic algorithms to Simulated Annealing methods. The 
numerical examples presented here demonstrate the 
efficiency of genetic algorithms over Monte Carlo 
procedures, and also illustrate well the character of the 
method as it converges to a near optimal solution. The 
results lend considerable encouragement for their applica- 
tion to other non-linear geophysical optimization problems. 

2 GENETIC ALGORITHMS IN NON- 
LINEAR OPTIMIZATION 

The optimization problem to be considered is as follows: 
suppose we have a set of unknowns zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, (for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1, . . . , M), 
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denoted as the model vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, and a non-linear objective 
function, @(m). For each parameter we have a pair of 
bounds, a, and b,, such that a , ~ x ; ~ b , ,  and some 
discretization interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, such that 

d, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (b, - a , ) /N ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 )  

so that all allowable models, m, represented by the set of 
parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx , ,  are restricted to the set 

xi  = a, + jd i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( j  = 0, . . . , N;) .  (2) 

Usually the objective, or cost function, @(m), represents the 
misfit between some observed data and the corresponding 
predictions of the model, and one is interested in examining 
the range of models that give a value of @(m) less than some 
specified limit. However, since this can usually be achieved 
by searching about an optimal model, or group of competing 
models, the aim of the problem is to seek out the model 
producing an optimal (usually minimal) value of @(m). (For 
a maximization problem we usually replace the objective 
function with the term ‘fitness’ function.) In formulating a 
geophysical problem in this way we have implicitly 
performed a double discretization. The first is due to the use 
of a discrete set of parameters to represent. what in most 
geophysical applications will be a continuous function. This 
process is common in many inversion studies. Its validity 
and consequences are not the topic of this paper. In most 
cases, one may expand the appropriate unknown field or 
function as a set of known basis functions and use their 
coefficients as the discrete set of parameters, x, (Parker 
1977). The second discretization arises because the 
continuous range of each parameter has been replaced by a 
set of discrete intervals, which results in a discrete model 
space containing a finite number of models, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA”, where 

M 

J Y = n N ;  ( 3 )  
i = l  

Of course the value of JY alone does not describe the 
complexity of the optimization problem. This is primarily 
controlled by the length-scales on which the objective 
function varies relative to the interval size d j  and range 
(b, - a , )  for each parameter. One should take all of these 
quantities into account when assessing whether the 
optimization problems is highly non-linear. In most 
problems an appropriate set of bounds and intervals can be 
chosen a priori. 

If the objective function is highly non-linear, then Monte 
Carlo techniques are usually more robust than linearized 
methods, Monte Carlo works by randomly selecting models 
from the finite model space and calculating each value of 
@(m) in turn. In contrast genetic algorithms work with a 
group of Q models simultaneously, initially chosen at 
random, and code each into a binary string. For example, 
the two three-parameter decimal models (18, 28, 6) and (16, 
30, 3) are replaced by the binary strings shown in Fig. l (a) ,  
where each substring of five elements are the binary 
representation of the respective decimal values, with the 
dark squares representing 1 and the white squares 0. This 
we will refer to as ‘regular’ bit-string coding. Clearly, 
however, this is only one possible coding scheme of many. 
An alternative representation of the two models is shown in 
Fig. l (b) ,  where the bit ordering is based on the magnitude 

a 
I I 
I I 

I I 
I I 

b 
I I I I 

I I I I 

I I I I 
I I I I 

Figure 1. (a) Binary string representation of the three parameter 
decimal models (18, 28, 6) and (16,30,3). The dark squares 
represent a ‘1’ and the light squares a ‘0’. (b) Same models as in (a) 
but re-ordered in terms of binary magnitudes. 

components of the three parameters, i.e. the first three 
elements (1, 1,0,  . . .) indicate that the first two parameters, 
18 and 28, are above 24 and the last, 6, is below, and so on 
for the next block of three. Many other types of coding are 
possible, each of which may have a different effect on the 
nature of the algorithm. Goldberg (1989) discusses a ‘gray’ 
coding scheme which has the property that any two 
sequential decimal values, say 18 and 19, are represented by 
bit-strings which differ by only a single element, i.e. a 
change in parity of any bit always results in a movement of 
one unit in a base 10 parameter. (Note: in the ‘regular’ and 
‘magnitude’ coding schemes, described above, this property 
only occurs over limited ranges of decimal values.) 

Genetic algorithms exploit the link between the model 
and its string representation by using the substrings present 
in the better data fitting models of the group to develop new 
models. At  each stage the value of the cost function of each 
model is used to control the likelihood that characteristics of 
individual strings will propagate into later generations of 
models. An analogy with the evolution of biological systems 
arises through the fact that from one iteration to the next, 
the more successful models (with lower data misfits) will 
survive and reproduce themselves at the expense of the 
poorer models, in a manner akin to  the survival of the 
fittest. The analogy continues in the nature of manipulations 
applied to the bit-strings at each iteration. 

A single iteration of a minimization genetic algorithm 
proceeds in the following three stages. 

(i) The reproduction step 

From a randomly selected initial population of Q bit-strings 
and their cost functions @(mk)  ( k  = 1, . . . , Q), an interim 
population of Q parents is generated by selecting models 
from the original group, with the likelihood of selection 
determined by some measure of the cost functions. The 
probability of selecting the kth string is written as P,(mk) 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn example of crossover between the two models in Fig. 
l(a). The first four elements of each pair have been transposed 
forming two new models. 

and the two most common forms are linear, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa - bI#J(m/J (4) 

Pr(m/J = A  exp [-B$(mdl. (5) 

and exponential, 

Common choices for the constants are 

where $,,,, I#Javg and I#Ju are the maximum, mean and 
standard deviation of the distribution of $ values in the 
initial population, respectively. 

(ii) The crossover step 

From the parent population we create a new generation, 
referred to as offspring models, each of which is derived 
from a mixing (crossover) of the bit-strings from two 
parents. Initially, all parents are randomly paired off to 
produce Q/2 couples and then each pair is considered for a 
possible crossover. A random number between 0 and 1 is 
generated to determine whether the current pair is to be 
crossed over. If the value is less than the constant P, (the 
probability of crossover) then a position is chosen at random 
along the bit-strings and two new strings are created by the 
cutting and transposing the two segments created by the cut. 
For example, when the two parents in Fig. l(a) are cut 
between the fourth and fifth sites from the left, the two 
strings in Fig. 2 are produced as offspring. These strings 
represent the models (16,28,6) and (18,30,3) and so the 
effect of crossover has been to swap a pair of the decimal 
parameters. This feature is relatively common when a pair 
of similar models become parents; however, in general 
decimals values may be both created and destroyed by 
crossover. If the random number is greater than P, then the 
two parents are not selected for crossover and pass through 
the offspring population unaffected. 

(iii) The mutation step 

The final process applied to the offspring population of 
strings is the mutation of one or more randomly chosen bits. 
A mutation probability denoted by P, is used to control the 
likelihood of an individual bit in each model being altered in 
parity. P, is usually rather small (typically P, I 111, where 1 
is the length, or number of bits, per string). After the three 
steps are completed, a new population of Q bit-strings is 
produced which may be used as input to the next iteration. 

The three bit-string processes perform different roles in 
the genetic algorithm. The reproduction step affects the 
survival of the fittest between generations while the 
crossover step controls the degree of mixing and sharing of 
information that occurs between the models. The purpose of 
the mutation step is to keep a certain amount of diversity or 
randomness in the population, which would otherwise be 
gradually exhausted by the action of the two previous steps. 
In an example presented below it will be seen to be 
particularly useful in introducing new genetic material 
which, when beneficial, is quickly copied by other models. 
Since the mutation operation affects only a single model 
parameter, a relatively low value of P, perturbs the model 
in a very restricted manner comparable to a random search 
in the neighbourhood of the original model. As the 
mutation probability is increased, the algorithm becomes 
more like Monte Carlo because an increasing degree of 
randomness is introduced, favouring exploration of the 
model space over exploitation of the information contained 
in the population. Before the method can be applied to a 
particular optimization problem several decisions need to be 
made. Specifically one must decide on the type of bit-string 
encoding, the nature of the reproduction probability to be 
used (i.e. linear, or exponential), the size of the working 
population, Q,  and the probabilities of crossover, Pc, and 
mutation, P,. In practice it is usual to tune these parameters 
somewhat according to the probelm being addressed. 
Grefenstette (1987), Davis & Steenstrup (1990) and Booker 
(1990) illustrate a variety of modifications to the algorithm 
which have been used for different problems. These include 
choosing a non-random initial population, variable selection 
methods and crossover probabilities, scaling of the cost 
function, re-ordering the bit-string and incorporating 
constraints on the model parameters. However, all of these 
modifications have at their core the basic algorithm 
described here. 

To demonstrate the general mechanism consider the 
trivial problem of finding the maximum of the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I#J = x 2 ,  in the range 0 5.x  5 127. Table 1 summarizes the 
performance of a genetic algorithm using a regularly coded 
binary string of length seven ( I=7) ,  and with the 
parameters Q = 4, P, = 1.0, P, = 0.0, i.e. crossover always 
performed for each set of parents and mutation never 
performed. In this case the problem is one of maximization 
and so we simply use the relative fitness functions to control 
the reproduction likelihood, i.e., 

Note that during the reproduction step a model with the 
average fitness Gavg would have an expectation value of 1 
copy, and so models with less than average fitness will tend 
to die off while those with above average fitness will survive. 
This property also holds for the linear probability function 
(4) [with coefficients given by (6)] and is approximately valid 
for the exponential function ( 5 )  [with coefficients given by 
(7)]. In the example in Table 1 all four models in the initial 
population are selected to be parents during the first 
iteration, even though one model has a very small 
probability of selection ~ 0 . 0 1 .  After crossover four new 
models are generated and the average fitness of the 
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Genetic waveform inversion 327 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Progress of a simple genetic algorithm that maximizes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= x 2  for O r x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 127, 
with Q = 4, P, = 1.0, P, = 0.0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

population is increased. During the second iteration the two 
poorer models are removed and two copies of models 2 and 
3 make up the parent population. After crossover four new 
models are generated and again the average fitness of the 
population is increased. This second new population actually 
contains the optimal solution. It is interesting to note that 
the likelihood of the same performance being achieved by 
Monte Carlo is less than 1/10. Generally, however, we do 
not expect to reach an optimal solution so quickly, and the 
real power of genetic algorithms lies in their ability to 
generate near optimal solutions rapidly. In this simple 
example one can observe the rapid movement towards 
regions of good solutions by the progressive increase in the 
average fitness of the four models at each iteration. In 
general one could, if necessary, resort to using a local search 
method to refine a model after applying the genetic 
algorithm. 

Although much progress has been made in the theoretical 
understanding of genetic algorithms since their inception, it 
is not known how to ensure an optimal implementation for a 
given problem. This is essentially because the algorithm 
applies a stochastic process to a finite population Q, and all 
performance estimates which are based on finite samples 
will inevitably have a sampling error associated with them. 
Repeated iterations of the algorithm compound the 
sampling error and lead to search trajectories which can be 
very different from those theoretically predicted (Booker 
1990). This feature is evident in the first reproduction step 
of the example in Table 1, where the ratio of the highest to 
lowest selection probability is -63 and yet all four models 
have been copied once so that the initial group is unaltered. 
Because of the finite error in stochastic processes, most of 
the modifications to the standard genetic algorithm 
mentioned above are accompanied by semi-quantitative, or 
intuitive, reasoning as to why they should enhance 
performance. However, there is no guarantee that an 
improved performance will be achieved for a given 
application, and therefore many of these refinements appear 
to be rather ad hoc. Nevertheless some of the theoretical 
developments are useful for gaining insights into how 
genetic algorithms work and are worth a brief discussion. 

Holland (1975) recognized that the success of the genetic 
algorithm is controlled by the way it processed ‘schemata’, 
which is the term used to describe classes of strings (or 

substrings) which share a common set of elements. For 
example, the schema represented by ‘1 **** 0’ is used to 
represent all binary strings of six elements which begin with 
a 1 and end with a 0 (the * symbol is taken to represent 
either value). To quantify the growth and decay of schemata 
from generation to generation he introduced the ‘fun- 
damental theorem of genetic algorithms’ (for a recent 
account see Goldberg 1989). The fundamental, or schema, 
theorem states that, for the genetic algorithm described in 
the maximization problem above, the expected number of 
copies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, of a schema H ,  at iteration ( t  + l ) ,  is bounded by 
the expression 

m(H, t + 1) 2 m ( H ,  t )  - @ A H )  

@avg 

(9) 

where d ( H )  is the defining length of the schema, i.e. the 
distance between the first and last fixed string position 
[d(l **** 0) = 51, o ( H )  is the order of the schema defined by 
the number of fixed elements in H [ o ( l  **** 0) = 21, Gavg is 
the average fitness of the population, and @,(H)  is the 
average fitness of all the strings in the current population 
which represent the schema H. [For a minimization problem 
the fitness function is given by the right-hand side of 
equation (4) or (5 ) . ]  The schema theorem shows that the 
schema with above average observed performance, short 
defining length (i.e. small d )  and low order (i.e. small 0) 

will be sampled at exponentially increasing rates. Since each 
schema represents a complete class of bit-strings the 
theorem suggests that the generation of successful schema 
proceeds in a highly parallel fashion, leading to a rapid of 
exchange of information between the better and the poorer 
models of each generation. Holland (1975) has estimated 
that the number of schemata that are beneficially processed 
at each iteration is of the order of Q3 even though only of 
the order of Q manipulations are performed. This process is 
commonly refered to as Implicit Parallelism in the Artificial 
Intelligence literature. At present, no optimization proce- 
dure used in geophysical applications can reasonably claim 
to benefit from such a process. Indeed there is no guarantee 
that genetic algorithms will take full advantage of their 
‘parallel’ nature, but they seem, at least, capable of 
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exploiting it to some degree. In the next section we present 
two examples of the use of genetic algorithms, and in each 
case compare their performance to Monte Carlo methods. 
In the final section we discuss their relationship to Simulated 
Annealing methods. 

3 EXAMPLES OF GENETIC ALGORITHM 
VERSUS MONTE C A R L 0  OPTIMIZATION 

3.1 Quadratic minimization 

Although the multiparameter minimization of a quadratic 
function is straightforward to perform using a local method, 
it provides a convenient test problem to illustrate the 
relative efficiencies of genetic algorithms and Monte Carlo. 
Since the Monte Carlo technique, used here, involves 
nothing more than random search, a comparison with a 
simple genetic algorithm will show whether it is capable of 
anything more than just random exploration. In Fig. 3 we 
show the results from three quadratic minimization 
problems of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M 

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= c a/+; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-%IZ (10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/ = 1  

where the a, are constants and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn: are the solution values, for 
M = 3, 6 and 10. In all cases the genetic and Monte Carlo 
algorithms have the same initial population of models, 
although, of course, the grouping of models together as a 
population has no effect on the Monte Carlo procedure. All 
curves in Fig. 3 are generated by averaging over 500 
separate trials in order to eliminate the influence of the 
initial random population. A population size, Q, of 32 was 
used together with the linear probability function of 
equation (4), the regular bit-string coding and parameters in 
the range 0.8 < P, < 1.0 and P,,, = 0.001. The total length of 
the strings, 1, determined from the sum of the range of 
possible binary values for each model parameter, were 23, 
40 and 72 in the M = 3 ,  6 and 10 problems respectively. 
These choices were made with little exploration of 
alternatives and may be far from optimal. Nevertheless, it is 
clear that the genetic algorithm shows a dramatic 
improvement in performance relative to Monte Carlo as the 
number of model parameters increases. This lends some 
support to the notion that genetic algorithms will remain 
practical for problems of much larger scale than are feasible 
with Monte Carlo. 

3.2 Seismic waveform inversion 

Although this simple example illustrates some of the 
differences in performance of genetic algorithms and Monte 
Carlo, the shape of the cost function is regular and varies 
smoothly in model space. An application to a geophysical 
problem involving real data provides a much more 
convincing test of the new method. The non-linear inversion 
of marine seismic refraction data for 1-D velocity profiles is 
a sufficiently complex problem, and is adequate for this 
purpose. The data set used in this example is the FF2 
marine seismic refraction data from the 1959 Fanfare cruise 
of the Scripps Institution of Oceanography which consists of 
a suite of 25 seismograms. The waveform data is a 

3200 \ I: 

04 
0 64 128 192 256 320 384 448 512 

Models sampled 

1 

@) 

i 

2-l\ 16OOO 

0 
0 256 512 768 1024 1280 1536 1792 2048 

Models sampled 

Figure 3. Reduction of the cost function of a genetic algorithm 
(solid line) and Monte Carlo (dashed line) in a quadratic 
minimization problem against the number of models sampled. The 
curves have been averaged over 500 trials with different initial 
random populations. (a) Three-parameter problem with a total of 
8.4 x lo6 possible models, (b) six-parameter problem with a total of 
1.4 x l O I 4  possible models, (c) 10 parameter problem with a total of 
6.0 x id3 possible models. 

high-quality data set that has previously been interpreted by 
several authors using synthetic seismograms (Spudich & 
Orcutt 1980), linearized waveform inversion (Chapman & 
Orcutt 1985) and Monte Carlo together with linearized 
inversion (Cary & Chapman 1988, hereafter referred to as 
CC). The data were collected in a region of 15 Myr old 
oceanic crust east of Guadalupe Island in the Pacific Ocean 
using explosive charges as seismic sources with weights 
between 1 and 45 kg. The recordings were made from 
hydrophones suspended about 46m below the sea surface. 
The frequency band of the data used in the inversion is 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
9
/2

/3
2
3
/6

3
9
1
1
2
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Genetic waveform inversion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA329 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.54-15.04 Hz with a peak frequency of approximately 
7.23 Hz. A detailed account of the acquisition procedure 
and the instrumentation can be found in Spudich zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Orcutt 
(1980). Forward modelling is achieved by means of 
Chapman’s WKBJ seismograms (Chapman 1976, 1978; 
Dey-Sarkar & Chapman 1978). CC have compared the 
accuracy of Chapman’s method with the more accurate 
reflectivity synthetics for the FF2 data set. They concluded 
that although the WKBJ synthetics do  not model the entire 
signal in the observed seismograms (because of some 
reverberations) they are nevertheless sufficiently accurate 
for this type of study. Details of the topographical 
corrections and source time functions used during forward 
modelling are also given in Spudich & Orcutt (1980). 

To cast the waveform inversion problem as one of 
optimization one requires a misfit function which describes 
the discrepancy between observed and synthetic seismo- 
grams. The function used in this work has exactly the same 
form as that used by CC, and is evaluated in the frequency 
domain using the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@wf = . .. 

(11) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ d ( u k , x l )  is the Fourier transform of the observed 
seismogram as a function of frequency wk and range xl ,  

ps(wk, x,) is the frequency spectrum of the corresponding 
synthetic seismogram and A(w, )  is a frequency filter, 

R ( w )  = sinc4(w/wN) (12) 

where wN is the Nyquist frequency ( w N  = n f A t ) ,  and At is 
the time sampling of the observed seismogram. The 
frequency smoothing &w) is required in order to stably 
implement Chapman? method. Since it is implicit in the syn- 
thetic seismograms, Ps, it must also be applied to the data. 
The constants dk, control the frequency scaling of 
the components within each seismogram as well as the 
amplitude scaling between seismograms at  different ranges. 
The original motivation for frequency scaling was to  reduce the 
significance of the high-frequency data and thereby make the 
problem more tractable with linearized techniques (Chapman 
& Orcutt 1985). Since genetic algorithms d o  not make any 
linearizing assumptions, this issue would appear to be less 
important in the current study. Nevertheless it is still advisable 
to down weight the influence of the high frequencies, as 
Chapman & Orcutt (1985) point out, because these will be more 
susceptible to noise and consequently more difficult to fit. We 
therefore follow previous authors by assigning the weights 

in the significant frequency band, 
d -  kj - { : I w k $  otherwise. (13) 

The range-dependent weights dl are chosen so that the misfit 
function (11) is not dominated by the higher amplitude 
seimograms at the expense of the lower amplitude 
seismograms. Again we follow previous authors and 
calculate the dj so that the scaled spectral peaks of each 
observed seismogram are of approximately equal mag- 
nitude. The constant c controls the overall scaling between 

data and synthetics, and several different methods have 
been used for its calculation. In this paper we follow the 
approach of CC and determine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc by comparing the 
envelopes of the data and synthetic waveforms. The 
appropriate expression for c is given by 

where E [  ] is the envelope function (equivalent to the 
modulus of the complex trace, formed by an analytic 
extension of the real trace over the complex plane). The 
functions Pd(tmax. x,) and P,(tm‘,x, x,) are the observed and 
synthetic seismograms, in the time domain, both evaluated 
at the point were the synthetic envelope is a maximum, t,,,. 
This choice of scaling is more involved than simply matching 
the peak amplitude of the synthetics to the peak amplitude 
of the data, but avoids some of the problems that arise when 
the two peaks occur at very different times. Overall the 
misfit function (11) provides a reasonably sensitive measure 
of the mismatch between data and synthetics. 

Finding the 1-D seismic P velocity model which produces 
a global minimum of (11) is a complicated multiple-minima 
optimization problem. The multiple minima will be of 
variable size and arise mainly when the synthetics are out of 
alignment with the observed seismograms but can also be 
caused by noise and triplications. For this particular data set 
CC found a significant local minimum in the misfit function 
nearby their final solution which corresponded to some of 
the synthetics arriving a period late with respect to the data. 
To locate the global minimum they found it necessary to use 
a two-stage method. Initially they employed a Monte Carlo 
technique to search for a reasonble velocity model within 
the valley of the global solution. This model was 
subsequently refined by performing a full linearized matrix 
inversion about the Monte Carlo solution. In the first stage 
the model depth was parametrized as a function of velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z(v) at 10 points. The velocity at  any depth was represented 
by a series of linear gradient layers connecting each node. 
During the linearized inversion a more detailed model was 
possible and so 21 velocity parameters were used. In this 
work we parametrize the velocity model as a function of 
depth v(z), down to a depth of 11.5 km, which allows the 
extra flexibility of incorporating low-velocity zones and 
interfaces if necessary. Initially we use 11 velocity 
parameters at fixed depths chosen to match those of the best 
model from their Monte Carlo search. The structure of the 
oceanfcrust interface is assumed to be known, we use the 
model of Spudich & Orcutt (1980) down to  a depth of 
3.83 km and allow velocities to vary in the depth range 
3.83 5 z 5 11.5 km. The extremal velocity bounds of these 
authors have also been used as a guide in choosing the 
bounds of our velocity parameters, which are shown in Fig, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4, together with the homogeneous layer models of Spudich 
& Orcutt (1980) and the linear gradient model of CC. The 
velocity interval for each model parameter, dv, was set to 
0.05 km s-l which produced a total of 1.7 X 10’’ possible 
models in the parameter space. 

3.2.1 Fitting traveltimes 

In the Monte Carlo search of CC all randomly generated 
models were initially tested by evaluating their traveltime 
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Figure 4. Velocity model bounds used in 11 parameter inversion. Crosses indicate the depths of each velocity parameter. The homogeneous 
layer model is from Spudich & Orcutt (1980), the linear gradient model (dashed) is the 21 parameter model of Cary & Chapman (1988), and 
the solid line is the best 11 parameter model obtained from the genetic algorithms in Fig. 6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
misfit &, where 

This traveltime misfit differs slightly from that used by CC 
because it is normalized with respect to the traveltime 
bounds, AT. An average is taken over all NA synthetic 
arrivals (in this case first P-wave arrivals) to avoid any 
problems arising from velocity models that do not produce 
geometrical arrivals (due to shadow zones). Only those 
models which had a synthetic arrival time within *AT were 

considered for waveform fitting, where A T  = 0.15 s. CC also 
impose bounds on the velocity gradients that may be 
generated within the model parametrization. This has the 
effect of biasing the search away from regions of the model 
space which may be considered unfavourable a priori. In 
this work we use a similar mechanism and constrain all 
velocity gradients to be in the range 0 I dv /dz  I 16 s-'. In 
practice these values exclude the possibility of low-velocity 
zones, which would create shadow zones and therefore no 
geometric arrivals, and also very high-gradient zones for 
which Chapman's method becomes inaccurate. The first 
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restriction is not likely to be too severe as none of the 
previous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP velocity models for the regions has contained any 
low-velocity zones. The upper gradient bound is much 
higher than any realistic velocity gradient and so the 
maximum velocity gradients are effectively unbounded. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As a first illustration of the application of genetic 
algorithms to this problem we examined their performance 
in finding models that pass the traveltime test. In this case 
the traveltime misfit (15) was minimized using four different 
genetic algorithms with population sizes Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 26, SO, 100 and 
1000. In each case the reproduction probability was a linear 
function of the traveltime misfit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), with coefficients given 
by (6), and the I-D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP velocity model was coded into a 
binary string using the regular coding scheme. The binary 
coding requires that the number of velocity intervals for 
each parameter is an integral power of 2. To achieve this 
with a fixed velocity interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdu =0.0S kms- ’  it was 
necessary to widen some of the velocity bounds. Overall the 
number of intervals per velocity parameter varied between 
32 and 128, and produced a total bit-string length of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 74 
for the 11 parameters. The probabilities of crossover, Fc, 

and mutation, F”,, were chosen to be in the range 
0.6 5 P, 5 1 .O and 0.001 5 P,, 5 0.03. We have applied only 
one modification to the simple genetic algorithm described 
in Section 2. This is to replace the worst model in the ith 
population, @highca,, i ,  with the best model from the previous 
iteration @,~,wes , , r  .., i f ,  and only i f ,  all copies of the model 
that produced @,OWC,t., , were eliminated by the actions o f  
crossover and mutation. In  our experience this modification 
seems to improve performance in all cases. 

The performances of the four genetic algorithms and a 
Monte Carlo procedure are illustrated in Fig. 5.  This 
diagram shows the number of models passing the traveltime 

800 

600 

400 

200 

0 

test, i.e. with arrival time within fO.1Ss of the observed 
time, against the total number of models sampled, which 
does not include any copies generated during the genetic 
algorithm. It is clear that the genetic algorithms with 
Q = 26, SO and 100 are an improvement on the Monte Carlo 
since they find more models that pass the traveltime test 
even though, strictly speaking, their goal is to minimize Qtt. 

It is also evident that the efficiency of the genetic algorithms 
varies with population size, with a peak around Q =SO. If 
the population size is too small then not enough exploration 
of the parameter space is taking place, while if it is too high, 
the cross fertilization of information becomes very slow. 
(Note: in the Q = 1000 case the entire curve represents only 
seven iterations whereas in the Q = SO nearly 160 iterations 
have been performed.) 

3.2.2 
Monte Carlo 

The traveltime fitting is a straightforward way of finding a 
good mixture of models from which one can select an initial 
population for waveform fitting. It would be simple enough 
to select these models from those with the lowest value of 
GI,. However, CC have shown that the waveforms provide 
independent information from the traveltimes and so we do  
not wish to bias the procedure too heavily towards models 
that only produce good traveltime fits. Therefore, we prefer 
to select the initial population for the waveform fitting stage 
at random from the models that pass the traveltime test. In 
this way the minimizations of Gtt produces an accelerated 
start to the waveform inversion. In the following examples a 
genetic algorithm with parameters Q = SO, P, = 1.0, 

Waueform fitting: genetic algorithm compared to 

Q = 50 

// Monte Carlo / 

I I I 

0 10oO 2000 3000 4000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASO00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6OOO 7000 BOO0 

Number of models sampled 
Figure 5. Performance of genetic algorithm and Monte Carlo in finding models that have traveltimes within fO. 15 s of the observed values. Q 
is the population size in the genetic algorithm. 
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Pm=0.O25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis used for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGtC minimization and is halted 
after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA160 iterations. 

The results of two different algorithms applied to 
waveform inversion are shown for three different sets of 
initial populations in Figs 6(a), (b) and (c). Comparison of 
synthetic seismograms shows that reasonable waveform fits 
correspond to misfit values less than 0.85. The parameters 
controlling the genetic algorithms are given in Table 2. In 
each case a Monte Carlo search is shown which has the same 
initial sequence of models as in the corresponding 
minimization of $tt, i.e. the first Q models generated in the 
two procedures are exactly the same (remember that the 
initial population of the genetic algorithm is generated 
randomly). Therefore the differences between the two 
curves cannot be ascribed to a fortuitous initial population 
of models in the genetic algorithm. Clearly the performance 
curves show that the traveltime stage has given each genetic 
algorithm an advantage over the Monte Carlo. The relative 
efficiency of the two methods is also clear since all genetic 
algorithms achieve smaller values of $wf after 8000 models 
than the Monte Carlo searches do after 440000 models 
(indicated by the solid triangles), although this is probably a 
severe underestimate of the relative efficiencies because 
each Monte Carlo would have to search many more models, 
possibly even orders of magnitude more, before they came 
across the solutions obtained by the genetic algorithms 
(which, of course, they eventually must because there are 
only a finite number of models in the entire space, i.e. 
1.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1 0 9 .  

It is reassuring to observe an increase in efficiency, even 
though we cannot gain any accurate estimates of it. 
However, what is perhaps more important is the manner in 
which the genetic algorithms reduce GWf. In all cases there 
are periods where the best model undergoes a cascade of 
improvements, which suggests that it is being refined by an 
efficient local search mechanism. In contrast each Monte 
Carlo search shows only five or six improvments during the 
first 8000 sampled models. (Indeed all three Monte Carlo 
searches achieve only five or six more reductions in Gwf over 
the next 432 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA000 sampled models). The general character of 
the genetic algorithm performance trends appears to be one 
of a rapid initial decrease of misfit followed by quiet periods 
where little improvment is achieved, followed again by more 
cascade-like improvements [seen at about 2500 and 7000 
models in Fig. 6(a) and 6000 in Fig. 6(c)]. A possible 
explanation for this is that during the quiet periods the 
population has effectively exhausted most of the information 
contained in the genetic patterns of its strings and the onset 
of improved performance is due to the random introduction 
of extra material, or information, through mutation, which 
is quickly copied and refined by other models in the 
population. The onset of secondary cascades after periods of 
little activity suggests that the genetic algorithm is also 
benefiting from a global-type search mechanism which 
allows it to jump out of the current local valley in the misfit 
surface. Once a new valley has been found the local nature 
of the algorithm takes over and efficiency finds the local 
minimum. Clearly the potential to take advantage of both a 
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U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
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(a) Genetic algorithm vs Monte Carlo waveform inversions 

- 3  

-500 500 1500 2500 3500 4500 5500 6500 7500 8500 

Models sampled 
Figure 6. (a) Performance of two genetic algorithms (solid and dotted) against Monte Carlo (dashed) in minimizing the waveform misfit with 
an 11 parameter velocity model. The triangle indicates the value of the waveform misfit found by the Monte Carlo after sampling M o o 0  
models. The parameters controlling the genetic algorithms are given in Table 2. (b), (c) Same as in (a) but with different initial model 
populations. 
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1.20- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.10- 

1.00- 

0.90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

0.80 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Genetic algorithm vs Monte Carlo waveform inversions 

A 

(c) Genetic algorithm vs Monte Carlo waveform inversions 

Figure 6. (continued) 
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Genetic algorithm paramekrs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I Q I P,,, I P, I N s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m,, I 50 I ,025 I 1.0 I 8000 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Control parameters and results of all genetic 
algorithms used in the I 1  and 22 parameter waveform 
inversions. 

I- 11 oarameter model ( N n  = 74.Nr = 1.7 x lon) 

min d,f 

1 - 1 -  
r u v l  I ran2 I ran3 

M C I  - 1 

r .. 1 I I t  I I 

GAl I 26 1 ,025 I 1.0 I 
GA2 1 100 I .001 10.6 I 

8000 
8000 

10.804 10.738 10.736 
10.831 10.744 10.845 

I 8000 I 0.891 I 0.923 10.909 

22 parameter model ( N B  = 1 3 1 , N ~  = 2.5  x 10") 
Genetic alaorithm Darameters I 

1 J 

local and global mechanism is a very desirable feature when 
one wishes to find the global minimum of an irregular misfit 
surface containing multiple minima. The ability of the 
genetic algorithm to efficiently combine local and global 
components makes it inherently superior to techniques that 
rely on either one. 

The best waveform fit achieved by the genetic algorithms, 
with 8000 models sampled, was $Jwf = 0.736. The optimum 

value of GWf will not be zero chiefly because of the noise in 
the data and the inadequacies of the synthetic waveform 
calculation (e.g. it does not model reverberations). 
However, it is interesting to note that, even though the 
genetic algorithm was applied to an 11 parameter model, it 
is actually a lower misfit than that of the model obtained 
from the linearized inversion solution of CC which used 21 
model parameters, GWf = 0.79 (the misfit of this model was 
recalculated with the misfit function used here so that a fair 
comparison can be made). The difference between these 
figures may, in part, be due to the differences in the type o f  
model parametrization and also small numerical differences 
in the misfit function (11) due to slight differences in the 
range coefficients, d,, and the synthetics scaling parameter c. 
Nevertheless it is clear that the efficient genetic algorithm 
has been able to find a velocity model which requires half as 
many degrees of freedom and fits the waveform data just as 
well. The best velocity model obtained by the genetic 
algorithm is shown in Fig. 4. A comparison of the synthetic 
and observed seismograms for the two linear gradient 
models are shown in Figs 7 and 8. Both sets of synthetics 
appear to be good fits to the data. The primary difference 
appears to be that the first arrivals in the two central panels 
are lined up better with the synthetics from the genetic 
algorithms model (Fig. 7). The 11 parameter model found 
by the genetic algorithm is similar to that of CC but, of 
course, it has less detailed structure indicating that the 
small-scale gradient variations in the latter model are not 
necessary to fit the observed waveform data. 

A comprehensive understanding of the information 
contained in the observed seismograms requires more than 
just finding a global minimum of Gwr. One must also perform 

data and synthetic seismograms 

z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

h 

v ET 

5.5 6.0 6.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. 

reduced time ( s )  

Figure 7.  Observed and synthetic seismograms for the 11 parameter model obtained by the genetic algorithm. The data are plotted at their 
true range and the synthetics are shifted down slightly. Both data and synthetics have been scaled by a factor proportional to the square of the 
range, x2 .  
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;3 

% 
=1 

v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

reduced time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( s )  

Q 

Figure 8. Observed and synthetic seismograms for the 21 parameter model obtained by Cary & Chapman (1988). All other details as for Fig. 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a detailed error analysis by examining the multidimensional 
neighbourhood of the global solution. The common 
approach is to try to assign confidence regions to contours of 
qwt about the solution and find the range of each parameter 
that lie on, say, the 95 per cent confidence contour. In 
addition one should also examine the trade-off between 
different parameters which can be estimated by means of a 
posterior covariance matrix (see Tarantola 1987). Since it is 
our interest here to examine the use of genetic algorithms 
for waveform inversion, it is something of a diversion to 
discuss non-linear error analysis in any depth. The 
procedure used by CC to estimate the covariance matrix via 
Monte Carlo integration could equally well be applied after 
using the genetic algorithm to locate the global solution. 

3.3.3 Waveform fitting: genetic algorithm compared to 
linearized inversion 

Even though the genetic algorithm has yielded a simple 11 
parameter velocity model that fits the data well, it is still 
worthwhile examining its performance as the number of 
model parameters, and the size of the model space, are 
increased. In particular it is interesting to know whether the 
genetic algorithm can compete directly with the linearized 
matrix inversion scheme of Chapman & Orcutt (1985) when 
the number of model parameters is increased to 22 and the 
velocity interval is reduced. In addition we would like to 
know whether the genetic algorithm performs as well against 
Monte without the benefit of the preliminary traveltime 
fitting stage. Most waveform inversion procedures are 
basically local methods which require a good starting model 
within the valley of the global minimum. Several authors 

have begun waveform inversions by fitting the envelope 
function (Shaw & Orcutt 1985; Nolet, van Trier & Huisman 
1986). This usually improves the robustness of the waveform 
inversion just as the Monte Carlo search for an 
11-parameter model provides a reasonable starting point for 
the linearized inversion scheme of CC with 21 model 
parameters. In this algorithm a large-scale(==3250 x 21) 
non-sparse matrix must be formulated and solved for a 
series of model perturbations. As Chapman & Orcutt (1985) 
point out, the computational effort required to do this is 
considerable, largely because the coefficients of the linear 
system must be determined by calculating differential 
seismograms for each depth variable, and each of these 
requires the same amount of work as solving the forward 
problem. Of course, one of the attractions of the genetic 
algorithm is that no matrix inversions need be performed, 
but perhaps equally importantly, for this problem, the 
differential coefficients that make up the linear system do 
not have to be evaluated. They give the number of syn- 
thetic seismograms per iteration of the linear system as 
J(K + 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn), where n is the number of different damping 
parameters tested, J is the number of ranges and K is the 
number of velocity parameters. The 21 parameter model of 
CC was produced after eight iterations, and so assuming 
n = 10 then the number of synthetic seismograms required 
to perform the linearized inversion is approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6400. 
We can take this value as an approximate measure of the 
work required by the linearized inversion scheme used by 
CC and use it to gain a rough comparison with the genetic 
algorithm. (We note, however, that in practice the matrix 
inversion scheme will require additional labour to solve the 
linearized system at each iteration and also memory to store 
the equations.) 
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0.90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.85 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 
i! 0.80 
8 
0 

0.75 

f 

0.70 

-500 500 1500 2500 3500 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4500 5500 6500 7500 8500 9.500 

Models sampled 

Figure 9. The performances of three genetic algorithms (solid, dotted and chain dotted) and two Monte Carlo searches (dashed) in minimizing 
the waveform misfit for a 22 parameter velocity model. The parameters controlling the genetic algorithms are given in Table 2. The triangles 
indicate the values of the waveform misfit found by the Monte Carlo searches after sampling 440 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOOO models. 

The results of three different genetic algorithms and two 
Monte Carlo's for a 22 parameter velocity model are shown 
in Fig. 9. The controlling parameters for each genetic 
algorithm are given in Table 2. In all three cases the 
population size was 50 and the traveltime fitting stage was 
reduced to merely taking the first 50 models that passed the 
traveltime test (which was achieved after 200 randomly 
generated models). The depths of each velocity node are 
shown in Fig. 10 along with the best model found by the 
genetic algorithms and the model of Spudich zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Orcutt 
(1980). The velocity bounds have been narrowed from that 
used in the 11 parameter case and the velocity interval, du, 

was decreased to 0.02kms-'. The total string length, 1 
increased to 131 producing a model space containing a total 
of 2.5 x models. From Fig. 9 it is clear that the lack of 
any significant traveltime fitting stage has reduced the initial 
advantage of the genetic algorithms over the Monte Carlo 
searches. However one observes, as in the previous case, a 
rapid reduction in the misfit during the early stages and all 
three genetic searches quickly reach values which are better 
than the Monte Carlo after 440000 sampled models (again 
represented by solid triangles). As in the 11 parameter case 
the relative efficiencies are difficult to estimate because of 
the exceedingly slow nature of the Monte Carlo. The 
waveform misfits achieved by the three genetic algorithms 
are in the range 0.717 5 G w f 5  0.736 which are all less than 
the that of the CC model obtained by linearized inversion 
(GWf = 0.79). 

A comparison of the best 22 parameter model with the 
CC model is shown in Fig. 11. In the shallow regions 
z I 8.5 km the models are very similar. In the deeper parts 
of the model, where the data constraint presumably begins 
to decrease, the models begin to differ in character. The 
new model has a slightly smoother velocity increase around 
9 km compared to the model of CC. The synthetics for the 
22 parameters solutions are displayed in Fig. 12. As in the 
11 parameter case the first arrivals are lined up better in the 
two central panels. Clearly the difference between the 
waveform fits does not appear to be very significant, 
although this is, strictly speaking, a question for the error 
analysis. The important point from our point of view is that 
the genetic algorithm is certainly able to compete with the 
linearized waveform inversion for quality of data fit and also 
overall computational efficiency without the need for 
derivative information or a good starting model within the 
valley of the global minimum. It may be argued that the 
three genetic algorithms have apparently converged to 
different models and that therefore at least two of the three 
are probably in local minima. This is most likely true and 
demonstrates one of the current inadequacies of the genetic 
approach, i.e. that we have no parantee of an optimal 
implementation. However, in answer to this criticism we 
must point out that it is not really correct to say that the 
algorithms have converged. As we have already seen in the 
previous example it is possible that new onsets of 
accelerated misfit reduction can begin, and so we cannot be 
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12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 10. The best 22 parameter velocity model found by the genetic algorithm with the homogeneous layer model of Spudich & Orcutt 
(1980). The crosses indicate the depths of the velocity parameters used in the model. 

sure that the two poorer genetic solutions will not improve 
later on. In addition, the difference between the three 
velocity models is considerably less than that for the 
secondary minima identified by CC, which occurred in more 
shallow regions of the model. The two poorer models are 
similar to the CC model in that they have larger velocity 
gradients at around 9 km depth but are very similar to the 
genetic solution at  shallower depths. 

A comparison of Figs 9 and 6 shows that, in the 22 
parameter case, both the genetic algorithm and the Monte 
Carlo search begin at much lower waveform misfits than in 

the 11 parameter case. This indicates that the narrowing of 
the velocity bounds for the second inversion has assisted 
both procedures in locating models with smaller misfits. The 
new bounds were generated by examining the range of 
models found by the 11 parameter genetic algorithm that 
passed the traveltime test zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ISTI 5 0.15 s). Therefore all of 
the curves in Fig. 9 have in fact benefited from the earlier 
genetic algorithm and therefore we cannot really claim that 
the genetic algorithm in Fig. 9 has achieved its low misfit 
without the aid of some indirect traveltime fitting. 
Nevertheless in the 22 parameter case the Monte Carlo and 
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Figure 11. A comparison between the 22 parameter model obtained by the genetic algorithm and the 21 parameter model obtained from a 
linearized inversion by Cary & Chapman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1988). The two models differ only at depths greater than 8.5 km. 

the genetic algorithm benefit equally from the narrower 
bounds and so a comparison between these is still valid. 

The performance curves in Figs 6 and 9 are illuminating 
but, nevertheless, only represent the misfit of the best model 
achieved. They do  not give any information about the 
range, or average, misfits within each population. It can be 
instructive to examine a range of models that fit the data 
well. The spread of GWf within the population gives us an 
indication of whether the best model is the result of some 
fortuitous interaction with a few models, or if information 
exchange is taking place among all of the models. Fig. 13(a) 
shows a scatter plot of GWf and Gtt for the first 1229 models 

that passed the traveltime test in the Monte Carlo scheme 
for the 22 parameter inversion, and Fig. 13(b) is the 
corresponding diagram for the most successful genetic 
algorithm. The genetic scatter plot shows an intense 
concentration of models with relatively small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$d compared 
to the Monte Carlo case which is much more spread out by 
comparison. As the iterations proceed the genetic algorithm 
is able to exploit the information gained from previous 
populations and direct the entire population towards 
favourable regions of model space, thereby generating more 
and more models with smaller waveform misfits. This 
indicates that substantial and efficient exchange of 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Genetic wuveform inversion 339 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
data and synthetic seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a 
7% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 

3- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v 

.O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.5 7. 

reduced time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
12. Observed and synthetic seismograms for the 22 parameter model obtained by the genetic algorithm. Other details are as for 

information has taken place among many of the models in 
the population. 

As a final point it is worthwhile pointing out that in the 
work of Cary & Chapman (1988) considerable effort was 
exerted in performing non-linear error analysis about the 
final solution. In this way it was possible to place confidence 
bounds on the velocities and obtain information on the 
trade-offs between velocities at different depths. This is 
clearly important information which can only be obtained by 
performing a multidimensional numerical integration to 
estimate the posterior covariarance matrix (see Cary & 
Chapman 1988, or Tarantola 1987, for a description). In this 
work the genetic algorithm has only been used to solve the 
optimization part of the inverse problem and has not been 
applied to the error analysis stage. However, to arrive at a 
solution, the genetic algorithm samples many models 
throughout the parameter space, and the forward problem is 
solved for each of these models. Clearly it would be 
advantageous if this information could be used to perform 
the error analysis, without any extra solving of the forward 
problem. In addition an estimation of a posteriori covariance 
matrix based on these models is likely to be efficient because 
many of them are concentrated about the final solution. In 
theory this process is straightforward; however, in practice 
there are problems since it requires knowledge of the 
multidimensional probability density function which gen- 
erated the genetic algorithm models. An accurate and 
efficient method of calculating this density function, from a 
finite number of samples, is a difficult problem, and this 
remains an area for further study. 

Fig. 7. 

4 GENETIC ALGORITHMS AND 
SIMULATED ANNEALING 

The superiority of genetic algorithms over Monte Carlo is 
encouraging. However, in recent years Simulated Annealing 
techniques have also been shown to be a major 
improvement on Monte Carlo for global optimization 
problems. The question therefore arises of how they 
compare. The two techniques are similar in that both are 
modelled on processes found in nature, and both have been 
used to solve difficult and important problems, including the 
design of semi-conductor layouts, optimization of com- 
munication networks and signal analysis (see Grefenstette 
1987, for a summary). Both technologies are developing 
rapidly, and so comparisons between the two on specific 
problems may quickly become dated. Nevertheless detailed 
comparisons on combinatorial problems (i.e. those which 
are naturally discrete, like the travelling salesperson 
problem) have been made (see Davis 1990). The general 
conclusion from these studies seems to be that neither 
technique is superior for all problems. Usually the more 
appropriate technique is the one that can be applied most 
easily to the particular problem at hand. For instance in the 
travelling salesperson problem (see Press et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1987) 
Simulated Annealing is easier to use because the crossover 
stage of the genetic algorithm can cause models to be 
generated which are not allowed in the problem, i.e. paths 
between cities are produced which omit some cities and visit 
others more than once. Modifications of the simple genetic 
algorithm are required, in order to avoid this problem, and 
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Here E l  and E ,  are the values of the misfit function of the 
two models, k is a constant and T is the temperature 
function which is lowered as the algorithm proceeds. If p is 
greater than 1 then the new model has a lower misfit than 
the old, and it is accepted; if it is less than 1 then it is 
accepted with the probability p .  Many more detailed 
description of the technique exist (see for example van 
Laarhoven & Aarts 1987). Clearly the algorithm can move 
both uphill and downhill, and has the ability to climb out of 
local minima of the misfit function. Different versions of the 
algorithm have been suggested. The definition of the 
neighbourhood determines the class of models that can be 
produced at any one step. In many cases the neighbourhood 
is simply defined as an unrestricted variation of a single 
parameter in the model. In the next step a different model 
parameter is chosen either sequentially, or randomly. 
Variations also exist in the way a new model is generated 
within the neighbourhood. Most authors use the Metropolis 
algorithm (Metropolis et al. 1953) which is a completely 
random selection between the parameter’s bounds. Szu & 
Hartley (1987) consider perturbations derived from a 
Gaussian and a Cauchy probability density function (pdf) 
centred about the current model, while Tarantola (1987) 
advocates using the marginal pdf of the parameter to be 
perturbed. The combination of neighbourhood and selection 
scheme is known as the ‘move class’ of the algorithm. 

Scales et al. (1991) use the continuous version of the 
algorithm, where the neighbourhood is defined by an 
N-dimensional sphere about the current model (N is the 
dimension of the parameter space), and a new model is 
slected randomly on this N-sphere. They perform 10 trial 
runs of the algorithm at varying temperatures and calculate 
ensemble averages of thermodynamic properties of the 
system, which allows them to estimate the critical range of 
temperatures to be sampled. They then use the fast 
annealing schedule of Szu & Hartley (1987) to reduce the 
temperature as the iterations proceed. The use of 
thermodynamic properties of the system to control the 
annealing schedule has probably been the major theoretical 
advance in the method in recent years, and this approach is 
embodied in the ‘constant thermodynamic speed’ annealing 
schedule of Nulton & Salamon (1988). It is interesting to 
note that, like the genetic algorithm, a number of 
preliminary trial runs are necessary in order to achieve an 
efficient implementation of the algorithm. In the comparison 
performed by Scales et al. two general features were 
evident. Firstly, the Simulated Annealing algorithm 
converged more uniformly towards the correct global 
solution than the genetic algorithm, and secondly that the 
genetic algorithm converged more ‘quickly and completely’. 
The results also showed that the Simulated Annealing 
algorithm suffered from the problem of ‘critical slowing 
down’. This is the term used to describe the situation when 
the computation time of the algorithm is dominated by a 
length-scale (step size or grid size) which is unrelated to the 
scale at which the misfit function varies in parameter space. 
Scales et af. suggest that, since the move class in 
conventional Simulated Annealing is restricted to a 
neighbourhood region, it can only accumulate information 
about the misfit function at this scale, and therefore 
information about the large-scale structure can only be 
gained after taking many steps. Genetic algorithms on the 
other hand do not have a comparable neighbourhood 
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some preliminary exploration of alternative values for Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, 

and P,. This tuning is a rather ad hoc process. Indeed, most 
of the research into the subject seems to be centred on 
providing minor improvements to efficiency and developing 
strategies for adjusting the control parameters without much 
theoretical justification. However, as we discussed above, a 
clear theoretical framework is inhibited by the sampling 
error associated with the finite stochastic processes involved. 
In understanding and improving genetic algorithms it seems 
that one should concentrate on the underlying concepts of 
the method rather than the particular embodiment of those 
concepts which make up the mechanism described here. It 
seems reasonable to suppose that the basic ideas, i.e. the 
use of a stochastic process which uses the model fitness to 
control the likelihood of model survival, together with the 
decomposition and manipulation of the model in a binary 
form, could equally well be combined in a very different 
type of nnmerical algorithm; perhaps one which allowed a 
greater amount of control and predictability over its 
efficiency for a particular class of problems. Much of the 
work on genetic algorithms, however, has not taken this 
approach, preferring instead to concentrate on improving 
performance in particular problems by way of minor 
adjustments to the mechanism. 

This paper has sought to demonstrate the feasibility of the 
genetic approach to geophysical optimization problems. 
Even though the two waveform fitting examples have dealt 
with parameter spaces consisting of up to 2.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx models, 
and near-optimal solutions have been found with only 8000 
samples, it is clear that we have considered only relatively 
small-scale problems, i.e. with up to 22 unknowns. We must 
expect that the computational cost of the procedure will 
increase with the number of unknowns (as the bit-string 
length, I ,  increases). For problems involving a much larger 
number of model parameters, say =1000’s or 100000’s it is 
not yet clear whether a genetic algorithm, or a variation of 
it, can be applied efficiently. What is more certain is that 
genetic algorithms cannot, at  present, be applied to 
problems for which the computational cost of solving the 
forward problem makes it prohibitive to sample more than 
at least a few hundred models. Indeed it is doubtful whether 
any algorithm would make much progress in a highly 
non-linear multidimensional problem where such a restric- 
tion is imposed. In the examples considered here the 
efficiency with which synthetics may be calculated with 
Chapman’s method is crucial in making the problem viable 
for the stochastic approach. 

We have outlined the main differences and similarities 
between genetic algorithms and Simulated Annealing 
methods, and have discussed some results of Scales et al. 

(1991) who have performed comparisons between the two. 
Both methods are developing rapidly and at  present we 
expect that any problem feasible by one could also be 
tackled by the other. It seems likely that genetic algorithms 
will find applications in other geophysical optimization 
problems arising from both forward and inverse problems. 
One example would appear to be earthquake hypocentre 
location. A n  application of genetic algorithms to this area is 
currently under investigation by Sambridge & Gallagher 
(1992). Other optimization problems for which the method 
seems to have some potential are boundary value ray tracing 
through highly heterogeneous media and non-linear data 
fitting problems. In conclusion we feel that this intriguing 

restriction and appear to be able to assimilate information 
globally with each step. 

The results of Scales et al. (1991) are very illuminating; 
however, other implementations of either technique may 
perform differentially, and so a sound theoretical basis is 
still required before any far-reaching conclusions can be 
drawn about comparisons of the two methods. Here we 
have tried only to highlight the different characteristics of  
the two approaches. We expect that in many geophysical 
applications a choice between the two will depend as much 
on their ease of implementation as on a potential return in 
computational efficiency. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 DISCUSSION 

The results of this paper suggest that genetic algorithms 
have the potential to solve global optimization problems 
much more efficiently than a Monte Carlo search, while 
making the same demands on the forward problem. The 
genetic algorithm requires only minimal information, i.e. 
misfit function evaluations, and is therefore independent of 
the details of the forward problem. This is a convenient 
feature since exactly the same algorithm may be applied to a 
wide range of optimization problems without difficulty. In 
fact the same set of computer subroutines was used in all 
three examples described in this paper without modification. 
The algorithm is independent of the form of the misfit 
function and avoids any use of derivative information but is 
able to efficiently exploit information and find near-optimal 
solutions rapidly. 

At  present, the study of genetic algorithms is still a young 
field, even though they have been used with success in 
problems of Artificial Intelligence for a decade or more. In 
addition to the theoretical shortcomings discussed above, 
there are two practical difficulties which must be 
highlighted. The first arises when a model is generated, 
which is not particularly close to  the global solution, but 
relatively good compared to the rest of the population. It 
then makes multiple copies of itself and begins to dominate 
the population early on in the life of the algorithm. If the 
model manages to reproduce itself at  a fast enough rate to 
overwhelm the rest of the population, then the algorithm is 
effectively stalled through a lack of diversity. This problem 
is known as ‘premature convergence’. Usually it occurs if 
the population size Q is too small and is easily avoided by 
increasing Q. It actually occurred in the waveform example 
above for some trials with Q =26, but not for larger 
population sizes. Other authors suggest some modifications 
to avoid it (see Goldberg 1989; Booker 1990). The second 
problem arises when no model in the population is 
particularly good compared to any other model and so the 
cost functions are all about equal and the driving force of 
the algorithm is lost. This is essentially the opposite case to 
the first problem. The usual way to cure it is to adjust, or 
rescale, the cost function so that the reproduction 
probabilities, P,(m) of the models have a greater range. 
Other more sophisticated mechanisms for these problems 
are discussed in Davis (1990). 

Another aspect of the genetic algorithm which is 
somewhat unsatisfactory is that they must be tuned for each 
particular problem. In the examples presented here it was 
possible to obtain significant improvements in efficiency by 
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342 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  Sambridge and G. Drijkoningen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and powerful new methodology form a highly efficient and 
flexible class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof algorithms for strongly non-linear 
optimization problems. 
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